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We introduce, within the refined Gribov-Zwanziger setup, a composite Becchi-Rouet-Stora-Tyutin
(BRST) invariant fermionic operator coupled to the inverse of the Faddeev-Popov operator. As a result, an
effective BRST invariant action in Euclidean space-time is constructed, enabling us to pave the first step
towards the study of the behavior of the fermion propagator in the infrared region in the class of the linear
covariant gauges. The aforementioned action is proven to be renormalizable to all orders by means of the

algebraic renormalization procedure.
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I. INTRODUCTION

Despite the nontrivial progress done in the last decades,
see [1] for a general overview, a satisfactory solution of the
Gribov problem [2] is still lacking. As is well known, the
standard Faddeev-Popov gauge fixing quantization pro-
cedure of non-Abelian asymptotically free gauge theories
yields remarkable results in the deep ultraviolet region.
Although, its naive extension to the nonperturbative infra-
red region fails, due to the existence of the Landau pole.
Such a nonperturbative region is deeply affected by the
existence of the so-called Gribov copies [2], i.e., by
equivalent field configurations: configurations which are
related by a gauge transformation while obeying the same
gauge-fixing condition. The whole issue arises from the
observation [2] that a local covariant gauge-fixing is unable
to account in a complete manner for the gauge freedom. It
was soon realized that the Gribov problem is not a
particular problem of some specific gauge-fixing, but an
intrinsic problem related to the nontrivial geometrical
structure of the space of the gauge orbits of non-Abelian
gauge theories [3].

The Gribov problem has been faced under distinct
viewpoints as, for example, the refined-Gribov-
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Zwanziger (RGZ) approach [4-9]" which has been the
object of intensive investigations in recent years, including
the important result of the existence of an exact Becchi-
Rouet-Stora-Tyutin (BRST) invariance, see [11-14], which
has allowed researchers to extend the Gribov-Zwanziger
original construction [2,4,5] from the Landau to the linear
covariant gauges. In the RGZ approach, the domain of
integration in the functional integral is restricted to the so-
called first Gribov region [2] defined as the set of all gauge
field configurations obeying the Landau gauge fixing
condition, d,A5 =0 and for which the Faddeev-Popov
operator M (A) = —-9,D%(A) is strictly positive, i.e.,
M- (A) > 0. For other recent alternative approaches to the
Gribov problem we quote [15-17], where the gauge-fixing
procedure is supplemented by an averaging over all Gribov
regions by introducing a Boltzmann weight aiming at
favoring field configurations close to the fundamental
modular region (FMR), a region which is contained within
the Gribov region and which is known to be free from
Gribov copies.

It is worth mentioning here that both the refined Gribov-
Zwanziger approach as well as other approaches based on
the study of the Schwinger-Dyson equations [18-21],
renormalization group equations [22], and effective mas-
sive gluon models [23-28], have already provided good
results for the two-point gluon correlation functions in the
infrared region, which are in good agreement with the
lattice numerical simulations; see, for example, [29-33]
and references therein.

In the present work, we shall focus on the RGZ model
and its exact BRST invariance in the class of the linear

'See [10] for a pedagogical introduction.
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covariant gauges (LCG). As mentioned before, an exact
BRST symmetry [11-14] of the RGZ action has been
constructed out of the nonlocal, transverse and gauge-
invariant composite field (A = Ala74) ? introduced in
[5,34], namely,

d,0, 1
Al = (% - gz ) <AU —ig [ﬁaA,AD]

g1 1 3
+5 [82(%,@828/4] +O(A )). (1)

As itis easily checked, expression (1) is left invariant, order
by order in powers of the coupling constant g, by the BRST
transformation, i.e.,

SAP =0,  sAZ=-Dg"(A)c’, )
where s is the nilpotent BRST operator, (D> = 59, —
gf“h"A;) is the covariant derivative in the adjoint repre-
sentation of the SU(N) gauge group and c?(x) is the
Faddeev-Popov ghost field. Let us also remind the reader,
for further use, the expression of the gauge-fixed Yang-
Mills action in the linear covariant gauges parametrized by
the gauge parameter a:

4w 2

| .
= / d*x [‘_1 Fi,Fg, +s (Z‘“@I,Al‘j - %E“ba)] ., (3)

where b? is the auxiliary Nakanishi-Lautrup field, while ¢¢
is the Faddeev-Popov antighost. The field strength Fj, is
given by

1
Sep = / d*x [— Fo,F%, + ib"0,A% + = b + r‘:"@ﬂDﬁbc”}

F4, = 0,Af — 0,A4 + gf**cAbAS. (4)
Following [11-14], for the BRST invariant partition func-

tion in the linear covariant gauges implementing the
restriction to the Gribov region, we have

Z1c6 :/[D(D]e_<SFP+74H<Ah)_4V74<N2_1))’ (5)

where [D®| stands for integration over all fields
(Ag, b, ¢ c) and

H) =g [ sy foal (oMo (AN) . y)
X JAL () ©

is the Gribov-Zwanziger horizon function [2,4,5], with

>The matrices {T% a=1,...,N> =1} denote the Hermitian
generators of the gauge group SU(N), [T%, T?] = if*><Te.

(M (AM)]7! = [-0,D4P(AM)]™!, V the space-time vol-
ume, and N the number of colors. The parameter y, known
as the Gribov parameter, has mass dimension one. It is not a
free parameter, being determined by the Gribov-Zwanziger
[2,4,5] gap equation,

(H(A")) =4V(N? - 1), (7)

where the expectation value is taken with respect to the
measure (5).

As is apparent from (6), the horizon function is a
nonlocal expression. Although, the whole partition function
(5) can be cast in a local form following the two steps
outlined in [11-14]. First, we introduce a pair of bosonic
fields (p,¢)% as well as a pair of anticommuting ones

u

(@, a))zb , known as the Zwanziger fields. These fields
enable us to localize the horizon function, yielding the so-

called Gribov-Zwanziger action
Soz = Ser — [ d(@ Mgl - afe MO (Ao
=77 [ dar o+ o) (8)

Further, we perform a second localization procedure in
order to cast in local form the nonlocal quantity Al As
shown in [11-14], this is done by introducing an auxiliary
localizing Stueckelberg field [34-38] £ by means of

h = e'% = 9T, 9)

a a i
Al = AR T = hTA,,h+§h75)ﬂh. (10)

Under a gauge transformation with group element U, one
has

i
A, — AV = UTA”U+§UT(9”U,

h—hY =Uth, = (W)t =htu, (11)
from which the gauge invariance of AZ follows immedi-
ately:

Al — (AUY! = Al

i (12)

Expanding expression (10) in powers of &%, we have a
nonpolynomial infinite series whose first terms read
7
(Ah)z — AZ _ aﬂéa + gf“bCAZ§” _ Efabcgbaﬂéc
(13)

Solving now the transversality condition, 8ﬂAZ = 0, for the

auxiliary Stueckelberg field £, we get back the nonlocal

+ higher orders.
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expression (1). It remains now to write down the starting
action in its local form. This is done by introducing a new
Lagrange multiplier 7 which implements the transversality
condition, aﬂA,’j = 0, as well as the corresponding Jacobian
which, as much as the Faddeev-Popov determinant, can be
rewritten in a local exponential way by means of a new pair
of ghosts (#,7). Finally [11-14], for the localized BRST-
invariant form of the Gribov-Zwanziger action in LCG we
obtain

Soz = Sep [ dalgr Mo Al = a MO (AT
-7 [ dgr o+ o)
—|—/d4x1“0”(Ah)z—/d4xﬁ“ M (AP (14)

The final step is now that of moving from the Gribov-
Zwanziger action to its refined version, a task easily
achieved by adding the BRST invariant dimension two
operators (Ay“A;) and (pePpi — @Pwg?). Therefore, for
the local BRST invariant refined Gribov-Zwanziger action
in the LCG gauge one gets

m? ha h
Srez = Sgz + 7/ dx At AR
‘W/hmwtmwﬂ (15)

where, analogously to the Gribov parameter y, the two new
mass parameters (m, M) are determined by their own gap
equations, see [8,9], from which it turns out that the refined
Gribov-Zwanziger setup is energetically favored with
respect to its Gribov-Zwanziger version, Eq. (14).

Both Gribov-Zwanziger and refined Gribov-Zwanziger
actions enjoy the following exact nilpotent BRST sym-
metry defined as

sAY = —Dabcb, sct = gf"bccbcc,

sct = ib“, sb? =0,
sqoﬁb =0, sa),‘jb =0,
scbl‘jb =0, s@l‘jb =0,

shil = —igc®(T4)*hki, sAlt =0,

st¢ =0, s =0,

sn* =0, 52 =0, (16)

s8Sqz = sSpagz = 0. (17)

The BRST transformation of the Stueckelberg field £ can
be obtained iteratively by expanding in power series the
BRST transformation of 4%/ in Egs. (16), yielding

sE = g (&)cP, (18)

with ¢ given by

2
gab(é) — _g§ab +gfabcfc _f_zfamrfmbqé:qgr + 0(53)
(19)

As shown in [11-14] the refined Gribov-Zwanziger action,
Eq. (15), gives rise to a set of nontrivial results which we
list below:

(i) Despite its nonpolynomial character, expression (15)
turns out to be renormalizable to all orders.

(i) The BRST invariance ensures that the parameters
(y,m, M) will not be affected by the gauge param-
eter a. As such, (y,m, M) are physical quantities
entering the expression of the correlation functions
of gauge invariant operators.

(iii) Due to the Nielsen identities following from the
BRST invariance, the pole mass of the transverse
component of the gluon propagator turns out to be
independent from the gauge parameter o to all
orders.

(iv) The Nielsen identities also imply that the longi-
tudinal component of the gluon propagator does not
get any quantum correction to all orders, a property
shared also by the studies of the LCG gauge within
the Schwinger-Dyson framework [39,40] as well as
by lattice numerical simulations [41-43].

