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We investigate the impact of soft gluon resummation on the azimuthal angle correlation between the total
and relative momenta of two energetic final-state particles (jets). We show that the initial and final-state
radiations induce sizable cosðϕÞ and cosð2ϕÞ asymmetries in single jet and dijet events, respectively. We
numerically evaluate the magnitude of these asymmetries for a number of processes in collider
experiments, including diffractive dijet and dilepton production in ultraperipheral pA and AA collisions,
inclusive and diffractive dijet production at the electron-ion collider, and inclusive dijet production in pp
collisions at the LHC. In particular, the cosð2ϕÞ asymmetry of perturbative origin can dominate over the
primordial asymmetry due to the linearly polarized gluon distribution.
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I. INTRODUCTION

Jet processes are the most abundant events in hard
hadronic collisions and have been under intensive inves-
tigations at various colliders (see, e.g., Refs. [1–8]). Among
them, the productions of dijet and jet plus a color-neutral
particle (such as the Higgs boson) are characterized by
distinct final states where two energetic particles (jets) are
almost back to back in the transverse plane perpendicular to
the beam direction. Deviations from the exactly back to
back configuration are, in general, expected. In other
words, the total transverse momentum of the two outgoing
systems q⃗⊥ ¼ k⃗1⊥ þ k⃗2⊥ is typically small but nonzero, as
illustrated in Fig. 1 for the dijet case. The cross section then
depends on the angle ϕ between q⃗⊥ and the dijet relative
momentum P⃗⊥ ¼ ðk⃗1⊥ − k⃗2⊥Þ=2

dσ
dP⊥dq⊥dϕ

¼ σ0 þ cosðϕÞσ1 þ cosð2ϕÞσ2 þ � � � : ð1Þ

The coefficients σ1; σ2; � � � often encode novel partonic
structures of the target that are important in the study of
nucleon tomography at the future electron-ion collider
(EIC) [9–11]. A primary example is exclusive diffractive

dijet production in γð�Þp scattering where q⊥ is provided by
the recoil momentum of the target. It has been predicted
that the ‘elliptic’ gluon Wigner distribution generates a
cosð2ϕÞ asymmetry [12–17]. Another example is the
inclusive dijet production in DIS, where q⊥ comes from
the intrinsic transverse momentum of gluons in the target.
In this case, the so-called linearly polarized gluon distri-
bution can generate a cosð2ϕÞ asymmetry in the dijet
system [18–24].
However, the momentum imbalance q⊥ can simply come

from perturbative initial and final-state radiations which
have nothing to do with nontrivial parton distributions
inside the target. Depending on kinematics, this can affect
or even dominate the coefficients σ1; σ2; � � � when
P⊥ ≫ q⊥. The reason is that the radiative corrections are
enhanced by large double logarithms ðαs ln2 P2⊥=q2⊥Þn.
While the resummation of these logarithms is well under-
stood for the angular independent part σ0 [25–35], that for
the angular dependent part has been discussed much less
frequently in the literature. In a series of papers by Catani
et al. [36,37], it has been observed that the resummation for
σ1; σ2; � � � can be done in the Fourier space q⃗⊥ → b⃗⊥ using
the same Sudakov factor as for σ0. An interesting new
feature is that although the angular dependent cross section
is singular 1=q2⊥ in fixed-order calculations with no
compensating virtual correction, the resummed cross sec-
tions σ1;2 are well behaved as q⊥ → 0. The goal of this
paper is to study this resummation in detail and make
quantitative predictions for azimuthal asymmetries
hcosðnϕÞi that can be compared with the existing and
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future experimental data. We shall consider a variety of
processes, including dijet productions in diffractive and
inclusive processes, and jet plus color-neutral particle
production. A brief summary of our results has been
published in Ref. [38].
An important feature of the final-state radiation is that

the emitted soft gluons tend to be aligned with jet
directions, see Fig. 2. Those emitted inside jet cones
become part of the jets, so one needs to carefully treat
emissions slightly outside the jet cones. Since q⃗⊥ is the
recoil momentum against these gluons, it also points
towards jet directions on average. This naturally generates
a positive cosð2ϕÞ asymmetry of purely perturbative origin
in dijet events [38]. A recent measurement by the CMS
Collaboration [39] indicates that the magnitude of this
effect is sizable. Depending on kinematics, it can com-
pletely overshadow the intrinsic azimuthal correlations
generated by nontrivial parton distributions. For the search
of the elliptic Wigner distribution in the exclusive dijet
production mentioned above, one can avoid this problem
by measuring the correlation between P⃗⊥ and the nucleon
recoil momentum (instead of q⃗⊥) as originally suggested in
[12]. However, in inclusive dijet production, it is not
possible to cleanly separate the contribution from the

linearly polarized gluon distribution, unless one has an
accurate control of the perturbative backgrounds.
Our discussions in this paper are connected to other

recent developments in the field. The correlation between
q⃗⊥ and P⃗⊥ also measures the correlation between final-state
jets. The combination of this study with three particle
correlations in the final state recently proposed in
Refs. [40–42] shall open a new avenue to study the
QCD dynamics of gluon radiation. In this regard, the
nonglobal logarithms [26,43] can also contribute to
the observables we consider, although their numerical
impact might be limited for the relevant kinematics [31].
More broadly, the perturbative contribution to the cosð2ϕÞ
azimuthal asymmetries has been studied for various proc-
esses [36–38,44–49]. In particular, it may shed light on the
QCD factorization and resummation for power corrections
in hard scattering processes [47,50–53].
This paper is organized as follows. In Sec. II, we

consider processes in which the final state consists of
one jet and one color-neutral particle. In Sec. II A, we
consider lepton-jet correlations in ep scattering in the
laboratory frame. In Sec. II B, we consider photon-jet
production in pp collisions. The former can be studied
at the EIC, whereas the latter can be studied at RHIC and
the LHC. Since there is only one jet in the final state, we
expect that the dominant asymmetry is of the form cosðϕÞ.
In Sec. III, we study dijet production. In Secs. III A and

III B, we consider diffractive and inclusive dijet photo-
production processes, respectively. As mentioned above,
the dominant asymmetry is cosð2ϕÞ in this case. Then in
Sec. III C, we consider inclusive dijet production in pp
collisions specifically focusing on the (most complicated)
gg → gg channel.
In Sec. IV we give a detailed analysis of dijet electro-

production in DIS. When the photon is virtual, the linearly
polarized gluon distribution gives an additional contribu-
tion to the cosð2ϕÞ asymmetry. We numerically compare
the respective contributions to the asymmetry from non-
perturbative and perturbative mechanisms.
Finally, in Sec. V, we extend our analysis to QED

processes, where a lepton pair is produced in two-photon
scattering in ultraperipheral heavy ion collisions (UPCs).
Dilepton production in this process has a long history
[54–65] and has attracted great attention recently through
comprehensive measurements at RHIC and the LHC
[66–72]. Theory progress has also been made to understand
the underlying physics [73–84]. We will show that the
photon radiation can contribute to a significant cosð2ϕÞ
asymmetries in the kinematic region where the perturbative
contribution dominates.

II. JET PLUS COLOR-NEUTRAL PARTICLE IN
THE FINAL STATE

In this section we discuss the final states with a jet and a
color-neutral particle. The soft gluon radiation comes only

FIG. 2. An illustration of soft gluon radiations in back to back
dijet events. Due to the collinear enhancement, soft gluons are
more likely emitted closer to jet cones. (The darkness of the gluon
color is correlated with the probability of the emission.) From
momentum conservation, q⃗⊥ ¼ −

P
soft
i k⃗i⊥. Since k⃗i⊥’s tend to

point to jet directions, the same is true for q⃗⊥, resulting in a
sizable anisotropy hcosð2ϕÞi.

FIG. 1. Dijet in transverse plane perpendicular to the beam
direction at hadron colliders. The dijet total transverse mo-
mentum q⃗⊥ ¼ k⃗1⊥ þ k⃗2⊥, which is due to multiple soft
gluon emissions, is much smaller than the individual jet mo-

mentum P⃗⊥ ¼ ðk⃗1⊥ − k⃗2⊥Þ=2.
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from the jet and the incoming parton(s). The dominant
azimuthal asymmetry is then the cosðϕÞ term. We will first
study lepton plus jet production in ep collisions and then
extend to photon plus jet production in pp collisions.
Similar studies can also be carried out for jet plus Higgs
boson or Z=W boson productions at the LHC.

A. Lepton and jet correlation in ep collisions

At leading order a lepton scatters off a quark through
virtual photon exchange in t-channel and produces a quark
jet in the final state

eðkÞ þ qðp1Þ → e0ðklÞ þ jetðkJÞ þ X: ð2Þ

In the laboratory frame, the final-state lepton and jet are
mainly back to back in the transverse plane perpendicular
to the beam direction. This process has recently attracted
significant interest because it can provide a novel way to
study the transverse momentum dependent (TMD) quark
distribution in the nucleon [32,33,85–89]. It has also
motivated experimental efforts to reanalyze the existing
HERA data [90,91].
The virtuality of the photon defines the hard-scattering

process. To leading order, the differential cross section can
be written as

d5σep→e0qX

dyld2P⊥d2q⊥
¼ σeq0 xfqðxÞδð2Þðq⊥Þ; ð3Þ

where σeq0 ¼ α2ee2q
ŝQ2

2ðŝ2þû2Þ
Q4 , yl is the rapidity of the final-state

lepton in the laboratory frame. Following the notations in
Introduction, we have define the difference and total
transverse momenta for the two final-state particles: P⃗⊥ ¼
ðk⃗l⊥ − k⃗J⊥Þ=2 and q⃗⊥ ¼ k⃗l⊥ þ k⃗J⊥. [Below we often omit
an arrow on transverse vectors.] In the above equation, x
represents the momentum fraction of the incoming nucleon
carried by the quark, fqðxÞ for the quark distribution
function. The Mandelstam variables ŝ, t̂, and û are defined
as usual for the partonic subprocess, in particular,
t̂ ¼ ðkl − kÞ2 ¼ −Q2.
At one-loop order, q⊥ can be nonzero due to the

emission of a soft gluon with momentum k⊥g [33].
Integration over the phase space of the emitted gluon is
explained in Appendix A. The result is

g2
Z

d3kg
ð2πÞ32Ekg

δð2Þðq⊥ þ kg⊥ÞCFSgðkJ; p1Þ

¼ αsCF

2π2q2⊥

�
ln
Q2

q2⊥
þ ln

Q2

k2l⊥
þ c0 þ 2c1 cosðϕÞ

þ 2c2 cosð2ϕÞ þ � � �
�
; ð4Þ

where

SgðkJ; p1Þ ¼
2kJ · p1

kJ · kgp1 · kg
; ð5Þ

and ϕ is the azimuthal angle between q⊥ and P⊥. Note that
the coefficients cn in general depend on q⊥. But the
dependence is power suppressed

cnðq2⊥Þ − cnð0Þ ¼ Oððq⊥=P⊥ÞcÞ; ð6Þ

where the integer c (usually c ¼ 1 or 2) depends on both n
and the process under consideration. In (4), we recognize
at least two sources of such power corrections. First, when
q⊥ is small but nonvanishing, the soft gluon rapidity is
subject to kinematical constraints ymin < yg < ymax with
jymax =minj ∼ lnP2⊥=q2⊥. However, in the actual calculation
of cn below, it is convenient to integrate over
−∞ < yg < ∞. The difference in cn caused by this
approximation is power suppressed. Second, in the soft
emission kernel Sg, one approximates kJ⊥ ¼ 1

2
q⊥−

P⊥ ≈ −P⊥. Again the difference is power suppressed in
q⊥=P⊥. There are also power corrections from the hard
part that can affect azimuthal asymmetries. In this paper,
we do not study these corrections systematically (they are
in any case beyond the leading TMD factorization
formalism), and in most of our calculations below, we
neglect the q⊥-dependence of cn. However, in Sec. III A,
we will include part of power corrections for phenom-
enological reasons.
When calculating the Fourier coefficients cn, we need to

subtract in the kg-integral the configuration where the soft
gluon is emitted inside the jet cone of radius R. Namely, we
have to impose the constraint

ΔkgkJ ≡ ðyg − yJÞ2 þ ðϕg − ϕJÞ2 > R2: ð7Þ

As a result, fcng depend on R rather strongly. To gain
analytical insights into the coefficients, it is convenient to
replace (7) by

kJ · kg ∝ 2ðcoshðyg − yJÞ − cosðϕg − ϕJÞÞ > R2; ð8Þ

which is equivalent to (7) when R ≪ 1. We can then obtain
the following explicit expression for an arbitrary Fourier
coefficient cn

cn ¼ ln
1

R2
þ fðnÞ þ gðnRÞ; ð9Þ

with

fðnÞ ¼ 2

π

Z
π

0

dϕðπ − ϕÞ cosϕ
sinϕ

ðcos nϕ − 1Þ; ð10Þ
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gðnRÞ ¼ 4

π

Z
1

0

dϕ
ϕ

tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

p
ϕ

½1 − cos ðnRϕÞ�

¼ n2R2

4 2F3

�
1; 1; 2; 2; 2;−

n2R2

4

�
: ð11Þ

The collinear singularity is isolated in the logarithm
ln 1=R2, and the remaining part is finite. In particular, c0 ¼
lnð1=R2Þ and the first few coefficients of the rest read
fð1Þ ¼ 2 ln 4 − 2, fð2Þ ¼ −1, fð3Þ ¼ 2 ln 4 − 14=3, and
fð4Þ ¼ −5=2. For sufficiently large values of n, we find
fðnÞ ≃ lnðb20=n2Þ with b0 ¼ 2e−γE (γE is the Euler con-
stant). Also note that gðnRÞ ≈ n2R2=4 when nR ≪ 1, while
gðnRÞ ≈ lnðn2R2=b20Þ in the limit nR ≫ 1. This indicates
that cn vanishes when nR ≫ 1.
When R is large ∼Oð1Þ, we should return to (7). The

Fourier coefficients can be evaluated numerically as fol-
lows [see (A3)]:

cn ¼
2

π

Z
R

0

dϕ
cosϕ
sinϕ

�
ðπ − ϕÞ − tan−1

�
eyþ − cosϕ

sinϕ

�

þ tan−1
�
ey− − cosϕ

sinϕ

��
cos nϕ

þ 2

π

Z
π

R
dϕ

cosϕ
sinϕ

ðπ − ϕÞ cos nϕ

−
2

π

Z
R

0

dϕyþ cos nϕ; ð12Þ

where y� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ϕ2

p
. For example, for R ¼ 1, we have

c0 ≃ −0.25, c1 ¼ 0.78 and c2 ¼ −0.30. As shown in Fig. 3,
cn decreases approximately as ln 1=R2 for small n values,
while oscillations around zero start to appear for large-n
coefficients.
We now extend the above one-loop results to all orders in

the TMD framework by resumming the double and single

logarithms in Q2=q2⊥. This is appropriately carried out in
the Fourier transformed b⊥-space. The resummed azimu-
thal averaged cross section reads [33],

d5σep→e0qX

dyld2P⊥d2q⊥
¼

X
q

σeq0

Z
d2b⊥
ð2πÞ2 e

iq⊥·b⊥xqfqðxq; μbÞ

× e−Sud
eqðb⊥;P⊥;RÞ; ð13Þ

where μb ≡ b0=b⊥ with b0 ¼ 2e−γE and γE the Euler
constant. Here and in the following, we neglect the high
order corrections to the hard factor in the resummation
formulas. The Sudakov form factor is defined as

