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We compute two-loop corrections to the vector current matching coefficient involving two heavy quark
masses. The result is applied to the computation of theϒð1SÞ decay width into an electron or muon pair. We
complement the next-to-next-to-next-to-leading order corrections of M. Beneke, et al. [Phys. Rev. Lett.
112, 151801 (2014)] by charm quark mass effects up to second order in perturbation theory. Furthermore,
we apply the formalism to ΓðJ=Ψ → lþl−Þ and compare to the experimental data.
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I. INTRODUCTION

Bottomonia, the bound states of a bottom and an
antibottom quark, are excellent systems to investigate the
dynamics of bound states in QCD. On the experimental
side, there exist precise measurements of their properties.
And on the theoretical side, the large mass of the bottom
quark means that perturbation theory can be applied. This is
in particular the case for theϒð1SÞmeson. Nevertheless, its
description is complicated by the fact that aside from the
bottom-quark mass mb (the hard scale), there are two more
relevant scales: the typical momentum and energy of the
quarks, which are of order mbv (the soft scale) and mbv2

(the ultrasoft scale), respectively. The ϒð1SÞ is a non-
relativistic bound state, where the relative velocity v of the
quark and antiquark is small, which means that these scales
are well separated. It is then convenient to use an effective
theory for the description of this multiscale problem.
Starting from QCD, we first integrate out the hard modes
to arrive at nonrelativistic QCD (NRQCD). In a second
step, we integrate out the soft modes and potential gluons
with ultrasoft energies and soft momenta to arrive at
potential NRQCD (PNRQCD). At each step, one has to
determine the Wilson or matching coefficients of the
corresponding effective theory, which are the couplings
of the effective operators. For comprehensive reviews on
this topic, we refer to [1,2].
The main focus of this paper is the matching coefficient

cv of the vector current in NRQCD. Among other

observables, it contributes to the decay rate of an ϒð1SÞ
to a lepton-antilepton pair. In PNRQCD and to next-to-
next-to-next-to-leading order (N3LO) accuracy, the decay
rate is given by the formula [3],

Γðϒð1SÞ → lþl−Þ ¼ 4πα2

9m2
b

jψ1ð0Þj2cv

×

�
cv −

E1

mb

�
cv þ

dv
3

�
þ…

�
; ð1Þ

where α is the fine structure constant and mb the bottom-
quark pole mass. E1 and ψ1ð0Þ are the binding energy and
the wave function at the origin of the ðbb̄Þ system. For
convenience, we provide the leading order results, which
are given by

jψLO
1 ð0Þj2 ¼ 8m3

bα
3
s

27π
; ELO

1 ¼ −
4mbα

2
s

9
: ð2Þ

The matching coefficient cv of the leading current is known
at the three-loop level [4–6] for the case of one massive
quark and nl massless quarks. dv is the matching coefficient
of the subleading bb̄ current in NRQCD. Since it is
multiplied by E1, it is only required at the one-loop level.
This result can be found in Ref. [2]. Together with the
N3LO results for the energy levels and the wave function at
the origin [2,3,7], this made it possible to evaluate the decay
rate at N3LO in Ref. [8].
One approximation that was made in Ref. [8] was to treat

the charm quark as massless. The aim of this paper is to go
beyond this approximation and include the corrections due
to the charm-quark mass at next-to-next-to-leading order
(NNLO). If we consider the charm-quark mass mc to be
formally of the order of the hard scale mb, the charm quark
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has to be integrated out of QCD, leading to NRQCD with
two heavy quarks with different masses. All NRQCD
matching coefficients will then receive contributions due
to mc. However, at NNLO, only cv is affected. Thus, we
have to compute the fermionic contribution to the two-loop
corrections to cv for a second nonzero quark mass. The
analytic result for this contribution completes the two-loop
evaluation of cv and together with its application to
Γðϒð1SÞ → lþl−Þ constitutes the main result of our paper.
Another possibility to include the charm-quark mass

effects is to consider mc to be soft. In this case, the charm
quark is integrated out of NRQCD. Then there is no
contribution to cv but instead to the matching coefficients
of PNRQCD, which are the potentials in the Schrödinger
equation describing the ðbb̄Þ system. At NNLO, only the
Coulomb potential is affected (see Sec. 3.5 of Ref. [9]).
Thus, the mc dependence then enters in the wave function
and binding energy. We will compare the results of these
two approaches.
The remainder of the paper is organized as follows: In the

next section, we describe the calculation of cv, and in Sec. III,
the discussion is extended to external axial-vector, scalar, and
pseudoscalar currents,where in addition to the nonsinglet also
the singlet contributions have to be considered. In Sec. IV, we
provide updated predictions for Γðϒð1SÞ → lþl−Þ, and in
Sec. V, we consider the decay of the J=Ψ and provide
predictions ofΓðJ=Ψ → lþl−Þup toN3LO.Ourconclusions
are presented in Sec. VI. In the Appendix, analytic results for
all matching coefficients up to two loops, which are not
presented in the main part of the paper, are provided. The
Supplemental Material to this paper [10] contains computer-
readable expressions of all matching coefficients and all
master integrals, which we compute in this paper.