(v) When specializing to the Landau gauge, o = 0, the
transverse gluon propagator computed from the
RGZ action (15) is in very good agreement with
the most recent lattice simulations; see for example
the analysis performed in [31] where the agreement
is shown to remain valid from the very deep infrared,
p ~ 0, till the UV region, p ~ 10 GeV.

(vi) So far, the refined Gribov-Zwanziger setup has
already been employed in a variety of physical
applications as, for example, study of the spectrum
of the glueballs [44,45], p-meson mass estimate
[46], study of the topological susceptibility [47],
pomeron physics [48], and thermodynamics of the
Polyakov loop [49].

The aim of the present work is that of establishing the all
orders renormalizability of the refined Gribov-Zwanziger
action, Eq. (15), when the BRST invariant composite
fermionic quark matter operator y"

y" = hly, (20)

and its corresponding nonlocal matter horizon function are
included in the starting action. As we shall see, the addition
of the aforementioned BRST invariant fermionic term will
enable us to pave the first steps towards the nonperturbative
study of the quark propagator in the class of the linear
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covariant gauges, a topic which is under current intensive
investigations.

The paper is organized as follows: In Sec. II we introduce
the BRST-invariant composite fermionic field yw”. In
Sec. III we present the fermionic matter horizon function.
Section IV is devoted to the derivation of the Slavnov-
Taylor identities, translating in functional form the BRST
exact symmetry of the starting action. In Secs. Vand VI we
establish the so-called extended BRST symmetry as well as
the whole set of Ward identities satisfied by our model. In
Sec. VII we prove the all order renormalizability of the
model by means of the algebraic renormalization pro-
cedure. Finally, in Sec. VIII we present our conclusions and
future perspectives.

II. THE BRST INVARIANT COMPOSITE
FERMIONIC FIELD

Within the BRST framework reviewed in the
Introduction, we proceed by exhibiting the construction
of a BRST invariant local, nonpolynomial, fermionic
composite fields (y"(x), %" (x)) in the same way as we
have constructed A,’} (x); see Egs. (9), (10) and (13). Let us
start by introducing the following spinor quantity3:

wa' = hiyl, (1)

where y/, is the complex spinor field and £ is given by (9).
As the field y transforms as w — Uy and h' as
Wt > WU, for a finite gauge transformation U, it is
immediate to realize that " is gauge invariant. Of course,
the same procedure can be done for the field y, giving rise
to the invariant composite field " = yh. Expanding / in
powers of the Stueckelberg field &%, one gets the infinite
power series

va' = yh = ige"(T*) g
2
=T E e (TiT s+ OE). (22)

?According to the notations adopted here, the Greek indices
{u,v,p, o} are the vector indices of the Euclidean space, while
the Greek indices {a, 8, 7, 8} to spinor indices. The Latin indices
{a,b,c,d, e}, running from 1 to N? — 1, are the indices of the
adjoint representation of SU(N), while the Latin indices
{i,j, k, I}, running from 1 to N, represent the indices of the
fundamental representation of SU(N). The adopted convention
for the Dirac gamma matrices y,, in Euclidean space is given by

(0 1 - 0 oy
“=\1 o) TN -6 o)

. (1T 0
Vs=rarnnts=\og _1 )

where 1 is the 2 x 2 identity matrix, kK = 1, 2, 3, and o, are the
Pauli matrices.

It is worth mentioning here that a study of the fermionic
quantity " as a composite field in Euclidean Yang-Mills
theory was already done in [50], where its renormalizability
was established to all orders in the loop expansion. As a
recent application of the BRST invariant operators
(", "), we quote Refs. [51-53] where the renormalizable
non-Abelian Landau-Khalatnikov-Fradkin (LKF) transfor-
mations in the class of the linear covariant gauges were
derived by direct use of (A%, y", "), from which it follows

o
that the correlation functions

(AL (1) AL ey (1) 0" ()

are independent from the gauge parameter a, namely

(Al (x1)... AL (cw (v1) 0" (7)) o
= (A (x1)- A ()" (1) " (V) amo- - (23)

Following [51-53], once expanded in powers of the
Stueckelberg field &%, Eq. (23) enables one to evaluate
Green’s function

<AZI (xl)"-Aﬁ,» (xi)l//h<yl)-'-l/_/h(yj)>a;é0

for a given nonvanishing value of the gauge parameter o
from the knowledge of the corresponding Green’s function
evaluated in the Landau gauge, i.e., @ = 0, yielding thus the
desired LKF transformations.

As mentioned in the Introduction the composite oper-
ators (", ") will be employed to build up an effective
BRST invariant horizon fermionic function which can
allow one to investigate the nonperturbative behavior of
the quark propagator in the linear covariant gauges, a topic
on which we hope to report soon.

III. THE HORIZON FUNCTION FOR THE
MATTER

As outlined in [14,54,55], in analogy with the Gribov-
Zwanziger gauge field horizon function, Eq. (6), we have
provided a rationale for the introduction of an effective
generalized horizon matter function, namely

Ha(A", W) = — / dxdy (T4 1P (x)
X [MTHAM)]® (x, ) (TP) R PH(y),  (24)

where W can be either a spinor field or a scalar field in the
representation 7¢. The introduction of such matter horizon
function can be understood by observing that, once the
Gribov horizon is introduced into the theory via the
Gribov-Zwanziger horizon function (6), its presence is,
somehow, transmitted to the other matter fields present in
the theory. As one can easily figure out from expression (6),
the Gribov horizon is encoded in the inverse of the
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Fadeev-Popov operator, [M~!(A")]#> which becomes more
and more singular as we are approaching the boundary of the
Gribov region, i.e., the first Gribov horizon.

Although, unlike the Gribov-Zwanziger horizon func-
tion, Eq. (6), for which a well-established derivation based
on the properties of the Gribov region has been provided
[2,4,5], an analogous construction for the horizon matter
function Hy(A", W), Eq. (24), is not yet at our disposal.
Nevertheless, it is worth pointing out that the requirements
of BRST invariance and of renormalizability, see the
following sections, seem to select in a unique way the
expression (24) as a nonperturbative matter term which can
be introduced in order to investigate the behavior of the
quark propagator in the infrared region. From that point of
view, it is interesting to observe that expression (24) yields
a propagator, Eq. (173), exhibiting a quark mass function
A(p?), Eq. (174), in agreement with the available numeri-
cal lattice simulations. As such, expression (24) can be
regarded as a useful effective nonperturbative matter term
which enjoys the nontrivial properties of preserving both
BRST invariance and all orders renormalizability, while
providing a helpful quark mass function A(p?).

Thus, investigating the procedure of [14,54,55] in a
BRST invariant environment for the fermionic field in the
linear covariant gauges, we start by considering the
following starting action:

S= SRGZ + Smatter + Sm (25)

where Srgz stands for the RGZ action in linear covariant
gauges, Eq. (15), while S, and S, are given by

Smatter = / d4x[il/_/ia (7/4){1/)’Dliljl//jﬁ - my/l/_/ial/’ét]a (26)

S, = —o H, (A", yh)
= -0’ / d*xd*yp (x) T
x [MLAM (e, ) TRy (). (27)

The term (26) is the usual fermionic matter term coupled to
the Yang-Mills field through the covariant derivative in the
fundamental representation, D,/ = 6§79, — igT*"/A¢%. The
parameter m,, is the fermion mass. The term (27) stands for
the effective fermionic horizon term written in an explicitly
BRST invariant fashion by means of the variables
(@",y", Al). Here, the parameter o is an effective massive
parameter which plays a role akin to that of the Gribov
parameter y. Notice also that the horizon function (6) has
mass dimension —4; therefore, it has to be introduced in the
action together with a power four mass parameter, i.e., y*.
On the other hand, the fermionic horizon function
H, (A", y") has mass dimension —3, justifying thus the

presence of the term ¢°.

Because S, is a nonlocal expression, the first issue to be
faced is that of its localization. Proceeding in a very similar
way as in the case of the horizon function of the gauge
invariant composite field A” reviewed in the Introduction,
for the local version of S, we get

Sl;)cal — / d4x[23i<_aﬂDzb(Ah))/1a.bi
+ B (-0, D AR
+ 6%(ZgiTa’ijl//h’ja + I/_/Z'iTa‘ijlaja)], (28)

where (147,291) are anticommuting localizing auxiliary
spinor fields while (£%,{%) are commuting ones. It is
easy to check out that integration over the auxiliary fields
(A%, 247, ¢4i £97) gives back the original nonlocal expres-
sion (27). The action (25) gives the place of an equivalent
local starting action:

Shocal — SRGZ =+ Smatter =+ S?cal’ (29)

where expression (27) has been replaced by (28). The new
local action (29) is left invariant by the BRST trans-
formations (16) together with the BRST transformations
Of (Wv l/_/’ ;L’ 2’7 é’v C)s

syl = —i(T) ey, sl = —ipa(T)e",

sC4 =0, sA9 =0,
sA4 =0, sC4 =0, (30)
with
gSlocal — ), (31)

IV. INTRODUCTION OF EXTERNAL SOURCES

In order to prove the all order renormalizability of the
action S we follow the original procedure devised in
[4,5] and embed $' into a more general action by means
of the introduction of a suitable set of external sources. For
the benefit of the reader, let us give a very brief overview of
how this is done.

