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Form factors of the weak Ξc → ΞðΛÞ transitions are calculated within the light cone QCD sum rules. The
pollution coming from the contribution of the negative parity Ξ�

c baryon is eliminated by considering the
combinations of sum rules corresponding to the different Lorentz structures. Having obtained the form factors,
the branching ratios of the Ξc → ΞðΛÞlν decays are also calculated, and our predictions are compared with
the results of other approaches as well as the measurements done by the BELLE and ALICE collaborations.
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I. INTRODUCTION

The electroweak decays of the heavy flavored hadrons
provide useful information about the helicity structure
of the effective Hamiltonian and the matrix elements of
the Cabibbo-Kobayashi-Maskawa matrix (CKM). These
decays are also very promising in looking for new physics
searches. For these goals, the semileptonic decays of the
heavy mesons and baryons provide an ideal research area.
Since the leptonic part of these transitions is well known,
all probable complications can be attributed to the
hadronic matrix element. The study of the semileptonic
Ξc → BðB ¼ Ξ orΛÞlν decays that are induced by the
c → s and c → d transitions are helpful for precise deter-
mination of the values of the CKMmatrix elements Vcs and
Vcd. Moreover, these decays can also be used to test the
predictions of the heavy quark effective theory.
The form factors also play a crucial role in the theoretical

analysis of the nonleptonic decays of the baryons and might
also be useful for the study of CP violation.
Significant experimental progress on the semileptonic

decays of Ξc baryon has been achieved recently. The Belle
Collaboration reported the measurement of the branching
ratios of the semileptonic decays Ξ0

c → Ξ−lþν [1],

BðΞ0
c → Ξ−eþνeÞ ¼ ð1.72� 0.10� 0.12� 0.50Þ%;

BðΞ0
c → Ξ−μþνμÞ ¼ ð1.71� 0.17� 0.13� 0.50Þ%:

Moreover, the ALICE Collaboration has also announced
the result for the branching ratio of the Ξ0

c → Ξ−lν
transition [B ¼ ð1.8� 0.2Þ%] [2], which agrees with
BELLE’s measurement within error ranges.
The semileptonic decays of the Ξc baryon have been

comprehensively studied in the framework of different
approaches, such as the light-front formalism [3,4], rela-
tivistic quark model [5], lattice QCD [6], three-point QCD
sum rules [7], and light cone QCD sum rules method [8].
In this study, we calculated the form factors and

branching ratios of the semileptonic decay of Ξc within
the light cone sum rules (LCSR) framework. It should be
noted that the same channel was already studied in [8].
However, the prediction of the branching ratio obtained in
that study is considerably larger than the results of the other
approaches as well as experimental measurements. This
study also aims to understand the source of this discrep-
ancy. In our opinion, the reason for the discrepancy can be
attributed to the fact that the interpolating current for the
given heavy baryon couples not only to the ground state
baryon with positive parity JP ¼ 1

2
þ but also to a heavier

baryon with negative parity JP ¼ 1
2
−. Hence, the dispersion

relation of the Ξc baryon gets modified when the contri-
bution of the negative parity Ξc baryon is taken into
account, which is 300 MeV heavier compared to the
ground state Ξc baryon. In the light of new experimental
data, we reanalyze the semileptonic decays of Ξb →
ΞðΛÞlν within light-cone sum rules in detail by taking
into account the contributions of the JP ¼ 1

2
− heavy baryon.

So far, the LCSR have successfully been applied to the
wide range of problems of hadronic physics, such as the
nucleon electromagnetic form factor [9], form factors and
strong coupling constants of the heavy baryons [10], rare
Λb → NðN�Þlþl− decays [11], etc.
The paper is organized as follows. In Sec. II, the LCSR

for the Ξc → BðΞ orΛÞ transition form factors are derived.
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In Sec. III, the numerical analysis of the transition form factors is performed. This section also contains our predictions on
the decay widths of the Ξc → Blν transitions. Finally, we compare our results on the branching ratios with those predicted
by the other approaches.