Sudeq ¼
Z

Q

μb

dμ
μ

αsðμÞCF

π

�
ln
Q2

μ2
þ ln

Q2

P2⊥
−
3

2
þ c0ðRÞ

�
:

ð14Þ

To derive the resummation result for the azimuthal angle
dependent differential cross section, we first compute the
Fourier transform of the soft gluon radiation contribution at
one-loop order from Eq. (4), by applying the Jacobi-Anger
expansion,

eiz cosðϕÞ ¼ J0ðzÞ þ 2
X∞
n¼1

inJnðzÞ cosðnϕÞ; ð15Þ

and the integration formula,

Z
∞

0

djq0⊥j
jq0⊥j

Jnðjq0⊥jjb⊥jÞ ¼
1

n
: ð16Þ

Importantly, the q0⊥-integral gives a constant although
originally in momentum space the angular dependent terms
are singular 1=q2⊥ [see, Eq. (4)]. At higher orders there are
double logarithmic corrections but they can be resummed
together with the angular-independent term [36,37]. After
this resummation, we arrive at

d5σep→e0qX

dyld2P⊥d2q⊥
¼

X
n¼1

2 cosðnϕÞ
Z

b⊥db⊥
ð2πÞ Jnðjq⊥jjb⊥jÞ

×
X
q

σeq0 xqfqðxq; μbÞ
CFαscn
nπ

× e−Sud
eqðb⊥;P⊥;RÞ: ð17Þ

An important feature of the above result is that the Fourier
coefficients scale as

hcosðnϕÞi ∝ qn⊥; ð18Þ

in the small-q⊥ region [37].
To evaluate (17), following Ref. [92] we employ the so-

called b�-prescription to suppress the large-b⊥ region and
FIG. 3. Fourier coefficients cnðRÞ given by (12) are shown as a
function of R.
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introduce nonperturbative form factors associated with the
initial and final-state radiations,

Sudeqðb⊥Þ→ Sudeqðb�Þ þ SudqNPðb⊥Þ þ SudjetNPðb⊥Þ; ð19Þ

where b� ¼ b⊥=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2⊥=b2max

p
with bmax ¼ 1.5 GeV−1.

The form factor associated with the incoming quark is
[93,94]

SudqNPðb⊥Þ ¼ 0.106b2⊥ þ 0.42 lnðQ=Q0Þ lnðb⊥=b�Þ; ð20Þ

with Q2
0 ¼ 2.4 GeV2 and that for the final-state jet is

assumed to be

SudjetNPðb⊥Þ ¼ gΛb2⊥: ð21Þ

We note that there is no constraint for gΛ from experimental
data so far. For an illustration, we employ the value
gΛ ¼ 0.1 GeV2.
The numerical results for cosϕ, cos 2ϕ, and cos 3ϕ

azimuthal asymmetries in typical kinematics of EIC are
presented in Fig. 4. One can see the scaling (18) in the
small-q⊥ region. For narrow-jet (R ¼ 0.4, top panel)
production, the cosϕ modulation is dominant as expected,
though the cosð2ϕÞ and cosð3ϕÞ modulations are not
negligible. Interestingly, the latter two flip signs for fat-
jet (R ¼ 1, bottom panel) production, while the cosϕ

modulation is relatively unaffected. This can be understood
from the numerical results of cnðRÞ as shown in Fig. 3.
When the cone size R increases from 0.4 to 1, c1 remains
positive, while c2 and c3 become negative.
We close this subsection with a remark on the QED

radiative contribution to the azimuthal angle asymmetries.
When computing the graphs with a soft/collinear photon
emitted from the final-state electron, the fixed order

calculation produces a large logarithm ln Q2

m2
e
(roughly

≈19 for typical EIC kinematics, see Sec. V), which
compensates for the smallness of αem to a large extent.
This contribution can be considered as part of QED
radiative corrections, similar to that discussed in Ref. [95]
for inclusive DIS.

B. Photon plus jet production in pp collisions

Next, we consider photon plus jet production in pp
collisions. The dominant partonic channel is qðp1Þgðp2Þ →
qðkJÞγðkγÞ. The leading order cross section of this process
is given by,

d6σpp→γqX

dΩ
¼

X
q

σqg→γq
0 xqfqðxqÞxgfgðxgÞδ2ðq⊥Þ; ð22Þ

where σqg→γq
0 ¼ αsαeme2q

Ncŝ2
½− ŝ

û −
û
ŝ� with the usual Mandelstam

variables for the 2 → 2 partonic processes: ŝ ¼ ðp1 þ p2Þ2,
t̂ ¼ ðp2 − kγÞ3, and û ¼ ðp1 − kγÞ2. In the above equation
dΩ ¼ dyJdyγd2P⊥d2q⊥ represents the phase space of the
final-state photon and jet, and yγ and yJ are their rapidities.
The parton momenta fraction are fixed according to
xq;g ¼ P⊥ðe�yJ þ e�yγ Þ= ffiffiffi

s
p

. At one-loop order, the soft
gluon radiation gives the following contribution

g2
Z

d3kg
ð2πÞ32Ekg

δð2Þðq⊥ þ kg⊥Þ

×

�
CA

2
Sgðp1; p2Þ þ

CF

2
ðSgðkJ; p1Þ þ SgðkJ; p2ÞÞ

−
CA − CF

2
ðSgðkJ; p1Þ − SgðkJ; p2ÞÞ

�

¼ αs
2π2

1

q2⊥

�
ðCA þ CFÞ ln

ŝ
q2⊥

þ ðCA − CFÞðyJ − yγÞ

þ CFðc0 þ c12 cosðϕÞ þ c22 cosð2ϕÞ þ � � �Þ
�
; ð23Þ

where we used the results in Appendix B. cn are the same as
in the previous subsection. Again the singularities in the
azimuthally symmetric part can be resummed to all orders
in the TMD framework. Considering that the initial state
consists of a quark and a gluon, we obtain the resummed
cross section

FIG. 4. Azimuthal asymmetries in lepton-jet production in ep
collisions at

ffiffiffi
s

p ¼140GeV, P⊥¼20GeV, yl ¼ 1.5,Q¼25GeV,
gΛ ¼ 0.1 GeV with different jet cone sizes R ¼ 0.4 (top panel)
and R ¼ 1.0 (bottom panel).
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d6σpA→γqX

dΩ
¼

X
q

Z
d2b⊥
ð2πÞ2 e

iq⊥·b⊥σqg→γq
0

× xqfqðxqÞxgfgðxgÞe−Sudqgðb⊥;P⊥;RÞ

×

�
1þ

X∞
n¼1

αsðμÞ
π

ð−iÞn
n

CFcn2 cosðnϕbÞ
�
;

ð24Þ

where ϕb is the angle between b⃗ and P⃗⊥. Clearly, the first
term in the above contributes to the azimuthal angle
averaged differential cross section. The second term

contributes to various cosðnϕÞ asymmetries, which can
be further written as

d6σpA→γqX

dΩ
¼

X
n¼1

2 cosðnϕÞ
Z

b⊥db⊥
ð2πÞ Jnðjq⊥jjb⊥jÞ

×
X
q

σeq0 xqfqðxq; μbÞxgfgðxgÞ
CFαscn
nπ

× e−Sud
qgðb⊥;P⊥;RÞ: ð25Þ

The perturbative Sudakov factor is given by

Sudqgðb⊥; P⊥; RÞ ¼
Z

P⊥

μb

dμ
μ

αsðμÞ
π

�
ðCA þ CFÞ ln

ŝ
μ2
−2CAβ0 −

3CF

2
þ ðCA − CFÞðyJ − yγÞ þ CFc0

�
; ð26Þ

where β0 ¼ 11=12 − Nf=18.
For the numerical evaluation, we need to introduce

nonperturbative form factors similar to (19) and (20). In
the present case, we take

Sudqgðb⊥Þ→Sudqgðb�Þþ
CAþCF

CF
SudqNPþSudjetNP; ð27Þ

where SudqNP is the same as (20) with Q → P⊥. The results
for hcosðnϕÞ (n ¼ 1, 2, 3) are shown in Figs. 5 and 6 for the
RHIC and LHC kinematics, respectively.
Similarly, for the qq̄ → gγ channel with the Born cross

section

σqq̄→γg
0 ¼ 2αsαeme2qCF

Ncŝ2

�
t̂
û
þ û

t̂

�
; ð28Þ

one can obtain the following eikonal factors due to soft
gluon emissions

CA

2
Sgðp1; kJÞ þ

CF

2
ðSgðp1; p2Þ þ SgðkJ; p2ÞÞ

−
CA − CF

2
ðSgðp1; p2Þ − SgðkJ; p2ÞÞ

¼ 2CF ln
ŝ
q2⊥

þ CA

�
c0 þ

X∞
n¼1

2cn cosðnϕÞ
�
; ð29Þ

which is related to the qg → qγ channel through the
crossing symmetry (kJ ↔ p2). Thus the corresponding
perturbative Sudakov factor reads

Sudqq̄ ¼
Z

P⊥

μb

dμ
μ

αsðμÞ
π

�
2CF

�
ln

ŝ
μ2

−
3

2

�
þ CAc0

�
: ð30Þ

Similar numeric results can be obtained for this channel as
well. However, at the RHIC and LHC kinematics, the

qq̄ → γg channel is negligible as compared to the qg → γq
channel.
A few additional remarks are in order before we leave

this section. First, as demonstrated in the above two cases,
in which only one of the final-state particles is colored
while the other measured particle is color-neutral, the
coefficients of odd harmonics are nonvanishing, and the
dominant azimuthal angle correlation between q⊥ and P⊥
is of the form cosðϕÞ. This is simply due to the fact that the

FIG. 5. Azimuthal asymmetries in photon-jet production in pp
collisions at RHIC as a function of q⊥.

ffiffiffi
s

p ¼ 500 GeV,
yJ ¼ yγ ¼ 1, P⊥ ¼ 20 GeV, gΛ ¼ 0.1 GeV, R ¼ 0.4 (top panel),
R ¼ 1 (bottom panel).
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soft gluon radiation close to the measured jet is favored.
The asymmetry grows with q⊥ and can easily reach 10% or
even > 20% when R is small.
Second, we expect that similar conclusions should hold

in other processes such as Higgs (or Z=W boson) plus jet
production in pp collisions. For the case of the production
of Z=W plus jet [34,35,96], the Fourier coefficients cn and
the Sudakov coefficients are identical to those in the photon
plus jet case. For the case of the Higgs plus jet, the
asymmetries are proportional to the same cn, and the angle-
independent results including the Sudakov factor can be
found in Ref. [97].
At last, since the pure initial-state gluon radiations

[represented by Sgðp1; p2Þ in our calculation] do not
generate asymmetries, and one of the final-state particles
is colorless, one can find that only one set of the Fourier
coefficients cfin (seeAppendixA andB) arises from the gluon
emission related to the final-state jet. In contrast, a set of
more complicated asymmetries depending on the rapidity
difference of the final-state jets can arise from the eikonal
factor Sgðk1; k2Þ, which involves two final-state particles. In
the following section, we consider the production of two
colored particles (jets) and study their angular correlations.

III. DIJET IN THE FINAL STATE

In this section we consider diffractive dijet production in
γp or γA collisions and inclusive dijet production in γp and

pp collisions. Since there are two colored objects in
the final state, the dominant asymmetry is expected to
be the cosð2ϕÞ term arising from soft gluon radiation along
the nearly back-to-back jets. We will only focus on cosð2ϕÞ
asymmetry in this section. The extension to other higher
harmonics [such as cosð4ϕÞ] should be straightforward.

A. Diffractive dijet production

We first study the diffractive photoproduction of dijets,
γp → qq̄þ p, γA → qq̄þ A. In this process, an on-shell
photon fluctuates into a quark-antiquark pair which then
scatters off the nucleon/nucleus target via a color-singlet
exchange and forms a final-state dijet with momentum k1
and k2. This process can be studied, for example, in
ultraperipheral pA and AA collisions at RHIC and the
LHC, and the first data from the CMS collaboration came
out recently [39]. It can also be studied at the planned EIC
in the future. Because the initial state does not carry color,
there will be only final-state radiation from k1 and k2.
Therefore, the soft gluon radiation kernel is simply given
by the eikonal factor

Sgðk1; k2Þ ¼
2k1 · k2

k1 · kgk2 · kg
: ð31Þ

The above factor corresponds to the classical eikonal
radiation from the fast-moving external currents ki, which
is valid in the soft limit. Integrating over the phase space
(see Appendix B), we can write

g2
Z

d3kg
ð2πÞ32Ekg

δð2Þðq⊥ þ kg⊥ÞCFSgðk1; k2Þ

¼ CFαs
π2q2⊥

½cdiff0 ðq2⊥Þ þ 2 cosð2ϕÞcdiff2 ðq2⊥Þ þ � � ��: ð32Þ

Since the dijet configuration is symmetric, there is no cosϕ
term. Note that, for once, we have included q⊥-dependence
in the coefficients cdiffn for a phenomenological reason (see
below). As already mentioned in Sec. II A, in general cn
depends on q⊥ due to power corrections. Fourier trans-
forming (32) to the b⊥ space and including the virtual
terms, we find, at one-loop order,

S̃ð1Þðb⊥Þ¼
CFαs
π

cdiff0 ð0Þln μ
2
b

P2⊥

þCFαs
π2

Z
d2q⊥eiq⊥·b⊥ ½cdiff0 ðq2⊥Þ−cdiff0 ð0Þ�

−
CFαs
π

2cosð2ϕbÞ
Z
djq⊥j2J2ðjb⊥jjq⊥jÞ

cdiff2 ðq2⊥Þ
jq⊥j

:

ð33Þ

After resumming the logarithms and Fourier transforming
back, we obtain

FIG. 6. Azimuthal asymmetries in photon-jet production in pp
collisions at the LHC as a function of q⊥.

ffiffiffi
s

p ¼ 7 TeV,
yJ ¼ yγ ¼ 2, P⊥ ¼ 100GeV, gΛ ¼ 0.1 GeV, R ¼ 0.4 (top panel),
R ¼ 1 (bottom panel).
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Sðq⊥Þ¼
Z

d2b⊥
ð2πÞ2e

iq⊥·b⊥e−Sud
diff:ðb⊥;P⊥;RÞ

×
�
1þCFαsðμbÞ

π2

Z
d2q⊥eiq⊥·b⊥ ½cdiff0 ðq2⊥Þ−cdiff0 ð0Þ�

�

þ2cosð2ϕÞ
Z

b⊥db⊥
ð2πÞ J2ðjq⊥jjb⊥jÞe−Suddiff:ðb⊥;P⊥;RÞ

×
CFαsðμbÞ

π

Z
djq⊥j2J2ðjb⊥jjq⊥jÞ

cdiff2 ðq2⊥Þ
jq⊥j

; ð34Þ

where

Suddiff:ðb⊥; P⊥; RÞ ¼
2CFcdiff0 ð0Þ

π

Z
P⊥

μb

dμ
μ
αsðμÞ: ð35Þ

We emphasize that the value cdiff0 ðq⊥ ¼ 0Þ appears in the
Sudakov form factor. This is because only the leading
power contribution can be resummed into an exponential.
To carry out the b⊥-integral, we include nonperturbative
Sudakov factors. Since there is no TMD quark or gluon
distribution involved, we use [see (21)]