A. Embedding the model into a more general one

Following [4,5], let us consider the RGZ action (15) and
take a look at the term proportional to Gribov’s parameter
y?, namely

$p= [ darsr Aoy, G

As shown in [4,5] this term might be seen as a particular
case of a more general term depending on a set of external
sources, i.e.,
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S(M,N,U,V)= / d*x[MacD (AM)pbe + VacDab (AM) pbe

— N D (AM)wke + Ugs Dy (A"l

—Mgbvaeb + Nabyab], (33)
with (M, V) being commuting sources and (N, U) anti-
commuting ones. In fact, when the sources are set to their
physical values,

ab
My

— yab — ,25ab
l/|phys - V;w|phys =7 o 6/4w

Nﬁzl}'phys = U/‘jglphys =0, (34)
we have
S(M.N.U,V)|ys = 2. (35)

modulo a vacuum term, 4V(N2 —1), coming from the
product MV in (33), which is allowed by power counting.
The introduction of this set of external sources allows us to
write the following symmetry transformations:

5(pl‘jb = a)ﬁb, 50),‘5” =0,
sagt = @it 8pt =0,
SN = Mb,  sMb =0,
sveb =y sU = 0. (36)

As much as the BRST operator s, the operator § is nilpotent
too. It acts nontrivially only on the variables
(¢, p, 0,0, M,N,U,V). Moreover, as we shall see later,
the operators s and o can be combined together in order to
write down a helpful extended generalized nilpotent BRST
operator. Let us notice that the term (33) can be rewritten as
a total § variation,

SOLN.U.V) =5 [ gD (4t

+ VicDib (AM)ay — Ngpviar],  (37)

puv YV opy

as well as the RGZ dimension two operator

Pl — al o = 8(ap o). (38)
In fact, making use of (M, N, U, V) the whole local version
of the Gribov-Zwanziger horizon function can be rewritten
as a 0 variation. As a consequence, once 6 will be combined
together with s to give rise to an extended generalized
BRST operator, the horizon function as well as the RGZ
operator (@2 p? — @3 w?") will turn out to belong to the
trivial sector of the cohomology of such an extended BRST
operator. With respect to the s operator, the sources
(M,N,U, V) transform as singlets, i.e.,

sMS) = sNib = sU = sVip = 0. (39)

As shown in [4,5], we can introduce an useful U(4(N? — 1))
symmetry for S(M,N, U, V), given by

4 (S(M.N,U.V)) =0, (40)
with
o o o o
ab __ d4 ca _ =cb ca _ ~chb
w / x(“’” oo P sp M s sapy
4 e _ Mch o 4 e _ Ncb 6
eV TeMy UL VAN
(41)

The trace of this operator can be used to define a quantum
charge for the variables (¢, @, w, @, M, N, U, V). Also, this
symmetry enables us to introduce the so-called multi-index
notation, in which a pair of indices is combined into a single
index:

b Zab . ab =ab b ajab prab yrab
(01", @17, @), @037, My, Ny, Uy, Vi)

E((ﬂa], (ﬁal’wal’ a)al’ le’ N,(j], UZI’ VZI), (42)

where I = {b, v} is a combination of the color and Lorentz
indices b and v. We can make use thus of a new set of
indices {I,J,K,L,...} which run from 1 to 4 x (N> —1).
In terms of the multi-index notation, the term (33) takes
the form

S(M,N.U.V)

— 5/d4x [NZIDZb(Ah)wbI + VZIDZb(Ah)d)h[ _Nﬁlvzl}

:/d4x[Mﬁ1Dzb(Ah>§0bl+VzIDﬁb(Ah>§_0b[

_ Nz[Dﬁb (Ah)a)bl + UﬁIDzb (Ah)d)bl
— MYVl + NG U (43)

As expected, a similar procedure can be repeated for the
local version of the horizon function for the fermionic
matter term, which can be embedded into a more general
action. For such a purpose, we shall employ the set of
external sources (IT,TI, A, l_})’a’ﬂ with (A, A) being com-
muting variables and (II,IT) anticommuting ones, and
write the following expression:
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S(I,T1, A, A)
_ / d4x[[\£‘<ﬂv—/h,iaTa,ij/1akﬂ + ﬁi’;y—/h.iaTa.ijé:akﬁ
+ Pk eiiytia 4 NGP JakTatiy i), (44)
When the sources attain their physical values
= 63015,
=0, (45)

Agﬂlphys = /_\loiﬂ|phys
H:;ﬂlphys = H;jﬂ|phys
the term S(IT,T1, A, A) yields

S(ILIT,A,A)

[phys = / d*x o> QLT Ty gl T jai),

(40)

which is exactly the term proportional to 0% in Eq. (28).
The sources (I, I, A, A)” are BRST singlets,

sA;f,, = sAjj,,, - snjj,, - sr'lﬁ;;, =0, (47)

from which it immediately follows that sS(IT, T1, A, A) = 0.
On the other hand, as done in the case of (M,N,U, V), a
second nilpotent operator 5 & =0, acting only on
(A, A,¢,C.TLTL, A, A) can be introduced as

6/1“’ _ az 3531’ =0,
8Cat =741, 834 =0,
A ) S ij _
5Aaﬁ = . oll, =0,
T i
5Haﬁ = Aaﬁ, 5Aaﬂ =0. (48)

Again, the term S(IT, TI, A, A) can be rewritten as an exact 5
variation,

SALILAA) =5 / d* x [T T4 jokP

+ AakﬂzﬁkT“’ijl//h’j"]. (49)

We can also define a new 6 invariant dimension two operator
|

1
- /d4 [4F“ Fa, + 2 b9b + ib9,A% + ¢90, D (A)c

v v
HUT 2

+/ xX[t°9, A" + 71°0,D5b (A"

+ / d4x[(pala”Dzb(Ah)(pr

Zgiﬂaia + Egié’aia _ S(Egiﬂaia)’ (50)

which  will be considered later on. Furthermore,
S(IL,II, A, A) displays an exact U(4N) symmetry:

04(S(LTLA.A)) =0, (51)

with

T ) o
o 4 ai __7aj ai
Q(I/J’ - /d x<l‘1 S)aJp ﬂ'ﬂ SJaia +¢a 5Ctljﬁ é//3 55_:0”0[

8 T 5y 6
N+ TN —— — 1) ——
G A 51'[1;’“)

(52)

ki
e SALP

As in the case of (41), the trace of Q jﬁ defines a charge for
(A, 4. &, C,ILTL A, A) and a new multi-index 7 = {;j, #} can
be established:

aJ 24j af e AV A

( l C é ’ aﬂ? aﬂyAaﬂyAaﬂ)

= (A7, 60 8 T T AL A (53)
where the indices {i, J.K, ...} vary from 1 to 4 x N. In
terms of the new multi-indices, expression (44) can be
rewritten as

S(I, T, A, A)

_ S/ d4x[ﬁijy—/h,iaTa,iuai + Agz?Ta,ijwh,ja]

_ /d4x[[_\ijy—/h,iaTa.ij/‘La7 HJ yhiaTa, l]é’u[
+ Uz aiiyhia AT GaTa iyt (54)

Finally, we can replace the full action $'°%, Eq. (29), by a

more general one or, equivalently, we can also state that S°¢!
is embedded in the following action:

+ i (7,) g Dil W

&)alaﬂDzb (Ah)a)bl + leDzb (Ah>(pb1
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TABLE I. Quantum numbers of the fields.

Fields A b c c Vg Vg & 17 Q@ @ 0] a X T
Dimension 1 2 0 2 2 3 0 1 1 1 1 0 0 2
c-ghost number 0 0 1 -1 0 0 0 0 0 -1 1 0 1 0
n-ghost number 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e-charge 0 0 0 0 -1 1 0 0 0 0 0 0 0 0
U(4(N? — 1))-charge 0 0 0 0 0 0 0 -1 1 -1 1 0 0 0
U(4N)-charge 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nature C C A A A A C C C A A C A C

+ V/(le/(jb (Ah)¢bl _ N::ID;b (Ah)wbl + UZIDZb (Ah)é)bl _ Mltjlvzl + NZI UZ]]

+ / d4x[/_1?(—8ﬂDZb(Ah))/lb7 +Z§’(—6MD,‘jb(Ah))§b7

4 [_\iil/—/h,iaTa,ijlaI 4 ﬁi?l/—/h,iaTa,ijCal 4 ng?Ta'ijl//h’ja + AthizTa,ijwh.ja}

2
m _ _ . . - A - 5
+ /d4x|: 5 Al}lz,aALz,a _ MZ((palgoal _ walwal) _ mx//l//mlllclx + wz(/l‘”l;’ + Calé'?) ,

where, in the last line, we have also included the dimension
two invariant fermionic operator of Eq. (50) through the
new mass parameter w?, this term being allowed by both
power counting and symmetry content.

It is quickly checked that, when the externals sources
(M,N,U,V) and (I1,I1, A, A) attain their physical values,
Egs. (34), (45), expression (55) yields back the local action
Slocal of Eq. (29), with the addition of the invariant and
power counting allowed quantity (229 4 {“/¢4). As we
have seen before, expression (55) enjoys the following
exact symmetries:

581 =88 =681 = Q1y(S1) = 05;(S;) = 0. (56)
Evidently, being the action $'° a particular case of S,
the all order renormalizability of the latter will imply the
renormalizability of S$°@. Therefore, from now on, we
shall focus on S;.

B. Establishing the Slavnov-Taylor identities

Following the setup of the algebraic renormalization [56]
a key step in the proof of the renormalizability is the
establishment of the Slavnov-Taylor identities, translating
at the functional quantum level the BRST invariance. As we
have several nonlinear transformations as well as several
composite operators and symmetries, the task of writing
down the Slavnov-Taylor identities for the present model,
i.e., for the action S, requires a few steps which will be
illustrated in the following subsections.

First of all, from the BRST transformations of Egs. (18),
(19), (16), and (30) one observes that the transformations of
the fields (A%, c%, y', ¥') and & are nonlinear in the
quantum fields, so that they define composite operators

(55)

which need to be properly defined at the quantum level by
means of a suitable set of external sources [56]. This leads
to the following action:

Sy =81 + Sprs. (57)

with §; being given by (55) and Sy by
SBRST—/d4x[Q/‘j(sA,‘j)—|—L“(sc")—|—K“(s.§“)
+ (") Tl + T (sy™)]
— /d4x [QZDzb(A)Cb +gfabcLaCch +Kagab(§>cb
_ ill—/iaTa.ijca’r{l_ iT(ixTa'ijCal//ja ,

(58)

where (Q;’,L“,K“,Tf,, T,’l) are a set of external BRST
invariant sources

sQY = sL = sK* = 5T, =T, =0. (59)
TABLE II. Quantum numbers of the fields.
Fields n 7 1 A c 4
Dimension 0 2 1 1 1 1
c-ghost number 0 0 0 0 -1 1
n-ghost number 1 -1 0 0 0 0
e-charge 0 0 -1 1 -1 1
U(4(N? - 1))-charge 0 0 0 0 0 0
U(4N)-charge 0 0 -1 1 -1 1
Nature A A A A C C
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TABLE III. Quantum numbers of the sources.