II. THE LCSR FOR THE Ξc → B TRANSITION FORM FACTORS

Ξc → BðΞ orΛÞ decay is induced by the c → sðdÞ transition. The matrix elements induced by the vector and axial-vector
transition currents are described with the help of the three-form factors,

hΞcðp − qÞjq̄γμcjBðpÞi ¼ ūΞc
ðp − qÞ

�
f1ðq2Þγμ þ i

f2ðq2Þ
mΞc

σμνqν þ
f3ðq2Þ
mΞc

qμ
�
uBðpÞ; ð1Þ

hΞcðp − qÞjq̄γμγ5cjBðpÞi ¼ ūΞc
ðp − qÞ

�
g1ðq2Þγμ þ i

g2ðq2Þ
mΞc

σμνqν þ
g3ðq2Þ
mΞc

qμ
�
γ5uBðpÞ: ð2Þ

The form factors responsible for the Ξ�
c → B transition can be obtained from Eqs. (1) and (2) with the replacements fi → f̃i,

gi → g̃i, inserting the Dirac matrix γ5 after the Ξc baryon bispinor, and replacing Ξc with Ξ�
c.

In order to derive the LCSR for the form factors, we start by considering the following correlation function(s):

ΠVðAÞ
μ ðp; qÞ ¼ i

Z
d4xeiqxh0jTfηΞc

ð0ÞJVðAÞμ ðxÞgjBðpÞi; ð3Þ

where ηΞc
is the interpolating current of the Ξc baryon, and JVðAÞμ ¼ c̄γμqðc̄γμγ5qÞ are the transition currents. In further

calculations, we use the general form of the interpolating current Ξc [12],

ηΞc
¼ 1ffiffiffi

6
p ϵabcf2½qaTðxÞCsbðxÞ�γ5ccðxÞ þ ½qaTðxÞCcbðxÞ�γ5scðxÞ þ ½caTðxÞCsbðxÞ�γ5qcðxÞ

þ 2β½uaTðxÞCγ5sbðxÞ�ccðxÞ þ β½qaTðxÞCγ5cbðxÞ�scðxÞ þ β½caTðxÞCγ5sbðxÞ�qcðxÞg: ð4Þ

Here q is the light quark, C is the charge conjugation operator, a, b, and c are the color indices, β is an arbitrary parameter,
and β ¼ −1 corresponds to the Ioffe current.
To derive the LCSR for the transition form factors, we first calculate the hadronic part of the correlation function, which is

achieved by inserting the full set of charmed-baryon states between the interpolating current ηΞc
and the transition current Jμ

in Eq. (3). Thus, the hadronic part contains the contributions of the lowest positive-parity Ξc, as well as its negative–parity
partner Ξ�

c, i.e.,

ΠVðAÞ
μ ðp; qÞ ¼

X
i

h0jηΞc
ð0ÞjΞi

cðp − q; sÞihΞi
cðp − q; sÞjc̄γμqðc̄γμγ5qÞjBðpÞi

m2
i − ðp − qÞ2 þ � � � ; ð5Þ

where � � � denotes the contributions of all excited and continuum states with the quantum numbers of Ξc, and summation is
performed over the ground and first orbital excited states. The first term on the right-hand side of Eq. (5) describes the
coupling of the ΞcðΞ�

cÞ baryon with the interpolating current ηΞc
which is defined as

h0jηΞc
ð0ÞjΞcðp − q; sÞi ¼ λΞc

uΞc
ðp − qÞ;

h0jηΞ�
c
ð0ÞjΞ�

cðp − q; sÞi ¼ λΞ�
c
γ5uΞ�

c
ðp − qÞ; ð6Þ

where λΞc
ðλΞ�

c
Þ is the residue of the corresponding baryon.

