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In the paper, the inclusive production of heavy quarkonium ηQ (Q ¼ b or c) via Z boson decays within
the framework of nonrelativistic QCD effective theory are studied. The contributions from the leading
color-singlet and color-octet Fock states are considered. Total and differential decay widths for the inclusive

decays Z → ηQ þ X are presented. It is found that the decays Z → ηQ þ X are dominated by the 3S½8�1

component, so the decays can be inversely adopted to determine the values of the long-distance matrix

elements hOηcð3S½8�1 Þi and hOηbð3S½8�1 Þi, respectively. Our numerical results show that at an eþe− collider
running at the Z pole with a high luminosity around 1035 cm−2 s−1 (a super Z factory), there are about
4.5 × 107 ηc meson events and 6.1 × 105 ηb meson events to be produced per operation year, and
the inclusive decays may be used for clarifying some problems on the heavy quarkonium ηQ and
nonrelativistic QCD.

DOI: 10.1103/PhysRevD.104.054044

I. INTRODUCTION

Heavy quarkonia have attracted a lot of interest since the
discovery of the J=ψ meson. An important reason is that
they provide an ideal platform for studying the interplay
between the perturbative and the nonperturbative effects in
QCD. The nonrelativistic QCD (NRQCD) factorization
formalism [1] provides a systematic framework to separate
the short-distance and the long-distance effects in the heavy
quarkonium production and decay processes. Under the
NRQCD factorization, the heavy quarkonium production
cross sections are expressed as the products of the short-
distance coefficients (SDCs) and the long-distance matrix
elements (LDMEs). The SDCs describe the production of

heavy quark-antiquark pairs with proper quantum numbers,
which can be calculated perturbatively. The LDMEs
describe the hadronization of a produced heavy quark pair
into quarkonium, which are nonperturbative in nature but
can be extracted from a global fit of experimental mea-
surements or estimated by using the QCD inspired potential
models etc.
Up to now, the NRQCD factorization formalism has

achieved great successes in explaining the data at the high-
energy colliders [2,3]. However, there are still some
challenges. For instance, the global fits of the J=ψ
color-octet (CO) LDMEs from various groups are not so
consistent with each other, cf. Refs. [4–7]. Thus, it is
interesting to study more quarkonium processes relating the
NRQCD factorization formalism.
Most studies of the quarkonia focus on the J=ψ and ϒ

mesons due to their high detection efficiency. For instance,
the J=ψ events can be reconstructed via the decays J=ψ →
lþl−ðl ¼ e; μÞ with high efficiency, whose total branching
ratio is ∼12% [8]. Contrary to the J=ψ meson, there are
less studies of the ηc meson production. Conventionally, the
decay channel used to reconstruct the ηc events is ηc → γγ,
and the branching ratio of this decay channel is ∼1.6 ×
10−4 [8]. Moreover, it is very difficult to record the
two photons from the background in a hadron collision
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environment. Namely the experimental detection of the ηc
meson is poor. A novel proposal to reconstruct the ηc events
through the decay channel ηc → pp̄ has been suggested in
Ref. [9], whose branching ratio is ∼1.5 × 10−3.1 This
proposal opened a new way to study the ηc meson at
the high-energy colliders, and it has been adopted to
observe the ηc meson by the LHCb Collaboration
[10,11]. Recent theoretical studies of the ηc production
at the LHC can be found in Refs. [12–20].
The ηb meson has the same quantum numbers as those of

the ηc meson, but has different constituent quark mass.
Since the heavier bottom quark mass, the ηb meson is a
better object for applying NRQCD. Thus it is interesting to
study the ηb and ηc production applying the NRQCD
factorization at the same time, although the observations on
the ηb are scarce. Up to now, the ηb has been observed only
through the feed-down contributions, i.e., from the decays
of excited bottonium states. Therefore, the studies of the ηb
production from various processes are requested.
At the LHC or an eþe− collider running around the Z

pole and with an accessible high-luminosity (a super Z
factory), the production of the heavy quarkonium ηQ
through Z boson decays can provide abundant information.
The inclusive Z boson production cross section at the LHC
with the collision energy 13 TeV is ∼56 nb [21]. With the
luminosity of 1034 cm−2 s−1, there are ∼5.6 × 109 Z bosons
to be produced per operation year at the LHC. A Chinese
group has proposed to build a super Z factory [22], and its
luminosity of the super Z factory could reach to
1034–36 cm−2 s−1, which is higher than that of the LEP-I
by three to five orders. The Z boson production cross
section is ∼30 nb, and there are about 3 × 109–11 Z bosons
to be produced per operation year at the super Z factory.
Therefore, it is interesting to study the production of heavy
quarkonia through Z boson decays.
The production of heavy quarkonia (J=ψ and ϒ etc)

through Z decays has been extensively studied at the
leading order in αs and vQ [23–30], the typical velocity
of the heavy quark in quarkonia. For the J=ψ and ϒ
production through Z boson decays, the CO contributions
have been estimated in Refs. [31–34], the next-to-leading-
order (NLO) QCD corrections have been calculated in
Ref. [35], and the leading and next-to-leading logarithms of
mZ=mQ have been resummed through the fragmentation
approach in Ref. [36]. In the present paper, we devote
ourselves to studying the inclusive production of ηQ with
Q ¼ c or b through the Z boson decays.

According to NRQCD, for the ηQ production, the
leading color-singlet (CS) and color-octet (CO) Fock states

are 1S½1�0 at v3Q order and 1S½8�0 , 3S½8�1 , and 1P½8�
1 at v7Q order.

Although the CO contributions are suppressed by v4Q order
compared to the CS contribution in the long-distance part,
the CO contributions may be enhanced in the short-distance

part. Therefore, besides the CS state 1S½1�0 , we also consider

the CO states 1S½8�0 , 3S½8�1 , and 1P½8�
1 .

The remaining parts of the paper are organized as
follows. In Sec. II, we briefly present the useful formulas
for calculating the Z → ηQ inclusive decays. In Sec. III,
numerical results are presented. Section IV is reserved for
discussion and conclusion.