Sources Q L K

<

~

<
=

<

[1]

Dimension 3
c-ghost number -1
n-ghost number
e-charge

U(4(N? — 1))-charge
U(4N)-charge
Nature

> o000

|
Nocococo |+
>ococco l »
Noococoom|~
Noococoo~—

Noocococow|y

Nollococom|x
>o— oo =0 |3
No~ococowm|<
QAoococoow®
>o00 0O~
rocollow
[oR=N =} —_ W
>o—o ! ow

TABLE IV. Quantum numbers of the sources.

X

=

Sources

—

>
>

Dimension 3
c-ghost number -1
n-ghost number -1
e-charge 0
U(4(N? - 1))-charge -1
U(4N)-charge 0
Nature C

>ol ol cw|~
| |
_O_Mm

Noo

| D
—_

Noo~o

LOOI\)\UI @
> OO = O onm| @
SO O Ovw

A— oo O ommw
>LOOOLN\L& jom(]
> — O O O —riw| I

> o o

The quantum numbers of these sources can be found in
Tables [-IV. The BRST invariance can now be written as a
functional identity known as the Slavnov-Taylor identity:

where S(F) is defined by
oF 6F OF 6F OF oF oF
S(F)= | a&* OF | OF OF | 1paF ).
(F) / x(aggéAfaLaaca 5K o8 ! 55&)
(61)

with F standing for an arbitrary integrated functional of the
fields and sources.

C. Introducing the external sources for the composite
operators (A% y" ")

Besides the sources (Q¢,L“ K“ T}, T!) introduced
before, we need to take into account that the quantities
(Aﬁ, w", ") are composite operators too and, as such, they
do require to be introduced through suitable external

sources. We get thus
S3 _Sz+/ (jaAha‘f' pu'© + Oly"ie),  (62)

where S, is given by 82 while the sources (74, ©,, ©f) are
coupled to (A", y" y"). The gauge invariance of
(Al y" ") naturally leads to

sJ% = 5O = 5O}, =0. (63)

Furthermore, the BRST invariant mass terms built up with
(Al w" ") and with the two families of localizing
auxiliary fields (¢, ., ®,®) and (4,1,¢,) which appear
in the last two lines of expression (55) can be treated as
composite operators coupled to the sources ( s 5, J3),
which replace the mass parameters (m?*, m,, M?> w?),
namely

SU Ay d . dy) = / d*x[JAL AR + 1,y
+ Jq](@al(pal walwal)
+ 0, (A28 + T ). (64)
At the end, we shall set
2
m
J(x)|phys = 7’
65
Ju/(x)|phys = _ml//",(ﬂ(x)|phys =-M?, ( )
Ji(x)|phys = WZ’

thus recovering the mass terms of S;. From the invariance
of the mass terms it follows that
sJ=sJ,=s],=s],=0. (66)
So far, the action we have constructed is given by the
expression Sz, Eq. (62), with the masses replaced by the
local sources (J, Jyi I J 1), i.e., with the last two lines of

Eq. (55) replaced by the term (64). Of course, at the end,
when the sources attain their physical values, Eq. (65), the
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action S5 is recovered. In order to clarify the notation, let us
define a new action

S4 = S3|masses—>sources’ (67)
although, the action S is not yet the final expression for the
complete tree-level action which will be taken as the
starting point. Two more steps are needed, as illustrated
below. As we have seen before, besides the BRST
J

invariance, we have additional global symmetries, namely
(6.6), which will turn out to be very helpful for the
algebraic proof of the renormalizability when translated
into Ward identities. To that aim we shall introduce extra
local composite operators encoded in the term S,

SS = S4 + Sextra’ (68)

with S.,., being given by

Sextra — /d4X[Ez Dzh (Ah)l’]h + Fabi’]a?’]h _ Xlna&)al _ Ylna¢ul _ X“bli’]uwhl

_ Yabl,,]agobl _ Z?I/]aj.(; _ Winaz? _ Zab?nai? _ Wabinaé’?

+ (I)él/_/h’jaTa’ﬁﬂa + (i)iaTa,ijnawg-j + K(/,c?)”’q)“’ 4 KlZaic}z]'

This extra term is left invariant by the three operators
(s,6,0) provided the new external local sources transform
as

sET®,0,XX.Y.YV.2Z,ZWW.K, K;,)=0; (70)
SET®.®.Z,Z,W.W.K;) =0,
oYl = X!, X' =0,
55(11/71 — _Yabl’ 5}7(1171 — O,
81, =K, 5K, =0; (71)
S(E.T,. @, ®X.X.Y.Y.K,) =0,
sz =-wl,  swl=o,
Swabl — Zabf’ Szabl — 0.
6J,=K,,  6K,=0, (72)

where we have extended the & and & transformations to the
sources J,, and J;, respectively.

The final step is now that of introducing pure vacuum
terms in the external sources, allowed by the power
counting, namely

SG - S5 + SPC, (73)
with
Spe = / d*x [% P+ ko d 2 A s T
+ oJ, (A AL~ Tl )|, (74)

(69)

where (ki,k,,k3,0) are arbitrary coefficients needed to
take into account the UV divergences present in the
correlation functions:

Other possible combinations in the external sources like J 2
3 Jyd g, Jids, 00,00, and J,J; are forbidden, since
they are not left invariant by the transformations (71), (72)
of J, and J,, meaning in fact that the correlation functions

(
(
APAM) (pg — dw),),
AMAR) (A +EE),).

Py — 0w) (A2 + £),)

are not UV divergent.

V. INTRODUCTION OF THE EXTENDED
GENERALIZED BRST OPERATOR AND OF THE
COMPLETE TREE-LEVEL ACTION X

In this section, we shall introduce a unique generalized
BRST operator encoding all three operators (s, 5, 6). First
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of all, following [57], let us extend the action of the
operator s on the gauge parameter «, a very powerful trick
to control the dependence of the invariant local counterterm
as well as of Green’s functions of the theory from a. To that
end [57], we define the action of s on the parameter a as

sa =y, sy =0, (75)
where y is a Grassmann parameter with ghost number 1
which will be set to zero at the very end. According to [57],
the linear covariant gauge-fixing term acquires now a y
dependent part, namely

4 _ia—a a )| — 4 _i)(—a a g ap,a
s/dx< 2cb> /dx( S eb +2bb>,
(76)

which is taken into account by introducing it in the final
complete tree-level action X given by

S = S —%/ dhxy Ebe, (77)

where Sg stands for the expression of Eq. (73). As it is
easily checked, the action X above is left invariant by all

Therefore, noticing that

5 =0, & =0,
{6.6} =0,

2 =0,
{5.6} =0,

{s,6} =0,
(50)

it turns out to be very helpful to join all three operators
(s,8,0) into a unique generalized BRST nilpotent operator
Q defined by

0*=0. (81)

For further use, let us enlist below the whole set of Q
transformations of all fields, sources, and parameters
introduced so far:

(i) The nonlinear Q transformations:

QAS = —Dib(A)ct,
a _ 5_7 abc b .c
Qc J'cm
Oyl = —iT* ey,
Oy = —ihT'c

three operators4 (5,0, 3): Q& = b (&)ct; (82)
sT = 6L =ox = 0. (79) (ii) The Q-doublet transformations:
|
oc? = ib?, ob* =0, Oa=y, Oy =0,
Qq)al — a)al Qwal — O, Q&)al — @(11 Q@al — 0’
QNaI Ma] QM,L:I — 0’ Qval Ua] QUZI — 0’
Q/Ial é’al Qcai =0 anl — i Q/_Wj =0
QAI[ Hzl Qng — 0, QHzI AzI Q/_\g —
Qan:K(/,, QK(/,:O, QJ}ZKA, QKAZO
le — X[ QXI =0 Q}_(abl — _Yab] QYabI =0
sz — —Wi, QWj — 0, Qwabl Zabl QZabi — 0; (83)
(iii) The Q-singlet transformations:
0 (n*. 7" 7", J.J,. Q4 L K Y, T, T4, 00, 0}, B, T d i) =0. (84)
Let us end this section by presenting the explicit expression of the complete tree-level starting action X of Eq. (77):
*The parameters (a, ) do not transform under (5, 5),
ba=68y=ba=25r=0 (78)
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TABLE V. Quantum numbers of the extra sources.

Extra sources J, K, 4 w 4 w ) @ r
Dimension 2 2 3 3 3 3 2 2 4
c-ghost number 0 1 0 -1 0 1 0 0 0
n-ghost number 0 0 -1 -1 -1 -1 -1 -1 -2
e-charge 0 0 -1 -1 1 1 -1 1 0
U(4(N? - 1))-charge 0 0 0 0 0 0 0 0 0
U(4N)-charge 0 0 -1 -1 1 1 0 0 0
Nature C A C A C A A A C
1 . T o
L= / d'x [1 FioyFity + i (7,) ap Dy’ + JAR AL + 5wy
(T8 = )AL + (85 — 9,1 DI (AP + i@ 4 Bl
. . .. — . .. . K
+ Fabnanb + q)lal/—/h,jaTa,jlna + q)élTa,tjnawh.ja + EIJZ + K2JJ5, + K3J3/
j a

- % ZED" 4 S b+ b O, A — (4 + 9,8)D (A)ct + g feeLachee

+ Kagab (é)cb _ l.l/_/iaTa‘ijCaT{;, _ iTéT“‘ijCal//ja + g—aalaﬂDﬁb (Ah>¢bl

_ a)alaﬂDzb (Ah)a)bl + MﬁIDzb (Ah)gobl _ NZIDZb (Ah)wbl + U;zID;zb (Ah)(bbl

+ Vlezb(Ah)¢bl + chb”'goa’ + J¢((,_0a1(ﬂal _ @alwal) _ levzl + NZIUZI

_ Z“iaﬂDl’jb(Ah)/l’i’ _ zaiaﬂDzb(Ah)é'? + /_\{;Ilﬁh’i"T“’if/l? _ ﬁé’l/—/h.iaTu.ijé'?

