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We study the heavy quark production processes with the transverse momentum dependent (unintegrated)
gluon distribution function in a proton which is obtained recently using the Kimber-Martin-Ryskin
prescription from the Bessel-inspired behavior of parton densities at small Bjorken x values. Our results
agree with the latest HERA experimental data for reduced cross sections 6<%, (x, 02) and %% (x, 0?), and
also for deep inelastic structure functions F5(x, 0?) and F5(x, Q%) in a wide range of x and Q? values.
Comparisons with the predictions based on the Ciafaloni-Catani-Fiorani-Marchesini evolution equation
and with the results of conventional pQCD calculations performed at the first three orders of perturbative

expansion are presented.
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I. INTRODUCTION

Recently, the important new data of the cross sections for
the open charm and beauty production in neutral current
deep inelastic electron-proton scattering (DIS) have been
obtained by combining the results of H1 and ZEUS
Collaborations at HERA [1]. Measurements have shown
that heavy flavor production in DIS proceeds predomi-
nantly via the photon-gluon fusion process, yg — QQ,
where Q is the heavy quark. The cross section therefore
depends strongly on the gluon distribution in the proton
and heavy quark mass. Moreover, an analysis of the data in
the framework of perturbative quantum chromodynamics
(QCD) has been done [1], where the massive fixed-flavor-
number scheme and different implementations of the
variable-flavor-number scheme were used.

The theoretical description of the heavy quark produc-
tion processes can also be performed with the transverse
momentum dependent (TMD), or unintegrated functions of
the density of partons (quarks and/or gluons) in a proton
[2,3]. These quantities, depending on the fraction x of the
longitudinal momentum carried by the parton in the proton,
the two-dimensional transverse momentum of the parton k%,
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and the hard scale 4? of a complex process, contain non-
perturbative (including the transverse momentum) informa-
tion of the proton structure. The TMD factorization theorems
provide the necessary basis to separate hard parton physics
(which is described in terms of perturbative QCD) and soft
parton physics. Currently, there are a number of factorization
approaches which include the dependence of the parton
distribution function’s (PDFs) on the transverse momentum,
for example, the Collins-Soper-Sterman [4] approach devel-
oped for semi-inclusive processes with a finite and nonzero
ratio between the rigid scale y* and total energy s, as well as
the approach to high-energy factorization [5,6] (or k-
factorization [7]) which is valid at a fixed limit of the hard
scale and at high energies.

With the high-energy factorization, the TMD density of
gluons satisfies the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
[8] or Ciafaloni-Catani-Fiorani-Marchesini (CCFM) [9]
evolution equations, which resum the contributions of large
logarithm terms proportional to ¥ In” s ~ a In" 1/x. These
terms are important at high energy s (or, equivalently, at low x
values). Thus, high-order radiative corrections can be effec-
tively taken into account in the cross sections [namely, the
part of the next-to-leading order (NLO) + of the next-
to-leading order (NNLO) +... terms corresponding to the
emission of the original gluons]. Phenomenological appli-
cations of the high-energy factorization approach augmented
by the CCFM are well known in the literature (see, for
example, [10-20] and references therein).

In addition to the CCFM equation, there are also other
approaches to determining the TMD PDFs in a proton,
namely the parton branching approach (PB) [21] and the
Kimber-Martin-Ryskin (KMR) recipe [22] based on the
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usual Dokshitser-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
[23] equations. The first one (PB) gives a numerical iterative
solution of the DGLAP evolution equations for collinear and
TMD PDFs using the concept of resolvable and nonresolv-
able branching and the Sudakov’s formalism to describe the
evolution of a parton from one scale to another without
decidable branching. The splitting kinematics at each
branching vertex is described by the DGLAP equations
and the angular ordering condition for parton emission,
which can be used instead of the usual DGLAP ordering by
virtuality. The KMR approach is a formalism invented to
construct TMD PDFs from well-known traditional (collin-
ear) PDFs under the key assumption that the dependence of
parton distributions on transverse momentum comes only in
the last stage of evolution. It is believed that the KMR
procedure effectively takes into account the main part of
next-to-leading (NLL) logarithmic terms corresponding to
the real gluon emission at the last step of evolution cascade.
The KMR approach is currently explored in NLO [24] and
commonly used in phenomenological applications (see, for
example, [11,13-19] and references therein), where the usual
PDF:s (for example, the NNPDF [25] or CTEQ [26] ones) are
accepted numerically as input. The relationships between PB
and KMR scenarios [27], as well between PB and CCFM
approaches [28] have been discussed.

The KMR formalism was used in our recent work [29]
for analytical calculations of the TMD PDFs, where we
adopted the expressions for usual PDFs obtained with the
generalized double asymptotic scaling (DAS) approach
[30-33]. The scaling, related to the asymptotic behavior of
DGLAP evolution, was discovered many years ago [34]. It
was shown [30-32] that the flat initial conditions for the
DGLAP equations used in the generalized DAS scheme
lead to the Bessel-like behavior of PDFs at small x values.
With above results, we obtained the analytical expressions
for the TMD quark and gluon densities [29] in the leading
order (LO).1 In Ref. [29], we have implemented various
kinematic constraints that exist in the KMR recipe (namely,
angular and strict ordering conditions) and investigated the
relationship between the differential and integral formula-
tions of the KMR procedure recently mentioned in [36].