II. TWO-LOOP MATCHING COEFFICIENT FOR
THE VECTOR CURRENT WITH TWO MASSES

The matching coefficient for the vector current is
defined via

jiv ¼ cvj̃iv þO
�

1

mq

�
; ð3Þ

where mq is the heavy quark mass and jiv and j̃iv are
currents defined in the full (QCD) and effective (NRQCD)
theory. They are given by

jμv ¼ ψ̄γμψ ; j̃iv ¼ ϕσiχ; ð4Þ

where ϕ and χ are two-component spinors. Note that in the
heavy quark limit the zeroth component of jμv is of
order 1=m2

q.
A convenient approach to compute cv is based on the so-

called threshold expansion [11,12], which is applied to the
vertex corrections of a vector current and a heavy quark-
antiquark pair, Γv. Denoting by Z2, the on shell quark
wave function renormalization constant, one obtains the
equation [5],

Z2Γvðq1; q2Þ ¼ cv
Z̃2

Z̃v
Γ̃v þO

�
1

mq

�
: ð5Þ

Note that the vector current in QCD has a vanishing
anomalous dimension whereas Z̃v deviates from 1 at order
α2s . It gets contributions from the color factors C2

F and
CACF, which are not considered in this paper. The
momenta q1 and q2 in Eq. (5) correspond to the outgoing
momenta of the quark and antiquark, which are considered
on shell. Furthermore, we have ðq1 þ q2Þ2 ¼ 4m2

q, a
consequence of the threshold expansion.
The quantity Γv is conveniently obtained with the help of

projectors applied to the vertex function Γμ. It is straight-
forward to show that one gets

Γv ¼ Tr½Pv
μΓv;μ�; ð6Þ

with

Pv
μ ¼

1

8ðd − 1Þm2
q

�
−
q
2
þmq

�
γμ

�
q
2
þmq

�
; ð7Þ

where q ¼ q1 þ q2.
In Fig. 1, we show sample diagrams contributing to cv up

to two-loop order. The main focus of this work is the
Feynman diagram in Fig. 1(a) where the quark in the closed
loop has mass m2. For the computation of this diagram we
proceed as follows.

(i) We apply the projector in Eq. (7) to the amplitude of
the Feynman diagram in Fig. 1 and take the traces.
After decomposing the numerator in terms of de-
nominator factors we obtain scalar integrals of
the form,1

Iðn1;…; n6Þ ¼
Z

ddk
ð2πÞd

ddl
ð2πÞd

ðq · lÞ−n6
ð−k2Þn1ðm2

q − ðq
2
þ kÞ2Þn2ðm2

q − ð− q
2
þ kÞ2Þn3ðm2

2 − ðkþ lÞ2Þn4ðm2
2 − l2Þn5 : ð8Þ

1In the denominators, we omit iε, which could easily be reconstructed by shifting the squared momenta according to p2 → p2 þ iε.

MANUEL EGNER et al. PHYS. REV. D 104, 054033 (2021)

054033-2



(ii) In a next step, we perform a partial fraction decomposition in order to arrive at integral families where the propagator
factors are linearly independent. In our case, this is achieved with the help of

Z
ddk

ðm2
q − ðq

2
þ kÞ2Þðm2

q − ð− q
2
þ kÞ2Þ ¼

Z
ddk

ð−k2Þðm2
q − ð− q

2
þ kÞ2Þ ; ð9Þ

which is valid for q2 ¼ 4m2
q.

(iii) We pass the resulting integrals to FIRE [13] and LiteRed [14] and perform a reduction to four master integrals,
which are given by

I1 ¼
Z

ddk
ð2πÞd

ddl
ð2πÞd

1

ðm2
2 − k2Þðm2

2 − l2Þ ;

I2 ¼
Z

ddk
ð2πÞd

ddl
ð2πÞd

1

ðm2
q − k2Þðm2

2 − l2Þ ;

I3 ¼
Z

ddk
ð2πÞd

ddl
ð2πÞd

1

ðm2
q − ð− q

2
þ kÞ2Þðm2

2 − ðkþ lÞ2Þðm2
2 − l2Þ ;

I4 ¼
Z

ddk
ð2πÞd

ddl
ð2πÞd

1

ðm2
q − ð− q

2
þ kÞ2Þ2ðm2

2 − ðkþ lÞ2Þðm2
2 − l2Þ : ð10Þ

Their graphical representation can be found in Fig. 2.
(iv) Next, we introduce the variable x ¼ m2=mq and establish differential equations for the master integrals of the form,

dI⃗
dx

¼ M · I⃗; ð11Þ

where the matrix M decomposes into two 1 × 1 and one 2 × 2 blocks. The differential equations are brought to ϵ
form using CANONICA [15],

FIG. 1. Sample Feynman diagrams (a)–(h) contributions to the matching coefficient cv. Straight and curly lines represent quarks and
gluons, respectively. The cross represents the external current. The main focus of this paper is diagram (a) where the quark in the closed
loop has massm2. Note that the singlet diagram shown in (h) vanishes for an external vector current. However, for an axial-vector, scalar,
or pseudoscalar current it is nonzero.
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dJ⃗
dx

¼ ϵM̃ · J⃗; ð12Þ

where the matrix M̃ does not depend on ϵ and
I⃗ ¼ T · J⃗. This allows us to compute J⃗ order-by-
order in ϵ and express the result in terms of iterated
integrals, which in our case, can be expressed in
terms of harmonic polylogarithms [16].

(v) In order to fix the boundary conditions, we consider
the limits x → 0 and x → 1. This is necessary since
in each individual limit some of the integration
constants drop out. Alternatively, it would be pos-
sible to solve the differential equation to higher order
in ϵ. The values of I⃗ for x ¼ 0 and x ¼ 1 are used to
determine the integration constants in J⃗.