Using the definitions of the transition form factors for the vector transition current, and using the Dirac equation
=puBðpÞ ¼ mBuBðpÞ we get,
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ΠV
μ ðp; qÞ ¼

λΞc

m2
Ξc

− ðp − qÞ2
�
f1ðq2Þ½2pμ þ ðmΞc

−mBÞγμ − 2qμ þ γμ=q�

−
f2ðq2Þ
mΞc

½2pμ=qþ ðm2
Ξc

−m2
BÞγμ þ ðmΞc

þmBÞγμ=q − ðmΞc
þmBÞqμ − qμ=q�

þ f3ðq2Þ
mΞc

ðmΞc
þmB − =qÞqμ

�
uBðpÞ þ

λΞ�
c

m2
Ξ�
c
− ðp − qÞ2

�
f̃1ðq2Þ½−2pμ þ ðmΞ�

c
þmBÞγμ þ 2qμ − γμ=q�

þ f̃2ðq2Þ
mΞ�

c

½2pμ=qþ ðm2
Ξ�
c
−m2

BÞγμ − ðmΞ�
c
−mBÞγμ=qþ ðmΞ�

c
−mBÞqμ − qμ=q�

þ f̃3ðq2Þ
mΞ�

c

ðm−Ξ�
c
−mB þ =qÞqμ

�
uBðpÞ: ð7Þ

ΠA
μ ðp; qÞ can easily be obtained from ΠV

μ ðp; qÞ by making the replacements ðfi → gi; f̃i → g̃i;mB → −mBÞ, and
multiplying γ5 matrix to the right end, i.e.,

ΠA
μ ðp; qÞ ¼ ΠV

μ ðp; qÞðfi → gi; f̃i → g̃i;mB → −mBÞγ5:

We now turn our attention to the calculation of the correlation function (3) for the ΞcðΞ�
cÞ → B transition. We take

ðp − qÞ2; q2 ≪ m2
Ξc

to justify the expansion of the product of the two currents in the correlation function (3) near the light
cone x2 ≈ 0, hence, the matrix element εabch0jqaαð0Þsbβð0Þscγð0ÞjBðpÞi is obtained. This matrix element is parametrized in
terms of the Ξ and Λ baryon distribution amplitudes (DAs) of a different twist. The explicit expressions of the Ξ and Λ
baryon DAs can be found in [13–15]. The operator product expansion is obtained by convolution of the hard-scattering
amplitudes formed by the virtual c-quark propagator and the ΞðΛÞ baryon DAs with increasing twists. In our calculations,
we take into account all three particle B baryon DAs up to twist-6. However, we neglect the contributions of the four-particle
(quark and gluon) DAs.
Matching the coefficient of the relevant Lorentz structures in both representations of the correlation function, we get the

sum rules for the transition form factors. Finally, we perform Borel transformation over −ðp − qÞ2 in order to suppress the
higher state and continuum contributions and obtain the following sum rules for the form factors of the c̄γμs transition
current,

ΠB
1 ðp; qÞ ¼ 2λΞc

f1ðq2Þe−m
2
Ξc
=M2

− 2λΞ�
c
f̃1ðq2Þe−m

2
Ξ�c
=M2

;

ΠB
2 ðp; qÞ ¼ −2λΞc

f2ðq2Þ
mΞc

e−m
2
Ξc
=M2 þ 2λΞ�

c

f̃2ðq2Þ
mΞ�

c

e
−m2

Ξ�c
=M2

;

ΠB
3 ðp; qÞ ¼ λΞc

e−m
2
Ξc
=M2

�
f1ðq2Þ −

f2ðq2Þ
mΞc

ðmΞc
þmBÞ

�
þ λΞ�

c
e
−m2

Ξ�c
=M2

�
−f̃1ðq2Þ −

f̃2ðq2Þ
mΞ�

c

ðmΞ�
c
−mBÞ

�
;