Suddiff:ðb⊥Þ → Suddiff:ðb�Þ þ 2SudjetNPðb⊥Þ; ð36Þ

where the factor of two is because there are two jets in the
final state.
Let us evaluate (34) in two different ways. First we

ignore power corrections. In this case, and in the limit
R ≪ 1, we can calculate cdiffn ðq⊥Þ ≈ cdiffn ð0Þ analytically

cdiff0 ð0Þ ¼ ln
a0
R2

;

cdiff2 ð0Þ ¼ ln
a2
R2

: ð37Þ

a0 depends on the rapidity difference Δy12 ¼ jy1 − y2j as
a0 ¼ ŝ2=t̂û ¼ 2þ 2 coshðΔy12Þ. The function a2ðΔy12Þ
remained undetermined in our previous publication [38],
but here we can report a fully analytic result

ln a2 ¼ Δy12 sinhΔy12 − coshΔy12 ln ½2ð1þ coshΔy12Þ�

¼ −
û
t̂
ln

ŝ
−u

−
t̂
û
ln

ŝ
−t

; ð38Þ

obtained after a rather lengthy calculation outlined in
Appendix B. Equation (38) has a very mild dependence
on Δy12. It increases slightly from a2 ¼ 1=4 to a2 ¼ 1=e
when Δy12 goes from 0 to ∞ [38]. When R is not very
small, we can calculate cdiffn numerically using the formula

cdiffn ð0Þ¼ 2

π

Z
π=2

R

dϕcos2nϕðπ−2ϕÞ
sinϕcosϕ

þ 2

π

Z
R

0

dϕcos2nϕ
sinϕcosϕ

ð−2ϕþ2 tan−1 ½cothyþ tanϕ�Þ;

ð39Þ

where yþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ϕ2

p
as before and we assumed Δy12 ¼ 0

for simplicity. In particular, we find for R ¼ 0.4,

cdiff0 ¼ 3.22; cdiff2 ¼ 0.60; ð40Þ

and we may use the formula (16) since c2 is independent of
q⊥. The leading order (LO) and resummed results for
hcosð2ϕÞi are shown in the upper panel of Fig. 7 for the
LHC kinematics with R ¼ 0.4. The LO asymmetry is
obtained from the ratio of cdiff2 to cdiff0 , which is a constant
in the soft gluon limit. In the small-q⊥ region, we find
hcosð2ϕÞi ∝ q2⊥ as expected, and in the large-q⊥ region the
asymmetry reaches a plateau.
However, recent experimental data from the CMS

Collaboration [39] show a monotonically increasing behav-
ior in the large q⊥ region. We have noticed that this
discrepancy can be alleviated, at least qualitatively, by

FIG. 7. Azimuthal anisotropy in diffractive dijet production γ þ
A → qq̄þ A in ultraperipheral heavy ion collisions at the LHC.
The kinematics correspond to the CMS measurements [39] with
P⊥¼ 35 GeV, R ¼ 0.4 and the two jets are at the same rapidity
Δy12 ¼ 0. The plots show hcosð2ϕÞi as a function of q⊥. In the
lower panel, we have included certain power corrections ∼q2⊥=P2⊥
as explained in the text.
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including the following two sources of power corrections.
First, when q⊥ gets larger, jk1;2⊥j differ from jP⊥j ¼
jk1⊥ − k2⊥j=2 significantly. We can correct for this differ-
ence by computing the soft emission kernel using the exact
kinematics

Sgðk1; k2Þ ¼
2

q2⊥
coshðy1 − y2Þ − cosðϕ1 − ϕ2Þ
ðcoshðyg − y1Þ − cosðϕ1 − ϕgÞÞ

×
1

ðcoshðyg − y2Þ − cosðϕ2 − ϕgÞÞ
; ð41Þ

where k⃗1;2⊥ ¼ q⃗⊥=2� P⃗⊥, ϕ1, ϕ2 and ϕg are the azimuthal

angles of k⃗1⊥, k⃗2⊥ and k⃗g⊥ with respect to P⃗⊥, respectively.
Second, we impose precise rapidity cutoffs for the yg-
integral. For instance, when y1 ¼ y2 ¼ 0, we integrate over
the range − ln Q

jq⊥j < yg < ln Q
jq⊥j instead of −∞ < yg < ∞.

These power corrections effectively make cdiff0 and cdiff2

dependent on q⊥. It is interesting to note that cdiff0 is mainly
affected by the first source, whereas cdiff2 receives contri-
butions from both sources with opposite signs. We have
reevaluated (34) taking this q⊥-dependence into account.
The result is that hcosð2ϕÞi now becomes an increasing
function in the large-q⊥ region as shown in the lower panel
of Fig. 7. The wiggles on the leading order curve are caused
by the cancellation of the two sources in cdiff2 mentioned
above. Of course, this is not a fully consistent procedure as
we ignore other possible sources of power corrections such
as those coming from the hard part. Yet, the better agree-
ment with the CMS data may suggest that these are an
important part of power corrections. In Fig. 8, we plot the
asymmetry for EIC kinematics. Its size and q⊥ dependent
behavior is similar to that in the CMS kinemic region
except that the nonperturbative effect is more significant.
We can also derive the resummed, full ϕ-dependent cross

section. Instead of Fourier expanding as in (32), we can
decompose the soft factor as

αsCF

ð2πÞ2
�Z

dyg2k1 · k2
ðk1 · kgÞðk2 · kgÞ

−
4cdiff0

q2⊥

�
þ αsCF

π2
cdiff0

q2⊥
; ð42Þ

where the term in the bracket is free from infrared
divergence after averaging over ϕ. The last term can be
combined with the virtual contribution and get exponen-
tiated. The resummed soft factor thus takes form,

Sðq⊥Þ ¼
Z

d2b⊥
ð2πÞ2 e

ib⊥·q⊥ ½1þ αsðμbÞfðb⊥Þ�

× exp

�
−
αsCF

π

Z
P2⊥

μ2b

dμ2

μ2
cdiff0

�
; ð43Þ

where fðb⊥Þ is the Fourier transform of

fðq⊥Þ ¼
CF

ð2πÞ2
�Z

dyg
2k1 · k2

ðk1 · kgÞðk2 · kgÞ
−
4cdiff0

q2⊥

�
: ð44Þ

To evaluate (43) efficiently, we avoid the task of computing
the Fourier transform of fðk⊥Þ. Instead, we proceed by
rewriting (43) as

Sðq⊥Þ ¼ Ssðq⊥Þ þ
Z

d2k⊥fðk⊥ÞSaðq⊥ − k⊥Þ; ð45Þ

where

Ssðq⊥Þ ¼
Z

d2b⊥
ð2πÞ2 e

ib⊥·q⊥ exp
�
−
αs
π

Z
P2⊥

μ2b

dμ2

μ2
cdiff0

�

Saðq⊥ − k⊥Þ ¼
Z

d2b⊥
ð2πÞ2 e

ib⊥·ðq⊥−k⊥ÞαsðμbÞ

× exp

�
−
αs
π

Z
P2⊥

μ2b

dμ2

μ2
cdiff0

�
: ð46Þ

The subscripts s and a denote the azimuthally symmetric
and asymmetric parts, respectively. The k⊥-integral in (45)
can then be done straightforwardly after including the
nonperturbative Sudakov factor.
We plot the resummed azimuthal angle distribution of

q2⊥Sðq⊥Þ in Fig. 9 (lower panel) for different values of q⊥,
and also the leading order result (upper panel) for com-
parison. The scale of the coupling constant in the leading-
order calculation is chosen to be P⊥. One can see that the ϕ
distribution becomes smoother after performing the all-
order resummation.

B. Inclusive dijet in γp collisions through γg → qq̄

Next we turn to inclusive dijet photoproduction
γp → jjX. Here we focus on the direct photon contribution
through γg → qq̄ channel. The leading order cross section
of this process is given by,

FIG. 8. Azimuthal anisotropy in diffractive dijet production γ þ
A → qq̄þ A at the EIC with P⊥¼ 15 GeV, R ¼ 0.4 and the two
jets are at the same rapidity Δy12 ¼ 0. The plots show hcosð2ϕÞi
as a function of q⊥. The power corrections are included.
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d6σγp→qq̄X

dΩ
¼ σγg0 xgfgðxgÞδ2ðq⊥Þ; ð47Þ

where σγg0 represents the leading order cross section, dΩ ¼
dy1dy2d2P⊥d2q⊥ for the phase space, and fgðxgÞ is the
gluon distribution with xg ¼ P⊥ðey1 þ ey2Þ= ffiffiffiffiffiffisγp

p is
momentum fraction of the nucleon carried by the gluon.
The amplitude squared of the one soft gluon radiation can
be written as [28],

M2 ¼ jM̄0j2g2s
�
Nc

2

�
2k1 · p2

k1 · kgp2 · kg
þ 2k2 · p2

k2 · kgp2 · kg

�

þ
�
−

1

2Nc

�
2k1 · k2

k1 · kgk2 · kg

�
; ð48Þ

where M0 represents the leading Born amplitude and the
expression inside the square brackets represents the color-
weighted sum of the eikonal radiation functions. All pairs
external color lines need to be summed over. Applying the
results from the Appendix, we obtain the soft gluon
radiation contribution to the differential cross section,

d6σ
dΩ

				
soft

¼ σγg0 xgfgðxgÞ
αs
2π2

1

q2⊥

�
CA ln

P2⊥
q2⊥

þ 2CFðcγg0 þ cγg2 2 cosð2ϕÞ þ � � �Þ
�
: ð49Þ

In the small-R limit, we have

cγg0 ¼ ln
a0
R2

;

cγg2 ¼ CA

2CF
ln
a1
R2

−
1

2CFNc
ln
a2
R2

¼ ln
a1
R2

−
1

2CFNc
ln
a2
a1

; ð50Þ

where a1 ¼ 1=e and a2 is the same as in the previous
subsection. In the following numeric calculations, we will
apply cγg0 ¼ 3.14 and cγg2 ¼ 0.96 for R ¼ 0.4 and the two
jets are at the same rapidity.
We now perform the resummation of double logarithms

in the standard TMD framework,

d6σ
dΩ

¼
X
ab

σγg0

Z
d2b⃗⊥
ð2πÞ2 e

−iq⃗⊥·b⃗⊥ ½W̃γp
0 ðjb⊥jÞ

−2 cosð2ϕbÞW̃γp
2 ðjb⊥jÞ�; ð51Þ

where

W̃γp
0 ðb⊥Þ ¼ xgfgðxg; μbÞe−SudγpðP2⊥;b⊥Þ; ð52Þ

W̃γp
2 ðb⊥Þ ¼ cγg2

αsCF

π
W̃γp

0 ðb⊥Þ: ð53Þ

Again, we separate the Sudakov form factor into the
perturbative and nonperturbative parts

Sudγpðb⊥;P⊥Þ¼ Sudγppert:ðb�;P⊥ÞþSudγpNPðb⊥;P⊥Þ: ð54Þ

The perturbative part is given by

Sudγppert: ¼
Z

P⊥

μb

dμ
μ

αsCA

π

�
ln
P2⊥
μ2

− 2β0 þ
2CF

CA
cγg0

�
; ð55Þ

and we apply the b�-prescription. The nonperturbative part
for the present problem is

SudγpNP ¼
CA

CF
SudqNP þ 2SudjetNP; ð56Þ

with Q → P⊥ in (20).
In Fig. 10, we show the numerical results for hcosð2ϕÞi

as a function of q⊥ for the typical kinematics at the future
EIC, ffiffiffiffiffiffisγp

p ¼ 100 GeV, P⊥∼15 GeV and the two jets are at
the same rapidity. Compared to the results in the diffractive

FIG. 9. Azimuthal angle distribution of q2⊥Sðq⊥Þ in diffractive
dijet production γ þ A → qq̄þ A in ultraperipheral heavy ion
collisions at the LHC. The kinematics corresponds to the CMS
measurements [39] with P⊥ ¼ 35 GeV, Δy12 ¼ 0, R ¼ 0.4 and
gΛ ¼ 0.05 GeV. The leading order result (top panel) and the
resummed results (bottom panel) are presented for different
values of q⊥.
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case studied in the above subsection, the impact of
resummation is more pronounced.

C. Inclusive dijet in pp collisions
from gg → gg channel

At the LHC, dijet production is dominated by the gg →
gg channel. The soft gluon radiation contribution to the
azimuthally symmetric part of the differential cross section
has been derived in Ref. [30]. In this subsection, we extend
this work to the angular dependent part. The leading Born
amplitude can be decomposed as

A1fabefcde þ A2facefbde þ A3fadefbce; ð57Þ

where a, b, c, d, are color indices in the reaction
p1ap2b → k1ck2d. From the above color structure, we
notice that A1;2;3 represent gauge invariant amplitudes in

the s, t, u-channels, respectively. After summing over gluon
helicities, one finds the following useful results

A2
1 ¼ N

û2 þ t̂2

ŝ2
; A1A�

2 ¼ N
û2

ŝt̂
;

A2
2 ¼ N

û2 þ ŝ2

t̂2
; A1A�

3 ¼ −N
t̂2

ŝû
;

A2
3 ¼ N

ŝ2 þ t̂2

û2
; A2A�

3 ¼ N
ŝ2

t̂û
; ð58Þ

where N represents the overall normalization. The leading-
order amplitude squared can be written as

jA0j2 ¼ ðA2
1 þ A2

2 þ A2
3 þ A1A�

2 − A1A�
3 þ A2A�

3Þ;

¼ N
ðŝ2 þ t̂2 þ û2Þðŝ4 þ t̂4 þ û4Þ

2ŝ2t̂2û2
; ð59Þ

which is consistent with the well-known gg → gg Born
amplitude square. The soft gluon radiation amplitude soft at
one-loop order (real diagram) takes the form [30],

2kμ1
2k1 · kg

fgcf½A1fabeffde þ A2fafefbde þ A3fadefbfe�

þ 2kμ2
2k2 · kg

fgdf½A1fabefcfe þ A2facefbfe þ A3fafefbce�

þ 2pμ
1

2p1 · kg
fgaf½A1ffbefcde þ A2ffcefbde þ A3ffdefbce�:

ð60Þ

Squaring this, we get

jA0j2CA½Sgðp1; p2Þ þ Sgðk1; p2Þ þ Sgðk2; p2Þ�

þ ðSgðk1; p2Þ þ Sgðk2; p2Þ − Sgðk1; k2ÞÞ
�
−
Nc

2
A2
1 −

Nc

4
ðA2

2 þ A2
3 þ 2A1A�

2 − 2A1A�
3Þ
�

þ ðSgðk1; p2Þ þ Sgðp1; p2Þ − Sgðk1; p1ÞÞ
�
−
Nc

2
A2
2 −

Nc

4
ðA2

1 þ A2
3 þ 2A1A�

2 þ 2A2A�
3Þ
�
;