We want to remark that we use a general QCD gauge
parameter ξ for our computation. The independence of our
final result from ξ is a welcome cross-check. Our results for
the master integrals agree with those given in Appendix B
of Ref. [17].
For the renormalization of our two-loop contribution, we

need the two-loop corrections to the on shell wave function

renormalization constant. The analytic results for the con-
tribution involving m2 can be found in Refs. [17–21].
Furthermore, the one-loop counterterm for αs is needed. At
this point, we use Eq. (5) in order to extract cv.
For the fermionic contributions to cv, it is convenient to

introduce nf ¼ nh þ nm þ nl, where nh ¼ 1 and nm ¼ 1

label the contributions with closed massive quark loops
with mass mq and m2, respectively. nl counts the massless
quarks. Using this notation, we can cast the result for cv in
the form,

cv ¼ 1 − 2CF
αðnlþnmÞ
s ðμÞ

π
þ
�
αðnlþnmÞ
s ðμÞ

π

�2

cð2Þv

þOðα3sÞ; ð13Þ

where αðnlþnmÞ
s ðμÞ is the strong coupling constant where the

heavy quark with massmq is decoupled from the running of

αs. The m2-independent contributions to cð2Þv can be found
in Refs. [4,5,22]. The new contribution proportional to
nm reads

cð2Þv jm2
¼ nmCFTF

�
71

72
þ 35x2

24
þ π2

�
3

32x
−
11x
48

−
17x3

32
þ 2x4

9

�
þ 1

24
ð23þ 19x2ÞH0 þ

4

3
x4H2

0

þ
�

3

16x
−
11x
24

−
17x3

16
þ 4x4

3

�
H0H1 þ

�
−

3

16x
þ 11x

24
þ 17x3

16
−
4x4

3

�
H0;1

þ
�

3

16x
−
11x
24

−
17x3

16
−
4x4

3

�
H−1;0 þ

2

3
log

�
μ2

m2
2

��
; ð14Þ

whereHi… ¼ Hi…ðxÞ andHi…ðxÞ are harmonic polylogarithms (HPLs) [16]. Note that for x → 1, we reproduce the known
result for m2 ¼ mq, which is given by

cð2Þv jm2
⟶
x→1

nmCFTF

�
22

9
−
2π2

9
þ 2

3
log

�
μ2

m2
q

�
þ
�
−
10

3
þ 37π2

72

�
yþ

�
2 −

π2

12

�
y2 þOðy3Þ

�
; ð15Þ

with y ¼ x − 1. However, in the limit x → 0, we do not obtain the massless fermion contribution but recover the well-
known Coulomb singularity, which is regulated by the mass m2. For small m2, we have

cð2Þv jm2
⟶
x→0

nmCFTF

�
3π2

32x
þ 11

18
þ 2

3
log

�
μ2

m2
q

�
−
11π2

48
xþ 7

3
x2 −

17π2

32
x3 þOðx4Þ

�
: ð16Þ

FIG. 2. Graphical representation of the master integrals of Eq. (10). Thick and thin solid lines represent scalar propagators with mass
mq and m2, respectively. The external momentum is always q=2 with ðq=2Þ2 ¼ m2

q.
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In the application we discuss in Sec. IV, we need cv
expressed in term of αðnl¼3Þ

s , which means that we have to
decouple the charm quark from the running of αs. As a
consequence, μ2 is effectively replaced by m2

2 in Eqs. (14),
(15), and (16).

Let us finally investigate the numerical effect of the new
contribution. We specify to the bottom-charm system and
use m2 ¼ mc ¼ 1.65 GeV and mq ¼ mb ¼ 5.1 GeV for
the pole masses of the charm and bottom quarks. This
leads to

cð2Þv ¼ −44.72þ 0.17nh þ 0.41nl þ 1.75nm þ log

�
μ2

m2
q

�
½−20.13þ 0.44ðnl þ nmÞ�; ð17Þ

where the contributions originating from the closed mass-
less, bottom, and charm quark loops are marked by nl ¼ 3,
nh ¼ 1, and nm ¼ 1, respectively. One observes that the
coefficient of nm is more than a factor 4 times larger than
the coefficients of nl and nh. Thus, the contribution of the
heavy quark with mass m2 is larger than the contributions
of the heavy quark with mass mq and all three massless
quarks combined.

III. TWO-LOOP TWO-MASS MATCHING
COEFFICIENTS FOR AXIAL-VECTOR, SCALAR,

AND PSEUDOSCALAR CURRENTS

In this section, we consider further external currents,
which are of phenomenological relevance, and compute the
corresponding matching coefficients between QCD and
NRQCD to two-loop order. Such currents have, in contrast
to the vector case, both nonsinglet and singlet contribu-
tions. The latter are characterized by the fact that the
external current does not directly couple to the quarks in the
final state but only through the exchange of two gluons. A
sample Feynman diagram is shown in Fig. 1(h).
We write the two-loop corrections in the form,

cð2Þk ¼ cð2Þk;nonsing þ cð2Þk;sing; ð18Þ

where k ∈ fa; s; pg stands for an axial vector, scalar, or
pseudoscalar. All two-loop corrections, which involve only
one mass scale, have been computed in Ref. [22]. In this
paper, we concentrate on the diagrams where a second
massive quark in a closed loop is present which concerns
both the nonsinglet and the singlet contribution.
In analogy to Eq. (3), we define the additional currents in

QCD via

jμa ¼ ψ̄γμγ5ψ ;

js ¼ ψ̄ψ ;

jp ¼ ψ̄iγ5ψ : ð19Þ

The anomalous dimension of jμa is zero. For the scalar and
pseudoscalar current we have for the corresponding
renormalization constant Zs ¼ Zp ¼ Zm, where Zm is
the (on shell) mass renormalization constant.