+ Hggt;Ta,ijwh,ja —|—Ag/_1‘;Ta'ijlph'ja + Kﬂéaiﬂ? + Ji(ZaiA;l + Eaic;z)

+ QJW(/_\iaiAfli _ ﬁiain;’li) _ Xlnaa)al _ Ylﬂa@ul _ Yablnaq)uhl _ thlnawabl

_ Zabi”a/?'? _ Wab?l,[ac? _ W?,,,aé;z _ Zii’]a/_{?], (85)

[

with commuting (C) or anticommuting (A) nature of each

0x =0. (86)
The expression (85) as well as the generalized identity (86)
will be taken as the starting point for the forthcoming proof
of the algebraic all orders renormalization of the action
Slocal "Eq. (29). We remind the reader in fact that '@ is
obtained from X, Eq. (85), by taking the particular values
(34), (45), (65), while setting the remaining sources and the
Grassmannian parameter y to zero. $'° can be thought of
thus as a particular case of the more general action £ which
enjoys a very rich set of Ward identities, as we shall see in
the next section.

It is helpful here to provide the mass dimensions and the
other quantum numbers of all fields and sources appearing
in the complete action X. These quantum numbers are
displayed in the tables below (up to Table V), where the

variable is also shown, being determined as the sum of
the ghost charges and of the so-called e-charge (i.e., the
spinor index). When this sum is even, the corresponding
field/source is considered a commuting variable, otherwise
it is an anticommuting one.

VI. WARD IDENTITIES

The tree-level extended action X defined by (85) enjoys a
large set of Ward identities which we enlist below:
(i) The generalized Slavnov-Taylor identity translating
in functional form the exact invariance (86):

(87)

with
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B(z) /a’“ 0¥ 6% . 0X 6% +5Z oz n 0X 6% n 0X OX 4 e ox
= X - 0 - = - 1
0Ay 08 oc?SLY  6E1 0K S ot YL, oyt oc
a 0% _. OZ ox ox ox ;0% o OX
to 5 al+€0 S al+M}4 5Nal+ ﬂéval+K¢%+Xﬁ_ 5Xabl
0% oZ s 0% s 0% oz 0X - .5 OX 0
lal al Azal - Hza] ! K = WI Zab[ = = 88
ST T e TN s, T e, s T s ) Y aa (88)
For further use, let us introduce the so-called nilpotent linearized Slavnov-Taylor operator By [56],
B /d4 526+525+526+525+525+525
= X —_— —_—
= 0A; 68y, 0Qy 6Ay  oc? LY SLY ¢t 68Y 6K 6K 6L
+525+5Z 5+525+5Z 5—|—'b“5+“’5
v ) v v = . 3 v — l a)
5Tla 5ll7l,(l &l—/t.a 5Tla 5’1“; &llt,a 5wl.a 5’1“; 66.(1 5(plll
0 ) 0 0 - 0 -5 6
—al Ua[ K XI Yabl _ ﬂal _
T e M e T U Gy T R T Gy sxal 5zs
) o 12 0 0 5.7 O 0
al Alal Hlal K, — — WI Zabl _ —, 89
T N e T e R s T swe ) T a 89)
[
with (iv) The ¢ Ward identity:
Analogously to the antighost Ward identity, the
BsBs = 0. (90) equation of motion of the 7¢ field and the variation of
the action with respect to the source [J4, yield the
The linearized nilpotent operator By plays a pivotal role in following Ward identity:
the analysis of the algebraic renormalization due to the fact
that the most general local invariant counterterm which can oxr oX 0 (93)
be freely added to any loop order can be characterized in Sta keT “ o
terms of the cohomology of By in the space of the local
integrated polynomials in the fields, sources, and their (v) The antighost 7* Ward identity:
derivatives [56].
(i) The antighost Ward identity: 5% 5%
> 5L i o

—a T Oz = s b (91)
o¢ hoQ 2 Note that the presence of the composite field

operator D% (A")n”, coupled to the source =g, is

Notice that the right-hand side of Eq. (91) is a linear needed in order to establish this identity. '
breaking, i.e., a breaking linear in the quantum (vi) The integrated linearly broken #“-ghost Ward
fields. As such, it will be not affected by quantum identity:
corrections [56].
(iii) Z"Be equation of motion of the Lagrange multiplier . 5 o oot b _ gparez % 5T
. —u S jc
0X . . PR — | @x(XbI b — Fablhl | Xl
5 i0,A; + ab® — FXE (92) 7

_ Yl-al Z?/_Ig _ Wi_g Zab?/ﬁ?
expressing in functional form the linear covariant (pA TL4 Gt 1
gauge-fixing condition adopted here. Again, the — WIEE - Tyl + @t ieT !
right-hand side of Eq. (92) is a linear breaking,

i D
not affected by the quantum corrections. — QUTyy?). (95)
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(vii) The global U(4(N? — 1)) symmetry:

Uy(E) =0, (96)
with
> 0% 4 O%
UIJ(Z):/d4x<§0 15(paj_(p 5 a1+ Iéa)aj
1 Oy OE L 8%
55)111 H 5Mal H 5val
o o o
_NaJ UaJ XJ_
H 5Nal " 5UZI + 5xl
0X or - 1)
YI_ _ Xah] ~ _ YabJ _ . 97
+ 5YJ 5xah1 6Yub1) ( )
(viii) The U(4N) symmetry:
o (g) =0, (98)
where
NP 0
UIJ ) = / d4 ﬂal aI
(Z) 5/1“ 5&“ e 54’“
_ é’a.l uxI 52 ial 6_2
oz N aAL SN
o ox ox
+ Hlal Hla] + Z.l
5H;j 61'[al oz
W s 5
W5 874" SWsP

(99)

(ix) The e-charge, or spinor number Ward identity:

N, (Z) =0,
0% [ )
Ne > :/d4 o = _ gia Yie =
E= e\ e e
ox > oz
Tza ic = _ @ia Z—_
5Y * 5@1 50},
; 0% Z oz
+ lu[% é«alﬁ v é/al y
‘ THRrT
or - 52 ox
q)m — Pl = ZI
T r 5L T 57,
5 OX oz - oz
WI Zab] _ Ywabl = .
+ SW; 524" 5W§b)
(100)

(x) The linearly broken identities:

1) ox

ox
4 — abeyybl “= — _j gal 4 ylpa,
5@&1 + H 5MZI + gf H 5jc (P(p + n
(101)
1) o )Y ; 0%
o abc - b1 abc
5(pa1 + ﬂ5va1 gf 5t¢ <<t f ﬂ 5Jc
— _J(p@dl _ Kw&)al + Ybal’,]h’ (102)
1) ) ; 0%
— 10 ahc
5@5;1 + H 5Nal f M 6jc
=J, 0" = K,p" = X"n", (103)
)Y 1) b b, benrhl O
abc abe py
50)111 + aﬂ 5Ua1 f f H 5jc
— _J(/)@al _ Xhalna‘ (104)

(xi) The linearly broken integrated Ward identities for
the matter sector:

ox ox
d4 _ abc 7 HtaTa JAj
/ <5g'+ 9f éV’éf 5@1)

= [z - we). (105)

o
4 abc 2b a,ij Al
/dx( +gf 5C/II+T JA 5@)
/ X (138 + K08+ Zbanh), (106)
J s emirig)
T“ Jdj =
50,
_ / dx (188 = Wy = K3s), (107)
ox . . OX
/ d*x < — + A’i" T T>
524! 50,
= / d*x (4,25 + Zm®). (108)

(xii) The n-ghost number identity:
A ghost number can be assigned to the anticom-
muting fields (77,#) and to the source Z,, resulting in
the following #-ghost number Ward identity:
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oz oz ) ; 0Z orx oz
¥ = d4 a ~— _na _=a _ YI abl ~
Nipghos (2) / x(” o T S X e Y ey X sz
- ox 5 0% 7 O 5 .5 O% = 5 O% ox
abl 4 4 abl abl ab —
-y Syl 5Z; -W 5—W1 -7 5Z?b -W 5W;”’ -2r 5Fab> =0. (109)
(xiii) The c-ghost number identity:
Analogously, we have also the usual c-ghost number in the Faddeev-Popov sector, expressed by
) oz oZ 6Z 8 . 6%
¥) = d4 a _ =a al _ ~al _ Yia Y ZZ
Neghou(2) / x<c et~ Coe Y s Y sa T T ST, T,
oZ oz ox oz ox oz ox
—Qf - 2L - K? U - N4 K,—+ X' —;
" 6Qy oL? O0K* o 5U“’ s 5NZ’ + ? 6K, + ox!
yabl Cal Cal + miel 5:‘ — [Tl 5_2 + KAE
5X“b’ gﬂ 84 oI, SII oK,
5 0% ox 0x
gl 2= _ gavl Z_o. 110
T8 sE, T 53?17) oy (110
oz 5 0X o
1 _ 4 al ~ = _ abc
(xiv) The exactly R;; symmetry: W(3)(Z) - / d x<(p 57 ’7 —9f 5Yab! §¢¢
OZ oz ox
R (Z) =0, 111 al J Y! =0,
IJ( ) ( ) H 5Ez + ¢6yaa1 + orae )
with (115)
oZ ; 0Z oZ oX ox
_ 4 al = 1 _ 4 al a
RIJ(E) = /d X<§0 5(0‘” - Cl) 5€0a1 + Vﬂ 5U‘l‘] W(4) (E) - /d X <Cl) 57—7a 56)(1]
o o o abc ox ox al ox ox
al abJ 1 U Jp—=—
—N 5Ma1+ 5YabI+Y W) +gf 5Xt1b15 c+ H 5Eﬁ+ ¢5xaa1
(112) K, 2= x1 =) g 116
+ 4 5thl + Sraa : ( )