II. CALCULATION TECHNOLOGY

Under the NRQCD factorization formalism, the decay
width for the inclusive processZ → ηQ þ X can bewritten as

dΓZ→ηQþX ¼
X
n

dΓ̃Z→ðQQ̄Þ½n�þXhOηQðnÞi; ð1Þ

where dΓ̃ are the perturbatively calculable SDCs and
hOηQðnÞi are the nonperturbative LDMEs. The sum extends

over the intermediate states 2Sþ1L½1;8�
J . Up to relative v4Q

order, the LDMEs hOηQð1S½1�0 Þi, hOηQð1S½8�0 Þi, hOηQð3S½8�1 Þi,
and hOηQð1P½8�

1 Þi are involved.
To calculate the decay width for Z → ηQ þ X, we

first calculate the decay widths for a free on shell

ðQQ̄Þ pair with the quantum numbers 2Sþ1L½1;8�
J , i.e.,

dΓ
Z→ðQQ̄Þ½2Sþ1L½1;8�

J �þX
. Then the contributions of different

channels to the decay width of the Z → ηQ þ X
are obtained from dΓ

Z→ðQQ̄Þ½2Sþ1L½1;8�
J �þX

through replacing

the matrix element hOðQQ̄Þ½2Sþ1L½1;8�
J �ð2Sþ1L½1;8�

J Þi by

hOηQð2Sþ1L½1;8�
J Þi.

In the paper, we consider the contributions from the
processes up to αα2s order. The involved decay channels are

Z → ηQð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þ g; ð2Þ

Z → ηQð1S½1�0 ; 1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þ gg; ð3Þ

Z → ηQð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þ qq̄; ð4Þ

Z → ηQð1S½1�0 ; 1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þQQ̄; ð5Þ

Z → ηQð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þQ0Q̄0ðQ0 ≠ QÞ: ð6Þ

The decay channels Z → ηQð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þ gg and

Z → ηQð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þ qq̄ are the real corrections to

1In fact, the decay channels ηc → ΛΛ̄ and ηc → ΣΣ̄, whose
branching ratios are ∼1.07 × 10−3 and ∼2.1 × 10−3, respectively
[8], may also be used to identify the ηc meson so as to increase the
detection efficiency of ηc. It is not very difficult to detect the
strange baryon pairs produced from the ηc decay with vertex
detectors because they carry high momentum from the ηc and
make tracks.
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the decay channels Z → ηQð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þ g, and

should be considered together with the virtual corrections

to the decay channels Z → ηQð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þ g so as to

obtain finite predictions.

The decay width for the ðQQ̄Þ½2Sþ1L½1;8�
J � pair can be

written as

dΓ
Z→ðQQ̄Þ½2Sþ1L½1;8�

J �þX
¼ 1

3

1

2mZ

X
jMj2dΦN; ð7Þ

where N indicates that there are N particles in the final
state,

P
indicates the sum over the spin and color states of

initial and final particles, and 1=3 comes from the polari-
zation average of the initial Z boson. dΦN is N-body
differential phase space

dΦN ¼ ð2πÞ4δ4
�
p0 −

XN
f¼1

pf

�YN
f¼1

d3pf

ð2πÞ32Ef
; ð8Þ

andM denotes the amplitude for the ðQQ̄Þ½2Sþ1L½1;8�
J � pair.

In the following, we sketch the formulas used in the
calculation of these decay channels, successively.

A. Z → ηQð1S½8�0 ;3S½8�1 ;1P½8�
1 Þ+ g and their

NLO QCD corrections

1. Leading order contributions

At leading order (LO) in αs, there are two Feynman

diagrams for the decay channel Z → ðQQ̄Þ½2Sþ1L½8�
J � þ g,

which are shown in Fig. 1. The amplitude
(M ¼ M1 þM2) for the decay channel can be written

down according to the two Feynman diagrams. For the 1S½8�0

(3S½8�1 ) case, we have

iM1 ¼ −
ig

2 cos θW
tr

�
Π1ð3ÞΛa

8=ϵðp0ÞðVQ − AQγ5Þ

·
i

−=p12 − =p2 −mQ þ iϵ
ðigs=ϵ�ðp2ÞTbÞ

�����
q¼0

; ð9Þ

iM2 ¼ −
ig

2 cos θW
tr

�
Π1ð3ÞΛa

8ðigs=ϵ�ðp2ÞTbÞ

·
i

=p11 þ =p2 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þ

�����
q¼0

;

ð10Þ

where VQ and AQ are vector and axial electroweak
couplings. More explicitly, VQ ¼ T3Q − 2eQ sin2 θW and
AQ ¼ T3Q, where T3Q and eQ are weak isospin and the
charge of fermion Q in units of positron charge, respec-
tively. p11 ¼ p1=2þ q and p12 ¼ p1=2 − q are the

momenta of the Q and Q̄ in the ðQQ̄Þ½2Sþ1L½8�
J � pair, and

Π1ð3Þ is the spin-singlet (spin-triplet) projector, i.e.,

Π1 ¼
1

ð2mQÞ3=2
ð=p12 −mQÞγ5ð=p11 þmQÞ; ð11Þ

Π3 ¼
1

ð2mQÞ3=2
ð=p12 −mQÞ=ϵ�ðp1Þð=p11 þmQÞ; ð12Þ

and Λa
8 ¼

ffiffiffi
2

p
Ta is the CO projector. For the 1P½8�

1 case, we
have

iM1 ¼ −
igϵ�αðp1Þ
2 cos θW

d
dqα

tr

�
Π1Λa

8=ϵðp0ÞðVQ − AQγ5Þ

·
i

−=p12 − =p2 −mQ þ iϵ
ðigs=ϵ�ðp2ÞTbÞ

�����
q¼0

; ð13Þ

iM2 ¼ −
igϵ�αðp1Þ
2 cos θW

d
dqα

tr

�
Π1Λa

8ðigs=ϵ�ðp2ÞTbÞ

·
i

=p11 þ =p2 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þ

�����
q¼0

:

ð14Þ

Squaring the amplitude M and integrating the squared
amplitude over the two-body phase space, we obtain the LO

contribution for the decay channelZ → ðQQ̄Þ½2Sþ1L½8�
J � þ g.

2. Virtual corrections

The NLO virtual corrections come from the interference
of the one-loop diagrams and the LO diagrams. Four
sample one-loop Feynman diagrams are shown in Fig. 2.