In the present paper we analyze the combined H1 and
ZEUS experimental data [1] for the (reduced) charm and

beauty cross sections ¢<; and 624, and charm and beauty
contributions to the proton structure functions (SFs)
Fy(x, 0% and F(x,0%)[37-39], as well their ratio for
different Q? values. Studying the earlier data on the charm
SF F§ in the proton from HI [40] and ZEUS [41]
Collaborations at HERA for x ~ 1074, it was found that
the charm contribution to the total proton SF F, is about
25%, which is significantly larger than that one found by

'The obtained TMD PDFs are now implemented in the TMDLIB
package [3] and are publicly available. Moreover, they are
included in the Monte Carlo event generator PEGASUS [35].

the European Muon Collaboration at CERN [42] for large
x, where SF F§ was only 1% of F,. Such a large value of F§
attracted extensive experimental and theoretical studies of
heavy quark production processes (see, for example, the
data [1] studied in this paper, as well as the experimental
data [43] from LHCb Collaboration at CERN for the
prompt charm production in pp collisions). Theoretical
studies usually serve to confirm that HERA and LHC
data can be described by the perturbative charm gene-
ration within (see, for example, reviews [44-46] and
references therein). We also note here that, historically,
the kp-factorization was introduced and tested in the study
of these processes (see [5—7]).

The production of charmed mesons at hadron colliders is
dominated by the gg — c¢ subprocess; therefore it provides
a sensitive probe of the gluon density at small x. In
particular the data [43] of LHCb Collaboration provides
the information on the gluon for small x around x ~ 1076
(see [47] and discussions therein). This very small-x region
is also crucial for the calculations of signal and background
processes for ultra-high energy neutrino astrophysics (see
[48,49] for calculations of the high energy neutrino cross
section and the prompt atmospheric neutrino flux, respec-
tively). The survey of the heavy quark production will be
continued at future lepton-hadron and hadron-hadron
colliders, such as LHeC, FCC-eh and FCC-hh, respectively
(for a review, see [50,51] and references therein).

To study the process of the heavy quark production, we
produce the ky-factorization predictions in two ways,
namely, the framework of DAS approach and CCFM
evolution equation. The direct comparison of these pre-
dictions is interesting and could be rather useful to evaluate
the TMD parton (mainly gluon) density in a proton. We
calculate the high-energy asymptotics of the heavy quark
parts of the SFs F, and F; at the first three orders of
perturbation theory and present the numerical comparison
of these higher-order predictions with corresponding
results of the kp-factorization calculations.

The outline of our paper is following. In Secs. Il and 11Tl we
briefly describe our theoretical input. Section IV presents
our numerical results for the reduced charm and beauty
cross sections and charm and beauty parts of SFs F,(x, 0?)
and F (x, Q%) in a wide Q? range. Section V contains our
conclusions. In Appendix A we present the high energy
asymptotics of the heavy quark contribution to the SFs F,
and F; at the first three orders of perturbation theory.
Appendix B contains the simple approximations of these
formulas for the ratio of the heavy quark parts of the SFs F,
and F';, which could be useful for subsequent applications.

II. kr-DEPENDENT WILSON COEFFICIENT
FUNCTIONS

The differential cross section 622 (hereafter Q = ¢, b)
can be presented in the simple form,
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where F ,? (x, Q%) (hereafter k = 2, L) are heavy quark parts
of the proton SFs F;(x, Q?), x and y are the usual Bjorken
scaling variables. Here we present the basic elements of the
relations between SFs F£(x, 0?) and F(x, Q%) and TMD
PDFs. More details can be found in [52].

In the kp-factorization approach, the SFs F ,g (x, Q%) are
driven at small x by gluons and related in the following way
to the TMD gluon distribution f,(x, k7. u?):

Ldx' [ dk3
FQ)CQ2 / / TCkng m?, k%, u?)

<t (g,k%,/ﬂ). @

The functions Cy ,(x, Qz,mj%, k3., u*) are regarded as the

structure functions of the off shell gluons with virtuality k2
(hereafter we call them as Wilson coefficient functions).
Following [52], we do not use the Sudakov decomposi-
tion, which is sometimes quite convenient in high-energy
calculations. Here we only note that the property between
four-dimensional k> and k2, i.e., k* = —k%, comes from the
fact that the Bjorken parton variable x in the standard and in
the Sudakov approaches coincide.

The kr-dependent Wilson coefficient functions have the
following form:

a . p
26Tt ([, (3)

PCEy(x) = 0

Crg(x) =
g ﬁ4
where Cf ,(x) and ct ,(x) corresponds to the application of

the Feynman Piﬁ polarization tensor and additional tensor
of the gluon polarization PZﬂ (see Ref. [52]),

1 6bx* g%q*

pap a pop __
PF/ :_59/}7 PAﬁ_7 0 (4)
Hereafter,
5 k2 k2 2
Pr=1-4bx2, b:—@EQ—’g, a:%, 0*>0,
(5)

and we omitted the dependence of the coefficient functions
on the heavy quark mass m, Q%, k% and hard scale y?.
The results for the coefficient functions Cy ,(x) have

been calculated in Ref. [52], which have the following form
(j=F.A):

2
: enHd,
Ch,(x) = 0

o et - ©

, e2a; 1 +2bx?
Cijg(x) = % [4bx2f§~1) + %fﬁz)] O(x; —x)
e a,
— ;2 fj O(x; —x) + 4bx2C§g, (7)

where a; = a,/(4x) is the strong coupling constant, and
O(x; —x) is the Heaviside step function with

1

14+4a+b’ (8)

X1 =

The functions fﬁ-i) (i=1,2) (J=A,F) in the rhs. of
Egs. (6) and (7) have the following form

f;1> = =281 = (1 =2x(1 +b—2a)[l —x(1+b+2a)])f,
+ (2a = b)(1 = 2a)x>f,], ©)

£ = 8xBl(1 = (1 + b)x)
— 2x(bx(1 = (1 + b)x)(1 + b —2a) + ap®) f
+ bx*(1 = (1 4+ b)x)(2a — b) f>)

M=x(1+b
fgw:_ﬂ%

—2(x(1 = x(1 4 b))(1 + b —2a) + ap*) f,

—x(I =x(1+0D))(1=2a)f5|, (10)
£ =4p(1= (14 b)x)2[2= (142bx2)f, —=bx2f5] (1)
and
_ dax 1 1+ﬁﬁ
2:1_—, ==—1 -
b (1—(1+b)x) N BB 1-pp

—4
" -

A. The case of on shell gluons

In the particular case of on shell initial gluons, when
sz = 0, we have (see [52] for more details),

Cry(x) = eha,(42)BL)(x, a), (13)

where
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3
BY)(x.a) = x| fV) (x.a) + SO xa)

= -2xp[(1 —4x(2 —a)(1 —x))

— (1 =2x(1 = 2a) +2x*(1 — 6a — 4a*)L(pB)).