(xv) Identities that mix the Zwanziger ghosts with the
(.77) ghosts

ox ox ox
W{l)(z) /d4 ( 1F+n 6(1)“1 +NﬂlEZ
1) 1)
Jy g + X =0, 113
s X 5rab> (113)
ox 1) )Y
WI (Z) — /d4x ((palTa_l,[a — al —
@ 5 Spel T 5Bl
1) o 1)
—Jy—t+ K, = — Y =0,
f/’éy] + (lféxl 5Fab>
(114)

(xvi) Identities that mix the ghosts related to fermionic
matter fields with the (»,7) ghosts:

5% 5%
¥) = ad* ﬂal
@)= [ (o T

n
ox ox

Ty — 201 =0,
sy 5r‘ab>
5T

(2) = /d‘*x(@?%— — 411

65”
o o
K, — — abl
SW; + 157; w

0%

Aml
* oD,

7
Wy
(117)

2 6T
17
5D,

) =0

(118)

)
oz

~J
Low; PRE
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A 5L 8T 6%
Wi (Z) = [ d*x( n* Y — Aol —
®® / x(” e s 50,

1) ) 5 0%
_Jﬂ — —_ — 1 ):0,
574

. 5 0% o s 0%
WI ) = d4 al ~ =~ a = HI(IIT
W@ = [ "(5 o sz T s

L w2
45W;w orae ) —

(120)

VII. ALGEBRAIC RENORMALIZATION
ANALYSIS

In Sec. VI, we displayed all Ward identities that the tree-
level action Z, Eq. (85), obeys. We can focus thus on the
search of the most general counterterm in order to check out
the renormalizability of our model. To that aim it turns out

|

Bz(z + €ZCT)

13} 13} W )
(5 a+aﬂ59a> (2+€2CT) —Ej(b = 0(6 ),

= 0(e?),

ob?

1) o B 2
(g -0, 5—~7ﬁ> (Z+€eZcr) = O(€7),

Uiy (Z+ eZcr)
0;(2 + eXer)
N (Z+€eZer)
N e—ghost(Z + €Zer)
N y—ghost(Z + €Zcr)

= O(e?),
= O(e?),
= 0(e?),
= 0(e?),
= 0(e?),

o 13}
o i abcvbl
(5@&41 + MﬁMﬁl +f H 5jc

o o
abc bl abchl
<5¢a1 + H 5val f f H 8J¢
) aeppt O V(x4 exer) =7
(367)“1 + M 6Na1 f H 5jc ( +e€ CT) =Jw
o o
abc = bI abc Nhl
<5a)"' O sga =/ A NG

i
(2 + €ZCT) laﬂAﬂ + ab’ — E}(Z'a + O(€2>,

i )(Z+EZCT) =

o ~
> (Z+eZer) = —T9p" -

o ~
> (Z + GZCT) = —J&)al

to be helpful to adopt a slightly different notation and
reparametrize the fields and sources as

(A, b, &% a7, T, J)

1 1 1
- [ -A%, gb*, - &, —a, gr“,gj“,gf]). 121
<g R A (121)
A. Algebraic characterization of the most general
counterterm

In order to characterize the most general local invariant
counterterm which can be freely added to all orders in
perturbation theory, we follow the setup of the algebraic
renormalization [56] and perturb the tree-level action X by
adding an integrated local quantity in the fields and sources,
Zct, with dimension bounded by four and vanishing c-
ghost number. We demand thus that the perturbed action,
(X + €Xcr), where e stands for an expansion parameter,
fulfills to the first order in ¢ the same Ward identities
obeyed by the starting action Z, i.e.,

H(Dal 4 Ybalnb 4 0(62)
al __ qual —XIT]a + 0(62),

_ Xbul,,]b 4 O(Ez),

5 cre ora
/ d*x (54““’ fabcgf — T (T*)Y 5) (T4 €Zcr) = / d*x (GZ§ + P25 — B2n") + O(€?),
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o 5
d4- < ~ 4+ l,th
JlGas

o - _
b ()R ) (x+eXer) = [ @(GF + 20 + O(E)

/ d*x <£ + TLe (7)Y %) (Z+ €eZcr) = / d*x(G¢S — By — Bin”) + O(e?),

a

1) . ) o
/ d'x (m A (T g) (E+eZcr) = / d*(GH + PL + Zppt) + O(e?),

Rij(Z+ €eZcr) = O(e?),

o o
sma o E—Efj> (Z+ eZcr) = O(€?),

/ <_ 4 fabegp O yabegb g

= 6jL
+ Zlﬂl; _ BIZ_:? + Z“biﬂb BabICb + FabT]b + q)z
W€1’2.3’4) (2 + CZCT) = O(Ez).

W€1.2,3’4) (Z + €ZCT) = O(€2).

Looking at the first condition of Eqgs. (122), one gets

BEZCT - O, (123)
where By is the linearized nilpotent Slavnov-Taylor oper-
ator defined in (89). Equation (123) means that the invariant
counterterm Xt belongs to the cohomology of By in the
space of the integrated local polynomials in the fields and
sources with c-ghost number zero and bounded by dimen-
sion four. From the general results on the cohomology of
Yang-Mills theories, see [56], the most general solution for
Zcr can be written as

Tor = A+ B A, (124)
with A and A1) being the nontrivial and trivial solutions
of Eq. (123), respectively. In particular, for the nontrivial
term A, we have
|

> Z + €ZCT /d4x Yabl(pbl + X’abla)bl + Xa—)al _ Y1@a1

(ie ()it — Bie(7¢) iy ) + O(e?),

(122)

BsA =0,  A#BsT, (125)

for some local integrated field polynomial 7. Note also that,
according to the quantum numbers of the fields, A1 is an
integrated polynomial of dimension four, c-ghost number
—1 and #-number equal to zero. One can appreciate now the
usefulness of the introduction of the generalized extended
BRST operator Q. In fact, from Egs. (82), (83), (84) one
sees that the auxiliary fields and sources introduced to
implement the restriction of the functional measure to the
Gribov region in a local fashion transform as doublets’
under Q. As a consequence [56], they can appear only in
the exact trivial part of the cohomology of By, that is they
can enter only in the term A(-!). Therefore, excluding the
doublet pairs, the most general expression for A can be
written as

A= /d4 |:4 ZFZL/F;W + al']y/l//ay/la + a2(aﬂ(Ah)Z)(a (Ah) ) + a3(8 (Ah) )(a,u(Ah)z)

+ ag fre (AN (AN)]0, (AM)g + el (AT) (AT (A5 (A"

)+ TIOUALE) + (I + T2 O(A, &)

. _ —a ¢ K Ryi.a Ti
+ as(9,1" + E)O,n°) + f (001" + F) DA + a6 I + O Fi(yr.¢)

+ O FL (. ¢)

>We remind the reader here that a pair of variables (w, ) is a
doublet if

(126)

+ (i)i,a(Ta)ijnawé(w’ 5) + q)i,a(Ta)ijna _

L. E) + a3 + agisdy), (127)

[

where (aq, ay, ..., ag, ) are arbitrary dimensionless coef-
ficients and O4(A, &), O(A, &), PL(A, €) are local expres-
sions in the fields Ay and & with ghost number zero and
dimensions (1,1,2), respectively. Moreover, Wi (y, ) and
Wi (y, &) are local functionals of y/, and & while 7 (7, &)
and Wi, (7, &) are local expressions of i, and &%, Also, in
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expression (127) use has been made of the fact that, from
the Ward identity (93), the variables (z?, J) can enter only
through the combination

Tp=JT5 = 0,7 (128)
It is worth observing that the quantities (Of(A,¢&),
O(A.8). 74(A.€) as well as (Wi(y.&). Wily. 9,
FL(p, &), Wi (i, &)) are fully independent from the exter-
nal sources. As a consequence, the action of the linearized
operator By reduces to that of the BRST operator s, namely,
from Eq. (126), one gets

BsO5i(A.£) = QO5(A.§) = sO(A.£) =0, (129)

B;O(A.&) = QO(A.£) = sO(A.£) =0,  (130)

By Z4(A, &) = QZ4(A.8) = s 74(A.§) =0, (131)
ByFu(y.&) = QF(w. &) = sFi(w. &) =0,  (132)

B Fi(.8) = QFo(0.§) = sFi(9.§) =0, (133)

BsWi(w. &) = OWa(y. &) = sWi(w. &) =0,  (134)
BsWe(i. €) = QW (.£) = sWe(5.£) = 0. (135)

which imply that O%(A, &), O(A, &), PL(A£), Fily.£),

Fi(p, &), Wiw, E), and Wi (i, €) are BRST invariant. In

[50] and [58], the general solution of Egs. (129)-(133) were
obtained, yielding

O5i(A. &) = by (A");, (136)

|

o = (=5 ngang. (3
PU(ALE) = by(AM):, (138)
Fiw.&) = by, (139)
Fi(#.8) = bsipa". (140)

with (by, by, bS, b3, by, bs) free dimensionless parameters.
Let us consider thus Egs. (134) and (135), that is

SWely.§) =0, (141)

Wi, &) = 0. (142)
It is immediate to realize that they have the same structure
of Egs. (132) and (133). As a consequence, they can be
solved by repeating exactly the same analysis presented in
[50]. Skipping the intermediate algebraic manipulations,

for (We(w. &), Wa(.£)) we get

Wiy, &) = beys";