ΠB
4 ðp; qÞ ¼ λΞc

e−m
2
Ξc
=M2

�
ðmΞc

−mBÞ
�
f1ðq2Þ −

f2ðq2Þ
mΞc

ðmΞc
þmBÞ

��

þ λΞ�
c
e
−m2

Ξ�c
=M2

�
ðmΞ�

c
þmBÞ

�
f̃1ðq2Þ þ

f̃2ðq2Þ
mΞ�

c

ðmΞ�
c
−mBÞ

��
;

ΠB
5 ðp; qÞ ¼ λΞc

e−m
2
Ξc
=M2

�
−2f1ðq2Þ þ

ðf2ðq2Þ þ f3ðq2ÞÞ
mΞc

ðmΞ�
c
þmBÞ

�

þ λΞ�
c
e
−m2

Ξ�c
=M2

�
2f̃1ðq2Þ þ

ðf̃2ðq2Þ þ f̃3ðq2ÞÞ
mΞ�

c

ðmΞ�
c
−mBÞ

�
;

ΠB
6 ðp; qÞ ¼

λΞc

mΞc

e−m
2
Ξc
=M2ðf2ðq2Þ − f3ðq2ÞÞ −

λΞ�
c

mΞ�
c

e
−m2

Ξ�c
=M2

ðf̃2ðq2Þ − f̃3ðq2ÞÞ: ð8Þ

Here, ΠB
1 ðp; qÞ, ΠB

2 ðp; qÞ, ΠB
3 ðp; qÞ, ΠB

4 ðp; qÞ, ΠB
5 ðp; qÞ, and ΠB

6 ðp; qÞ are the invariant functions for the Lorentz
structures, pμ, pμ=q, γμ=q, γμ, qμ, and qμ=q structures, respectively.
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Note that the equations for the axial vector current γμγ5 can be obtained from Eq. (8) by making the following

replacements: fi → −gi, f̃i → −g̃i, mB → −mB, and ΠðVÞB
i → ΠðAÞB

i .
Solving the six equations given in (8) we obtain the LCSR for the transition form factors fi, f̃i for vector current

and gi, and g̃i for axial vector which read as

f1 ¼
em

2
Ξc
=M2

2λΞc
ðmΞ�

c
þmΞc

Þ
n
ðmΞc

þmBÞ
h
ΠðVÞB

1 − ðmΞ�
c
−mBÞΠðVÞB

2

i
þ 2ðmΞ�

c
−mΞc

ÞΠðVÞB
3 þ 2ΠðVÞB

4

o
;

f2 ¼
mΞc

em
2
Ξc
=M2

2λΞc
ðmΞ�

c
þmΞc

Þ
h
ΠðVÞB

1 − ðmΞ�
c
−mBÞΠðVÞB

2 − 2ΠðVÞB
3

i
;

f3 ¼
mΞc

em
2
Ξc
=M2

2λΞc
ðmΞ�

c
þmΞc

Þ
h
ΠðVÞB

1 þ 2ðΠðVÞB
3 þ ΠðVÞB

5 Þ − ðmΞ�
c
−mBÞðΠðVÞB

2 þ 2ΠðVÞB
6 Þ

i
;

f̃1 ¼
−em

2
Ξ�c
=M2

2λΞ�
c
ðmΞ�

c
þmΞc

Þ
n
ðmΞ�

c
−mBÞ

h
ΠðVÞB

1 þ ðmΞc
þmBÞΠðVÞB

2

i
− 2ðmΞ�

c
−mΞc

ÞΠðVÞB
3 − 2ΠðVÞB

4

o
;

f̃2 ¼
mΞ�

c
e
m2

Ξ�c
=M2

2λΞ�
c
ðmΞ�

c
þmΞc

Þ
h
ΠðVÞB

1 þ ðmΞc
þmBÞΠðVÞB

2 − 2ΠðVÞB
3

i
;