(14)

BY) (x,a) = xf@(x,a) = 8x2p[(1 —x) — 2xaL(p)] (15)

with f0(x,a) = £ (x,a.b = 0) (i =1,2) and
- dax 1. 145
P=pFb=0=1-——. L) == :
0=y MO
(16)
Here B,(((Z (x, a) is the LO collinear Wilson coefficient func-

tion. Equations (14) and (15) coincide with the results [53].

III. KIMBER-MARTIN-RYSKIN APPROACH

fa(x. kg, 1) Py (2. k%)

% k%)Z/
xDa<f,k%), xw=1-A  (17)
Z

where D,(x,u?) are the conventional PDFs, f,(x,u?) =
xD,(x,u?), T,(u*, k2.) are the Sudakov form factors and
P, (z,p*) are the DGLAP splitting functions (see, for
example, (2.56)—(2.60) in [54]),

Pow(2.4?) = 2a,(P )P0 (2) 4+ (18)

A. Sudakov form factors T, (u> k%)

The Sudakov form factor 7', (12, k%) has the following
form [see (2.4) in[36]]:

T, (4% k) —exp{ /{” dp Z/ dzzPsz)}

Here we present the main elements of TMD PDFs, based (19)
on the KMR prescription in so-called integral formulation
(see [36]) and the DAS approach for usual PDFs. More When A is a constant, we have
details, including the differential formulation of the KMR
prescription, can be found in our previous paper [29]. T,(u?, k%) = exp[—d,R,(A)s], (20)
The TMD quark and gluon distributions (hereafter
a=4gq,Qq), where
In ((4(2) g, =% ¢ -c. ¢=c Bo =S4 (11 = 29) S/
S = ) a F» - 5 - 5 - s =< = 5>
R PR (72) bo SR v T, T3
1 3x3
R =(g) - =i(g) - (1-8)+ - ey
and C, = N, Cp = (N> —1)/(2N,.) for the color SU(N,.) group and f is the number of active quarks.
B. Conventional PDFs
At LO, the conventional sea quark and gluon densities f,(x, %) can be written as follows:
falxow?) = £ (xop®) + fa (x i),
- Cr 4
£ () = (A, + CAo) +0(p). €=l =0,
¢ —dys
fabew?) = 3 (Ag + CA pli(o)e™* + O(p).
S5 () = —CAE 4 O(). [y (x?) = Ay 4 O(x), (22)
where I,(6) (v =0, 1) are the modified Bessel functions. And
a_Y(Q%) » 1 n 1 1
= 1 — 5 |, s = d 1 -, — T 1 <> 23
(Sd) 0 = g b T
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and

4C -
-4 d

4. = By’

¢t

d_ =
3po

(24)

are the singular and regular parts of the anomalous dimensions, f is the first coefficient of the QCD S-function in the
MS-scheme. The results for the parameters A, and Q3 can be found in [30,55] with a,(M;) = 0.1168.

C. TMDs in KMR approach

Now we can use (17) to find the results for TMDs without derivatives. After some algebra we have

fa (xv k%v /‘2) = 4Caas(k%)Ta <ﬂ27 k%‘)

x (Da(Am (xio , k%) +Dif; (j—o , k%) +D;f7 (j—o , k%) ) - (25)

Also we can obtain (see more details in [29])

1 X0 1 x% xg

Dq(A)_ln<K>_Z(2+x0)7 Dy(A) =1n K) _XO+Z_§’

_ Xo@ 25 x3 Co
D A —_ = 1 — ], A :0’ D+:—— — —_—,

1) = =52 (1x0 - ZE) Dj() =0, Df — Sy 4

3x9 [ 1 2x32 Xo 2x2
i3l (105 - (-3+5)) 9
where
1 17 1 11
Py plo(o) pq  rL(o) X0 X

D. Other prescriptions

1. For the phenomenological applications, we use the
cutoff parameter A in the angular ordering [36] (the case of
strong ordering can be found in [29]),

kr

Appe = . 28
ang k'r+ﬂ ( )

In all above cases, except the results for 7', (42, k%), we can
simply replace the parameter A by A,,,. For the Sudakov
form factors, we note that the parameters A contribute to
the integrand in (19); therefore the momentum dependence
changes the results in (20). To perform the correct evalu-
ation of the integral (19), we should recalculate the p?
integration in (19),

¥ dp?
Tgang)(/f,k%) = exp |:—4Ca lz ?as(pz)Ru(Aang) :

(29)

The analytic evaluation of 0" (42, k2) is a very

cumbersome procedure, which will be accomplished in

the future. In the following we use the numerical results
for T (1%, K2).