þ ðSgðk2; p2Þ þ Sgðp1; p2Þ − Sgðk2; p1ÞÞ
�
−
Nc

2
A2
3 −

Nc

4
ðA2

1 þ A2
2 þ 2A2A�

3 − 2A1A�
3Þ
�
: ð61Þ

By applying the following relation,

jA0j2CA ¼
�
−
Nc

2
A2
1 −

Nc

4
ðA2

2 þ A2
3 þ 2A1A�

2 − 2A1A�
3Þ
�
þ
�
−
Nc

2
A2
2 −

Nc

4
ðA2

1 þ A2
3 þ 2A1A�

2 þ 2A2A�
3Þ
�
;

þ
�
−
Nc

2
A2
3 −

Nc

4
ðA2

1 þ A2
2 þ 2A2A�

3 − 2A1A�
3Þ
�
; ð62Þ

we can rewrite the amplitude squared as

FIG. 10. Anisotropy of inclusive dijet production in γp colli-
sions at the future EIC for the typical kinematics:ffiffiffiffiffiffiffi

Sγp
p ¼ 100 GeV, the leading jet P⊥¼ 15 GeV and both jets
are at the same rapidity. Here we plot hcosð2ϕÞi as function and
q⊥, where ϕ is the azimuthal angle between q⊥ and P⊥.
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ðSgðp1; p2Þ þ Sgðk1; k2ÞÞ
�
Nc

2
A2
1 þ

Nc

4
ðA2

2 þ A2
3 þ 2A1A�

2 − 2A1A�
3Þ
�

þ ðSgðk2; p2Þ þ Sgðk1; p1ÞÞ
�
Nc

2
A2
2 þ

Nc

4
ðA2

1 þ A2
3 þ 2A1A�

2 þ 2A2A�
3Þ
�
;

þ ðSgðk1; p2Þ þ Sgðk2; p1ÞÞ
�
Nc

2
A2
3 þ

Nc

4
ðA2

1 þ A2
2 þ 2A2A�

3 − 2A1A�
3Þ
�
: ð63Þ

Furthermore, we use the following results for A1, A2 and A3,

�
Nc

2
A2
1 þ

Nc

4
ðA2

2 þ A2
3 þ 2A1A�

2 − 2A1A�
3Þ
�
¼ Nc

4

t̂2 þ û2

ŝ2 − t̂û
jA0j2

�
Nc

2
A2
2 þ

Nc

4
ðA2

1 þ A2
3 þ 2A1A�

2 þ 2A2A�
3Þ
�

¼ Nc

4

ŝ2 þ û2

ŝ2 − t̂û
jA0j2

�
Nc

2
A2
3 þ

Nc

4
ðA2

1 þ A2
2 þ 2A2A�

3 − 2A1A�
3Þ
�

¼ Nc

4

ŝ2 þ t̂2

ŝ2 − t̂û
jA0j2: ð64Þ

We emphasize that the above results are gauge invariant
components in the amplitude squared of the gg → gg
channel. Using the results of Appendix B, we obtain the
differential cross section

d6σ
dΩ

				
soft

¼ σgg0 xgfgðxgÞ
αs
2π2

CA

q2⊥

�
2 ln

P2⊥
q2⊥

þ 2ðcgg0 þ cgg2 2 cosð2ϕÞ þ � � �Þ
�
; ð65Þ

where σgg0 represents the leading-order cross section, dΩ ¼
dy1dy2d2P⊥d2q⊥ for the phase space, and fgðxgÞ is the
gluon distribution with x1 ¼ P⊥ðey1 þ ey2Þ= ffiffiffi

s
p

and x2 ¼
P⊥ðe−y1 þ e−y2Þ= ffiffiffi

s
p

are momentum fractions of the
incoming hadrons carried by the gluons. In the small-R
limit, we have

cgg0 ¼ ln
a0
R2

þ 1

2

�
t̂2

ŝ2 − t̂û
ln

ŝ
−t̂

þ û2

ŝ2 − t̂û
ln

ŝ
−û

�
;

cgg2 ¼ ln
a1
R2

þ t̂2 þ û2

4ðŝ2 − t̂ûÞ ln
a2
a1

; ð66Þ

where a0;1;2 are the same as in the previous sections.
The all-order resummation for dijet production in pp

collisions at the next to leading logarithmic level has to be
done in a matrix form in color space [30]. This is because
the final-state jets and incoming partons form a color
antenna with various representations of the color SU(3)
group [98,99]. For simplicity, we work in the improved
leading logarithmic approximation (LLA0) where we
include only the diagonal part in color space, namely,
the leading double logarithms and those single logarithms
associated with the initial parton distributions and final-
state jets. (The terms which depend on kinematic variables
in cgg0 are omitted.) In this approximation, we can write

W̃gg
0 ðb⊥Þ ¼ x1fgðx1; μbÞx2fgðx2; μbÞe−Sudggðb⊥;P⊥Þ; ð67Þ

where fa;bðx; μbÞ are parton distributions for the incoming
partons a and b, and

Sudgg ¼
Z

P⊥

μb

dμ
μ

2αsCA

π

�
ln

�
P2⊥
μ2

�
− 2β0 þ ln

a0
R2

�
: ð68Þ

Note that only the jet-size dependent term in cgg0 of Eq. (66)
was included in the above Sudakov form factor. The rest
should be included in the matrix form of the resummation
beyond the approximation we adopted here. For the
cosð2ϕÞ term, we have

W̃gg
2 ðb⊥Þ ¼ cgg2

αsCA

π
W̃gg

0 ðb⊥Þ: ð69Þ

The numerical estimate of the resulting cosð2ϕÞ asymmetry
for the LHC kinematics (after including nonperturbative
Sudakov factors) has been presented in Ref. [38]. Going
beyond the LLA0, we need to use the matrix form of
resummation. The matrix for the cosð2ϕÞ term may be
different from that for the azimuthally symmetric term [37].
For completeness, below we present the results for the

other partonic channels in pp collisions. Following the
same procedure as shown above for the gluon channel and
employing the results summarized in Appendix B, one can
obtain the corresponding expression for the qq0 → qq0
channel as follows:

d6σ
dΩ

				
soft

¼ σqq0 xqfqðxqÞ
αs
2π2

CF

q2⊥

�
2 ln

P2⊥
q2⊥

þ 2ðcqq0 þ cqq2 2 cosð2ϕÞ þ � � �Þ
�
: ð70Þ

HATTA, XIAO, YUAN, and ZHOU PHYS. REV. D 104, 054037 (2021)

054037-12



In the small-R limit, one finds

cqq0 ¼ ln
a0
R2

þ
�
N2

c þ 1

N2
c − 1

ln
ŝ
−t̂

−
N2

c − 3

N2
c − 1

ln
ŝ
−û

�
;

cqq2 ¼ cfi2 þ
1

NcCF
ðcff2 − cfi2Þ ¼ ln

a1
R2

þ 1

4
ln
a2
a1

; ð71Þ

where cqq0 agrees with the result in Ref. [30] with Nc ¼ 3.
Similarly, the results for the gg → qq̄ can be cast into

d6σ
dΩ

				
soft

¼ σqq̄0 xgfgðxgÞ
αs

2π2q2⊥

�
2CA ln

P2⊥
q2⊥

þ 2CFðcqq̄0 þ cqq̄2 2 cosð2ϕÞ þ � � �Þ
�
: ð72Þ

In the small-R limit, one finds the expressions for the
coefficients

cqq̄0 ¼ ln
a0
R2

þ N2
c

2CF

�
t̂2 ln ŝ

−t̂ þ û2 ln ŝ
−û

CFŝ2 − Nct̂û

�
ð73Þ

cqq̄2 ¼ ln
a1
R2

þ
�

ŝ2 þ 2N2
cût̂

4N2
cCFðCFŝ2 − Nct̂ûÞ

�
ln
a2
a1

: ð74Þ

For the inverse process of the above channel, i.e., qq̄ → gg,

one simply can replace the color factors of ln P2⊥
q2⊥

and Fourier

coefficients by CF and CA in Eq. (72). Then the first two
coefficients are

cqq̄→gg
0 ¼ ln

a0
R2

þ CF − Nc

Nc
ln
ŝ2

t̂û
þ Nc

2

t̂2 ln ŝ
−t̂ þ û2 ln ŝ

−û
CFŝ2 − Nct̂û

cqq̄→gg
2 ¼ ln

a1
R2

þ
�

Ncðû2 þ t̂2Þ
4ðCFŝ2 − Nct̂ûÞ

�
ln
a2
a1

: ð75Þ

For the qg → qg channel, we have the following
soft gluon radiation contribution to the differential cross
section,

d6σ
dΩ

				
soft

¼ σqg0 xqfqðxqÞxgfqðxgÞ
αs
2π2

CF þ CA

q2⊥

×

�
ln
P2⊥
q2⊥

þ cqg0 þ cqg2 2 cosð2ϕÞ þ � � �
�
: ð76Þ

Taking the small-R limit, one finds

cqg0 ¼ ln
a0
R2

þ ð−20ŝ2 þ 5ŝûþ 61û2Þ
13ð4ŝ2 − ŝûþ 4û2Þ ln

ŝ
−û

þ ð11ŝ2 − 23ŝûþ 11û2Þ
13ð4ŝ2 − ŝûþ 4û2Þ ln

ŝ
−t̂

;

cqg2 ¼ ln
a1
R2

þ 9ð9û2 − t̂2Þ
26ð4ŝ2 − ŝûþ 4û2Þ ln

a2
a1

; ð77Þ

where cqg0 also agrees with the result in Ref. [30] with
Nc ¼ 3 and cqg2 is new. Here we have neglected the odd
harmonics since those terms vanish when final-state jets are
symmetrized.
Let us comment on the patterns of the above logarithms

that one observes from the various processes. First, the

color factors of the term ln P2⊥
q2⊥

are associated with the

incoming partons, while the color factor of the logarithm
ln a0;1

R2 are determined by the final-state jets. The second term
of the coefficients c0 and c2 are process dependent. In
particular, the ln a2

a1
terms are expected to be small and it

vanishes when Δy12 → ∞.

IV. DIJET PRODUCTION IN DIS TO PROBE
THE LINEARLY POLARIZED

GLUON DISTRIBUTION

In this section, we return to inclusive dijet production in
DIS off a nucleon/nucleus

eþ AðpAÞ → e0 þ jet1ðk1Þ þ jet2ðk2Þ þ X: ð78Þ
Differently from Sec. III B, here the exchanged photon is
virtual with invariant mass squared q2 ¼ −Q2. As men-
tioned in the Introduction, this process has been proposed
to study one particular aspect of the gluon distribution in
the nucleon/nucleus, the so-called linearly polarized gluon
distribution [17–20,100]. The dependence of the differ-
ential cross section on q⊥ ¼ k1⊥ þ k2⊥ is sensitive to the
TMD gluon distributions of the nucleon/nucleus. Among
them, the linearly polarized gluon distribution will lead to a
characteristic cosð2ϕÞ asymmetry, where ϕ is the azimuthal
angle between q⃗⊥ and P⃗⊥ [18]. This observation has gained
more importance when it was realized that the linearly
polarized gluon distribution is of the same size as the usual
gluon TMD distribution in the small-x saturation formalism
[19]. Since then, several proposals have been made to
measure the cosð2ϕÞ asymmetry at the planned electron-ion
collider [17,20]. Moreover, the distribution has been widely
applied to many other processes [21,22,101–107].
However, there are two important issues which compli-

cate the interpretation of such measurements, but have not
been adequately investigated in the literature. First, the
collinear gluon radiation from the incoming parton can
generate the cosð2ϕÞ modulation. This has been well
understood in the collinear-factorization framework at
moderate transverse momentum and also in the TMD
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resummation formalism [48,49,92,108,109]. This pertur-
bative effect can mimic the nonperturbative, intrinsic
modulation due to the linearly polarized gluon distribution,
but it has been largely ignored in the previous phenom-
enological studies. Another source of the cosð2ϕÞ corre-
lation that has been missing in the literature of the linearly
polarized gluon distribution is the soft gluon radiation from
the final-state jets as pointed out in [38] and discussed
in the previous sections. Therefore, in order to reliably
extract the linearly polarized gluon distribution through the
measurement of the cosð2ϕÞ asymmetry, it is important to
quantify these ‘background’ effects.1

In this section, we perform a systematic study of the
cosð2ϕÞ asymmetry in DIS dijet production including the
above three physics; the ‘intrinsic’ and ‘collinear radiation
generated’ linearly polarized gluon distributions, and the
final-state soft gluon radiation contribution. We shall focus
on the TMD domain, i.e., P⊥ ≫ q⊥, where the leading jet
transverse momentum is much larger than the total trans-
verse momentum of the two jets. In this region, we have to
perform an all-order resummation of the logarithms
ðαs ln2 P2⊥=q2⊥Þn.
Previously, the TMD resummation for the linearly polar-

ized gluon distribution has been studied in Refs. [48,49,108]
and its impact on Higgs Boson production was found to be
very small [112,113]. Resummation effects on the cosð2ϕÞ
in photon-jet correlation have also been studied in Ref. [21],
which, however, only included the intrinsic linearly polar-
ized gluon contribution. Our calculations in the following
will show that the collinear radiation generated linearly
polarized gluon distribution dominates over the intrinsic one
at higher hard momentum scales Q2, say, at the scale of the
Higgs mass. However, their relative importance strongly
depends onQ2, and this leaves an opportunity to explore the
transition from intrinsic to collinear radiation regimes in
future experiments.