The fourth sample Feynman diagram is specific to the 3S½8�1

channel. The amplitude is too lengthy to be listed here.
There are UV divergences in the self-energy and vertex

diagrams and IR divergences in the vertex and box
diagrams. We adopt dimensional regularization with d ¼
4 − 2ϵ to regularize these divergences. Then the divergen-
ces appear as pole terms in ϵ. The γ5 matrix should be noted
in dimensional regularization, and we adopt the reading
point prescription [37] to deal with it.FIG. 1. Feynman diagrams for Z → ðQQ̄Þ½2Sþ1L½8�

J � þ g.
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The UV divergences should be removed through
renormalization. In the calculation, the renormalization
scheme is adopted as follows: the renormalization of the
quark field, the quark mass and the gluon field is carried out
in the on-mass-shell (OS) scheme, while the renormaliza-
tion of the strong coupling constant is carried out in the
modified minimal subtraction (MS) scheme. The renorm-
alization constants are

δZOS
2;Q ¼ −CF

αs
4π

�
1

ϵUV
þ 2

ϵIR
− 3γE þ 3 ln

4πμ2R
m2

Q
þ 4

�
;

δZOS
m;Q ¼ −3CF

αs
4π

�
1

ϵUV
− γE þ ln

4πμ2R
m2

Q
þ 4

3

�
;

δZOS
3 ¼ αs

4π

�
ðβ00 − 2CAÞ

�
1

ϵUV
−

1

ϵIR

�

−
4

3
TF

X
Q

�
1

ϵUV
− γE þ ln

4πμ2R
m2

Q

��
;

δZMS
g ¼ −

β0
2

αs
4π

�
1

ϵUV
− γE þ lnð4πÞ

�
;

where γE is the Euler constant, μR is the renormalization
scale, β0 ¼ 11 − 2nf=3 is the one-loop coefficient of the
QCD β function, and nf is the flavor number of active
quarks. β00 ¼ 11 − 2nlf=3 and nlf ¼ 3 is the number
of light-quark flavors. For SUð3Þ group, CF ¼ 4=3,
TF ¼ 1=2, and CA ¼ 3.
In the calculation, the threshold expansion method [38]

is employed to extract the SDCs; i.e., we expand the

relative momentum (q) of the ðQQ̄Þ½2Sþ1L½8�
J � pair before

performing the loop integration. Then the Coulomb
divergences, which are IR power divergences and vanish
in dimensional regularization, do not appear in our
calculation.

3. Real corrections

The real corrections to the decay channel Z →

ðQQ̄Þ½2Sþ1L½8�
J � þ g come from the processes Z →

ðQQ̄Þ½2Sþ1L½8�
J � þ gg and Z → ðQQ̄Þ½2Sþ1L½8�

J � þ qq̄, where
q ¼ u, d, s. In the calculation, we use

P
i ϵ

μ�
i ϵνi → −gμν

to sum the polarizations of the final-state gluons. The
unphysical polarization contributions are subtracted
through the process involving ghost-pair production, i.e.,

Z → ðQQ̄Þ½2Sþ1L½8�
J � þ ugūg. Six sample Feynman dia-

grams for the real corrections are shown in Fig. 3. The

sixth diagram is specific to the 3S½8�1 channel.
There are IR divergences in the real corrections. These

IR divergences should be regularized by dimensional
regularization as those in the virtual corrections. In order
to simplify the calculation of the real corrections under
dimensional regularization, we adopt the two-cutoff phase-
space slicing method [39] to isolate the divergent terms.
Under this method, the differential decay width for the real
corrections can be decomposed into three parts,

dΓReal ¼ dΓS þ dΓHC þ dΓHC̄; ð15Þ

where dΓS denotes the contribution from the phase
space region with E2 ≤ mZδs=2 or E3 ≤ mZδs=2, dΓHC
denotes the contribution from the phase space region with
E2 > mZδs=2, E3 > mZδs=2 and ðp2 þ p3Þ2 ≤ m2

Zδc,
and ΓHC̄ denotes the contribution from the phase
space region with E2 > mZδs=2, E3 > mZδs=2, and

FIG. 3. Six sample Feynman diagrams for the real corrections

to Z → ðQQ̄Þ½2Sþ1L½8�
J � þ g.

FIG. 2. Four sample Feynman diagrams for the virtual correc-

tions to Z → ðQQ̄Þ½2Sþ1L½8�
J � þ g.
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ðp2 þ p3Þ2 > m2
Zδc. In the calculation, the two cutoff

parameters should be taken as δc ≪ δs ≪ 1. Applying
the eikonal and collinear approximations to the soft and
hard-collinear parts, respectively, ΓS and ΓHC can be
calculated analytically in d space-time dimensions. Due
to the constraints E2 > mZδs=2, E3 > mZδs=2 and
ðp2 þ p3Þ2 > m2

Zδc, ΓHC̄ is finite and can be calculated
in four space-time dimensions safely.
After summing the virtual and real corrections, the IR

divergences are canceled in the 1S½8�0 and 3S½8�1 cases.

However, there are IR divergences remaining in the 1P½8�
1

case after summing the virtual and real corrections. The

finite SDC for the 1P½8�
1 channel can extracted through

matching.
Applying the NRQCD factorization to the production of

an on shell ðQQ̄Þ½1P½8�
1 � pair, the decaywidth can bewritten as

dΓ1P½8�
1

¼ dΓ̃1P½8�
1

hOðQQ̄Þ½1P½8�
1
�ð1P½8�

1 Þi

þ dΓ̃1S½1�
0

hOðQQ̄Þ½1P½8�
1
�ð1S½1�0 Þi

þ dΓ̃1S½8�
0

hOðQQ̄Þ½1P½8�
1
�ð1S½8�0 Þi; ð16Þ

where dΓ1P½8�
1

denotes the decay width for an on shell

ðQQ̄Þ pair with quantum numbers 1P½8�
1 , hOðQQ̄Þ½1P½8�

1
�

ð2Sþ1L½8�
J Þi denotes the LDMEs for the quark pair. The

LDME hOðQQ̄Þ½1P½8�
1
�ð1P½8�

1 Þi starts at α0s order, while

hOðQQ̄Þ½1P½8�
1
�ð1S½1�0 Þi and hOðQQ̄Þ½1P½8�

1
�ð1S½8�0 Þi start at αs order.

Up to α2s order, the second term vanishes in this decay
channel. Then, we have

dΓ̃1P½8�
1

¼
dΓ1P½8�

1

hOðQQ̄Þ½1P½8�
1
�ð1P½8�

1 Þi

−
dΓ̃1S½8�

0

hOðQQ̄Þ½1P½8�
1
�ð1S½8�0 Þi

hOðQQ̄Þ½1P½8�
1
�ð1P½8�

1 Þ
: ð17Þ

Under the MS factorization scheme,

hOðQQ̄Þ½1P½8�
1
�ð1S½8�0 Þi ¼ −

αsBFCϵ

3πm2
Q

hOðQQ̄Þ½1P½8�
1
�ð1P½8�

1 Þi; ð18Þ

where BF ¼ ðN2
c − 4Þ=Nc and Cϵ ¼ 1=ϵIR − γE þ lnð4πÞ þ

lnðμ2R=μ2ΛÞ. Then the finite SDC dΓ̃1P½8�
1

is obtained.