In NRQCD, the currents read [22]

j̃ka ¼
1

2m
ϕ†½σk; p⃗ · σ⃗�χ;

j̃s ¼ −
1

m
ϕ†p⃗ · σ⃗χ;

j̃p ¼ −iϕ†χ; ð20Þ

where k ¼ 1; 2; 3. Furthermore, we have j0a ¼ ij̃p, which
constitutes an alternative way to compute the matching
coefficient cp. Note the presence of the momentum p⃗,
which is the relative momentum of the external quark and
antiquark, in the definition of the axial-vector and scalar
current. Thus, an expansion in p has to be performed in
order to obtain the loop corrections to the corresponding
matching coefficients.
The matching equation in (5) also holds for the other

currents after the obvious replacements of Γv, Z̃v, and Γ̃v
and the introduction of Zs;p for the scalar and pseudoscalar
currents.
For the pseudoscalar current and the zero component of

the axial vector, the momentum p is zero, and the
calculation proceeds in close analogy to the vector case.
In fact, we have [22].

Γp ¼ Tr½PðpÞΓðpÞ�;
Γa;0 ¼ Tr½Pða;0Þ

μ ΓðaÞ;μ�; ð21Þ

with

PðpÞ ¼ 1

8m2
q

�
−
=q
2
þmq

�
γ5

�
=q
2
þmq

�
;

Pða;0Þ
μ ¼ −

1

8m2
q

�
−
=q
2
þmq

�
γμγ5

�
=q
2
þmq

�
: ð22Þ

For the axial-vector and scalar cases, there are similar
equations to Eq. (21). The expansion in p (up to linear
order) is conveniently realized by choosing q1 ¼ q=2þ p
and q2 ¼ q=2 − p, which implies q · p ¼ 0. Thus, the
projectors are more complicated and are given by
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Pða;iÞ;μ ¼ −
1

8m2
q

�
1

d − 1

�
−
=q
2
þmq

�
γμγ5

�
−
=q
2
þmq

�

−
1

d − 2

�
−
=q
2
þmq

�
mq

p2
ððd − 3Þpμ þ γμ=pÞγ5

�
=q
2
þmq

��
;

PðsÞ ¼
1

8m2
q

��
−
=q
2
þmq

�
1

�
−
=q
2
þmq

�
þ
�
−
=q
2
þmq

�
mq

p2
=p

�
=q
2
þmq

��
: ð23Þ

After the application of the projectors and the expansion in
p, we can set p ¼ 0 and q2 ¼ 4m2

q.
The calculation of the nonsinglet contribution is in close

analogy to the vector case; see Sec. II. In particular, it is
possible to use anticommuting γ5. Furthermore, we can
map the scalar integrals contributing to Γx after the
application of the projector to the same integral families,
and we thus end up with the same master integrals.
The singlet contribution is more involved and a few

comments are in order. Let us first mention that a nonzero
contribution for the scalar and pseudoscalar currents is only
obtained for massive quarks in the closed fermion loop.
Furthermore, for the axial-vector current, an effective
current formed by the difference of the upper and lower
component of a given quark doublet should be considered
in order to guarantee the cancellation of anomaly-like
contributions. For example, for the top-bottom doublet,
we have

jμa ¼ t̄γμγ5t − b̄γμγ5b: ð24Þ

In practice, this means that we have a quark with mass mq
in the final state, and we consider both a massless quark and
a quark with mass m2 in the closed quark loop and take the
difference.
In the singlet diagrams, we treat γ5 according to the

prescription of Ref. [23]. In the Feynman diagrams, we
apply for the axial-vector and pseudoscalar couplings the
replacements,

γμγ5 →
i
3!
εμνρσγνγργσ;

γ5 →
i
4!
εμνρσγμγνγργσ: ð25Þ

We perform the same substitution also in the corresponding
projectors. Afterwards, we strip off the two ε tensors and
interpret the product in d dimensions. This allows us to
perform the calculation in close analogy to the scalar
current.
The remaining calculation of the singlet diagrams

proceeds as outlined in the previous section. After applying
a partial fraction decomposition, we can map all integrals in
our amplitude to two integral families, which are given by

J1ðn⃗Þ ¼
Z

ddk
ð2πÞd

ddl
ð2πÞd

1

ðm2
2 − ðkþ q

2
Þ2Þn1ðm2

2 − ðk − q
2
Þ2Þn2ðm2

2 − ðk − lÞ2Þn3ðm2
q − l2Þn4ð−ðlþ q

2
Þ2Þn5 ; ð26Þ

J2ðn⃗Þ ¼
Z

ddk
ð2πÞd

ddl
ð2πÞd

1

ðm2
2 − ðkþ q

2
Þ2Þn1ðm2

2 − ðk − q
2
Þ2Þn2ðm2

2 − ðk − lÞ2Þn3ð−ðlþ q
2
Þ2Þn4ð−ðl − q

2
Þ2Þn5 : ð27Þ

The reduction to master integrals using FIRE [13] and LiteRed [14] leads to 12 master integrals, which are shown in
Fig. 3. In a next step, we establish differential equations in the variable t defined by x ¼ 2t=ð1þ t2Þ. In this new variable,
the differential equation can be brought into ϵ form with the help of CANONICA [15]. We expand the solution including
terms of order ϵ since some of the master integrals have 1=ϵ poles in the prefactor. The differential equations are integrated
with the help of HarmonicSums [24] in terms of cyclotomic harmonic polylogarithms over the alphabet,

f0ðτÞ ¼
1

τ
; f1ðτÞ ¼

1

1 − τ
; f−1ðτÞ ¼

1

1þ τ
; ff4;1gðτÞ ¼

τ

1þ τ2
: ð28Þ

Alternatively, one could factorize the denominators over the complex numbers and arrive at Goncharov polylogarithms. The
boundary conditions are obtained from the single-scale master integrals needed for the two-loop calculation of Refs. [22,25].
For the master integrals with dots, the naivem2 ¼ 0 limit is not enough, and we have to consider the asymptotic expansion
aroundm2 ¼ 0, which can be obtained easily from one-dimensional Mellin-Barnes representations or a diagrammatic large
momentum expansion of the corresponding Feynman integrals. In a second approach, we use the algorithm described in
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[26] to solve the differential equations in the variable x
without going into an ϵ form first. For the implementation,
we additionally make use of Sigma [27] and OreSys
[28]. This approach introduces the square-root valued letterffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
=τ. Both results agree after the above mentioned

variable transformation. We compute the ϵ expansion of all

master integrals up to the order, which is needed to obtain
the OðϵÞ terms of the matching coefficients.
After inserting the master integrals into the integration-

by-parts-reduced amplitude, we obtain for the two-loop
singlet contribution to the matching coefficient of the scalar
current the following expression:

FIG. 3. Master integrals needed for the calculation of the singlet diagrams. Thick and thin lines represent scalar propagators with mass
mq andm2, respectively. Dashed lines represent massless scalar propagators. External double lines represent the momentum q and thick
lines the momentum q=2 with q2 ¼ 4m2

q.
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cð2Þs;singjm2
¼ nmCFTF
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32t3H1
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�
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3ð1þ t2Þ þ
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�
H−1;f4;1g

þ 160t3H0;0;1

3ð1þ t2Þ3 −
8tð3 − 2tþ 3t2Þð3þ 2tþ 3t2ÞH0;0;f4;1g

3ð1þ t2Þ3 þ 32t3H0;1;1

3ð1þ t2Þ3 −
64t3H1;1;f4;1g
3ð1þ t2Þ3

−
160t3H−1;0;0

3ð1þ t2Þ3 −
32t3H−1;0;1

3ð1þ t2Þ3 þ 64t3H−1;f4;1g;1
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−
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−
�
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16t3H0
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�
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�
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; ð29Þ

with t ¼ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ=x and Ha⃗ ¼ Ha⃗ðtÞ. The imaginary part of the matching coefficient is displayed in the last three

lines of Eq. (29). For the expansion around x ¼ 0, we find

cð2Þs;singjm2;x→0 ¼ nmCFTF

�
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�
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−
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3
−
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: ð30Þ

As expected, this contribution to the matching coefficient is zero for vanishing quark mass in the closed triangle. Note that

mass corrections are linear in m2. On the other hand, for x → 1 cð2Þs;singjm2
approaches a constant. Higher order expansion

terms are conveniently expressed in terms of y ¼ 1 − x and are given by

cð2Þs;singjm2;x→1 ¼ nmCFTF
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The expressions for the pseudo-scalar and axial-vector currents can be found in the Appendix, where we also show the
nonsinglet terms.
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IV. Γðϒð1SÞ → l+l− Þ AND FINITE CHARM
QUARK MASS

In Ref. [8], the charm quark has been treated as massless,
and the decay rate has been expressed in terms of αðnlÞs ðμÞ
with nl ¼ 4. In the following, we discuss the additional
ingredients needed for the finite charm quark mass terms up
to and including NNLO. As mentioned in the Introduction,
we consider two scenarios:
(A) mc is hard and the charm quark is integrated out

when matching QCD to NRQCD. In this approach,

we express Γðϒð1SÞ → lþl−Þ in terms of αð3Þs ðμÞ.
There are finite-mc effects in the matching coeffi-
cient cv starting from two loops. These corrections
have been computed in Sec. II. There are no finite-
mc corrections to the binding energy and the wave
function at the origin.

(B) mc is soft, and thus, the charm quark is a dynamical
scale within NRQCD. We express Γðϒð1SÞ →
lþl−Þ in terms of αð4Þs ðμÞ. In this approach, charm
mass effects to bound-state energies and wave
functions are needed. They are known at NLO
[29] and NNLO [9,30]. We use the expressions
given in Ref. [9].
In case the decay rate shall be expressed in terms

of the potential subtracted mass, the charm quark
mass effects are needed to NNLO [9].
All necessary expressions for this scenario are

available in the program QQbar_threshold [31].
In both scenarios, charm mass effects to the relation
between the MS (which we use as input), and on shell
bottom quark mass are taken into account. They are known
to three-loop order [19,21].
In scenario A, we assume thatmc is parametrically of the

order of mb. In such a situation, both mb and mc have to be

decoupled from the running of αs and αð3Þs is used as an
expansion parameter. In fact, it has been observed (see, e.g.,
Ref. [32]) that, e.g., the finite-mc terms to the MS-on shell
relation of the bottom quark are quite sizeable and do not

converge in case αð4Þs is used as parameter. On the other

hand, charm quark mass corrections are small and well

convergent for αð3Þs .
To arrive at the new result for Γðϒð1SÞ → lþl−Þ, we

proceed as follows. Our starting point is the expression

derived in Ref. [8], where αð4Þs has been used as expansion
parameter. For the number of massless quarks, we have
nl ¼ 4. We restore the dependence on (massless) charm
quarks and write nl ¼ n0l þ nm with n0l ¼ 3 and nm ¼ 1. In
scenario B, we can simply add the finite-mc terms from the
binding energy and wave function. This modifies the
coefficient of nm such that in the limit mc → 0 the
coefficient of n0l is recovered.
In scenario A, we interpret the result of Ref. [8] in the

nl ¼ 3-flavor PNRQCD with an expansion parameter αð3Þs .
Finite-mc effects enter in Eq. (1) only via the matching
coefficient cv (cf. Sec. II), which also has to be expressed in

terms of αð3Þs .
As mentioned in the Introduction, the description of the

decay rate Γðϒð1SÞ → lþl−Þ within PNRQCD is a multi-
scale problem, and thus, it would in principle be desirable to
provide a corresponding separation of the factorization and
renormalization scales. Whereas at lower orders this has
been achieved (see, e.g., Refs. [33,34]), it is not yet known
at N3LO. Thus, in our analysis, we identify the various
scales by μ and discuss the variation of this common scale,
which provides an estimate of the numerical effect.
We are now in the position to provide numerical results