A. Linearly polarized gluon distribution

In this subsection, we briefly introduce the linearly
polarized gluon distribution and study the associated
QCD evolution. The TMD gluon distributions are defined
through the following matrix element [114–116],

Mμνðx; k⊥Þ ¼
Z

dξ−d2ξ⊥
Pþð2πÞ3 e

−ixPþξ−þik⃗⊥·ξ⃗⊥

× hPjFþμ
a ðξ−; ξ⊥ÞL†

vabðξ−; ξ⊥Þ
× Lvbcð0; 0⊥ÞFνþ

c ð0ÞjPi; ð79Þ
where the nucleon moves alongþẑ-direction and Fμν

a is the
gluon field strength tensor. The light-cone components are

defined as k� ¼ ðk0 � k3Þ= ffiffiffi
2

p
. In the above equation, x is

the longitudinal momentum fraction carried by the gluon
and k⊥ is the transverse momentum. The gauge link Lv is
constructed in the adjoint representation and depends on
the process [117]. For an unpolarized nucleon at leading
twist, the above matrix element contains two independent
TMD gluon distributions [115],

Mμνðx; k⊥Þ ¼
1

2

�
xfgðx; k⊥Þgμν⊥

þ xhgðx; k⊥Þ
�
2kμ⊥kν⊥
k2⊥

− gμν⊥
��

; ð80Þ

where gμν⊥ has only transverse components gij⊥ ¼ δij.
fgðx; k⊥Þ is the usual azimuthally symmetric TMD gluon
distribution, and hgðx; k⊥Þ is the linearly polarized gluon
distribution. hg vanishes when Mμν is integrated over
transverse momentum, which means there is no integrated
version of the linearly polarized gluon distribution hgðxÞ.
To apply TMD gluon distributions in hard scattering

processes, we have to take into account the TMD evolution
and resummation. For the azimuthally symmetric part, we
follow the standard scheme (also called Collins 2011
Scheme) [94,118–120] which reads, in coordinate space,

f̃gðx; b⊥; ζc ¼ Q2Þ ¼ e−Sud
g
pertðQ2;b�Þ−SudgNPðQ;b⊥Þ

× F̃ gðαsðQÞÞ
X
i

Cg=i ⊗ fiðx; μbÞ;

ð81Þ

where the perturbative Sudakov factor is process dependent
(to be specified below) and the nonperturbative part is given
by SudgNP ¼ CA

CF
SudqNP. We have set the rapidity regulator ζc

and the renormalization scale μ2 to be both Q2, and
F̃ gðαsðQÞÞ ¼ 1þOðαsÞ in the standard TMD scheme.
For the C-coefficients, we use the one-loop results

Cg=g ¼ δð1 − xÞ þOðα2sÞ; ð82Þ

Cg=q ¼
αsCF

2π
x; ð83Þ

in the standard TMD scheme. Note that in this scheme Cg=g

vanishes at one-loop order. Numerically, we find that the

contribution from Cð1Þ
g=q is negligible. We therefore only

keep the delta function term in (82) in the following.
The Collins-Soper evolution equation for the linearly

polarized gluon distribution can be derived in a similar
manner. Again in the b⊥-space, we parametrize as

h̃μνg ðx; b⊥Þ ¼
1

2

�
gμν⊥ −

2bμ⊥bν⊥
b2⊥

�
h̃gðx; b⊥Þ; ð84Þ

1Recent studies [110,111] show that power-corrections in the
hard part can also affect the cosð2ϕÞ asymmetry from the linearly
polarized gluon distribution.
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where the tensor structure is uniquely determined by the
traceless condition. The solution of the evolution equation
takes the form

h̃gðx;b⊥;ζc ¼Q2Þ¼ e−Sud
g
pertðQ2;b�Þh̃gðx;b⊥;ζc ¼ μbÞ: ð85Þ

The distribution at the lower scale ζc ¼ μb does not contain
large logarithms, but it cannot be written similarly to (81)
because there is no integrated hg distribution. In the large-
b⊥ region where physics becomes nonperturbative, it has to
be modeled. Following Ref. [102], we parametrize the
linearly polarized gluon distribution in term of the normal
gluon distribution,

h̃gðx; b⊥; μbÞjb⊥≫Λ−1
QCD

¼ eQ2
hb

2⊥
27

e
b2⊥Q2

h
12 e−Sud

g
NPðQ;b⊥Þ

× fgðx; μbÞ; ð86Þ

where Qh ≈ 1 GeV and fgðx; μÞ is the integrated gluon
distribution. In this model, we assume that the linearly
polarized gluon distribution has the same x-dependence as
the normal gluon distribution fgðx; μÞ. In reality, they may
be totally different. Equation (85) with Eq. (86) (extrapo-
lated to the full b⊥ region including small-b⊥) is what we
call the intrinsic part of the linearly polarized gluon
distribution. In momentum space, it is proportional to k2⊥
in the small k⊥ region and satisfies the positivity bound
hg < fg. As mentioned already, in most literature only this
part has been used to calculate the cosð2ϕÞ asymmetry. In
such approaches, h̃gðb⊥Þ ∼ b2⊥ as b⊥ → 0.
However, we know that the small-b⊥ behavior of the

linearly polarized gluon distribution is perturbatively cal-
culable via collinear gluon radiation at large transverse
momentum

h̃gðx; b⊥; ζc ¼ μbÞjμb≫ΛQCD
¼

X
i

Z
dx0

x0
fiðx0; μbÞ

× Ch=iðx=x0; μbÞ: ð87Þ

The C-coefficients start at OðαsÞ, and are given by
[48,49,108,109]

Ch=q ¼
αs
2π

CF
1 − ξ

ξ
þOðα2sÞ; ð88Þ

Ch=g ¼
αs
2π

CA
1 − ξ

ξ
þOðα2sÞ: ð89Þ

The two-loop results have been recently derived in
Ref. [109]. In the following, as an illustration we only
use the one-loop results. We see from (87) that the correct
small-b⊥ behavior is not quadratic but constant (up to the
logarithmic running of the coupling)

h̃gðx; b⊥Þb⊥≪1=ΛQCD
∝ αsðμbÞ: ð90Þ

This is so because there is no dimensionful parameter in
perturbation theory to compensate the dimension of b2⊥.
Comparing the large and small b⊥ behaviors of the

intrinsic (86) and radiative (87) contributions, we notice
that they dominate h̃gðx; b⊥Þ separately in these two
regions. Therefore, we can combine them together and
arrive at the following two-component model

h̃gðx;b⊥; ζc ¼Q2Þ
¼ e−Sud

g
pertðQ2;b�Þ−SudgNPðQ;b⊥Þ

×

�
ghðb⊥Þfgðx;μbÞ þ

Z
dx0

x0
fiðx0;μbÞCh=iðx=x0;μbÞ

�
:

ð91Þ

At large b⊥, the first term dominates, while at small-b⊥, the
second term dominates and the first term is negligible.
An important feature of (91) is that the scale (Q2)

dependence of the linearly polarized gluon distribution is
dictated by the Sudakov form factor. At very large Q2, it
pushes the b⊥-distribution to the small-b⊥ region, and we
only need to take into account the contribution from the
second term. At low Q2, the large-b⊥ region will be
important to obtain the k⊥ distribution, and one may keep
only the first term to a good approximation. For moderate
values of Q2, we may need to take into account both
contributions. Therefore, by studying different hard proc-
esses sensitive to the linearly polarized gluon distribution,
we will be able to investigate the transition from non-
perturbative to perturbative regimes. This provides a unique
perspective for the nucleon/nucleus tomography study in
future experiments, in particular, at the planned EIC.
In Fig. 11, we show the ratio hgðx; k⊥Þ=fgðx; k⊥Þ as a

function of k⊥ for different values of Q2 at a fixed value of
x ¼ 0.05. These plots clearly demonstrate the above points.
In particular, it is interesting to notice that, for Higgs
boson production at the scale Q ¼ Mh, the linearly
polarized distribution is completely dominated by the
collinear radiation contribution. On the other hand, when
Q ¼ 5 GeV, the k⊥-dependence is dominated by the non-
perturbative part. Of course, we do not know the actual
magnitude of the nonperturbative part. [Eq. (86) is just a
model.] However, our results suggest that this can be
constrained by scanning Q2 in the relatively low momen-
tum region at the EIC.
In the above discussions, the separation of the intrinsic

and collinear parts of the linearly polarized gluon distri-
bution depends on the model we used, where they have
different behaviors at large and small b⊥. It will be
interesting to develop a model to capture both features
in a single setup. In particular, in the small-x dipole
formalism, both the linearly polarized gluon distribution

AZIMUTHAL ANGULAR ASYMMETRY OF SOFT GLUON … PHYS. REV. D 104, 054037 (2021)

054037-15



and the normal gluon distribution can be calculated from
the same dipole amplitude [19] and it may be possible to
include the intrinsic and collinear parts at the same time.
Further developments are needed to implement collinear
gluon radiation contribution in the gluon distribution
functions in the small-x dipole formalism, see, for example,
the discussions in Ref. [121].

B. cos 2ϕ correlation in inclusive dijet
production in DIS

We now calculate the cosð2ϕÞ asymmetry in inclusive
dijet production in DIS using the linearly polarized gluon
distribution constructed in the previous subsection. We
focus on the gluonic channel γ�T;Lg → qq̄ where the
incoming photon can be transversely (T) or longitudinally
(L) polarized. In the collinear factorization framework, the
differential cross section can be written as

d6σT;L

dΩ
¼

Z
dx0

x0
xgfgðx0Þ½σ̂T;L0 þ 2 cosð2ϕÞσ̂T;L2 �; ð92Þ

where dΩ ¼ dy1dy2d2P⊥d2q⊥. fg represents the inte-
grated gluon distribution. At the leading Born order, we
have

σ̂T;L0 ¼ σT;L0 δð2Þðq⊥Þδðξ − 1Þ; σ̂T;L2 ¼ 0 ð93Þ

where ξ ¼ xg=x0 with xg being the momentum fraction
carried by the gluon. It can be determined from the dijet

kinematics as xg ¼ ð P2⊥
zð1−zÞ þQ2Þ=ðsþQ2Þ where s is the

center of mass energy of the γ�p system and z is
the momentum fraction of the virtual photon carried by
the quark jet.
Gluon radiations from the incoming gluon and the

outgoing qq̄ pair will generate not only a nonzero trans-
verse momentum q⊥ but also a cosð2ϕÞ asymmetry. In the
TMD kinematics P⊥ ≫ q⊥, we have both collinear and soft
gluon contributions,

σ̂ð1Þ0 ¼ σ0
αs
2π2

1

q2⊥

�
Pð<Þ

g=gðξÞ þ δð1 − ξÞ
�
CA ln

P2⊥
q2⊥

þ 2CFc
γg
0 þ 2CA ln

ŝþQ2

ŝ

��
; ð94Þ

σ̂ð1Þ2 ¼ σ2
αs
2π2

1

q2⊥

�
CA

1 − ξ

ξ
þ σ0
σ2

δð1 − ξÞ2CFc
γg
2

�
; ð95Þ

where σ0 and σ2 are normalization factors for the differ-
ential cross sections and cγg0 and cγg2 are the same as those

defined for γg → qq̄ subprocess in Sec. III B. Pð<Þ
g=g denotes

the collinear splitting kernel without the delta function part.
The soft radiation part is essentially the same as (50) except
that now the phase space has increased ŝ → ŝþQ2 since
the incoming photon is virtual. Note that the Mandelstam
variables are related by ŝt̂û ¼ P2⊥ðŝþQ2Þ2 in this case.
The above equations apply to both transverse and longi-
tudinal incoming photons. To leading order, we have the
following relations for the cross section ratios [19,100],

σT2
σT0

¼ −
ϵ2fP

2⊥
ϵ4f þ P4⊥

;
σL2
σL0

¼ 1

2
; ð96Þ

where ϵ2f ¼ zð1 − zÞQ2.
The singularity q⊥ → 0 can be factorized and resummed

in the b⊥-space into the TMD gluon distributions fg and hg,
as well as the soft factors associated with the final-state jets.
This converts (92) into

d6σ
dΩ

¼ σ0

Z
d2b⃗⊥
ð2πÞ2 e

−iq⃗⊥·b⃗⊥ ½W̃γ�p
0 ðjb⊥jÞ

− 2 cosð2ϕbÞW̃γ�p
2 ðjb⊥jÞ�; ð97Þ

where the azimuthal symmetric term can be written as

FIG. 11. The ratio of the linearly polarized gluon distribution
over the symmetric one hgðx; k⊥; ζc ¼ QÞ=fgðx; k⊥; ζc ¼ QÞ as a
functions of k⊥ for different values Q ¼ 5, 20, 126 GeV with
x ¼ 0.05. The blue and red curves are the intrinsic and radiative
parts, respectively.
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W̃γ�p
0 ðb⊥Þ ¼ xgfgðxg; μbÞe−Sud

γ�p
pert ðb�Þ−Sudγ

�p
NP ðb⊥Þ: ð98Þ

The perturbative Sudakov form factor is defined as

Sudγ
�p
pert ¼

Z
P⊥

μb

dμ
μ

αsCA

π

�
ln
P2⊥
μ2

− 2β0 þ 2 ln
ŝþQ2

ŝ

þ 2CF

CA
cγg0

�
: ð99Þ

and the nonperturbative part is the same as (56).
On the other hand, the cosð2ϕÞ term consists of two parts

W̃γ�p
2 ðb⊥Þ ¼

αsCF

π
cγg2 W̃

γ�p
0 ðb⊥Þ þ

σ2
σ0

W̃γ�p
h ðb⊥Þ: ð100Þ

The first term comes from the soft gluon emission from the
final-state jets [38], and the second term comes from the
linearly polarized gluon distribution whose resummation
has been discussed in the previous subsection.2 Note that
the latter is absent in photoproduction studied in [38] and
also in Sec. III because σ2 vanishes when Q2 ¼ 0 [see
(96)]. All in all, we arrive at the following representation

W̃γ�p
2 ðb⊥Þ ¼ e−Sud

γ�p
pert ðb�Þ−Sudγ

�p
NP ðb⊥Þ

×
�
xgfgðxg; μbÞ

�
αsCF

π
cγg2 þ σ2

σ0
ghðb⊥Þ

�

þ σ2
σ0

Z
dx0

x0
xgfiðx0; μÞCð1Þ

h=i

�
xg
x0

��
: ð101Þ

Equation (101) clearly exhibits the three distinct contribu-
tions mentioned at the beginning of this section; the
intrinsic (∼gh) and radiative (∼Ch=i) contributions to the
linearly polarized gluon distribution, and the soft gluon
emission contribution (∼cγg2 ).
The numerical results for the cos 2ϕ asymmetry are

presented in Fig. 12 for longitudinal (top panel) and
transverse (bottom panel) virtual photons for a typical
EIC kinematics with R ¼ 0.4. While the contribution from
the linearly polarized gluon distribution (dashed curve) is
noticeable, it is overwhelmed by that from the final-state
soft gluon emissions in the whole range of q⊥. The latter is
independent of the polarization (longitudinal/transverse) of
the virtual photon. In order to extract hg from this
observable, it is probably better to use larger values of
R, say, R ¼ 1 to suppress the final state emissions. If one is
ultimately interested in the ‘intrinsic’ part of hg, further

considerations are required (such as lowering Q) to sup-
press the ‘collinear radiative’ part of hg (see Fig. 11).

V. LEPTON PAIR PRODUCTION
IN TWO-PHOTON PROCESS

As a final example, we consider lepton pair production in
QED γγ → lþðk1Þl−ðk2Þ which has been actively studied
recently in UPCs at RHIC and the LHC [66–72]. Similarly
to the dijet problem in QCD, the dilepton azimuthal
correlation is dominated by soft photon radiations from
the final-state leptons at small q⊥ ¼ k1 þ k2,

jMð1Þj2soft ¼ e2
2k1 · k2

k1 · ksk2 · ks
jMð0Þj2: ð102Þ

where Mð0Þ represents the leading order Born amplitude
and the soft photon carries momentum ks.
Working in the laboratory frame, we integrate the soft

emission kernel over the photon rapidity

ŝ
P2⊥q2⊥

Z
dyg

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

t

p
coshðyg − y2Þ þ cosðϕÞÞ

×
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

t

p
coshðyg − y1Þ − cosðϕÞÞ

; ð103Þ

FIG. 12. The cos 2ϕ azimuthal asymmetries for the dijet
production as the function of q⊥ with Q ¼ 10 GeV, P⊥ ¼
15 GeV, z ¼ 1

2
,

ffiffiffi
s

p ¼ 100 GeV and R ¼ 0.4. The top and bottom
panels are for the longitudinally and transversely polarized
photons, respectively. The difference between the solid and
dashed curves is due to the final-state soft gluon emissions
which contribute equally in the longitudinal and transverse cases.