f̃3 ¼
mΞ�

c
e
m2

Ξ�c
=M2

2λΞ�
c
ðmΞ�

c
þmΞc

Þ
h
ΠðVÞB

1 þ 2ðΠðVÞB
3 þ ΠðVÞB

5 Þ þ ðmΞc
þmBÞðΠðVÞB

2 þ 2ΠðVÞB
6 Þ

i
;

g1 ¼
−em

2
Ξc
=M2

2λΞc
ðmΞ�

c
þmΞc

Þ
n
ðmΞc

−mBÞ
h
ΠðAÞB

1 − ðmΞ�
c
þmBÞΠðAÞB

2

i
þ 2ðmΞ�

c
−mΞc

ÞΠðAÞB
3 þ 2ΠðAÞB

4

o
;

g2 ¼
−mΞc

em
2
Ξc
=M2

2λΞc
ðmΞ�

c
þmΞc

Þ
h
ΠðAÞB

1 − ðmΞ�
c
þmBÞΠðAÞB

2 − 2ΠðAÞB
3

i
;

g3 ¼
−mΞc

em
2
Ξc
=M2

2λΞc
ðmΞ�

c
þmΞc

Þ
h
ΠðAÞB

1 þ 2ðΠðAÞB
3 þ ΠðAÞB

5 Þ − ðmΞ�
c
þmBÞðΠðAÞB

2 þ 2ΠðAÞB
6 Þ

i
;

g̃1 ¼
e
m2

Ξ�c
=M2

2λΞ�
c
ðmΞ�

c
þmΞc

Þ
n
ðmΞ�

c
þmBÞ

h
ΠðAÞB

1 þ ðmΞc
−mBÞΠðAÞB

2

i
− 2ðmΞ�

c
−mΞc

ÞΠðAÞB
3 − 2ΠðAÞB

4

o
;

g̃2 ¼
−mΞ�

c
e
m2

Ξ�c
=M2

2λΞ�
c
ðmΞ�

c
þmΞc

Þ
h
ΠðAÞB

1 þ ðmΞc
−mBÞΠðAÞB

2 − 2ΠðAÞB
3

i
;

g̃3 ¼
−mΞ�

c
e
m2

Ξ�c
=M2

2λΞ�
c
ðmΞ�

c
þmΞc

Þ
h
ΠðAÞB

1 þ 2ðΠðAÞB
3 þ ΠðAÞB

5 Þ þ ðmΞc
−mBÞðΠðAÞB

2 þ 2ΠðAÞB
6 Þ

i
: ð9Þ

A few words about the theoretical calculations are in order. The correlation function with the γμ and γμγ5 transition
currents can be transformed to the following form:

ΠVðAÞ
i ½ðp − qÞ2; q2� ¼

X
n¼1;2;3

Z
1

0

dx
ρVðAÞin ½x; ðp − qÞ2�

Δn ;

where Δ ¼ m2
c − xðp − qÞ2 − x̄q2 þ xx̄m2

Ξc
, and x̄ ¼ 1 − x and ρVðAÞin are the spectral densities of the corresponding

invariant functionsΠVðAÞ
i ½ðp − qÞ2; q2�. Their expressions are too lengthy, hence, we do not present them here. To obtain the

relevant sum rules for the form factors, Borel transformation to the dispersion integral representation and subtraction of
continuum should be performed. These operations can be implemented with the help of the following replacements:
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Z
dx

ρi1ðxÞ
Δ

→
Z

1

x0

dx
x
ρi1ðxÞe

−sðxÞ
M2 ;

Z
dx

ρi2ðxÞ
Δ2

→
1

M2

Z
1

x0

dx
x2

ρi2ðxÞe
−sðxÞ
M2 þ ρi2ðx0Þe

−s0
M2

m2
c þ x20m

2
Ξc

− q2
;