B. Z → ηQð1S½1�0 ;1S½8�0 ;3S½8�1 ;1P½8�
1 Þ+QQ̄

For the CS decay channel Z → ðQQ̄Þ½1S½1�0 � þQQ̄, there
are four Feynman diagrams which are shown in Fig. 4. The
amplitude (M ¼ P

4
i¼1Mi) can be written down according

to the four Feynman diagrams,

iM1 ¼ −
ig

2 cos θW

−i
ðp12 þ p2Þ2 þ iϵ

ūðp2ÞðigsγμTbÞ

· Π1Λ1ðigsγμTbÞ i
=p1 þ =p2 −mQ þ iϵ

=ϵðp0Þ

· ðVQ − AQγ5Þvðp3Þjq¼0; ð19Þ

iM2 ¼ −
ig

2 cos θW

−i
ðp12 þ p2Þ2 þ iϵ

ūðp2ÞðigsγμTbÞΠ1

· Λ1=ϵðp0ÞðVQ − AQγ5Þ
i

−=p0 þ =p11 −mQ þ iϵ

· ðigsγμTbÞvðp3Þjq¼0; ð20Þ

iM3 ¼ −
ig

2 cos θW

−i
ðp11 þ p3Þ2 þ iϵ

ūðp2Þ=ϵðp0Þ

· ðVQ − AQγ5Þ
i

−=p1 − =p3 −mQ þ iϵ
ðigsγμTbÞ

· Π1Λ1ðigsγμTbÞvðp3Þjq¼0; ð21Þ

iM4 ¼ −
ig

2 cos θW

−i
ðp11 þ p3Þ2 þ iϵ

ūðp2ÞðigsγμTbÞ

·
i

=p0 − =p12 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þ

· Π1Λ1ðigsγμTbÞvðp3Þjq¼0; ð22Þ

where Λ1 ¼ 1=
ffiffiffi
3

p
is the CS projector.

For the decay channel Z → ðQQ̄Þ½1S½8�0 � þQQ̄, there are
six Feynman diagrams which are shown in Figs. 4 and 5.
The amplitude (M ¼ P

6
i¼1Mi) can be written down

according to the six Feynman diagrams. The amplitudes
Miði ¼ 1; 2; 3; 4Þ can be obtained from the amplitudes

Miði ¼ 1; 2; 3; 4Þ of Z → ðQQ̄Þ½1S½1�0 � þQQ̄ through the
replacements Λ1 → Λ8. And the remaining two amplitudes
Miði ¼ 5; 6Þ are as follows:

FIG. 4. Four of the Feynman diagrams for Z → ðQQ̄Þ
½2Sþ1L½1;8�

J � þQQ̄.
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iM5 ¼
ig

2 cos θW

−i
ðp2 þ p3Þ2 þ iϵ

tr

�
Π1Λa

8=ϵðp0Þ

× ðVQ − AQγ5Þ
i

−=p0 þ =p11 −mQ þ iϵ
ðigsγμTbÞ

�

× ūðp2ÞðigsγμTbÞvðp3Þjq¼0; ð23Þ

iM6 ¼
ig

2 cos θW

−i
ðp2 þ p3Þ2 þ iϵ

tr

�
Π1Λa

8ðigsγμTbÞ

×
i

=p0 − =p12 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þ

�

× ūðp2ÞðigsγμTbÞvðp3Þjq¼0: ð24Þ

There is an additional factor (−1) in Miði ¼ 5; 6Þ com-
pared to Miði ¼ 1; 2; 3; 4Þ, which is due to the fermion
exchange.

For the decay channel Z → ðQQ̄Þ½3S½8�1 � þQQ̄, there are
eight Feynman diagrams which are shown in Figs. 4–6.
The amplitude can be written as M ¼ P

8
i¼1 Mi. The

amplitudes Miði ¼ 1; 2; 3; 4Þ can be obtained from
Eqs. (19)–(22) through the replacement Π1 → Π3 and
Λ1 → Λ8. The amplitudes Miði ¼ 5; 6Þ can be obtained
from Eqs. (23) and (24) through the replacement Π1 → Π3.
The other two amplitudes Miði ¼ 7; 8Þ are as follows:

iM7 ¼
ig

2 cos θW

−i
p2
1 þ iϵ

tr½Π3Λa
8ðigsγμTbÞ�ūðp2ÞðigsγμTbÞ

·
i

=p1 þ =p2 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þvðp3Þjq¼0;

ð25Þ

iM8 ¼
ig

2 cos θW

−i
p2
1 þ iϵ

tr½Π3Λa
8ðigsγμTbÞ�ūðp2Þ=ϵðp0Þ

· ðVQ − AQγ5Þ
i

−=p1 − =p3 −mQ þ iϵ

× ðigsγμTbÞvðp3Þjq¼0: ð26Þ

For the decay channel Z → ðQQ̄Þ½1P½8�
1 � þQQ̄, there are

six Feynman diagrams which are shown in Figs. 4 and 5.
The amplitude can be written as M ¼ P

6
i¼1 Mi, and

iM1 ¼ −
igϵ�αðp1Þ
2 cos θW

d
dqα

�
−i

ðp12 þ p2Þ2 þ iϵ
ūðp2ÞðigsγμTbÞ

· Π1Λa
8ðigsγμTbÞ i

=p1 þ =p2 −mQ þ iϵ
=ϵðp0Þ

· ðVQ − AQγ5Þvðp3Þ
�����

q¼0

; ð27Þ

iM2 ¼ −
igϵ�αðp1Þ
2 cos θW

d
dqα

�
−i

ðp12 þ p2Þ2 þ iϵ
ūðp2ÞðigsγμTbÞ

· Π1Λa
8=ϵðp0ÞðVQ − AQγ5Þ

i
−=p0 þ =p11 −mQ þ iϵ

· ðigsγμTbÞvðp3Þ
�����

q¼0

; ð28Þ

iM3 ¼ −
igϵ�αðp1Þ
2 cos θW

d
dqα

�
−i

ðp11 þ p3Þ2 þ iϵ
ūðp2Þ=ϵðp0Þ

· ðVQ − AQγ5Þ
i

−=p1 − =p3 −mQ þ iϵ
ðigsγμTbÞ

· Π1Λa
8ðigsγμTbÞvðp3Þ

�����
q¼0

; ð29Þ

iM4 ¼ −
igϵ�αðp1Þ
2 cos θW

d
dqα

�
−i

ðp11 þ p3Þ2 þ iϵ
ūðp2ÞðigsγμTbÞ

·
i

=p0 − =p12 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þ

· Π1Λa
8ðigsγμTbÞvðp3Þ

�����
q¼0

; ð30Þ

iM5 ¼
igϵ�αðp1Þ
2 cos θW

−i
ðp2 þ p3Þ2 þ iϵ

d
dqα

tr

�
Π1Λa

8=ϵðp0Þ

× ðVQ − AQγ5Þ
i

−=p0 þ =p11 −mQ þ iϵ
ðigsγμTbÞ

�

× ūðp2ÞðigsγμTbÞvðp3Þjq¼0; ð31Þ

FIG. 5. Two of the Feynman diagrams for Z → ðQQ̄Þ
½2Sþ1L½8�

J � þQQ̄.