2. As it was shown [32], the fits of the experimental
data for SF F, are not very well at low Q? values. To solve
this problem, one can modify the strong-coupling con-
stant in the infrared region [30]. Specifically, usually there
are two kinds of modifications: the “frozen” coupling
constant (see, for example, [30,56]) and the analytic one
[57,58], which effectively increase the strong coupling
constant argument at small x> values, in accordance
with [59,60]. As one can see from [30,55,61], both
modifications can describe the F,(x, Q?) data in the small
Q? range better than the canonical fit significantly.
However, the “frozen” coupling constant leads to a better
agreements with data sets as shown in [29]. Thus, we
will use it in our present analysis. Let us introduce the
freezing of the strong coupling constant by changing it as
u* = u? + M2, where M, is the p meson mass [56]. Then,
in the formulas of Sec. IIl we introduce the following
replacement:

as(/’tz) - afr(ﬂz) = as(ﬂ2 + M/%) (30)
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3. In the phenomenological applications (see Sec. IV),
the calculated TMD parton densities will be used to predict

the reduced cross sections arQedQ

and the proton SFs
F2(x,0%). According to the ks-factorization theorem
[5.7], the theoretical predictions for these observables
can be obtained by convolution (2) of the TMD gluon
densities and corresponding off shell production ampli-
tudes. So, we need the TMD quark and gluon distributions
in rather broad range of the x variable, i.e., beyond the
standard x range (x < 0.05).

It was shown (see [29] and discussions therein) that the
analytic expressions for TMD parton densities can be
modified in the form,

X ﬂa(s)
Fax i) = ful, k%ﬁ)(l _X_0> . (31)

which is in agreement with a similar modifications of
conventional PDFs (see, for example, the recent paper [62],
where the similar extension has been done in the case of the
EMC effect from the study of shadowing [63] at low x to
antishadowing effect at x ~ 0.1-0.2). The value of ,(0)
can be estimated from the quark counting rules [64],

ﬂv(O)N& ﬂg(O)Nﬂl)(0)+ 1~4,
By(0) ~ B,(0) +2~5, (32)

where v marks the valence part of quark density. Usually
$,(0), B,(0), B,(0) are determined from fits of experi-
mental data (see, for example [65-67]). In our analysis, we
use the numerical values of f3,(0) = 3.03 which have been
extracted [29] from the fit to the inclusive b-jet production
data taken by the CMS [68] and ATLAS [69]
Collaborations in pp collisions at /s = 7 TeV.

IV. PHENOMENOLOGICAL APPLICATIONS

We are now in a position to apply the TMD parton
densities, obtained in [29] and shown above, for phenom-
enological applications. In the present paper we consider

the reduced charm and beauty cross sections ¢<¢; and ¢,
and charm and beauty contributions to the deep inelastic
proton SFs F,(x, 0?), which are directly related with
the gluon content of the proton. The observables were
measured in ep collisions at HERA with a rather good
accuracy (see [1] and [37-39]). In the following we will use
latest TMD gluon density in a proton, obtained from the
numerical solution of the CCFM evolution equation,
namely, JH 2013 set 2 one [70]. Our choice is motivated
mainly by the fact that the CCFM equation smoothly
interpolates between the small-x BFKL gluon dynamics
and conventional DGLAP one, as it was mentioned above.
The input parameters of starting (initial) gluon distribution
implemented into the JH’2013 set 2 were fitted to describe
the high-precision DIS data on structure functions

Fy(x,0%) and F5(x, Q%) at x <5x 107 (see [70] for
more information). Of course, we use the same coefficient
functions (6) and (7) when we calculate the charm and
beauty reduced cross sections and proton structure func-
tions with the CCFM-evolved TMD gluon density.
Everywhere below, we always fix the charm and beauty
masses to m, = 1.65 GeV and m;, = 4.78 GeV [71]. We
use the one-loop formula for the QCD coupling a, with
ny =4 quark flavors at Agcp = 143 MeV [that corre-
sponds to a,(m%) = 0.1168] for the analytically calculated
TMD gluon density as described above. In the case of
CCFM-evolved gluon, we apply the two-loop expression
for ay with n; = 4 and Agcp = 200 MeV, as it is fixed by
the fit [70].

A. Reduced cross sections 622 and SFs F ,? (x,0%)

red

Usually the differential cross section (1) of heavy quark
production in the deep inelastic scattering is represented in
00

q » Which are defined as

terms of reduced cross sections o
follows:

2622 27a? Y\ 06
—=—(1- 21699, 33
dxdy XQ4 < Yy + 2)0red ( )

Hence, with (1) and (33) the reduced cross section orQe? can

be easily rewritten through F(x, Q%) and FZ(x, Q%) as

2

%9 = F{(x, 0?) —ﬁf?g(& 0%)
2
o)1 R). (9
where the ratio R?(x, Q?) in defined as
; FE(x. Q%)
RO(x,0%) =L 2=~ 35
(x. Q%) 7x. 0) (35)

The evaluation below is based on the formulas (34) and
(2) with the coefficient functions as given by (6)—(12).
Our numerical results for reduced cross sections 655

and ofe% are shown in Figs. 1 and 2, respectively, in
comparison with the latest H1 and ZEUS data [1]. The
shaded bands represent the theoretical uncertainties of our
calculations. We find that the kr-factorization predictions
obtained using derived analytical expressions for TMD
gluon density in a proton are in perfect agreement with
the HERA data in a wide region of x and Q? within the
theoretical and experimental uncertainties, both in normali-
zation and shape. These results tend to slightly overshoot
the JH’2013 set 2 predictions in the region of small x and
especially at low Q% At larger Q? and/or moderate or
large x > 1072 the CCFM-evolved gluon density tends to
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FIG. 1.

102 10" 105 10% 108 102 107 100
X

(x, Q%) as a function of x calculated at different Q? values. The predictions obtained with

analytical TMD gluon density in a proton and CCFM-evolved one are shown by the solid green and yellow curves, respectively. The
shaded bands correspond to the scale uncertainties of our calculations. The dashed curves represent the contributions from SF F§ (x, Q2),
as it is described in the text. The experimental data are from H1 and ZEUS [1].

overestimate the HERA data, which could be understood by
the determination of corresponding input parameters at small
x only (see [70]). To estimate the scale uncertainties we
introduce the standard variations (by a factor of 2) in default
renormalization and factorization scales, which are set to be
equal to up = 4my + Q% and uj = Q°, respectively. To
show the contribution of the longitudinal structure functions

F¢(x, Q%) and F%(x, Q?), we present also the results for
F§(x, 0%) and F5(x, Q%) as dotted curves in Figs. 1 and 2.