Z
dx

ρi3ðxÞ
Δ3

→
1

2M4

Z
1

x0

dx
x3

ρi3ðxÞe
−sðxÞ
M2

þ 1

2M2

ρi3ðx0Þe
−s0
M2

x0ðm2
c þ x20m

2
Ξc

− q2Þ

−
1

2

x20e
−s0
M2

m2
c þ x20m

2
Ξc

− q2

×
d
dx

�
ρi3ðxÞ

xðm2
c þ x2m2

Ξc
− q2Þ

�				
x¼x0

; ð10Þ

and x0 is the solution of the equation

s0 ¼
m2

c − x̄q2 þ xx̄m2
Ξc

x
:

The expressions of the form factors involve residues of
Ξc and Ξ�

c baryons. These residues can be calculated using
the two-point correlation function,

Πðq2Þ ¼ i
Z

d4x eiqxh0jTfηQðxÞη̄Qð0Þgj0i;

¼ ΠB
1 ðq2Þ=qþ ΠB

2 ðq2ÞI:

Following the standard sum rules methodology, namely,
saturating the correlation function with Ξc and Ξ�

c, and
performing the Borel transformation and continuum sub-
traction, we obtain,

ΠB
1 ¼ λΞc

e−m
2
Ξc
=M2 þ λΞ�

c
e
−m2

Ξ�c
=M2

;

ΠB
2 ¼ λΞc

mΞc
e−m

2
Ξc
=M2

− λΞ�
c
mΞ�

c
e
−m2

Ξ�c
=M2

;

where λΞc
ðλΞ�

c
Þ and mΞc

ðmΞ�
c
Þ are the residues and the

masses of the ΞcðΞ�
cÞ baryons, respectively. Solving these

equations, for the residue of the Ξc baryon we get,

λΞc
¼ em

2
Ξc
=M2

mΞ�
c
þmΞc

ðmΞ�
c
ΠB

1 þ ΠB
2 Þ: ð11Þ

The invariant functions ΠB
1 and ΠB

2 are calculated in [11],
which we will use in our numerical analysis.

III. NUMERICAL ANALYSIS

This section is devoted to the numerical analysis of the
form factors derived in the previous section. The main input

parameters of LCSR are the DAs of the Ξ baryon, which are
calculated in [13,14].
The normalization parameters of these DAs are obtained

from the analysis of the two-point sum rules (see for
example [13–15]), whose values are

fΞ ¼ ð9.9� 0.4Þ × 10−3 GeV2;

λ1 ¼ −ð2.8� 0.1Þ × 10−2 GeV2;

λ2 ¼ ð5.2� 0.2Þ × 10−2 GeV2;

λ3 ¼ ð1.7� 0.1Þ × 10−2 GeV2:

The numerical values of other input parameters used in
the calculations are presented in Table I.
The sum rules contain three auxiliary parameters,

the Borel mass M2, the continuum threshold s0, and the
parameter β in the expression of the interpolating current.
According to the sum rules methodology, we should find
the working regions of these parameters, where the form
factors are practically insensitive to their variations.
The working interval of the Borel mass parameter is

determined by demanding that both the continuum and
power corrections have to be sufficiently suppressed.
These requirements lead to the following working inter-
val of the Borel mass parameter, M2 ¼ ð8� 2Þ GeV2.
Moreover, the value of the continuum threshold is
determined by requiring that the mass sum rules repro-
duce the measured mass of the lowest baryon mass to
within 10% accuracy for definite values of the parameter
β. This leads to the threshold value, s0 ¼ ð11� 1Þ GeV2.
Finally, to find the working region of β, where β ¼ tan θ,
we study the dependency of mass on cos θ at several fixed
values of M2 and s0. We observe that the mass exhibits
good stability to the variation of cos θ in the inter-
val −1.0 < cos θ < −0.6.
It should be emphasized that, the LCSR predictions,

unfortunately, are not applicable to the whole physical
region m2

l ≤ q2 ≤ ½mΞc
ðmΞ�

c
Þ −mΞ�2. The LCSR for the

form factors are reliable only up to q2 ≤ 0.5 GeV2.

TABLE I. The values of the input parameters used in our
calculations.