FIG. 6. Two of the Feynman diagrams for Z → ðQQ̄Þ
½3S½8�1 � þQQ̄.
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iM6 ¼
igϵ�αðp1Þ
2 cos θW

−i
ðp2 þ p3Þ2 þ iϵ

d
dqα

tr

�
Π1Λa

8ðigsγμTbÞ

×
i

=p0 − =p12 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þ

�

× ūðp2ÞðigsγμTbÞvðp3Þjq¼0: ð32Þ

C. Z → ηQð1S½8�0 ;3S½8�1 ;1P½8�
1 Þ+Q0Q̄0

In this subsection we present the amplitudes for the

decay channels Z → ηQð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þQ0Q̄0 where Q0

denotes a heavy quark but Q0 ≠ Q.

For the decay channel Z → ðQQ̄Þ½1S½8�0 � þQ0Q̄0, there
are two Feynman diagrams, which are shown in Fig. 7. The
amplitude can be written as M ¼ M1 þM2. The ampli-
tudesM1 andM2 are the same asM5 andM6 in Eqs. (23)
and (24), but here we have p2

2 ¼ p2
3 ¼ m2

Q0 .

For the decay channel Z → ðQQ̄Þ½3S½8�1 � þQ0Q̄0, there
are four Feynman diagrams, which are shown in Figs. 7
and 8. The amplitude can be written as M ¼ P

4
i¼1Mi.

The amplitudesM1 andM2 can be obtained fromM5 and
M6 in Eqs. (23) and (24) through replacement Π1 → Π3.
The amplitudes M3 and M4, which correspond to the two
diagrams in Fig. 8, are as follows:

iM3 ¼
ig

2 cos θW

−i
p2
1 þ iϵ

tr½Π3Λa
8ðigsγμTbÞ�ūðp2ÞðigsγμTbÞ

·
i

=p1 þ =p2 −mQ0 þ iϵ
=ϵðp0ÞðVQ0 − AQ0γ5Þvðp3Þjq¼0;

ð33Þ

iM4 ¼
ig

2 cos θW

−i
p2
1 þ iϵ

tr½Π3Λa
8ðigsγμTbÞ�ūðp2Þ=ϵðp0Þ

× ðVQ0 − AQ0γ5Þ
i

−=p1 − =p3 −mQ0 þ iϵ

× ðigsγμTbÞvðp3Þjq¼0: ð34Þ

For the decay channel Z → ðQQ̄Þ½1P½8�
1 � þQ0Q̄0, there

are two Feynman diagrams which are shown in Fig. 7. The
amplitude can be written as M ¼ M1 þM2. The ampli-
tudes M1 and M2 have the same form as M5 and M6 in
Eqs. (31) and (32), but here p2

2 ¼ p2
3 ¼ m2

Q0 .

D. Z → ηQð1S½1�0 Þ+ gg
There are six Feynman diagrams for the decay channel

Z → ðQQ̄Þ½1S½1�0 � þ gg. Half of the Feynman diagrams are
shown in Fig. 9, and the other three Feynman diagrams can
be obtained from these diagrams through the substitution
p2 ↔ p3. According to those diagrams, the amplitude
(M ¼ P

6
i¼1Mi) of the process can be written down,

and we have

iM1 ¼ −
ig

2 cos θW
tr

�
Π1Λ1=ϵðp0ÞðVQ − AQγ5Þ

·
i

−=p0 þ =p11 −mQ þ iϵ
ðigs=ϵ�ðp3ÞTbÞ

·
i

−=p2 − =p12 −mQ þ iϵ
ðigs=ϵ�ðp2ÞTaÞ

�����
q¼0

; ð35Þ

iM2 ¼ −
ig

2 cos θW
tr

�
Π1Λ1ðigs=ϵ�ðp2ÞTaÞ

·
i

=p2 þ =p11 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þ

·
i

−=p3 − =p12 −mQ þ iϵ
ðigs=ϵ�ðp3ÞTbÞ

�����
q¼0

; ð36Þ

FIG. 7. Two of the Feynman diagrams for Z → ðQQ̄Þ
½2Sþ1L½8�

J � þQ0Q̄0.

FIG. 8. Two of the Feynman diagrams for Z → ðQQ̄Þ
½3S½8�1 � þQ0Q̄0.

FIG. 9. Half of the Feynman diagrams for Z → ðQQ̄Þ
½1S½1�0 � þ gg.
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iM3 ¼ −
ig

2 cos θW
tr

�
Π1Λ1ðigs=ϵ�ðp2ÞTaÞ

·
i

=p2 þ =p11 −mQ þ iϵ
ðigs=ϵ�ðp3ÞTbÞ

·
i

=p0 − =p12 −mQ þ iϵ
=ϵðp0ÞðVQ − AQγ5Þ

�����
q¼0

:

ð37Þ

The other three amplitudes Miði ¼ 4; 5; 6Þ can be obtained
from Miði ¼ 1; 2; 3Þ via the substitution p2 ↔ p3.

III. NUMERICAL RESULTS

In the calculations, the package FeynArts [40] is employed
to generate Feynman diagrams and amplitudes, the package
FeynCalc [41,42] is employed to carry out the color and Dirac
traces, the package $Apart [43] is employed to conduct the
partial fraction, the package FIRE [44] is employed to do the
integration-by-parts reduction, and the package LoopTools

[45] is used to compute the one-loop master integrals
numerically. The phase-space integrations are performed
by using the package VEGAS [46].
The necessary input parameters for the numerical cal-

culation are taken as follows:

mc ¼ 1.5 GeV; mb ¼ 4.75GeV; mZ ¼ 91.1876GeV;

sin2θW ¼ 0.231; α¼ 1=128; ð38Þ

where α is the electromagnetic coupling constant atmZ. For
the strong coupling constant, we adopt the one-loop formula

αsðμRÞ ¼
4π

β0lnðμ2R=Λ2
QCDÞ

:

According to αsðmZÞ ¼ 0.1179 [47], we obtain αsð2mcÞ ¼
0.234 and αsð2mbÞ ¼ 0.175.
For the LDMEs, we derive the LDMEs for the ηQ from

the experimentally extracted LDMEs for the J=ψðϒÞ via
the heavy quark spin symmetry (HQSS), i.e.,

hOηQð1S½1�0 =1S½8�0 Þi ¼ 1

3
hOψQð3S½1�1 =3S½8�1 Þi;

hOηQð3S½8�1 Þi ¼ hOψQð1S½8�0 Þi;
hOηQð1P½8�

1 Þi ¼ 3hOψQð3P½8�
0 Þi: ð39Þ

These relations are expected to hold to relative order v2Q.
Several sets of the LDMEs for the J=ψ and the ϒ extracted
from the global fits by several groups are listed in Tables I
and II. The factorization scale of the LDMEs has been
taken as μΛ ¼ 1.5 GeV for the J=ψ and the ϒ in Tables I
and II. Thus, we also take this value for μΛ in this paper.