for the decay rate. For the numerical evaluation, we use

αð2mbÞ ¼ 1=132.3 [35], αð5Þs ðMZÞ ¼ 0.1179ð10Þ [36] and
the renormalization scale μ ¼ 3.5 GeV. We use the pro-
gram RunDec [37] to evolve the coupling with five-loop

accuracy and obtain αð4Þs ð3.5 GeVÞ ¼ 0.2388 and

αð3Þs ð3.5 GeVÞ ¼ 0.2297, respectively. Furthermore, we
compute the pole mass mb ¼ 5.059 GeV in the four-loop
approximation from the MS value m̄bðm̄bÞ ¼
4.163ð16Þ GeV given in Ref. [38]. In our expressions,
we renormalize the charm quark in the MS scheme at the
renormalization scale μc ¼ 3 GeV and use m̄cð3 GeVÞ ¼
0.993 GeV [38]. Our results in the two scenarios read

Γðϒð1SÞ → lþl−Þjpole;A ¼ 25α2α3smb

35
½1þ 0.374þ ð0.916þ 0.020cvÞ − 0.032�

¼ 1.041þ 0.009cv
¼ ½1.051� 0.047ðαsÞþ0.007

−0.217ðμÞ� keV:

Γðϒð1SÞ → lþl−Þjpole;B ¼ 25α2α3smb

35
½1þ ð0.259þ 0.037mc

Þ þ ð0.869þ 0.039mc
Þ − 0.178�

¼ 1.011þ 0.039mc

¼ ½1.050� 0.045ðαsÞþ0.024
−0.155ðμÞ� keV; ð32Þ
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where the four terms in the first lines of the two equations
refer to the LO, NLO, NNLO, and N3LO results. At NNLO
and in scenario B also at NLO, we display the contributions
from a finite charm quark mass separately. We remark that

the finite-mc terms of cð2Þv (see subscript cv), which are
computed in Sec. II, amount to about 2% of the NNLO
coefficient, and they are of the same order of magnitude as
the N3LO contribution. In scenario B, themc effects at NLO
and NNLO (see subscript mc) are of the same order of
magnitude and amount to about 15% and 5% of the
corresponding mc-independent coefficient. The scale un-
certainty in the last line of Eq. (32) is computed from the
variation of μ in the range μ ∈ ½3; 10� GeV. We also show

the uncertainty induced by δαð5Þs ðMZÞ ¼ 0.001. The varia-
tion of all other parameters leads to significantly smaller
uncertainties.
It is interesting to note that both scenario A and scenario

B lead to the same final prediction at N3LO although the
contributions from the various orders is different. We
observe a notable discrepancy to the experimental result,
which is given by Γðϒð1SÞ → eþe−Þjexp ¼ 1.340ð18Þ keV.
We also want to mention a recent lattice evaluation [39],
where the value Γðϒð1SÞ → eþe−Þ ¼ 1.292ð37Þð3Þ keV
has been reported.
In Fig. 4, we show the dependence of Γðϒð1SÞ →

eþe−Þjpole;A on μ successively including higher order
corrections. The solid black line corresponds to the N3LO
prediction. We observe that the inclusion of higher order
corrections clearly stabilizes the perturbative predictions for
μ≳ 3 GeV. Furthermore, it is interesting to note that the
third-order correction vanishes close to the value of μ, where
the N3LO curve has a maximum. The dashed black curve
corresponds to the N3LO prediction of scenario B. The

overall shape is very similar to the corresponding
curve of scenario A. However, it is remarkable that the
two N3LO lines cross the NNLO curve for the same value
of μ.
For illustration, we show in Fig. 5 the charm quark mass

dependent terms of Γðϒð1SÞ → lþl−Þ as a function of the
renormalization scale. The solid back curve corresponds to
the NNLO term of scenario A marked by cv. For scenario
B, we show the NLO and NNLO contributions as green
dash-dotted and blue dashed curves. Their sum is the black
dashed line. One observes that for μ ¼ 3.5 GeV [which is
the choice of Eq. (32)] both terms of scenario B are about
twice as big as the one in scenario A. In fact, over the whole
range of μ, the charm dependent terms of scenario B are
significantly larger than those of scenario A. Note that for
μ ≈ 1.7 GeV, the NNLO scenario B contribution turns
zero, and the whole correction is given by the NLO term.
The observed behavior is in analogy to Ref. [32], where it
was argued that for the MS-on shell relation the charm
mass-dependent terms are small and well convergent in

case αð3Þs is used as expansion parameter.
In Fig. 6, we show Γðϒð1SÞ → eþe−Þjpole;A as a function

of αð5Þs ðMZÞ. One observes that the third-order band is
embedded in the NNLO band, which can be interpreted as
good convergence of the perturbative corrections. Note that
we do not recompute the bottom pole mass when vary-
ing αs.
It is well-known that the pole mass suffers from so-called

renormalon ambiguities. They are avoided by choosing a
properly defined so-called threshold mass. Such masses
have the advantages that they have nice convergence
properties (as the MS mass) and that they can also be
used for the description of bound-state properties. In the
following, we want to consider the potential-subtracted
(PS) mass scheme [40] as an example and discuss the
perturbative corrections to Γðϒð1SÞ → lþl−Þ.

FIG. 5. Charm quark mass dependent terms for scenario A
(solid black curve) and B (dashed black curve). For scenario B,
the NLO and NNLO contributions are shown also separately; see
green and blue curves.