2Our one-loop result only demonstrates the contribution from
the linearly polarized gluon distribution. The associated Collins-
Soper evolution for the linearly polarized gluon distribution will
eventually lead to a resummation following the discussion in
previous section. There is also a soft factor associated with the
final-state jet. We expect the same resummation formalism as that
in W̃0.
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where m2
t ≡m2=P2⊥ and m is the lepton mass. Because of

the mass term, there is no collinear divergence associated
with final-state radiations. In other words,mt plays the role
of R in the previous sections. The integral is carried out in
Appendix C, with the following result for the one-loop soft
factor

Srealðq⊥Þ ¼
α

π2
1

q2⊥
ln
Q2

m2
þOðm2Þ; ð104Þ

where Q2 the invariant mass squared of the lepton pair.
Adding the virtual contribution, we obtain the soft factor in
b⊥-space

S̃ðb⊥;Q;mÞ ¼ −
α

π
ln
Q2

m2
ln
Q2b2⊥
c20

: ð105Þ

Comments are in order regarding the relation to Ref. [81].
In this reference, the photon rapidity integral was carried
out in the lepton frame (outgoing leptons are along the
z-axis), not in the lab frame. This resulted in a different
expression than (104), and the two results lead to slightly
different predictions for the acoplanarity of the lepton pair
in UPC at the LHC, mainly in the moderate acoplanarity
region. However, both predictions are compatible with the
data due to large experimental uncertainties.
In addition to the angular independent part (104), we

have also calculated the cosð2ϕÞ term in Appendix C. In the
small mass limit, the ratio c2=c0 is close to unity. This is
because soft photons are concentrated around the lepton
directions due to the collinear enhancement. In the limit
m → 0, the ϕ-distribution of photons diverges around
ϕ ¼ 0 and π.
All-order resummation can be carried out similarly to the

previous problems. In place of the nonperturbative
Sudakov form factor, we introduce a simple Gaussian
factor which takes into account the intrinsic transverse
momentum of incoming photons hp⊥i. The total transverse
momentum distribution can be written as

dN
d2q⊥

∝
Z

d2b⊥
ð2πÞ2 e

iq⊥·b⊥e−
b2⊥Q2

0
4 eS̃ðQ;m;b⊥Þ

× ½1 − βc2γ2 cosð2ϕbÞ þ � � ��; ð106Þ

where β ¼ αe
π ln

Q2

m2. For simplicity, let us set y1 ¼ y2 and
define

c2γ ¼
c2
c0

¼
ln 1

2mt

ln 2
mt

: ð107Þ

The general results provided in Appendix C can be used to
compute cases with arbitrary Δy. We employ the value
Q0 ¼ 40 MeV ∼ 1=RA for the Gaussian width. The Fourier
transform leads to the following result

dN
d2q⊥

∝
ðQ2

0
e−2γE

Q2 Þβ

πQ2
0

�
Γð1− βÞ1F1

�
1− β;1;−

q2⊥
Q2

0

�

þc2γ2 cosð2ϕÞ
q2⊥
2Q2

0

Γð2− βÞ1F1

�
2− β;3;−

q2⊥
Q2

0

��
;

ð108Þ

where 1F1 is a hypergeometric function. We thus arrive at

hcosð2ϕÞi ¼ c2γβ
ð1 − βÞq2⊥

2Q2
0

1F1ð2 − β; 3;− q2⊥
Q2

0

Þ

1F1ð1 − β; 1;− q2⊥
Q2

0

Þ
: ð109Þ

For the typical kinematics of dimuon production from the
two photon processes in UPC heavy ion collision at the
LHC, β ≈ 0.02 and m=P⊥ ≈ 0.02 or c2γ ≈ 0.70. For RHIC
kinematics, the typical values of P⊥ range from 350 MeV
to 2 GeV. Taking, for example, Q ¼ 2P⊥ ¼ 1 GeV
(y1 ¼ y2), we get c2γ ≈ 0.82 and β ≈ 0.035 for di-electron
production.
In Fig. 13, we plot hcosð2ϕÞi as a function of q⊥=Q0 for

the above RHIC and LHC kinematics. We find that the
asymmetry is very small when q⊥ is below 2Q0. However,
it rapidly grows around 2Q0 and becomes sizable at 3Q0

which is about 100 MeV. Similar results can be obtained for
hcosð4ϕÞi as well. Both the cos 2ϕ and cos 4ϕ azimuthal
asymmetries in dilepton production can also be induced by
the primordial linearly polarized photon distribution
[69,76,77]. Our result shows that the high-q⊥ tail of the
asymmetries are overwhelmingly developed via perturba-
tive final-state soft photon radiations. In contrast, at low q⊥
the asymmetries are mainly attributed to the primordial
linearly polarized photon distribution.

FIG. 13. All order resummation result for the cosð2ϕÞ asym-
metry in lepton pair production in two photon scattering process
in the typical kinematics of UPC heavy ion collisions with the
invariant mass of the muon pair Q ≈ 10 GeV at LHC and the
invariant mass of the electron pair Q ≈ 1 GeV at RHIC, initial
two photons contribute to a Gaussian distribution for the total
transverse momentum with average transverse momentum
Q0 ≈ 40 MeV. The asymmetry is shown as a function of q⊥=Q0.
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VI. CONCLUSIONS

In summary, we have performed a systematic study of
azimuthal angular correlations between the total q⃗⊥ ¼
k⃗1⊥ þ k⃗2⊥ and relative P⃗⊥ ¼ ðk⃗1⊥ − k⃗2⊥Þ=2 transverse
momenta in dijet and related systems. The resummation
of the double and single logarithms ðlnP⊥=q⊥Þn developed
in [36–38] is demonstrated for a number of processes. The
dominant Fourier modes are cosð2ϕÞ and cosðϕÞ for dijet
and single jet (plus a color-neutral particle) productions,
respectively. The expectation value hcosðnϕÞi grows as qn⊥
in the small-q⊥ region, and it can easily reach 10–20% in
the large-q⊥ region. While this is an interesting feature of
soft gluon emissions in its own right, it can become a
serious background for certain purposes. In particular,
the cosð2ϕÞ asymmetry in inclusive dijet production
proposed as a signal of the linearly polarized gluon
distribution [18–22] inevitably faces this challenge.
A majority of the processes we have studied are relevant

to the future EIC experiment [9–11], such as lepton-jet
correlation in DIS (Sec. II A), diffractive (Sec. III A) and
inclusive (Sec. III B) dijet production in photon-proton
collisions, and inclusive dijet production in DIS (Sec. IV),
see the plots in Figs. 4, 8, 10, and 12. The comparative
study of all these processes will provide a crucial test of our
predictions and lead to a better constraint on the nucleon/
nucleus tomography in terms of the gluon Wigner distri-
bution and the linearly polarized gluon distribution.
One of the important directions for future research is the

understanding of power corrections of the form ðq⊥=P⊥Þn.
We have heuristically noticed in Sec. III A (see Fig. 7) that
the inclusion of power corrections in the soft emission
kernel results in a better agreement with the CMS data in
the large-q⊥ region. The importance of power corrections
in the hard part for the extraction of the linearly polarized
gluon distribution has been discussed recently [110,111]. A
combined analysis of resummation and power-corrections
seems to be necessary to correctly interpret the experi-
mental data.
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APPENDIX A: THE EVALUATION OF SgðkJ; p1Þ
In this appendix, we evaluate the integral (4) relevant to

lepton-jet production. Introducing the rapidities yg, yJ of
the soft gluon and the outgoing jet, respectively, we can
write

Z
dyg
2

SgðkJ; p1Þ ¼
Z

dyg
2

2kJ · p1

kJ · kgp1 · kg

¼ 1

k2g⊥

Z
Λ

−∞
dΔy

eΔy

coshΔy − cosϕ
; ðA1Þ

where Δy≡ yg − yJ. Λ is the rapidity cutoff which can be
determined by the kinematical constraint kþg < pþ

1 , or more
explicitly,

kg⊥eyg < pþ
1 → eΔy <

pþ
1 e

−yJ

kg⊥
→ Δy < Λ

≡ 1

2
ln

Q4

k2g⊥k2J⊥
; ðA2Þ

where Q2 ¼ −t ¼ −ðk1 − p1Þ2 ¼ pþ
1 kJ⊥e−yJ . Here we

define p� ≡ p0 � p3 and parametrize the momentum of
a particle as pμ¼ðpþ;p−;p⊥Þ where pμpμ ¼ pþp− − p2⊥.
For massless particles, p� ¼ p⊥e�y. After integrating over
Δy assuming Λ ≫ 1, one finds

Z
Λ

−∞
dΔy

eΔy

coshΔy − cosϕ

¼ 2 cosϕ
sinϕ

tan−1
�
eΔy − cosϕ

sinϕ

�				
Δy¼Λ

−∞

þ ln ½1þ e2Δy − 2eΔy cosϕ�jΔy¼Λ
−∞

¼ 2 cosϕ
sinϕ

ðπ − ϕÞ þ ln
Q4

k2g⊥k2J⊥
þ ðpower corrections ∝ e−ΛÞ; ðA3Þ

where only the leading power contributions are kept. We
can also implement the constraint (7) by restricting the yg
integral for R > jϕj as

Z
y−

−∞
dΔyþ

Z
Λ

yþ
dΔy; ðA4Þ

where y� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ϕ2

p
. The result can then be expanded

in Fourier series

Sgðk1; p1Þ ⇒
1

q2⊥

�
ln
Q2

q2⊥
þ ln

Q2

k2J⊥
þ c0 þ 2c1 cosðϕÞ

þ 2c2 cosð2ϕÞ þ � � �
�
: ðA5Þ
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APPENDIX B: THE EVALUATION OF Sgðk1; k2Þ
Next we turn to the kernel relevant to dijet processes

Sgðk1; k2Þ ¼
2k1 · k2

k1 · kgk2 · kg
; ðB1Þ

where k1;2 are the jet momenta. We can write

Z
dϕ
2π

Z
dygSgðk1; k2Þ ¼

ŝ
k2⊥k2g⊥

Z
dϕ
2π

Z
dyg

ΘðΔk1kg > R2ÞΘðΔk2kg > R2Þ
ðcoshðyg − y2Þ þ cosϕÞðcoshðyg − y1Þ − cosϕÞ ; ðB2Þ

where ŝ ¼ ðk1 þ k2Þ2. We have inserted two kinematic constraints to exclude inside-jet radiations. Due to symmetries
ϕ → −ϕ, ϕ → π − ϕ, we may restrict ourselves to the region π=2 > ϕ ≥ 0. The leading contribution depends on the
rapidity differenceΔy12 ¼ jy1 − y2j between the two jets. To find the analytic expression for the above integral in the small-
R limit, we use the following identities

Z
∞

−∞
dyg

1þ coshΔy12
2ðcoshðyg − y2Þ þ cosϕÞðcoshðyg − y1Þ − cosϕÞ ¼

Δy12 sinhΔy12 þ ðπ − 2ϕÞ cotϕðcoshΔy12 þ 1Þ
coshΔy12 þ cos 2ϕ

; ðB3Þ

2

π

Z
π=2

0

dϕ
Δy12 sinhΔy12

coshΔy12 þ cos 2ϕ
¼ Δy12; ðB4Þ

2

π

Z
π=2

0

dϕðπ − 2ϕÞ cotϕ
�

coshΔy12 þ 1

coshΔy12 þ cos 2ϕ
− 1

�
¼ −Δy12 þ ln ½2ð1þ coshΔy12Þ�: ðB5Þ

As for the angular independent contribution, we find

c0 ¼ ln
1

R2
þ ln ½2ð1þ coshΔy12Þ� ¼ ln

a0
R2

; ðB6Þ

where ln 1
R2 arises from the incomplete cancellation between

the full space integration and the region inside the jet cone
when the singular term 2

π

R
dϕðπ − 2ϕÞ cotϕ is evaluated.

Similarly, by using the same identities (B4) and (B5), we
can obtain

c2¼ ln
1

R2
þΔy12 sinhΔy12−coshΔy12 ln ½2ð1þcoshΔy12Þ�

¼ ln
a2
R2

: ðB7Þ

The result simplifies in two limits

c2 ¼ ln
1

R2
− ln 4; ðB8Þ

for y1 ¼ y2, and

c2 ¼ ln
1

R2
− 1; ðB9Þ

for jy1 − y2j ≫ 1.
The above results can be readily generalized to all

possible ‘dipole’ radiators (also known as the eikonal
factors) in 2 → 2 processes aðp1Þ þ bðp2Þ → cðk1Þ þ
dðk2Þ with four on-shell external massless particles as
follows:

Sgðp1; p2Þ ⇒
1

q2⊥

�
2 ln

ŝ
q2⊥

�
; ðB10Þ

Sgðk1; p1Þ ⇒
1

q2⊥

�
ln

ŝ
q2⊥

þ ln
t̂
û
þ cfi0 þ 2

X∞
n¼1

cfin cosðnϕÞð−1Þn
�
; ðB11Þ

Sgðk2; p1Þ ⇒
1

q2⊥

�
ln

ŝ
q2⊥

þ ln
û
t̂
þ cfi0 þ 2

X∞
n¼1

cfin cosðnϕÞ
�
; ðB12Þ
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Sgðk1; p2Þ ⇒
1

q2⊥

�
ln

ŝ
q2⊥

þ ln
û
t̂
þ cfi0 þ 2

X∞
n¼1

cfin cosðnϕÞð−1Þn
�
; ðB13Þ

Sgðk2; p2Þ ⇒
1

q2⊥

�
ln

ŝ
q2⊥

þ ln
t̂
û
þ cfi0 þ 2

X∞
n¼1

cfin cosðnϕÞ
�
; ðB14Þ

Sgðk1; k2Þ ⇒
2

q2⊥

�
ln

ŝ
−û

þ ln
ŝ
−t̂

þ cff0 þ 2
X∞
n¼1

cff2n cosð2nϕÞ
�
; ðB15Þ

where we find in the small cone limit cfi0 ¼ ln 1=R2,
cfin ¼ ln 1=R2 þ fðnÞ, cff0 ¼ ln 1=R2, and

cff2 ¼ ln
1

R2
þ û

t̂ ln
−û
ŝ

þ t̂
û ln

−t̂
ŝ
¼ ln

a2
R2

: ðB16Þ

It is clear that Sgðp1; p2Þ is independent of azimuthal angle
since the pure initial state gluon radiation is expected to be
symmetric. In general, there are two types of anisotropy
generated from the final-state radiations, as shown above.
The eikonal factors Sgðki; pjÞ involve one final-state jet and
one initial-state particle, and their contributions are
captured by the coefficients cfin . For odd Fourier coeffi-
cients, there is a sign change between Sgðk1; piÞ and
Sgðk2; piÞ. This is due to the fact that the final-state gluon
radiation is favored along the jet direction and it contributes
to odd coefficients oppositely [as shown in Fig. 1

cosðπ − ϕÞ ¼ − cosϕ] for two jets that are back to back.
Besides, more complicated angular correlations character-
ized by cffn can arise from Sgðk1; k2Þ that depends on both
final-state jets. Note that in eþ q → e0 þ jet scattering in
DIS, ŝt̂=û ¼ Q4=k2J⊥ so (B14) reduces to (A5) when p2 and
k2 in Eq. (B14) are identified as the incoming and outgoing
quark momenta, respectively. Together with the usual factor
of αs=ð2π2Þ and the corresponding color factor, the above
identities give rise to the one-loop results for various
scattering processes.