A. Integrated decay widths

In this subsection, we give the decay widths for different
decay channels and the total decay widths for the inclusive
ηQ production via Z boson decays.
The decay widths for the decay channels contributing to

Z → ηc þ X are given in Tables III–VI. In Table III, the

decay widths for the decay channels Z → ηcð2Sþ1L½8�
J Þ þ g

up to LO and NLO accuracy in αs are presented. We can see
that the NLO correction is larger than the LO contribution

in the 1S½8�0 and 3S½8�1 cases. The reason of the large NLO

correction in the 1S½8�0 case is that only the vector coupling of

the Z − cc̄ vertex contributes to the decay width of Z →

ηcð1S½8�0 Þ þ g at the LO level, while both the vector and
axial-vector couplings of the Z − cc̄ vertex contribute to the
NLO correction through the real corrections. Moreover, the
strength of the axial-vector coupling is stronger than that of
the vector coupling in the Z − cc̄ vertex. Thus, the large

NLO correction in the 1S½8�0 case is expected. The reason for

TABLE I. The LDMEs for the J=ψ production extracted from the global fits, where μΛ ¼ mc.

LDMEs Butenschoen et al. [4] Chao et al. [5] Gong et al. [6]

hOJ=ψ ð3S½1�1 Þi=GeV3 1.32 1.16 1.16

hOJ=ψ ð1S½8�0 Þi=ð10−2 GeV3Þ 3.04 8.9 9.7

hOJ=ψ ð3S½8�1 Þi=ð10−2 GeV3Þ 0.17 0.30 −0.46

hOJ=ψ ð3P½8�
0 Þi=ð10−2 GeV5Þ −0.91 1.26 −2.14

TABLE II. The LDMEs for theϒ production extracted from the
global fits, where μΛ ¼ 1.5 GeV.

LDMEs Gong et al. [48] Feng et al. [49]

hOϒð3S½1�1 Þi=GeV3 9.28 9.28

hOϒð1S½8�0 Þi=ð10−2 GeV3Þ 11.15 13.6

hOϒð3S½8�1 Þi=ð10−2 GeV3Þ −0.41 0.61

hOϒð3P½8�
0 Þi=m2

b=ð10−2 GeV3Þ −0.67 −0.93
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the very large NLO correction in the 3S½8�1 case is that there

are gluon fragmentation diagrams for the processes Z →

ηcð3S½8�1 Þ þ qq̄ at αα2s order. One of the gluon fragmentation
diagram is the sixth diagram in Fig. 3. The decay width for

Z → ηcð3S½8�1 Þ þ qq̄ðq ¼ u; d; sÞ2 is 1.15 × 103 keV under
the LDME extracted by Chao et al., which is very close to

the decay width for Z → ηcð3S½8�1 Þ þ g at the NLO level.

From these tables, we can see that the dominant contri-

butions come from the decay channels Z → ηcð1S½1�0 ; 3S½8�1 Þ þ
cc̄, Z → ηcð3S½8�1 Þ þ bb̄ and Z → ηcð3S½8�1 Þ þ qq̄. Among

these dominant channels, the CO (3S½8�1 ) channels are more

important than the CS (1S½1�0 ) channel under the three sets of
LDMEs. The LO contributions from the decay channels
associatedwith a final gluon are suppressed although they are
of order ααs.
These dominant decay channels can be understood by

the fragmentation mechanism. For the decay channel

Z → ηcð1S½1�0 Þ þ cc̄, the decay width is dominated by the
(anti)quark fragmentation process of Z → cc̄ followed by
cðc̄Þ → ηc. In this fragmentation process, the quark propa-
gator is of order 1=mηc, and the gluon propagator is of order

1=m2
ηc . For the decay channels Z → ηcð1S½8�0 ; 1P½8�

1 Þ þ cc̄,
the decay widths are also dominated by the (anti)quark
fragmentation process. However, the involved LDMEs in
the two decay channels are suppressed by powers of vc
compared with the CS LDME. Thus, the decay widths of

the decay channels Z → ηcð1S½8�0 ; 1P½8�
1 Þ þ cc̄ are suppressed

compared with that of Z → ηcð1S½1�0 Þ þ cc̄. For the decay

TABLE III. The decay widths (unit:keV) for the decay channels Z → ηcð2Sþ1L½8�
J Þ þ g based on three sets of

LDMEs, where “NLO” denotes the results up to NLO accuracy. The very large NLO correction in the 3S½8�1 case

comes from the contribution of the real correction processes Z → ηcð3S½8�1 Þ þ qq̄.

Decay channels Butenschoen et al. Chao et al. Gong et al.

ηcð1S½8�0 Þ þ gðLOÞ 3.29 × 10−3 5.80 × 10−3 −8.90 × 10−3

ηcð1S½8�0 Þ þ gðNLOÞ 1.79 × 10−2 3.15 × 10−2 −4.83 × 10−2

ηcð3S½8�1 Þ þ gðLOÞ 0.399 1.17 1.27

ηcð3S½8�1 Þ þ gðNLOÞ 396 1.16 × 103 1.26 × 103

ηcð1P½8�
1 Þ þ gðLOÞ −0.159 0.221 −0.375

ηcð1P½8�
1 Þ þ gðNLOÞ −0.263 0.364 −0.618

Totalðηc þ gÞðLOÞ 0.243 1.40 0.886
Totalðηc þ gÞðNLOÞ 396 1.16 × 103 1.26 × 103

TABLE IV. The decay widths (unit:keV) for the decay channels

Z → ηcð2Sþ1L½1;8�
J Þ þ cc̄ based on three sets of LDMEs.

Decay channels Butenschoen et al. Chao et al. Gong et al.

ηcð1S½1�0 Þ þ cc̄ 90.9 79.9 79.9

ηcð1S½8�0 Þ þ cc̄ 1.10 × 10−2 1.94 × 10−2 −2.98 × 10−2

ηcð3S½8�1 �Þ þ cc̄ 104 305 332

ηcð1P½8�
1 �Þ þ cc̄ −8.84 × 10−2 0.122 −0.208

Totalðηc þ cc̄Þ 195 385 412

TABLE V. The decay widths (unit:keV) for the decay channels

Z → ηcð2Sþ1L½8�
J Þ þ bb̄ based on three sets of LDMEs.