The difference between the estimated 62¢ and F 2Q (x, Q%) is

red
due to the contribution of the longitudinal SFs F f (x, Q%) as
it can been clearly seen from (34). So, our calculations show
that these contributions are rather important at low x.
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FIG. 2. The reduced beauty cross sections o,
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X

(x, Q%) as a function of x calculated at different Q2 values. Notation of all curves is the

same as in Fig. 1. The experimental data are from H1 and ZEUS [1].

00
red
F2(x, 0?) more clearly, in Figs. 3 and 4 we compare

our results for SFs F5(x, Q%) and F5(x, Q%) with the latest
ZEUS [37] and H1 [38,39] data. Our predictions for the
reduced cross sections ¢<5; and ¢%% are presented here as
dotted curves. One can see again that the results obtained
with analytically evaluated TMD gluon density are in good

In order to show the difference between o and

agreement with the latest HERA data for both structure
functions F§(x, Q%) and F5(x, Q%) in a wide region of x
and Q. The CCFM-evolved gluon JH’2013 set 2 provides
a bit worse description of the HERA data, although these
results are rather close to the measurements. We find that
the discrepancy between two considered approaches tends
to be more clearly pronounced at large Q7.
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FIG.3. The charm contribution to the proton structure function F,(x, Q?) as a function of x calculated at different Q? values. Notation

of all curves is the same as in Fig. 1, except that the solid and dotted lines represent contributions from F$(x, Q%)

and 6<% (x, 0?)

respectively. The experimental data are from ZEUS [37] and H1 [38].

B. Ratio R?(x,0?)

Following the results of [52] and using our coefficient
functions obtained in Sec. II and TMD gluon density
presented in Sec. III, now we can produce predictions
for the ratio R?(x, Q%) according to (35). Results for
R¢(x, Q?) are presented in Fig. 5, where we plot this ratio
as a function of x in a wide Q? range. As earlier, we have

applied two TMD gluon densities in a proton discussed
above.”

Our calculations indicate approximately flat (indepen-
dent of x) behavior of R°(x, Q%) with R° ~0.1 at low

*The predictions for the ratio R”(x, Q%) are rather similar and
not shown here.
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FIG. 4. The beauty contribution to the proton structure function F, (x, Q) as a function of x calculated at different Q> values. Notation

of all curves is the same as in Fig. 2, except that the solid and dotted lines represent contributions from F5(x, %) and afe%(x, 0?)
respectively. The experimental data are from ZEUS [37] and H1 [39].

0% ~5 GeV? and R¢ ~ 0.3-0.4 at higher Q* ~ 200 GeV>.
The results obtained with our TMD gluon and CCFM-
evolved one are in a good agreement to each other. The
difference between them is visible at very large Q? only.
Moreover, the obtained predictions are in good agreement
with [52], which were obtained with the rather old
representations for the TMD gluon density (see [72] and
more recent [3]).

Next, we would like to compare the results for the ratio
R¢(x, Q%), obtained in kp-factorization with the one
R¢(x,0%) [see (A4)], where the ratio R°(x,Q?) was
obtained in the conventional (collinear) QCD factorization
at first three orders of perturbation theory (see Appendix A)
represented by the solid, dashed and dotted gray curves in
Fig. 5. To evaluate the latter, we have used the LO DAS
parton densities presented in Sec. III B. Note that the results
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respectively.

for this ratio can be found in [73], using the powerlike
behavior x™* of the collinear PDFs.

Our calculations show that the k7-factorization predictions
rather close to the results obtained beyond LO of the collinear
perturbation theory. This is in complete agreement with the
usual statement about the property of k-factorization, which
resums the main part of higher order pQCD contributions at
the small x. Indeed, the LO results obtained in the collinear
perturbation theory lead to too small values for the ratio
R¢ (x, ©%). Moreover, the LO collinear Wilson coefficients
have no singularities at the first Mellin moment; thus the
collinear PDFs cancel out exactly with respect to R°(x, 0?)
(see discussions in Appendix B). The corresponding NLO
and NNLO collinear Wilson coefficients have singularities at
the first Mellin moment and thus lead to the x-dependence of
the ratio R°(x, Q%). However, the Q?-dependence of the ratio
R¢(x,0?) in the NLO and NNLO results are noticeably
different from the corresponding Q2-dependence evaluated
with the TMD gluons. In fact, in the kp-factorization
approach the ratio R¢(x, Q*) grows fast when Q? increased
whereas in collinear perturbation theory the ratio R°(x, Q)
grows slowly. Moreover, at the large Q? values (Q2 >
12 GeV?) collinear results become practically independent
of the orders of perturbation theory, since the coupling
constant becomes very small.