APPENDIX C: Sgðk1; k2Þ FOR MASSIVE FINAL
STATE PARTICLES

In this appendix we again consider Sgðk1; k2Þ, but now
we assume that the final-state particles are massive with
mass m. We are interested in the regime mt ≡m=k⊥ ≪ 1
where k⊥ ¼ jk1⊥j ¼ jk2⊥j. The relevant integral is

IðϕÞ≡
Z

∞

−∞
dyg

1þ coshΔy12
2ðA coshðy1 − ygÞ − cosϕÞðA coshðy2 − ygÞ þ cosϕÞ

¼ 1þ coshΔy12
4A cosh δ

Z
dyg

cosh yg

�
1

A coshðyg − δÞ − cosϕ
þ 1

A coshðyg þ δÞ þ cosϕ

�
; ðC1Þ

where A≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

t

p
≥ 1 and δ ¼ jy1 − y2j=2 ¼ Δy12=2. The collinear singularity at ϕ ¼ 0 is regularized by mt ≠ 0, so

there is no need to impose kinematical constraints. We change variables as eyg ¼ z and e−δ ¼ c and obtain

I ¼ 1þ coshΔy12
A cosh δ

Z
∞

0

dz
1þ z2

�
cz

Að1þ c2z2Þ − 2cz cosϕ
þ ðc → 1=c;ϕ → π − ϕÞ

�

¼ 2ð1þ coshΔy12Þ
2A2sinh2δþ cos 2ϕþ 1

�
tan−1

�
cosϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 − cos2ϕ
p

�
cosϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 − cos2ϕ
p þ δ tanh δ

�

≈
1þ coshΔy12

coshΔy12 þ cos 2ϕ

�
ðπ − 2ϕÞ cosϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2ϕþm2
t

p þ Δy12 sinhΔy12
coshΔy12 þ 1

�
; ðC2Þ

where in the last expression we have set mt ¼ 0 wherever it is safe to do so. Integrating over ϕ with the help of (B4), (B5),
we find
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1

2π

Z
2π

0

dϕIðϕÞ ¼ 4

2π

Z
π=2

0

dϕIðϕÞ ¼ ln
2ð1þ coshΔy12Þ

m2
t

þOðm2
t Þ

¼ ln
Q2

m2
þOðm2Þ; ðC3Þ

whereQ2 is the invariant mass of the lepton pair. This result was previously obtained in [30] in a different way. Similarly, for
the coefficient of cos 2ϕ, we get

4

2π

Z
π=2

0

dϕ cos 2ϕIðϕÞ ¼ ln
1

m2
t
þ Δy12 sinhΔy12 − coshΔy12 ln½2ð1þ coshΔy12Þ� þOðm2Þ

¼ ln
Q2

m2
þ gðΔy12Þ þOðm2Þ; ðC4Þ

where

gðyÞ ¼ y sinh y − 2 cosh2
y
2
ln½2ð1þ cosh yÞ� ðC5Þ

is always negative and satisfies gð0Þ ¼ −2 ln 4 ≈ −2.77 and gðyÞ ≈ −y as y → ∞. Note that these results are identical to
(B6) and (B7) after replacing R → mt.

[1] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.
94, 221801 (2005).

[2] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett.
99, 142003 (2007).

[3] V. Khachatryan et al. (CMS Collaboration), Phys. Rev.
Lett. 106, 122003 (2011).

[4] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 106,
172002 (2011).

[5] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 105,
252303 (2010).

[6] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. C
84, 024906 (2011).

[7] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett.
112, 122301 (2014).

[8] M. Aaboud et al. (ATLAS Collaboration), Phys. Rev. C
100, 034903 (2019).

[9] A. Accardi, J. L. Albacete, M. Anselmino, N. Armesto,
E. C. Aschenauer, A. Bacchetta, D. Boer, W. K. Brooks,
T. Burton, N. B. Chang et al., Eur. Phys. J. A 52, 268
(2016).

[10] Y. Hatta, Y. V. Kovchegov, C. Marquet, A. Prokudin, E.
Aschenauer, H. Avakian, A. Bacchetta, D. Boer, G. A.
Chirilli, A. Dumitru et al., arXiv:2002.12333.

[11] R. Abdul Khalek, A. Accardi, J. Adam, D. Adamiak, W.
Akers, M. Albaladejo, A. Al-bataineh, M. G. Alexeev, F.
Ameli, P. Antonioli et al., arXiv:2103.05419.

[12] Y. Hatta, B. W. Xiao, and F. Yuan, Phys. Rev. Lett. 116,
202301 (2016).

[13] T. Altinoluk, N. Armesto, G. Beuf, and A. H. Rezaeian,
Phys. Lett. B 758, 373 (2016).

[14] J. Zhou, Phys. Rev. D 94, 114017 (2016).

[15] Y. Hagiwara, Y. Hatta, R. Pasechnik, M. Tasevsky, and O.
Teryaev, Phys. Rev. D 96, 034009 (2017).

[16] H. Mäntysaari, N. Mueller, and B. Schenke, Phys. Rev. D
99, 074004 (2019).

[17] H. Mäntysaari, N. Mueller, F. Salazar, and B. Schenke,
Phys. Rev. Lett. 124, 112301 (2020).

[18] D. Boer, S. J. Brodsky, P. J. Mulders, and C. Pisano, Phys.
Rev. Lett. 106, 132001 (2011).

[19] A. Metz and J. Zhou, Phys. Rev. D 84, 051503 (2011).
[20] A. Dumitru, T. Lappi, and V. Skokov, Phys. Rev. Lett. 115,

252301 (2015).
[21] D. Boer, P. J. Mulders, J. Zhou, and Y. j. Zhou, J. High

Energy Phys. 10 (2017) 196.
[22] D. Boer, P. J. Mulders, C. Pisano, and J. Zhou, J. High

Energy Phys. 08 (2016) 001.
[23] H. Xing, C. Zhang, J. Zhou, and Y. J. Zhou, J. High Energy

Phys. 10 (2020) 064.
[24] Y. Y. Zhao, M. M. Xu, L. Z. Chen, D. H. Zhang, and Y. F.

Wu, arXiv:2105.08818.
[25] A. Banfi and M. Dasgupta, J. High Energy Phys. 01 (2004)

027.
[26] A. Banfi, M. Dasgupta, and Y. Delenda, Phys. Lett. B 665,

86 (2008).
[27] F. Hautmann and H. Jung, J. High Energy Phys. 10 (2008)

113.
[28] A. H. Mueller, B. W. Xiao, and F. Yuan, Phys. Rev. D 88,

114010 (2013).
[29] P. Sun, C. P. Yuan, and F. Yuan, Phys. Rev. Lett. 113,

232001 (2014).
[30] P. Sun, C. P. Yuan, and F. Yuan, Phys. Rev. D 92, 094007

(2015).

HATTA, XIAO, YUAN, and ZHOU PHYS. REV. D 104, 054037 (2021)

054037-22

https://doi.org/10.1103/PhysRevLett.94.221801
https://doi.org/10.1103/PhysRevLett.94.221801
https://doi.org/10.1103/PhysRevLett.99.142003
https://doi.org/10.1103/PhysRevLett.99.142003
https://doi.org/10.1103/PhysRevLett.106.122003
https://doi.org/10.1103/PhysRevLett.106.122003
https://doi.org/10.1103/PhysRevLett.106.172002
https://doi.org/10.1103/PhysRevLett.106.172002
https://doi.org/10.1103/PhysRevLett.105.252303
https://doi.org/10.1103/PhysRevLett.105.252303
https://doi.org/10.1103/PhysRevC.84.024906
https://doi.org/10.1103/PhysRevC.84.024906
https://doi.org/10.1103/PhysRevLett.112.122301
https://doi.org/10.1103/PhysRevLett.112.122301
https://doi.org/10.1103/PhysRevC.100.034903
https://doi.org/10.1103/PhysRevC.100.034903
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1140/epja/i2016-16268-9
https://arXiv.org/abs/2002.12333
https://arXiv.org/abs/2103.05419
https://doi.org/10.1103/PhysRevLett.116.202301
https://doi.org/10.1103/PhysRevLett.116.202301
https://doi.org/10.1016/j.physletb.2016.05.032
https://doi.org/10.1103/PhysRevD.94.114017
https://doi.org/10.1103/PhysRevD.96.034009
https://doi.org/10.1103/PhysRevD.99.074004
https://doi.org/10.1103/PhysRevD.99.074004
https://doi.org/10.1103/PhysRevLett.124.112301
https://doi.org/10.1103/PhysRevLett.106.132001
https://doi.org/10.1103/PhysRevLett.106.132001
https://doi.org/10.1103/PhysRevD.84.051503
https://doi.org/10.1103/PhysRevLett.115.252301
https://doi.org/10.1103/PhysRevLett.115.252301
https://doi.org/10.1007/JHEP10(2017)196
https://doi.org/10.1007/JHEP10(2017)196
https://doi.org/10.1007/JHEP08(2016)001
https://doi.org/10.1007/JHEP08(2016)001
https://doi.org/10.1007/JHEP10(2020)064
https://doi.org/10.1007/JHEP10(2020)064
https://arXiv.org/abs/2105.08818
https://doi.org/10.1088/1126-6708/2004/01/027
https://doi.org/10.1088/1126-6708/2004/01/027
https://doi.org/10.1016/j.physletb.2008.05.065
https://doi.org/10.1016/j.physletb.2008.05.065
https://doi.org/10.1088/1126-6708/2008/10/113
https://doi.org/10.1088/1126-6708/2008/10/113
https://doi.org/10.1103/PhysRevD.88.114010
https://doi.org/10.1103/PhysRevD.88.114010
https://doi.org/10.1103/PhysRevLett.113.232001
https://doi.org/10.1103/PhysRevLett.113.232001
https://doi.org/10.1103/PhysRevD.92.094007
https://doi.org/10.1103/PhysRevD.92.094007


[31] Y. Hatta, N. Mueller, T. Ueda, and F. Yuan, Phys. Lett. B
802, 135211 (2020).

[32] X. Liu, F. Ringer, W. Vogelsang, and F. Yuan, Phys. Rev.
Lett. 122, 192003 (2019).

[33] X. Liu, F. Ringer, W. Vogelsang, and F. Yuan, Phys. Rev. D
102, 094022 (2020).

[34] Y. T. Chien, D. Y. Shao, and B. Wu, J. High Energy Phys.
11 (2019) 025.

[35] Y. T. Chien, R. Rahn, S. Schrijnder van Velzen, D. Y. Shao,
W. J. Waalewijn, and B. Wu, Phys. Lett. B 815, 136124
(2021).

[36] S. Catani, M. Grazzini, and A. Torre, Nucl. Phys. B890,
518 (2014).

[37] S. Catani, M. Grazzini, and H. Sargsyan, J. High Energy
Phys. 06 (2017) 017.

[38] Y. Hatta, B. W. Xiao, F. Yuan, and J. Zhou, companion
Letter, Phys. Rev. Lett. 126, 142001 (2021).

[39] CMS Collaboration, Report No. CMS-PAS-HIN-18-011.
[40] H. Chen, I. Moult, and H. X. Zhu, Phys. Rev. Lett. 126,

112003 (2021).
[41] A. Karlberg, G. P. Salam, L. Scyboz, and R. Verheyen, Eur.

Phys. J. C 81, 681 (2021).
[42] H. Chen, I. Moult, and H. X. Zhu, arXiv:2104.00009.
[43] M. Dasgupta and G. P. Salam, J. High Energy Phys. 03

(2002) 017.
[44] D. Boer and W. Vogelsang, Phys. Rev. D 74, 014004

(2006).
[45] E. L. Berger, J. W. Qiu, and R. A. Rodriguez-Pedraza,

Phys. Lett. B 656, 74 (2007).
[46] A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, J. High

Energy Phys. 08 (2008) 023.
[47] A. Bacchetta, G. Bozzi, M. G. Echevarria, C. Pisano, A.

Prokudin, and M. Radici, Phys. Lett. B 797, 134850
(2019).

[48] P. M. Nadolsky, C. Balazs, E. L. Berger, and C. P. Yuan,
Phys. Rev. D 76, 013008 (2007).

[49] S. Catani and M. Grazzini, Nucl. Phys. B845, 297 (2011).
[50] I. Balitsky and A. Tarasov, J. High Energy Phys. 07 (2017)

095.
[51] I. Balitsky and A. Tarasov, J. High Energy Phys. 05 (2018)

150.
[52] M. A. Ebert, I. Moult, I. W. Stewart, F. J. Tackmann, G.

Vita, and H. X. Zhu, J. High Energy Phys. 04 (2019) 123.
[53] I. Moult, I. W. Stewart, and G. Vita, J. High Energy Phys.

11 (2019) 153.
[54] C. A. Bertulani and G. Baur, Phys. Rep. 163, 299 (1988).
[55] J. Adams et al. (STAR Collaboration), Phys. Rev. C 70,

031902 (2004).
[56] G. Baur, K. Hencken, A. Aste, D. Trautmann, and S. R.

Klein, Nucl. Phys. A729, 787 (2003).
[57] K. Hencken, G. Baur, and D. Trautmann, Phys. Rev. C 69,

054902 (2004).
[58] G. Baur, K. Hencken, and D. Trautmann, Phys. Rep. 453, 1

(2007).
[59] C. A. Bertulani, S. R. Klein, and J. Nystrand, Annu. Rev.

Nucl. Part. Sci. 55, 271 (2005).
[60] A. J. Baltz, G. Baur, D. d’Enterria, L. Frankfurt, F. Gelis,

V. Guzey, K. Hencken, Y. Kharlov, M. Klasen, S. R. Klein
et al., Phys. Rep. 458, 1 (2008).

[61] A. J. Baltz, Y. Gorbunov, S. R. Klein, and J. Nystrand,
Phys. Rev. C 80, 044902 (2009).

[62] ATLAS Collaboration, Report No. ATLAS-CONF-2016-
025.

[63] S. R. Klein, Phys. Rev. C 97, 054903 (2018).
[64] CMS Collaboration, Report No. CMS-PAS-HIN-19-014.
[65] S. Klein and P. Steinberg, Annu. Rev. Nucl. Part. Sci. 70,

323 (2020).
[66] M. Aaboud et al. (ATLAS Collaboration), Phys. Rev. Lett.