Parameters Value

mΞþ
c

ð2467.71� 0.23Þ MeV [16]
mΞ0

c
ð2470.44� 0.28Þ MeV [16]

mΞ�þ
c

ð2791.9� 0.5Þ MeV [16]
mΞ�0

c
ð2793.9� 0.5Þ MeV [16]

m0
Ξ ð1314.86� 0.20Þ MeV [16]

m−
Ξ ð1321.71� 0.07Þ MeV [16]

hq̄qið1 GeVÞ −ð246þ28
−19 MeVÞ3 [10]

m̄cðm̄cÞ 1.28� 0.03 GeV [17]
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To extend this restricted domain to the full physical domain given above, we use the z-series parametrization of the form
factors [18], which is given as

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ;

where t0 ¼ q2max ¼ ½mΞc
ðmΞ�

c
Þ −mΞ�2 and tþ ¼ ðmDs

þmKÞ2.
The following parametrization

fðq2Þ ¼ 1

1 − q2=ðmf
poleÞ2

faf0 þ af1zðq2; t0Þ þ af2 ½zðq2; t0Þ�2g; ð12Þ

reproduces best fits for the form factors predicted by the LCSR. The pole masses for the Ξc → ΞðΛÞ transition are

mpole ¼

8>>><
>>>:

2.112ð2.010Þ GeV for the form factors f1; f2; g̃1; and g̃2;

2.535ð2.423Þ GeV for the form factors g1; g2; f̃1; and f̃2;

2.317ð2.300Þ GeV for the form factors f3; g̃3;

1.969ð1.870Þ GeV for the form factors g3; f̃3

: ð13Þ

The values of the fit parameters af0 , a
f
1 and af2 for the

Ξc → Ξ and Ξc → Λ form factors are presented in Tables II
and III, respectively.
Dependency of the form factors f1, f2, f3 and g1, g2, and

g3 on q2, at the fixed value of s0 ¼ 10.0 GeV2, and at
several fixed values of the Borel mass parameter M2 from

its working region of the Ξc → Ξμνμ decay are presented in
Figs. 1 and 2, respectively.
Having obtained the results for the form factors, we

estimate the decay widths of the Ξc → Blν decays. The
width of these decays can be calculated using helicity
formalism [19]. We choose the rest frame of the Ξc baryon,

TABLE III. Form factors of the Ξc → Λ transition.

Ξc → Λ fið0Þ a0 a1 a2

f1 −0.36� 0.06 −0.19� 0.05 −4.00� 0.80 22.68� 2.20
f2 −0.18� 0.04 −0.21� 0.08 −0.49� 0.08 8.77� 1.00
f3 0.11� 0.03 1.17� 0.12 −19.94� 2.50 93.66� 9.40
g1 −0.12� 0.03 0.26� 0.04 −7.65� 0.90 38.88� 4.00
g2 0.18� 0.04 0.38� 0.08 −3.10� 0.50 10.74� 1.10
g3 −0.05� 0.01 −0.24� 0.05 4.28� 1.00 −22.98� 2.30

TABLE II. Form factors of the Ξc → Ξ transition.

Ξc → Ξ fið0Þ a0 a1 a2

f1 −0.29� 0.05 −0.70� 0.08 12.11� 1.50 −89.50� 10.00
f2 −0.12� 0.02 −0.55� 0.06 12.78� 1.50 −95.67� 11.00
f3 −0.49� 0.10 −1.81� 0.20 37.68� 4.00 −263.79� 15.00
g1 −0.22� 0.04 −0.39� 0.04 5.52� 0.60 −44.91� 6.00
g2 0.45� 0.10 1.24� 0.15 −20.95� 2.60 132.68� 8.00
g3 0.57� 0.12 1.26� 0.15 −18.27� 2.20 114.76� 12.00
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where the z axis points along the Woff-shell to calculate the
helicity amplitudes, and we obtain