Of course, the difference between the predicted
R¢(x, Q%) and R°(x, Q%) ratios at moderate and large Q2

is unclear especially because there are no experimental data
for the SF F¥(x, Q%) and, accordingly, for the ratio
R¢(x, 0%). Indeed, the k,-factorization with the estimated
R¢(x, Q%) leads to a good agreement between experimental
data and theoretical predictions for both reduced cross
sections affd and SF F§(x, QZ), as one can see in Figs. 1 and
3. From another side, the experimental data for both ¢<¢

red
and F§(x, Q%) are in good agreement with the correspond-
ing theoretical predictions obtained in the framework of
collinear approach [1,37-39] (see also Sec. IL.5 in the
recent review [46]). However, we would like to notice that
there is a quite similar situation between the exclusive
reduced cross section o,.q(x, Q%) and F,(x, Q%): exper-
imental data for both observables are in good agreement
with the corresponding theoretical predictions (see [74] and
discussions therein), where the calculated SF F; (x, Q?) is
known to be very sensitive to low x resummation (see, for
example, Sec. IX.3 in the recent review [46]). But, apart of
F¢(x, Q%), SF F;(x, Q%) is measured at the HERA (see
[75] and references therein). Therefore, it seems that in
order to understand the difference between the predictions
for R¢(x, Q%) and R°(x, Q%) ratios at large Q® one has to
investigate the SF F, (x, Q%) using the same approaches,
which is out of the scope of our present work. We plan to
perform such investigation in forthcoming study and then
return to the study of the heavy quark parts and, corre-
spondingly, the ratio R (x, Q?).
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V. CONCLUSIONS

We have studied the heavy quark production processes
using the transverse momentum dependent gluon distri-
bution function in a proton obtained recently [29] using
the Kimber-Martin-Ryskin prescription from the Bessel-
inspired behavior of parton densities at small Bjorken x
values. The Bessel-like behavior of parton densities at
small Bjorken x was obtained [30-33] in-turn in the case of
the flat initial conditions for DGLAP evolution equations in
the double scaling QCD approximation. To construct the
TMD parton distributions we implemented [29] the differ-
ent treatments of the kinematical constraint reflecting the
angular and strong ordering conditions, and discussed the
relations between the differential and integral formulation
of the KMR approach. Additionally, we have tested the
TMD gluon density obtained from the numerical solution
of the CCEM evolution equation, which smoothly inter-
polates between the small-x BFKL dynamics and large-x
DGLAP ones.

00

We have considered the (reduced) cross sections o ;
(where Q = ¢,b) and charm and beauty contributions to
the deep inelastic proton SFs F,(x, Q%) and F(x, Q).
To show the importance of the longitudinal structure
function F¢ (x, Q%) and F%(x, Q*), we compare the results
for 6¢<¢, and %% with the SFs and F§(x, Q%) and F5(x, Q?).
We achieved a good agreement between the HERA
experimental data for these observables and our theoretical
predictions and demonstrated the importance of the con-
tributions of FS(x, Q%) and F%(x, %) at small x. Con-
cerning the ratio of the proton SFs, namely, R¢(x, Q%) =
F¢(x,0%)/F5(x, 0%), we show that the results of kp-
factorization calculations are similar to the ones obtained
beyond LO of collinear perturbation theory. This effect
is clearly visible for Q* <12 GeV>. However, starting
with Q% > 12 GeV?, the kp-factorization leads to larger
values for the ratio IAQC(x, Q?), which needs additional
investigations.

As we discussed already in Sec. IV B, in the next step we
plan to study the longitudinal structure function F; (x, Q%)
and compare the results with the previous ones [61,76] and
[59,77,78] obtained in the framework of kp-factorization
and collinear perturbation theory, respectively. This study is
important in itself and will provide some clues to solve the
problem of differences in the predictions for the ratio
R¢(x, Q%) obtained between the framework of ky-factori-
zation approach and conventional (collinear) QCD factori-
zation (see Sec. IV B).

Moreover, we plan to extend the present analysis beyond
the LO approximation, in order to obtain the results for
the NLO TMD parton densities using the corresponding
NLO results [30-32] for the standard PDFs in the gener-
alized DAS approach. We will check also the results for the
NLO matrix elements (see [27,79] and references and
discussions therein). These results seem to be extremely

important for future experiments, in particular, at the
Electron-lIon Collider (EIC) and Electron-Ion Collider in
China (EiCC) (see [80,81] and discussions and references
therein). With the EIC, an essential low x (up to x ~ 107%)
region is expected to be probed, thus providing us with new
and precise data for DIS SFs, especially data for longi-
tudinal SF F (x, Q%). The EiCC could provide a new
information on the light and sea quark density in a proton,
which is, of course, important to produce and update the
theoretical high-order predictions for F (x, Q%). Moreover,
EIC and EiCC measurements could be important to
distinguish between the different noncollinear QCD evolu-
tion scenarios widely discussed at present (see, for example,
review [2]).
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APPENDIX A: COLLINEAR APPROACH

It is easy to obtain the following results in the collinear
generalized DAS approach (see [82,83]):

F2(x,0%) = Cpy(x. Q2 m3) @ f,(x.0%). (Al)

where the SFs obtained in the generalized DAS approach,

were marked as I:",?(x Q?). Here ® is the Mellin con-
volution,

Ck.g(x7 sz m]%) ® fg(-xv Qz)
L d
- / a3 @)1, (3. )

/%2

X2 d
- [V i) a2
where
1
Xzle(b:O):l+4aQ. (A3)

It can be represented as

F(x, %) _ Crylx. Q% mp) ® f,(x.Q°)
Fox,0%)  Coy(x. Q2 ml) @ fy(x.0%)"
(Ad)

RO(x, 0% =
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where f,(x, 0?) is given in (22). In fact, the ratio R? (x, 0?)
depends slowly on nonperturbative input f(x, 0?), which
contributes to the both numerator and denominator of the
ratio R2(x, Q?).

Using the results of ky-factorization and BFKL approach
[5.84] (see also [85,86]), the results for the high
energy limit of collinear coefficient functions of the heavy
quark production process in all orders of perturbation
theory were obtained. Thus, using the results [84] below
we give formulas for the high energy asymptotic of
collinear coefficient functions of the heavy quark produc-
tion process in the first three orders of the perturbation
theory.