121, 212301 (2018).
[67] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 121,

132301 (2018).
[68] S. Lehner (ALICE Collaboration), Proc Sci. LHCP2019

(2019) 164 [arXiv:1909.02508].
[69] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 127,

052302 (2021).
[70] ATLAS Collaboration, Report No. ATLAS-CONF-2019-

051.
[71] A. M. Sirunyan et al. (CMS Collaboration), arXiv:

2011.05239.
[72] G. Aad et al. (ATLAS Collaboration), Phys. Rev. C 104,

024906 (2021).
[73] M. Kłusek-Gawenda, R. Rapp, W. Schäfer, and A.

Szczurek, Phys. Lett. B 790, 339 (2019).
[74] S. Klein, A. H. Mueller, B. W. Xiao, and F. Yuan, Phys.

Rev. Lett. 122, 132301 (2019).
[75] W. Zha, J. D. Brandenburg, Z. Tang, and Z. Xu, Phys. Lett.

B 800, 135089 (2020).
[76] C. Li, J. Zhou, and Y. J. Zhou, Phys. Lett. B 795, 576

(2019).
[77] C. Li, J. Zhou, and Y. J. Zhou, Phys. Rev. D 101, 034015

(2020).
[78] J. Zhao and F. Wang, Prog. Part. Nucl. Phys. 107, 200

(2019).
[79] S. Karadağ and M. C. Güçlü, Phys. Rev. C 102, 014904

(2020).
[80] M. Vidovic, M. Greiner, C. Best, and G. Soff, Phys. Rev. C

47, 2308 (1993).
[81] S. Klein, A. H. Mueller, B. W. Xiao, and F. Yuan, Phys.

Rev. D 102, 094013 (2020).
[82] B. W. Xiao, F. Yuan, and J. Zhou, Phys. Rev. Lett. 125,

232301 (2020).
[83] M. Kłusek-Gawenda, W. Schäfer, and A. Szczurek, Phys.

Lett. B 814, 136114 (2021).
[84] J. D. Brandenburg, W. Zha, and Z. Xu, arXiv:2103.16623.
[85] D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn, and L.

Zoppi, Phys. Rev. Lett. 121, 162001 (2018).
[86] D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn, and L.

Zoppi, J. High Energy Phys. 10 (2019) 031.
[87] M. Arratia, Y. Song, F. Ringer, and B. V. Jacak, Phys. Rev.

C 101, 065204 (2020).
[88] M. Arratia, Z. B. Kang, A. Prokudin, and F. Ringer, Phys.

Rev. D 102, 074015 (2020).
[89] Z. B. Kang, X. Liu, S. Mantry, and D. Y. Shao, Phys. Rev.

Lett. 125, 242003 (2020).
[90] A. Quintero, EIC 2019 Users Group Annual Meeting,

Paris, June 2019.
[91] M. Arratia, DIS 2021, XXVIII International Workshop on

Deep-Inelastic Scattering and Related Subjects, 2021.

AZIMUTHAL ANGULAR ASYMMETRY OF SOFT GLUON … PHYS. REV. D 104, 054037 (2021)

054037-23

https://doi.org/10.1016/j.physletb.2020.135211
https://doi.org/10.1016/j.physletb.2020.135211
https://doi.org/10.1103/PhysRevLett.122.192003
https://doi.org/10.1103/PhysRevLett.122.192003
https://doi.org/10.1103/PhysRevD.102.094022
https://doi.org/10.1103/PhysRevD.102.094022
https://doi.org/10.1007/JHEP11(2019)025
https://doi.org/10.1007/JHEP11(2019)025
https://doi.org/10.1016/j.physletb.2021.136124
https://doi.org/10.1016/j.physletb.2021.136124
https://doi.org/10.1007/JHEP06(2017)017
https://doi.org/10.1007/JHEP06(2017)017
https://doi.org/10.1103/PhysRevLett.126.142001
https://doi.org/10.1103/PhysRevLett.126.112003
https://doi.org/10.1103/PhysRevLett.126.112003
https://doi.org/10.1140/epjc/s10052-021-09378-0
https://doi.org/10.1140/epjc/s10052-021-09378-0
https://arXiv.org/abs/2104.00009
https://doi.org/10.1088/1126-6708/2002/03/017
https://doi.org/10.1088/1126-6708/2002/03/017
https://doi.org/10.1103/PhysRevD.74.014004
https://doi.org/10.1103/PhysRevD.74.014004
https://doi.org/10.1016/j.physletb.2007.09.008
https://doi.org/10.1088/1126-6708/2008/08/023
https://doi.org/10.1088/1126-6708/2008/08/023
https://doi.org/10.1016/j.physletb.2019.134850
https://doi.org/10.1016/j.physletb.2019.134850
https://doi.org/10.1103/PhysRevD.76.013008
https://doi.org/10.1016/j.nuclphysb.2010.12.007
https://doi.org/10.1007/JHEP07(2017)095
https://doi.org/10.1007/JHEP07(2017)095
https://doi.org/10.1007/JHEP05(2018)150
https://doi.org/10.1007/JHEP05(2018)150
https://doi.org/10.1007/JHEP04(2019)123
https://doi.org/10.1007/JHEP11(2019)153
https://doi.org/10.1007/JHEP11(2019)153
https://doi.org/10.1016/0370-1573(88)90142-1
https://doi.org/10.1103/PhysRevC.70.031902
https://doi.org/10.1103/PhysRevC.70.031902
https://doi.org/10.1016/j.nuclphysa.2003.09.006
https://doi.org/10.1103/PhysRevC.69.054902
https://doi.org/10.1103/PhysRevC.69.054902
https://doi.org/10.1016/j.physrep.2007.09.002
https://doi.org/10.1016/j.physrep.2007.09.002
https://doi.org/10.1146/annurev.nucl.55.090704.151526
https://doi.org/10.1146/annurev.nucl.55.090704.151526
https://doi.org/10.1016/j.physrep.2007.12.001
https://doi.org/10.1103/PhysRevC.80.044902
https://doi.org/10.1103/PhysRevC.97.054903
https://doi.org/10.1146/annurev-nucl-030320-033923
https://doi.org/10.1146/annurev-nucl-030320-033923
https://doi.org/10.1103/PhysRevLett.121.212301
https://doi.org/10.1103/PhysRevLett.121.212301
https://doi.org/10.1103/PhysRevLett.121.132301
https://doi.org/10.1103/PhysRevLett.121.132301
https://arXiv.org/abs/1909.02508
https://doi.org/10.1103/PhysRevLett.127.052302
https://doi.org/10.1103/PhysRevLett.127.052302
https://arXiv.org/abs/2011.05239
https://arXiv.org/abs/2011.05239
https://doi.org/10.1103/PhysRevC.104.024906
https://doi.org/10.1103/PhysRevC.104.024906
https://doi.org/10.1016/j.physletb.2019.01.035
https://doi.org/10.1103/PhysRevLett.122.132301
https://doi.org/10.1103/PhysRevLett.122.132301
https://doi.org/10.1016/j.physletb.2019.135089
https://doi.org/10.1016/j.physletb.2019.135089
https://doi.org/10.1016/j.physletb.2019.07.005
https://doi.org/10.1016/j.physletb.2019.07.005
https://doi.org/10.1103/PhysRevD.101.034015
https://doi.org/10.1103/PhysRevD.101.034015
https://doi.org/10.1016/j.ppnp.2019.05.001
https://doi.org/10.1016/j.ppnp.2019.05.001
https://doi.org/10.1103/PhysRevC.102.014904
https://doi.org/10.1103/PhysRevC.102.014904
https://doi.org/10.1103/PhysRevC.47.2308
https://doi.org/10.1103/PhysRevC.47.2308
https://doi.org/10.1103/PhysRevD.102.094013
https://doi.org/10.1103/PhysRevD.102.094013
https://doi.org/10.1103/PhysRevLett.125.232301
https://doi.org/10.1103/PhysRevLett.125.232301
https://doi.org/10.1016/j.physletb.2021.136114
https://doi.org/10.1016/j.physletb.2021.136114
https://arXiv.org/abs/2103.16623
https://doi.org/10.1103/PhysRevLett.121.162001
https://doi.org/10.1007/JHEP10(2019)031
https://doi.org/10.1103/PhysRevC.101.065204
https://doi.org/10.1103/PhysRevC.101.065204
https://doi.org/10.1103/PhysRevD.102.074015
https://doi.org/10.1103/PhysRevD.102.074015
https://doi.org/10.1103/PhysRevLett.125.242003
https://doi.org/10.1103/PhysRevLett.125.242003


[92] J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys.
B250, 199 (1985).

[93] P. Sun, J. Isaacson, C. P. Yuan, and F. Yuan, Int. J. Mod.
Phys. A 33, 1841006 (2018).

[94] A. Prokudin, P. Sun, and F. Yuan, Phys. Lett. B 750, 533
(2015).

[95] T. Liu, W. Melnitchouk, J. W. Qiu, and N. Sato, arXiv:
2008.02895.

[96] P. Sun, B. Yan, C.-P. Yuan, and F. Yuan, Phys. Rev. D 100,
054032 (2019).

[97] P. Sun, J. Isaacson, C.-P. Yuan, and F. Yuan, Phys. Lett. B
769, 57 (2017).

[98] N. Kidonakis, G. Oderda, and G. F. Sterman, Nucl. Phys.
B525, 299 (1998).

[99] N. Kidonakis, G. Oderda, and G. F. Sterman, Nucl. Phys.
B531, 365 (1998).

[100] F. Dominguez, J. W. Qiu, B. W. Xiao, and F. Yuan, Phys.
Rev. D 85, 045003 (2012).

[101] J. W. Qiu, M. Schlegel, and W. Vogelsang, Phys. Rev. Lett.
107, 062001 (2011).

[102] D. Boer, W. J. den Dunnen, C. Pisano, M. Schlegel, and W.
Vogelsang, Phys. Rev. Lett. 108, 032002 (2012).

[103] E. Akcakaya, A. Schäfer, and J. Zhou, Phys. Rev. D 87,
054010 (2013).

[104] C. Pisano, D. Boer, S. J. Brodsky, M. G. A. Buffing, and
P. J. Mulders, J. High Energy Phys. 10 (2013) 024.

[105] D. Boer, W. J. den Dunnen, C. Pisano, and M. Schlegel,
Phys. Rev. Lett. 111, 032002 (2013).

[106] D. Boer and C. Pisano, Phys. Rev. D 91, 074024
(2015).

[107] D. Boer, U. D’Alesio, F. Murgia, C. Pisano, and P. Taels,
J. High Energy Phys. 09 (2020) 040.

[108] P. Sun, B. W. Xiao, and F. Yuan, Phys. Rev. D 84, 094005
(2011).

[109] D. Gutierrez-Reyes, S. Leal-Gomez, I. Scimemi, and A.
Vladimirov, J. High Energy Phys. 11 (2019) 121.

[110] T. Altinoluk, C. Marquet, and P. Taels, J. High Energy
Phys. 06 (2021) 085.

[111] R. Boussarie, H. Mäntysaari, F. Salazar, and B. Schenke,
arXiv:2106.11301.

[112] J. Wang, C. S. Li, Z. Li, C. P. Yuan, and H. T. Li, Phys.
Rev. D 86, 094026 (2012).

[113] D. Boer and W. J. den Dunnen, Nucl. Phys. B886, 421
(2014).

[114] J. C. Collins and D. E. Soper, Nucl. Phys. B194, 445
(1982).

[115] P. J. Mulders and J. Rodrigues, Phys. Rev. D 63, 094021
(2001).

[116] X. d. Ji, J. P. Ma, and F. Yuan, J. High Energy Phys. 07
(2005) 020.

[117] F. Dominguez, B. W. Xiao, and F. Yuan, Phys. Rev. Lett.
106, 022301 (2011).

[118] J. Collins, Cambridge Monogr. Part. Phys., Nucl. Phys.,
Cosmol. 32, 1 (2011).

[119] S. Catani, D. de Florian, and M. Grazzini, Nucl. Phys.
B596, 299 (2001).

[120] S. Catani, L. Cieri, D. de Florian, G. Ferrera, and M.
Grazzini, Nucl. Phys. B881, 414 (2014).

[121] B. W. Xiao, F. Yuan, and J. Zhou, Nucl. Phys. B921, 104
(2017).

HATTA, XIAO, YUAN, and ZHOU PHYS. REV. D 104, 054037 (2021)

054037-24

https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1142/S0217751X18410063
https://doi.org/10.1142/S0217751X18410063
https://doi.org/10.1016/j.physletb.2015.09.064
https://doi.org/10.1016/j.physletb.2015.09.064
https://arXiv.org/abs/2008.02895
https://arXiv.org/abs/2008.02895
https://doi.org/10.1103/PhysRevD.100.054032
https://doi.org/10.1103/PhysRevD.100.054032
https://doi.org/10.1016/j.physletb.2017.02.037
https://doi.org/10.1016/j.physletb.2017.02.037
https://doi.org/10.1016/S0550-3213(98)00243-0
https://doi.org/10.1016/S0550-3213(98)00243-0
https://doi.org/10.1016/S0550-3213(98)00441-6
https://doi.org/10.1016/S0550-3213(98)00441-6
https://doi.org/10.1103/PhysRevD.85.045003
https://doi.org/10.1103/PhysRevD.85.045003
https://doi.org/10.1103/PhysRevLett.107.062001
https://doi.org/10.1103/PhysRevLett.107.062001
https://doi.org/10.1103/PhysRevLett.108.032002
https://doi.org/10.1103/PhysRevD.87.054010
https://doi.org/10.1103/PhysRevD.87.054010
https://doi.org/10.1007/JHEP10(2013)024
https://doi.org/10.1103/PhysRevLett.111.032002
https://doi.org/10.1103/PhysRevD.91.074024
https://doi.org/10.1103/PhysRevD.91.074024
https://doi.org/10.1007/JHEP09(2020)040
https://doi.org/10.1103/PhysRevD.84.094005
https://doi.org/10.1103/PhysRevD.84.094005
https://doi.org/10.1007/JHEP11(2019)121
https://doi.org/10.1007/JHEP06(2021)085
https://doi.org/10.1007/JHEP06(2021)085
https://arXiv.org/abs/2106.11301
https://doi.org/10.1103/PhysRevD.86.094026
https://doi.org/10.1103/PhysRevD.86.094026
https://doi.org/10.1016/j.nuclphysb.2014.07.006
https://doi.org/10.1016/j.nuclphysb.2014.07.006
https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1103/PhysRevD.63.094021
https://doi.org/10.1103/PhysRevD.63.094021
https://doi.org/10.1088/1126-6708/2005/07/020
https://doi.org/10.1088/1126-6708/2005/07/020
https://doi.org/10.1103/PhysRevLett.106.022301
https://doi.org/10.1103/PhysRevLett.106.022301
https://doi.org/10.1016/S0550-3213(00)00617-9
https://doi.org/10.1016/S0550-3213(00)00617-9
https://doi.org/10.1016/j.nuclphysb.2014.02.011
https://doi.org/10.1016/j.nuclphysb.2017.05.012
https://doi.org/10.1016/j.nuclphysb.2017.05.012