Decay channels Butenschoen et al. Chao et al. Gong et al.

ηcð1S½8�0 Þ þ bb̄ 8.53 × 10−5 1.51 × 10−4 −2.31 × 10−4

ηcð3S½8�1 �Þ þ bb̄ 117 342 373

ηcð1P½8�
1 �Þ þ bb̄ −3.15 × 10−3 4.36 × 10−3 −7.40 × 10−3

Totalðηc þ bb̄Þ 117 342 373

TABLE VI. The decay width (unit:keV) for the decay channel

Z → ηcð1S½1�0 Þ þ gg based on three sets of LDMEs.

Decay channels Butenschoen et al. Chao et al. Gong et al.

ηcð1S½1�0 Þ þ gg 4.43 3.89 3.89

TABLE VII. The decay width (unit:MeV) for Z → ηc þ X
based on three sets of LDMEs.

Butenschoen et al. Chao et al. Gong et al.

ηc þ X 0.712 1.89 2.05

2When we present the results for Z → ηQð3S½8�1 Þ þ qq̄ indi-
vidually, we actually give the contribution from the fragmentation
diagrams, which is gauge invariant and counts almost the whole
contribution of the NLO decay width of Z → ηcð3S½8�1 Þ þ g.
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channels Z → ηcð3S½8�1 Þ þ cc̄ðbb̄; qq̄Þ, the decay widths are
dominated by the fragmentation processes of Z →
cc̄ðbb̄; qq̄Þ followed by a quark or an antiquark fragments
into the ηc and Z → cc̄gðbb̄g; qq̄gÞ followed by g → ηc.
In the fragmentation processes Z → cc̄ðbb̄; qq̄Þ followed
by cðb; q; c̄; b̄; q̄Þ → ηc, the quark propagator is of order
1=mηc , and the gluon propagator is 1=m2

ηc . Since the gluon
propagator is fixed as 1=m2

ηc in the whole phase space, the

CO channels Z → ηcð3S½8�1 Þ þ cc̄ðbb̄; qq̄Þ are more impor-

tant than the CS channel Z → ηcð1S½1�0 Þ þ cc̄ although
the CO channels are suppressed by powers of vc com-

pared with the CS channel. The decay channels Z →

ηcð1S½8�0 ; 3S½8�1 ; 1P½8�
1 Þ þ g at LO in αs have no fragmentation

contribution, the quark propagator in these channels is of

order 1=mZ. Other channels Z → ηcð1S½8�0 ; 1P½8�
1 Þ þ bb̄ and

Z → ηcð1S½1�0 Þ þ gg also have no fragmentation contribu-
tion, thus they are suppressed.3

Due to the fact that the SDCs of the 3S½8�1 channels are

greatly enhanced compared to other channels and the 3S½8�1

channels dominate the decay Z → ηc þ X, the total decay
width of Z → ηc þ X is sensitive to the CO LDME

hOηcð3S½8�1 Þi. Therefore, the process Z → ηc þ X provides

a good platform to determine the value of hOηcð3S½8�1 Þi.
Moreover, according to HQSS, we have hOJ=ψð1S½8�0 Þi ¼
hOηcð3S½8�1 Þið1þOðv2cÞÞ. The value of hOηcð3S½8�1 Þi can give
a good constraint to the value of hOJ=ψ ð1S½8�0 Þi.

Summing the contributions from the considered
decay channels, we obtain the decay width for the
inclusive process Z → ηc þ X which is given in
Table VII.
The contributions to the decay width of Z → ηb þ X

from the considered decay channels are given in
Tables VIII–XI. The very large NLO correction to the

decay channel Z → ηbð3S½8�1 Þ þ g comes from the processes

Z → ηbð3S½8�1 Þ þ qq̄ whose decay width is 8.21 keV under
the LDME extracted by Gong et al. Similar to the ηc case,
the dominant contributions come from the decay channels

Z → ηbð1S½1�0 ; 3S½8�1 Þ þ bb̄, Z → ηbð3S½8�1 Þ þ cc̄, and Z →

ηbð3S½8�1 Þ þ qq̄ due to the fragmentation mechanism in these
channels.

TABLE VIII. The decay widths (unit:keV) for the decay

channels Z → ηbð2Sþ1L½8�
J Þ þ g based on two sets of LDMEs,

where “NLO” denotes the results up to NLO accuracy. The very

large NLO correction in the 3S½8�1 case comes from the contribu-

tion of the real correction processes Z → ηbð3S½8�1 Þ þ qq̄.

Decay channels Gong et al. Feng et al.

ηbð1S½8�0 Þ þ gðLOÞ −6.02 × 10−3 8.96 × 10−3

ηbð1S½8�0 Þ þ gðNLOÞ −1.13 × 10−2 1.68 × 10−2

ηbð3S½8�1 Þ þ gðLOÞ 0.346 0.422

ηbð3S½8�1 Þ þ gðNLOÞ 8.27 10.1

ηbð1P½8�
1 Þ þ gðLOÞ −6.23 × 10−2 −8.65 × 10−2

ηbð1P½8�
1 Þ þ gðNLOÞ −0.107 −0.149

Totalðηb þ gÞðLOÞ 0.278 0.344
Totalðηb þ gÞðNLOÞ 8.15 9.97

TABLE IX. The decay widths (unit:keV) for the decay chan-

nels Z → ηbð2Sþ1L½1;8�
J Þ þ bb̄ based on two sets of LDMEs.

Decay channels Gong et al. Feng et al.

ηbð1S½1�0 Þ þ bb̄ 10.5 10.5

ηbð1S½8�0 Þ þ bb̄ −4.65 × 10−4 6.92 × 10−4

ηbð3S½8�1 �Þ þ bb̄ 2.49 3.04

ηbð1P½8�
1 �Þ þ bb̄ −2.88 × 10−3 −3.99 × 10−3

Totalðηb þ bb̄Þ 13.0 13.5

TABLE X. The decay widths (unit:keV) for the decay channels

Z → ηbð2Sþ1L½8�
J Þ þ cc̄ based on two sets of LDMEs.

Decay channels Gong et al. Feng et al.

ηbð1S½8�0 Þ þ cc̄ −2.40 × 10−4 3.58 × 10−4

ηbð3S½8�1 �Þ þ cc̄ 2.28 2.78

ηbð1P½8�
1 �Þ þ cc̄ −2.18 × 10−3 −3.02 × 10−3

Totalðηb þ cc̄Þ 2.28 2.78

TABLE XI. The decay width (unit:keV) for the decay channel

Z → ηbð1S½1�0 Þ þ gg based on two sets of LDMEs.