1. LO
Taking the LO Wilson coefficient (13), results (14) and
(15) for on shell coefficient functions and the PDFs

considered in the Sec. III B, for the ratio Rgo(x, 0?) we
have

(0) 2 2 2
kgo(x, Q2> _ BL._;}(xv Q ) mQ) ® fg(x’ Q )

BY)(x, 0%.m3) ® f,(x. 0)

, (AS5)

where the dependence of gluon density f,(x, Q%) should
be rather weak. In fact, there is no x-dependence at all
(see Fig. 5), which is associated with the property of
the Mellin convolution (A2) in the low x region (see
Appendix B).

2. NLO
Through NLO, we have

Crg(x) = eha, (1) [BY) (x, a) + a,(4?)BY)(x.a)].  (A6)

The NLO coefficient functions B,(Jg),(x, a) of photon-gluon

fusion subprocess are rather lengthy and only available as
computer codes [87]. Following [82,83], it is sufficient to
work in the high energy regime, defined by x <« 1, where
the compact form was assumed’ [84-86],

B)(x.a) = pIR{)(1.a) +4C,B)(1.a)L,).
M?* = 4m?, (A7)

with

3Following Ref. [84], we will use the case M? = 4m? in the
collinear approach. We would like to note that in the original
papers [85,86] the scale M? = m? has been used, which is
inconsistent with the results in Egs. (A10), (A11) and (A18).

RY)(1.a) = ¢ Cal5 + (13 = 10a)J(a) + 6(1 - a)1(@)],

16
R (1.a) = —5 Caxa{l = 12a =3+ 4a(1 - 6a)}J(a)

+12a(1 + 3a)I(a)} (A8)
and
BY)(1a) =2 [1 +2(1 - a)J(a),
BY)(1.a) = gxz[l +6a—4a(l +3a)i(a)],  (A9)
where
J(a) =—-yHInt, 1= ) (A10)

I

Ia) = -5 [c(z) + %1112; —In(ax,) Int + 2Liy(1)
(A11)

with

Liy (x) = —Al D101 = xy) (A12)

y

being the dilogarithmic function. We would like to mention
that B,i(_)_;(l,a) is the first moment of the LO Wilson

coefficients By (x,a) [see (14) and (15)],

BY)(n.a) = / P axe 2B (x.a).  (AI3)

0

So, at the NLO for the ratio R (x, 0?) we have

A [BY)(x.a) +a,(4*)B},
ngLO(x’ Qz) = [ g L

where the LO gluon density f,(x, Q%) given by (22) is used

because its contribution to the ratio RS, ,,(x, 0?) is strongly
suppressed (see Appendix B).

3. NNLO

Following to the results [86], for the coefficient function
we have

“The functions J(a) and I(a) in (A10) and (A11) coincide with
ones in [82] and differ from ones in [84—-86] by an additional
factor 4a. The function K(a) in (A18) coincides with the
combination 4a[K(a) + In(4ax,)I(a)].
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0 1 2
Cpy(x) = ezgas(yz)[B,((’g)(x, a) + as(,uz)B;;(x, a) + a%(uz)B,ig)(x, a)l, (A15)
where the coefficient B,(f;(x, a) has the compact form in the high energy regime,
BY) (x,a) = fln(1/x)[RP(1,a) + 4C4R\)(1,a)L, +8CIBY) (1, a)L2] + O(x° Al6
tg(xa) = pIn(1/X)[R (1, a) +4CaR, 5 (1, @)L, + 8CyB, (1, a)Ly] + O(x"), (A16)

with

RY(1.a) = gcg [46 + (71 = 92a)J(a) + 3(13 = 10a)I(a) — 9(1 — a)K(a)],

27
64

R (1.a) = 57 Cinn{34 +240a — [3 + 136a + 4804’} (a) + 3[3 + 4a(1 - 6a)]I(a)
+ 18a(1 4 3a)K(a)}, (A17)

where J(a) and I(a) are defined by (A10) and (A11), respectively, and

K(a) = —\/x; {4({(3) + Liy (=) — Lip(—=1) Int — 28, ,(—1)) + 2 In(ax,)

1
x (£(2) 4 2Liy(=1)) — §1n3t —In?(ax,)Int + ln(axz)lnzt} , (A18)
where ¢ is given in (A10) and
Id 1 [1d
Lis(x) = / D) (1 —xy),  Sialx) = -/ D n2(1 - xy) (A19)
0oy 2Jo y

are the trilogarithmic function Li;(x) and Nilsen Polylogarithm S;,(x) (see [88]). The results for K(a) in the form of
harmonic Polylogarithms [89] can be found in [86].
So, at the NNLO for the ratio IAQQ(x, QZ) we have

BY) (x, a) + a,(1?) B} (x.a) + & (u?)BY) (x.a)] ® f,(x, 0?)
)

B (x.a) + a,(u?)BY) (x, @) + a2 (1) BS) (x. )] ® f,(x, %)

R@nio(x, 07) = (A20)

where the LO gluon density f,(x, Q%) given by (22) is used because its contribution to the ratio IA?I%NLO (x, Q%) is strongly
suppressed (see Appendix B).

APPENDIX B: COLLINEAR RESULTS IN DAS APPROACH

The use of the DAS approach for the PDFs makes it possible to simplify the formulas for the relation R?(x, 0?)
significantly. We will show this below.

Taking the results (14) and (15) for on shell coefficient functions and the PDFs considered in the Sec. III B, it is easily to
obtain the following LO results in the generalized DAS approach (see [82]):

F2(x,0%) = My (1, 0% m})f,(x. Q%) (B1)

where M, ,(1, Q> m?) is the first Mellin moment (n = 1) [see (A10)]. The Mellin moments can be defined as

M ,(n, Q% mZQ) = A dxx"2CY(x, Q% mZQ), (B2)

where x, is given by (A3). In fact, the nonperturbative input f(x, Q?) does cancel in the IAQf ratio, and we have
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(x, Qz) - ML,g(l’Qz’mQQ)

. ol
RO(x,0%) =L
(0 =%

(x.0%) My, (1.0°.m%)’

(B3)

In this case the moments M k,g(l, 02, mé) have no singularities at n — 1.