FIG. 4. The decay rate obtained from scenario A in the pole
scheme as a function of the renormalization scale μ. Dotted (red),
dash-dotted (green), short-dashed (blue), and solid (black) lines
correspond to LO, NLO, NNLO, and N3LO predictions. At
N3LO, we also show the result from scenario B as black dashed
curve. The horizontal bar denotes the experimental value for
Γðϒð1SÞ → eþe−Þ.
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Explicit results for the relation between the pole mass
and the PS mass to nth order can be derived from the n-loop
expression for the Coulomb potential (see, for example,
Ref. [41]). For scenario A, we use this relation for n ¼ 3
and nl ¼ 3, since in this scenario finite charm-quark mass
effects are only included in the relation between the MS
mass and pole mass. In scenario B, however, we also have
to include charm-mass effects in the relation between the

pole mass and PS mass for n ¼ 1 and n ¼ 2. The latter can
be found in Appendix B of Ref. [9].
The numerical (input) value for the PS mass is conven-

iently obtained from m̄bðm̄bÞ ¼ 4.163 GeV. Using N3LO
accuracy, we obtain for the two scenarios mPS

b jA ¼
4.520 GeV and mPS

b jB ¼ 4.484 GeV, respectively, where
the factorization scale μf is set to 2 GeV. For the decay rate
of the ϒð1SÞ, we obtain

Γðϒð1SÞ → lþl−ÞjPS;A ¼ 25α2α3smb

35
½1þ 0.485þ ð1.001þ 0.017cvÞ þ 0.125�

¼ 1.076þ 0.007cv
¼ ½1.083� 0.053ðαsÞþ0.001

−0.270ðμÞ� keV;

Γðϒð1SÞ → lþl−ÞjPS;B ¼ 25α2α3smb

35
½1þ ð0.374þ 0.042mc

Þ þ ð0.939þ 0.048mc
Þ − 0.029�

¼ 1.050þ 0.041mc

¼ ½1.091� 0.052ðαsÞþ0.006
−0.218ðμÞ� keV: ð33Þ

The final predictions for the decay rate are close to those in
the on shell scheme [cf. Eqs. (32)] and agree well within the
uncertainties. However, the transition from the pole to the
PS mass leads to a significant redistribution among the
various perturbative orders. For example, in scenario A the
N3LO term in the PS scheme is about 4 times larger as
compared to the on shell scheme but has a different sign.
Similarly, in scenario B, the N3LO coefficient gets reduced
by a factor of 6.
For completeness, we show in Figs. 7 and 8, the

dependence of Γðϒð1SÞ → lþl−Þ in the PS scheme on

μ and αð5Þs ðMZÞ, respectively. The behavior of the various
perturbative orders and the interpretation of the results is
very similar to Figs. 4 and 6.
As mentioned above, in our analysis, we have identified

the factorization and renormalization scales. As can be seen
from Figs. 4 and 7, the variation of μ leads to relatively big
effects which suggests a separation of the scales. However,
such an analysis is beyond the scope of this paper.
The inclusion of the finite-mc effects leads to the same

conclusions as in Ref. [8]: The perturbative predictions for
Γðϒð1SÞ → lþl−Þ are well under control, but there is a

FIG. 6. The decay rate obtained from scenario A in the pole
scheme as a function of αsðMZÞ at LO (red, bottom), NLO (green,
middle), NNLO (blue, top), and N3LO (black, inner top band).
The bands denote the variation of μ between 3 GeV and 10 GeV.
The horizontal bar denotes the experimental value, while the
vertical bar denotes the world average of the strong coupling
constant, αsðMZÞ ¼ 0.1179ð10Þ.

FIG. 7. The decay rate obtained from scenario A in the PS
scheme as a function of the renormalization scale μ. Dotted (red),
dash-dotted (green), short-dashed (blue), and solid (black) lines
correspond to LO, NLO, NNLO, and N3LO predictions. At
N3LO, we also show the result from scenario B as black dashed
curve. The horizontal bar denotes the experimental value for
Γðϒð1SÞ → eþe−Þ.
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discrepancy with respect to the experimental result. In [8],
one can find an extensive discussion on possible non-
perturbative effects. However, no clear conclusion can be
drawn, and it remains an open question whether a full
quantitative understanding of the decay rate based on
perturbative and nonperturbative QCD is possible.
It is interesting to apply our formulae to the excited (bb̄)

states with n ¼ 2 and n ¼ 3. For higher n, the average
momentum of the bound system is reduced. However, for
illustration purposes, we still use μ ¼ 3.5 GeV.
Furthermore, we restrict ourselves to the pole scheme
and approach A. We obtain Γðϒð2SÞ → lþl−Þjpole;A ¼
0.161 keV and Γðϒð3SÞ → lþl−Þjpole;A ¼ 0.0565 keV,
which has to be compared to the experimental results
Γðϒð2SÞ → lþl−Þjexp ¼ 0.612 keV and Γðϒð3SÞ →
lþl−Þjexp ¼ 0.443 keV. One observes a large deviation,

which is probably due to even larger nonperturbative
contributions.

V. ΓðJ=Ψ → l+l− Þ AT N3LO

In this section, we apply scenario A to the decay of the
J=Ψ meson to massless leptons. In general, the application
to charm bound states is questionable, since the ultrasoft
scale in PNRQCD is smaller then ΛQCD. Furthermore, even
the hard scale (mc) is below 2 GeV. Nevertheless, it is
interesting to study the perturbative behavior and to
compare with the experimental result.
We work with an on shell charm quark mass value mc ¼