Decay channels Gong et al. Feng et al.

ηbð1S½1�0 Þ þ gg 2.10 2.10

TABLE XII. The decay width (unit:keV) for Z → ηb þ X based
on two sets of LDMEs.

Gong et al. Feng et al.

ηb þ X 25.5 28.4

3Actually, the decay widths for the heavy quarkonium pro-
duction can be further organized by different powers of mQ=mZ
under the fragmentation-function approach, more detailed dis-
cussions for the power expansion can be found in Refs. [50–55].
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Different from the ηc case, among these dominant

decay channels, the CS channel Z → ηbð1S½1�0 Þ þ bb̄ is
the most important channel. There are two reasons: one
is that mZ=mηb is smaller than mZ=mηc , which leads to

the enhancement in the SDCs of the 3S½8�1 channels is
weakened for the ηb case. The other is that the CO

LDME hOηQð3S½8�1 Þi is more suppressed compared with

the CS LDME hOηQð1S½1�0 Þi in the ηb case. However, for

the 3S½8�1 channels, since the final open quark pair can be

several flavors, the sum of these 3S½8�1 channels dominate
the decay Z → ηb þ X. Therefore, the decay Z → ηb þ X

can be used to determine the value of hOηbð3S½8�1 Þi, and
give a good constraint to the value of hOϒð1S½8�0 Þi.
Summing the contributions from the considered

decay channels, we obtain the decay width for the
inclusive process Z → ηb þ X which is presented in
Table XII.

B. Differential decay widths

In this subsection, we present the differential decay
widths dΓ=dz for Z → ηQ þ X, where the energy fraction is
defined as z≡ 2pηQ · pZ=p2

Z. Since the dominant contri-
butions to the decay process Z → ηQ þ X come from the
1S½1�0 and 3S½8�1 channels and the contributions from other

channels are greatly suppressed, we only consider the 1S½1�0

and 3S½8�1 channels in this subsection.
The differential decay widths dΓ=dz for Z → ηc þ X

based on the three sets of LDMEs are given in Fig. 10.

From the figure, we can see that the 3S½8�1 channels dominate
the decay Z → ηc þ X, which was also shown in the last
subsection by the integrated decay widths. The distribu-
tions of the CS channel and the CO channels have different
shapes. The curve of the CS channel has a peak at a
moderate z value, while the curves of the CO channels have
a peak at a small z value. This feature can be used to

determine the CS LDME hOηcð1S½1�0 Þi and the CO LDME

hOηcð3S½8�1 Þi more precisely.
The differential decay widths for Z → ηb þ X based

on the two sets of the LDMEs are given in Fig. 11.
Here, the differential decay width of the channel

ηbð1S½1�0 Þ þ gg is also given. Similar to the ηc case, the
curves of the CS channels have a peak at a moderate z
value while the curves of the CO channels have a peak
at a small z value. However, since the CS contribution is
comparable with the CO contribution in the ηb case, the
shape of the inclusive process Z → ηb þ X is signifi-
cantly different from that of Z → ηc þ X.
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FIG. 10. The differential decay widths dΓ=dz for Z → ηc þ X,
where μR ¼ 2mc. The top one shows the distributions based
on the LDMEs of Butenschoen et al. [4], the middle one shows
the distributions based the LDMEs of Chao et al. [5], and
the bottom one shows the distributions based the LDMEs of
Gong et al. [6].
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IV. DISCUSSION AND CONCLUSION

In the present paper, we have studied the inclusive
production of ηQ (Q ¼ c or b) through Z boson decays.

The CS (1S½1�0 ) and the CO (1S½8�0 , 3S½8�1 , and 1P½8�
1 ) Fock states

are considered. The integrated and differential decay widths
for the related channels are computed, and the results show
that the decay width of Z → ηQ þ X is dominated by the

CO 3S½8�1 production. It means that the decay width of Z →

ηQ þ X is sensitive to the value of the LDME hOηQð3S½8�1 Þi.
Hence, the two processes Z → ηc þ X and Z → ηb þ X can

be used to determine the values of hOηcð3S½8�1 Þi and

hOηbð3S½8�1 Þi. Moreover, via HQSS, the measured value

of hOηQð3S½8�1 Þi from the process Z → ηQ þ X can also give

a certain constraint on the value of hOJ=ψðϒÞð1S½8�0 Þi. Note
that this conclusion depends partly on the exact values of

LDMEs, and it is applicable only if the LDMEs are at the
same order of magnitude of the ones quoted in this paper.
The differential distributions dΓ=dz are shown in figures.

The distributions of the CS and the CO components are
very different. The distributions of the CS component have
a peak at a moderate z value, while the distributions of the
CO components have a peak at a small z value. Thus, the

CS LDME hOηQð1S½1�0 Þi and the CO LDME hOηQð3S½8�1 Þi can
be determined more precisely through measuring the
energy distribution of the process Z → ηQ þ X.
In a hadronic collider such as the LHC, the production of

the heavy quarkonium ηQ is dominated by hadronic pro-
duction, so it is difficult to pick up the production events viaZ
decays. Thus the calculations on the production via Z boson
decays here may be really useful as reference mainly for the
production in a superZ factory. The total cross section for the
ηQ production via the electron and positron annihilation at
the Z pole, eþe− → Z → ηQ þ X4 can be derived from the
decay width ΓZ→ηQþX through the formula derived in the
Appendix A1 of Ref. [56], i.e.,

σeþe−→ηQþX ¼ e2ð1 − 4sin2θW þ 8sin4θWÞ
8sin2θWcos2θWmZΓ2

Z
ΓZ→ηQþX: ð40Þ

Then we obtain

σeþe−→ηcþX ¼ 45.0 pb; ð41Þ

σeþe−→ηbþX ¼ 0.608 pb; ð42Þ

where the input values for the LDMEs have been taken as
those extracted byChao et al. [5] and Gong et al. [48], which
have been presented inTables I and II. If the luminosity of aZ
factory can be up to 1035 cm−2 s−1 [22], then there are about
4.5 × 107 ηc and 6.1 × 105 ηb to be produced per operation
year. Therefore, at a high luminosity Z factory with highly
rejecting backgrounds, those two production processes can
be studied thoroughly.
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FIG. 11. The differential decay widths dΓ=dz for Z → ηc þ X,
where μR ¼ 2mb. The top one shows the distributions based on
the LDMEs of Gong et al. [48], and the bottom one shows the
distributions based the LDMEs of Feng et al. [49].

4The γ-exchange contribution is negligibly small at the Z pole,
which can be safely neglected.
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