1. LO
Taking the integral (B2) which leads to (A13) at the LO, we can obtain the results (A9), using (see [82]) the following

auxiliary formulas™:
1 —2alJ(a),

0

J(a),

0

So, at the LO the small-x approximation formula (AS5)
reads

1 + 6aQ - 461Q<1 + 30Q)J(CZQ)

RS, 2) =2
Lo(x. Q%) =2x 14+ 2(1 —ag)(ag)

(B6)

which is x-independent, in full agreement with the numeri-
cal evaluation of the RZ,(x, Q%) in (A5).

2. NLO
At NLO, the coefficient function C{(x) has the form
(A6) with the NLO coefficients B,Elg) (x,a) given by (A7)

and (A8). Its moments M, ,(n, Q% u*) exhibit the corre-
sponding structure,

My (n. Q% 1%) = ea, (1) [Bra(n. @) + a,(u*) By (n. a)].
(B7)

The Mellin transforms of B,((fg (x, a) exhibit singularities in
the limit n — 1, which lead to modifications in (B1). As
was shown [90], the terms involving 1/datn =1+6 — 1
[which correspond to singularities of the Mellin moments
M 4(n) (see (B2)] at n — 1) depend on the exact form of
the asymptotic low-x behavior encoded in f(x, u?). Using

In the original paper [82] the second result in (B4) was

presented with an error “... 1 —2a ...” instead of the correct
expression “... 14 6a ...,” and the third result in (B5) was
presented with an error “... x3/3 ...” instead of the correct
expression “... x3/6 ...”

/*2 dxxnp = { 21+ 6a—4da(l +3a)J(a)],

/ " axxrL(p) = { (1= (1+2a)J(a)),
—8[3(1 4 2a) - 2(1 + 4a + 6a)J(a)], if m =2,

S1(1+3a)(1 + 10a) — 6a(1 + 6a + 10a%)J(a)], if m =2

if m=0

ifmzl, (B4)
ifm=0
iftm=1 (B5)

the results for f,(x, x?) from (22), we obtain the modifi-
cation (see [82] and discussions therein),

1 1 1 1 1 I
- A , = ~In—,
50 e
where p,(x, i) are given by (27).

Because the ratio f5 (x, %)/ fF (x, Q%) is rather small at

the Q? values considered, the expression (B1) is modified
to become

(B8)

_)7
5 5.

FR(x, Q%) m My o1, 12, a)xfylx, 1), (B9)

where M, (1. 4*) is obtained from M; ,(n,u*) by taking
the limit n — 1 and replacing 1/(n—1) = 1/6, in

B,il ;(n, a). Consequently, one needs to substitute only

B{)(1.a) > B)(1.a)

g

(B10)

in the NLO part of (B16), i.e.,

My y(1,0%42) = &a, (1) [BL)(1. a) + a,(u?)BY)(1,a)).

(B11)
Using the identity,
1 Ldy (x
Zp(=)1
e, 57t
1 1 L X
~5+<£)+¢1(0)=g’ r= (B12)
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where

¢1(a) = —In(ax,) = J(a),  J(a) = = (B13)
we find the Mellin transform (B2) of (A7),

~ 1 1 0

B)(1.a)~ 5 [R{)(1.a) +4C,B)(1,a)L,), (B14)

where R,(ig)(l,a) and B,((?g)(l,a) are given in (A8) and (A9), respectively.
So, at the NLO for the ratio IAQQ(x, 0?) we have

My, (1.0 m3)  BY)(1.a) + a,(u*)BY
)

Mz’g(l’Qz’mf) B£Og< a)—‘ras(

R o(x. 0*) ~ (B15)

where the ratio has some x-dependence coming from the corresponding x-dependence of & ., in (B12). The x-dependence is
in rather good agreement with the numerical results in (A20).

3. NNLO

At NNLO, the coefficient function Cj(x) has the form (A15) with the NNLO coefficients B BV )(x a) given in Egs. (A16)
and (A17). Its moment Mz,g(n, Q2, ) exhibits the corresponding structure,

My y(n. Q% 1%) = eha (i) [BY) (n. a) + a, () BY) (n, a) + a3 (u?) BL) (n. a)]. (B16)

The Mellin transforms of B,(fé(x, a) exhibit singularities in the limit n — 1, which have the form,

1 1 1 I
2 7% 2 2(0)’ (B17)
(n=1)* &, p*(x.u)lo(o)
where all definitions can be found in (7) and (23). So, by analogy with the NLO case, we have
Mg (1, 0% 12) = ea, (W) B (1. @) + ay (i) BL (1. @) + a3 (W) B (1. a)]. (B18)
Using the identity,
1 /1 dy y 1 1 X
1 ﬁ() <_10-y med =L il B19
o) o) S = N B
we find the Mellin transform (B2) of (A7),
- 1
BY(1.a)~ 5 [RC)(1,a) +4C,4R})(1,a)L, + 8CIBL)(1, )L, (B20)
+
with R,(fg)(l, a), R,(;g)A(l, a) and B,(C(?;(l, a) are given in (A17), (A8) and (A9), respectively.
So, for the ratio R?(x, Q%) we have
0 =(1 =(2
a0 2 Bly(a) +a,(w)B)(1.a) + a2(u?)BE) (1. )
Rnwo (v 0%) ~ ) - 2 50) 2 B ) (B21)
BZg( a)+as(l"t )BZ,g(laa)—'—aS(/’t )BZ,g(l’a)

where the ratio has some x-dependence coming from the corresponding x-dependence of 3++ in (B19). The x-dependence is
in rather good agreement with the numerical results in (A20).
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