1.65 GeV and choose μ ¼ 2 GeV for the renormalization

scale. This leads to αð3Þs ð2 GeVÞ ¼ 0.2943. For the decay
rate, we have

ΓðJ=Ψ → lþl−Þjpole ¼
425α2α3smc

35
½1þ 0.875þ ð1.596 − 0.001cvÞ þ 0.654�

¼ ½5.08� 0.35ðαsÞþ0.03
−2.25ðμÞ� keV; ð34Þ

where the scale uncertainty is computed from the variation
of μ in the range μ ∈ ½1.5; 6� GeV. The NNLO term with
the subscript cv originates from the two-loop contribution
to the charm quark vector current with a closed bottom
quark. Although the perturbative series does not converge,
it is instructive to compare to the experimental result. This
is done in Fig. 9, where ΓðJ=Ψ → lþl−Þ is shown as a
function of μ. It is interesting to notice that there is
agreement between the N3LO prediction and the

experimental result ΓðJ=Ψ→lþl−Þjexp¼5.53�0.10keV
[36] close to the value of μ, where the N3LO curve has
a maximum, and thus, the derivative with respect to μ
vanishes. Furthermore, for this value of μ, the third-order
corrections are quite small, as can be seen from Eq. (34).
Note that the N3LO corrections vanish for μ ¼ 1.724 GeV.
For this value of the renormalization scale, we have
ΓðJ=Ψ → lþl−Þjpole ¼ 5.03 keV. From Fig. 9, we also
observe that even the N3LO curve shows a sizable

FIG. 8. The decay rate obtained from scenario A in the PS
scheme as a function of αsðMZÞ at LO (red, bottom), NLO (green,
middle), NNLO (blue, top), and N3LO (black, inner top band).
The bands denote the variation of μ between 3 GeV and 10 GeV.
The horizontal bar denotes the experimental value, while the
vertical bar denotes the world average of the strong coupling
constant, αsðMZÞ ¼ 0.1179ð10Þ.

FIG. 9. The decay rate ΓðJ=Ψ → lþl−Þ in the OS scheme as a
function of the renormalization scale μ. Dotted (red), dash-
dotted (green), short-dashed (blue), and solid (black) lines
correspond to LO, NLO, NNLO, and N3LO prediction.
The horizontal bar denotes the experimental value for
ΓðJ=Ψ → eþe−Þ.
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dependence on μ. Furthermore, one notices that
below μ ≈ 1.5 GeV ≈mc perturbation theory breaks
down. For completeness, let us mention that for n ¼ 2
we have ΓðΨð2SÞ → lþl−Þ ¼ 0.865 keV, which
has to be compared to the experimental result
ΓðΨð2SÞ → lþl−Þjexp ¼ 2.34 keV.
We want to remark that a similar feature has been

observed in Ref. [42], where next-to-leading logarithmic
(NLL) corrections to the hyperfine splitting of heavy quark-
antiquark bound states have been considered. The appli-
cation to the 1S charmonium state shows good agreement
for values of the renormalization scale, where the NNL
prediction has a maximum. The perturbative uncertainties
are sizeable, as for the J=Ψ decay rate.
A recent lattice computation of the leptonic decay width

is given by ΓðJ=Ψ → eþe−Þ ¼ 5.637� 0.049 [43], in
agreement with the experimental value [36].

VI. CONCLUSIONS

In this paper, we consider the matching coefficients
between QCD and NRQCD of external vector, axial-vector,
scalar, and pseudoscalar currents. We compute all two-loop
contributions that involve two mass scales, one from the
external quarks and one present in a closed fermion loop.
Whereas for the vector current only nonsinglet contribu-
tions have to be considered, there are also singlet con-
tributions for the other three currents. We present analytic
results including terms of order ϵ, which are of relevance
for a future three-loop calculation.

In Secs. IV and V, we apply our results for the vector
current to the leptonic decay rates of the lowest spin-1
heavy-quark-anti-quark mesons, ϒð1SÞ and J=Ψ, and
provide update numerical predictions. We discuss the decay
rate Γðϒð1SÞ → lþl−Þ, including charm quark mass
effects, both in the three- and four-flavor scheme and for
the heavy quark masses defined both in the on shell and PS
scheme. Although at the central scale, the third-order
corrections are small and the scale dependence is signifi-
cantly reduced when going from NNLO to N3LO, we
observe a discrepancy with respect to the experimental
result, which to date is not understood. As a final remark,
we want to mention that a closer look to the charm quark
mass dependent terms suggests that their convergence
properties improve after decoupling ofmc from the running
of αs and using αð3Þs as an expansion parameter.
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APPENDIX: ANALYTIC RESULTS
FOR ca, cs, AND cp

In this Appendix, we present analytic results for the two-
mass matching coefficients for axial-vector, scalar, and
pseudoscalar external currents. The nonsinglet results are
given by

cð2Þa;nonsingjm2
¼ nmCFTF
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cð2Þp;nonsingjm2
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where Ha⃗ ¼ Ha⃗ðxÞ.
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Our results for the pseudoscalar singlet contribution reads

cð2Þp;singjm2
¼ nmCFTF
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For the expansions around x ¼ 0 and x ¼ 1, we find
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with y ¼ 1 − x.
In the case of the singlet axial-vector current, we explicitly specify the flavor of the quark in the final state to bottom

quark. Furthermore, we split the matching coefficient into the contributions from the strange and charm quarks cð2Þ;sþc
a;sing jm2

and the contribution from the bottom and top quarks cð2Þ;bþt
a;sing jm2

.2 For vanishing strange quark mass, we have

2Note that the contribution from up and down quarks vanishes since we assume that both quarks are massless.
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with t ¼ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2c

p
Þ=xc and xc ¼ mc=mb. The expansion of xc → 0 is given by
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Due to the large mass of the top quark, it is convenient to provide for cð2Þ;bþt
a;sing jm2

only the first few expansion terms in
xt ¼ mb=mt. Our results read
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In [10], computer-readable expressions for the four nonsinglet and the three singlet matching coefficients are provided.
We include terms or order ϵ, which are needed for a future three-loop calculation.
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