NI _ (h)i
Wi (. 8) = by, (143)
with (bg, b;) constant free parameters. Therefore, after
imposing the constraints (129)—(134), for the cohomolog-
ical nontrivial term A we get

a ..
A:/ﬁ%hﬁmwm+m@mwwwmmmmmmmw»wmmmwx@mw>

g (AM)U(AM)0,(AR); + med (AT (AN (AR (AT + b T A"

272

J J? o Y=
+ <b2— + b} ‘”) (AM)a(AM)e + as(D,7 + E3)(9,m°) + b3 f"(8,7" + E) (A")on*

K = . i . i = . .
+ a6§l‘]2 + b4®l’alllt(xh>l + bﬁ@z,ay—/g‘)l + bﬁ(I)l'a(Tu)l]ﬂal//

Let us also point out here that the parameters («, ) form a
Q doublet, so that they cannot appear in the nontrivial
sector of the Q cohomology, meaning that these parameters
are not present in A. A further reduction of the free
parameters appearing in the expression (144) is possible
by making use of the following argument. If the values of
the extra sources are set to zero as

—E=I=X=Y=X=7V=0 (145)

D byt (TaYingap M 4 a2 0 + agis |, (144)
[
as well as
T=Y=A=A=0=0=0=0=L=Q=0,
(146)
the tree-level complete action X reduces to
X = Yicoms (147)
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where

1 i I
T com = / d*x ng Fi Fiy + w5 (7,) qs Dyl w'?
— I DO, AL + S b0b + 0, Dy
_ @ZCM(AII)(ﬂZC + @ZcMab(Ah)wzc
+ Taaﬂ(Ah)z _ ﬁa,/\/lab(Ah)ﬂb
+ A4 (=0, Dyt (AM) 221 4 Zol(=0, Db (AM)) ¢

(3 (Tt gl (Tey000) | (148)

is nothing but the Yang-Mills action with the fermionic
matter fields in the fundamental representation, gauge-fixed
in the (LCG) linear covariant gauge, with the addition of the
following terms:

_ / d4x(§_0;,chab(Ah)(0£C _ @szab(Ah)w}l;c

+ 79, (AM) = ML (AMpP), (149)
- / d*x(A50,Dgt (AN + £, Db (A"
— G328 (T) Iy — Gl (1) 170, (150)

Nevertheless, upon integration over (p,¢,®,®,7,7,
7.7, 2, ¢, ), the terms (149) and (150) give rise to a unity.
As a consequence, the correlation functions of the original
fields (A, ¢, ¢, b,w, ) are the same as those computed with
the standard Yang-Mills action in the linear covariant
gauges, Eq. (3), supplemented with the usual spinor matter
|

term. From this remark, it follows that, in the limits (145)
and (146), the counterterm (144) reduces to the well-known
standard Yang-Mills counterterm in linear covariant
gauges, see for instance [50,58,59]. This implies that

ay = d3z = Ay = 0, ﬂath = 0,

as = b3, (151)

yielding

a, 2>a a
A= / d*x {éF;ngy + b Ja(AM

J / J‘%’ h\a h\a
+ b2§+b27 (A )/l(A )ﬂ
K = i
+ b3(9,7* + E)DW (A" + ag 31J2 + byGyd
+ bsOP )+ bgdi(T) gy

+ b7q)i,a(Ta>ijl,Ial/—/((ji)i + Q7K2J5,J + agK3J3, 5 (152)

where, from the Ward identity (95), use has been made of
the constraint

as = b3 = _bl' (153)
Let us turn now our attention to the exact part, ACD, of the
cohomology of the linearized operator By. The term A(~")
is a local integrated expression in the fields and sources
with c-ghost number (—1). Moreover, by considering the
quantum numbers of all fields and sources given in

Tables I-V as well as the set of constraints (122), the most
general expression for A(-)) can be written down as

MY = [ Al (0 + 0,600 + S E L + K E @
_ b] (VZINZ[ 4 Vlezb(Ah)d)bI 4 NZIDZb(Ah)(pr + (aﬂ&)al)Dzb(Ah)¢bl)
+ f3(E @)Y + Tyl + by(T) Iy TN, + (T) T A TE )

+ f4(& @) (AN + f5(€, a)ed, AT,

with f$2(&, a),

(154)

W& a), f3(Ea) fiEa) fs(Ea), and f(£ a) being arbitrary functions of & and of the gauge

parameter a. Invoking again the limits (145) and (146), we are able to conclude that

flllh(§9 a) = 5abd1 s fgh(§9 a) = 5abd2v

f3(& a) = ds,

fa(é a) = dy, fs(a)=ds,  (155)

where (d,, d,, d3, d4, ds) are free constant parameters which might depend on the gauge parameter a. Acting thus with the

operator By on A=), we obtain
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ox ox ox
BeAD = /d4x{d1 <5A“ +id b“A“) - d (4 +9,¢ '“)5Qa +d, <6L“L 5o “) 5€afab(~f)§

» fbc
5K <a§a é:c +fba<§)> +d3( ta'rt + ’I‘l aWa> +b fabc(Ah) (Ual bl + Val bl +Mal(pb[
_ NZICUI)I _ walaﬂd)bl _ (pulaﬂé)bl) _ bl (UzINzI + V/cllIMZI + Uzlaﬂ&)al + VZIaM(_OaI + leaﬂ(pal
_ N/c:]aﬂwal + (aﬂ(pal)aﬂ(pal _ (aﬂa)al)a wal + ZaiaZ/lg + é'a?aZZ'?) + b4(/_1a7(Ta)ijwh,iaAii

— (T“)iijain*igg _ C“i(T“)ijl/_/h'iaﬁiA + (Ta)”A]a]l//h l/{a) + dSQJy/([_\m?A;} + Hiaiﬁiﬁ)

od 0d,
+)(81(Qa+a—a)Aa+)(a Lic a_|_ KoL f

“ fb + é (32/1u1) %Aiaiﬁih (156)
Y dDa al [°
Substituting expressions (152) and (156) in Eq. (124), the most general allowed local invariant counterterm turns out to be

ZCT =A+ BZA(_I) = /d4 {QQFZDFZD + aIJy/l//l al//a + bl(jZ(Ah)z - (8;4’7]“ + EZ)DZ}}(Ah)nh)
2

J J2
+ <b22 + b 2> > (Amya(Al)e + bl 5 L2y a7ka LT + agkyJy, + fab(/g)

55&

ox oZ ox ox
; apa _ Qa ~da L4 = aa
+d1<5AZ+z8ﬂb o= ”+aﬂc)5gg)+d2<5y +5C“C>

» 8fbc ,
c a d ta’rt ’rt a b abc Ah Ual bl
s (€170 + it i) by (A
+ Vzl('—gbl + M;ll(pbl _ Nzlwbl _ a)alaﬂa)bl _ qoalaﬂ(pbl)

— by (UZ[NZ] + VZ'M/Z’ + Uzlaﬂd)“l + V,‘j’aﬂfi)“l + leaﬂ(pal - Nﬁlaﬂ(u“’

+ <3ﬂ¢“1)3ﬂ¢“1 — (8,0, + 71822 + ¢192Z) + by By + Op
+ Za}(Ta)ijwh,iaA.{/;i _ (Ta)jiniaiwg,jz? _ Ca?(Ta)ijl/—/h,iaﬁij + (Ta)ji/_\iail/_lg’j/l?
+ é)i'a(Ta)iji’]ul//((xh)j + (I)i’a(Ta)ij?']aI/_/gh)j) +d QJ (/_\ia?Aj -+ Hi(liﬁfli)

fab 8d4

fb + C (82/1117)

ad, dd,
15 L(Q¢ +9,¢ '“)A“+)(8—L”c + xK*

od
+xed, 5 AL, } (157)

al

Having found the most general local counterterm, Eq. (157), compatible with all Ward identities of the tree-level action X,
the final step in the proof of the renormalizability of X is to check out the stability of X [56], that is to show that the
counterterm XCT can be reabsorbed in the starting action T through a redefinition of the fields, parameters, and sources. This
final step is greatly simplified by recasting expression (157) in the so-called parametric form [56], namely

, O 0x 0x 0x

ZCT — —aog 8 By + Zdl(la (b] + 2[72)1('1 a—l('l + [((17 + 2(11 + bz)Kz + b,ZKl] 8_]('2
o) 19)> . 0%
+[(08+401)’<3+b'z’<2]8—,<3+01 /d4x‘]vlﬁ+bl/ {Jﬁwa ﬁ

1) 1) ) 1) 0

1 5T
— (70 == 4 g Bo—— _[ab = dy | d*x T+ T
* ( T T S = 5rab)}+ 3 / <5T,,’ - “5Y

) ) ) 1) ) 1)
-y, - d*x (byJ + bhJ%)— —d /d4 b* —-d /d4 ¢ —
51//0[, Ya l//a 51//;) + / X ( 2 + 2 y/) SJ 1 X ShY 1 Xc St
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> 5% 5% 5%
d4 d d d Le—— a b
+ / [ ! ”(w ! ”59a+ 27 sLe Sct (6 5z 55@

> [Oftc b b, ; OX 1) 1) ; 0%
c a _ 2t d4 = al
SK¢ <a§a 5 +f (é) 2 / X (ﬂ 5 S—al +(p 5 al t+o S al +o 50)“1
2 ox ox ox ox

B) >
Mt vl N ud 2% o % 062
* "Myl Yk sval N SNE! % sug! TS ST 5

D) ds + by §S  [ds—b, —by\ ;6%
2p— 20— d4 57 /1a1 e . /1“1 o=
TSR Qag} +/ XK 2 > 5 ( 2 57

by + by + ds ; 5% 5T 5%
a Hzal Azal Azal
* ( 2 > (g 540 5za ST, N AL N A,

(Pt ds = (i BE | OE ) (ba+ds 275_2+Bz 5%
2 5@ ST, 2 5z, 5B

by —ds - 5 0% 1) 0% ox .0 . 00X
Zabl ~ Babl b / d4 @m @za dic Hic ,
+ ( 2 > ( 575" * 53;*") + o 50, 50! T e T e

or, equivalently:

T = RY,

with R being the operator

0 0
+ (by + 2by)x; O + [(a7 + 2a; + by)ky + boky] o,

0
R = —ayg> — + 2d,a =
apg 892+ laaa

0 0 o
+ [(ag + 4ay ks + békﬂa—m +a, / d*xJ, — o, + bl/ {\72 57 aﬁ

1 1) 6 1) 1) 1) 1)
— =a —Tab d d* -} T
i ( R = W)] i / "(mz )

s . .5 5 5 5
2y d*x(byd + bYJ2) = —d /d4 b —d /d4 -
51//(/1//“ l//a&/-/:x> / (2 + )5.] 1 X She 1 xc Sz
s P s
d'x|dAc>—d dyL° a b
/ x{ i sas ~ D8 gn TR 5 5 ()¢ 5§ﬂ

5 [Ofte b, 8 s _ .8 5
— K@ c ba _ d4 al al al al
5K° (agaf +f (5))] 2 / x{(p 5 TP G TV Gt T

5 5
Nt 2] —=+2H—+2G—
* oMy sval * * SNy sud + 5T * 6H + 5G

5 9 ds+by—b\-; 8  (ds—b —by\ .
2P 42 dix| (B Lam bz 0 (A= bimbayja 0
s Qa} / XK 2 ) 5/1§’+< 2 5%

by + by + ds i 0 0 5 -8
a i Azal Azal —
+( 2 )(C 5@ SIT, S 6A;7+ SAL

+ My + v + U4l

al

bl + d5 7 ial o b4 + d5 7 o 7 o
LTS T (e ) G 7l — + B —
* ( 2 ) (g 5§a ST, 2 5z, " 5B;

by — ds s _ .6 5§ .8 5 -
Zabl Babl _ b / @10: ®ia ___ (Dta dix
i ( 2 ) < 524" * 53;’]) + 04 [ sor O ser T e
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B. Stability of the tree-level action X and the
renormalization factors

As said before, in order to complete the all order
algebraic renormalization analysis of our model, we have
to show that the counterterm (158) can be reabsorbed into
the starting action (85) by redefining the fields, sources, and
parameters. This procedure can be done in a quick way with
the help of the parametric form obtained in (158).
According to the general setup of the algebraic renormal-
ization [56], we have to show that

2[®y] = Z[®] + eXCT[D] + O(€?), (161)
where € is the expansion parameter and {®} stands for all
fields, sources, and parameters of the theory. As usual, the

notation {®,} refers to the bare or redefined quantities. To
find out the explicit form of the redefined quantities {®}
we make use of the parametric equation (159), from which
we immediately get

T[] = Z[®] + eRZ[®] + O(e?), (162)
where the redefined quantities {®,} are given by
D)= (1+€eR)P (163)

From Eq. (163) we can read off the whole set of
redefinitions for all fields, parameters, and sources, as
given below:

Ag=ZPA, by=2%b,  cy=27c. & =27V
g =208 w=2" =20 W=2]"n,
Wo =12 /2‘//, Yo = Zu/ v, 0y = Zs9, 0Oy = Ze0,
Py = Z/(p, ®o :Z/(p, 6)022{1;,/6) a)():ZClo/za),
Q) = ZoQ, Ly=2Z,L, K¢§ = 7% (&)K?, Jo=24T,
ay = Z,a, My = ZMM Vo =2yV, Hy=7yH
No=ZyN, Uy=2yU, By = Z=E8, Xy = ZxX,
Yy =2yY, Xy = ZsX, Yo=Z;Y, Iy = 27T,
=21 w=zi =2l =2/
Go = 256, Py =ZpP, 00 = Z,0. Jyo =25,y
Il = Zyll, I, = Zgll, Ao =Z;A Ao = Z)\A.,
Zy=2;7, Zy =757, By, = Z3B, By = ZB,
@) = Zy®, @) = Zs®, T, = Z; 7, Yy = Zy 7,
Jo=2;0. g =2, (164)
and
()= (%) ()
2o) N0 Z5, )\ )
K10 Zy 0 0 K1
K20 | = | Lo, Zy, 0 IS E (165)
K30 0 Zi ik, Zy, K3
with
Z;=1+¢(by + b)), Z;,, = eb), Z;, =1+ea,
Z, =14 e(by +2by), Z,, = 1+4e(a; +2a, + by), Z,, = 14 ¢e(ag + 4a) (166)
and
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1/2—1—|—€d 1/2—1+€d2,

1/2 2
Z =2’ =Zo =25 =1+eb,

Zgb('f) — 5ab +€fab(§)’

For the other fields, sources, and parameters, the following
relations hold:
=7;'% = z?

zy* =73 7' =

1/2
Vi =7,=2,=7L=7=17,,

l‘/z - ZL?

Looking at the renormalization factors of fields and sources
introduced in order to implement the Gribov horizon
related to the gauge invariant composite bosonic field
sector, we have

—1/4 1/2 1/2 1/2 1/2
Z:\ =z =z =7l =7 =2y =2,

= ZN — ZU — Z‘l,/2 Zl/z Zl/2

=z)* =7l (169)

while the renormalization factors of fields and sources
associated with the horizonlike term of the fermionic
gauge-invariant composite fields are given by

ds—b,—b
1/2 5 1 4
=1 I S
+e ( ) >

(45t bi=b
2 bl

b+ by +d
ZZIZnZZA=ZA=1+e<$>,
by +ds—b
ZC:ZH:HE(M),
2
by+d
zzzszl—e(“st>,

by—d
Z;=2Zp=1 +e(¥>. (170)

2

In particular, from the physical values of the sources J and
Jy» Eq. (65), we obtain the renormalization of the corre-
sponding mass parameters, i.e.,

mg = m?* + €(bym* + bymy,),

my,.o = my, +ea;m (171)

W

As one can observe, there is a mixing between the mass
parameters, indicating that even if the gauge-invariant

zip(6) = o -

Zg:l—eﬂ, ]/2—1+€b1,

2
_1 _1
Zy=Zy =2, =2, =1+eds,

(0 + ).
[

operator AhAh would have not been introduced from the
begmmng, i.e., (m*>=0), it shows up through quantum
corrections if the theory contains a fermionic mass param-
eter like m,,. Finally, we notice the relationship

(167)

Z;2,°Z)* =1, (172)

telling us that Z; can be obtained from the knowledge of
(Z,.Z;).

Therefore, after performing a proper redefinition of the
fields, sources, and parameters, Egs. (166), (167), (168),
(169), (170), (171), (172), the most general local invariant
counterterm =T compatible with all Ward identities can be
fully reabsorbed in the tree-level action (85), providing thus
an all order purely algebraic proof of the renormalizability
of X.

Let us end this section by observing that, due to the
dimensionless character of the Stueckelberg field &“, the
renormalization factors (Z¢"(£), Z{>(¢)) are nonlinear in
&4 a well-known feature of dimensionless fields, see
[50,58-60]. It is worth pointing out that the renormalization
factors related to the massive Gribov parameters 7> and ¢°
are not independent quantities of the model, i.e., they are
expressed in terms of other renormalization factors.
Moreover, the renormalization factor of the source J,
Eq. (166), gives rise to a mixing between the coefficients
related to the bosonic and fermionic gauge invariant
composite fields encoded in the mixing matrix for Z,.
Finally, we observe that Eq. (172) implies that the three
vertex (A"@p@) is not renormalized, as already noticed
in [13,61].

VIII. CONCLUSION

In this work we have studied the BRST symmetry
content and the all orders algebraic renormalization
of an effective fermionic model in which the inverse of
the  Faddeev-Popov operator, (M (AM)]~1 =
[—-8,D4? (AM)]7!, where A% is the dressed gauge invariant
field of Eq. (1), has been coupled in a gauge invariant
fashion to the gauge invariant spinor quantities (", "),
Egs. (21) and (22), giving rise to the effective horizon
matter term S,; of Eq. (27).

After a suitable localization procedure, the gauge invari-
ant nature of (A%, ", y") has allowed us to quantize the
theory in the class of the linear covariant gauges, as
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observed from the gauge fixing term of the local action
Slocal "Eq. (29).

The proof of the all orders algebraic renormalization of
Sl has been achieved by embedding it into a more
general action X, Eq. (85), which fulfills a very rich set of
Ward identities. The action $'° is in fact reobtained from
the generalized action £ when the external sources attain
the values (34), (45), (65), while setting the remaining
sources and the Grassmannian parameter y to zero.

As already mentioned in the first sections of the work,
the main reason behind the construction of the renormaliz-
able local action S relies on the resulting fermion
propagator, whose tree-level expression turns out to be

_ipﬂ (yﬂ)(l} + A(pz)éa/}

51, (173
p*+ A (p?) "

(wa(p)wy(=p)) =
where A(p?) is the so-called mass function, given by

N 5 N’ -1 ¢’
A(p*)=m, +g N i (174)
In particular, in the Landau gauge, corresponding to set the
gauge parameter « to 0, the mass function A(p?) turns out
to be in rather good agreement with the numerical lattice
simulations, see for instance [62,63] and references therein.

As such, the action $'°? can be seen as the first step

towards the nonperturbative investigation of the possible

dependence of the quark propagator from the gauge
parameter « in the class of the linear covariant gauges, a
topic under current intensive studies.

Further relevant topics which could be exploited by
means of §'° are the study of the gauge dependence of the
quark-gluon vertex in the linear covariant gauges as well as
the related applications within the framework of the Bethe-
Salpeter equations for the bound states.

Let us end by mentioning the issue of the possible
extension of the whole setup presented here to the case of
finite temperature, a topic which we plan on investigating
sometime in the near future. Such an extension would
enable us to investigate aspects related to the chiral
symmetry restoration as well as to the confinement-decon-
finement transition and respective critical temperatures.
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