HVðAÞ
þ1

2
;þ1

¼ ffiffiffiffiffiffiffiffiffiffi
2Q∓

p �
f1ðg1Þ −

m�
mΞc

f2ðg2Þ
�
;

HVðAÞ
þ1

2
;0

¼
ffiffiffiffiffiffiffi
Q∓

p
ffiffiffiffiffi
q2

p
�
m�f1ðg1Þ −

q2

mΞc

f2ðg2Þ
�
;

HVðAÞ
þ1

2
;t

¼
ffiffiffiffiffiffiffi
Q�

p
ffiffiffiffiffi
q2

p
�
m∓f1ðg1Þ −

q2

mΞc

f3ðg3Þ
�
;

where m� ¼ mΞc
�mB, and Q� ¼ m2

� − q2.
In these expressions, the first and second subindices

describe the helicities of the B baryon and virtual W,
correspondingly. The amplitudes for the negative values
of the helicities can be obtained from the parity consid-
eration, i.e.,

HV
−λB;−λW ¼ HV

λB;λW
;

HA
−λB;−λW ¼ −HA

λB;λW
:

The total helicity amplitude is given by

HλB;λW ¼ HV
λB;λW

−HA
λB;λW

:

Using the expressions of the above-given helicity ampli-
tudes for the differential decay widths, we obtain

dΓðΞc → BlνÞ
dq2

¼ G2
F

ð2πÞ3 jVcqj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Ξc
;m2

B;q
2Þ

q
ðq2 −m2

lÞ2
48m3

Ξc
q2

×

�
jHþ1

2
;þ1j2 þ jH−1

2
;−1j2

þ
�
1þ m2

l

2q2

��
jHþ1

2
;0j2 þ jH−1

2
;0j2

�

þ 3m2
l

q2

�
jHþ1

2
;tj2 þ jH−1

2
;tj2

��
;

where GF is the Fermi constant, Vcq is the CKM matrix
element (q ¼ s or d), and

λðm2
Ξc
; m2

B; q
2Þ ¼ m4

Ξc
þm4

B þ q4 − 2m2
Ξc
m2

B

− 2m2
Ξc
q2 − 2m2

Bq
2;

The differential decay width for the Ξ�
c → Blν decay can

be obtained from Ξc → Blν decay by making the follow-
ing replacements: f1 → −g̃1; f2 → g̃2; g1 → −f̃1; g2 → f̃2,
and mΞc

→ mΞ�
c
.

Using the values of the CKM matrix elements jVcdj ¼
0.2211� 0.0700 and jVcsj ¼ 0.987� 0.011 [16] and theΞc

life time τðΞ0
cÞ¼ð1.53�0.06Þ×10−13 s, and τðΞþ

c Þ ¼
ð4.56� 0.05Þ × 10−13 s we can predict the branching ratios
of the corresponding semileptonic decays. Our results are
presented in Table IV. In this table, we also present the values

FIG. 1. The dependency of the form factors f1, f2, and f3 for the Ξþ
c → Ξ0μþνμ transition on q2, at s0 ¼ 10 GeV2, and several values

of the Borel mass parameter M2.

FIG. 2. The dependency of the form factors g1, g2, and g3 for the Ξþ
c → Ξ0μþνμ transition on q2, at s0 ¼ 10 GeV2, and several values

of the Borel mass parameter M2.
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of the branching ratios of the semileptonicΞc → Blν decays
obtained from other theoretical approaches, as well as the
latest announced experimental results. From a comparison of
the predictions of the different approaches, we see that our
results are close to that of the ones given in [20] as well as the
experimental measurements [1,2]. On the other hand, the
obtained branching ratios are slightly smaller than the results
presented in [4–6] but larger than the values obtained in
[7,21]. However, our results are considerably different from
the results obtained in [8] for the Ξc → Ξlν decay, although
they applied the same method as used in this work. This
discrepancy can be explained as follows. The interpolating
current of Ξc baryon interacts not only with ground state
positive parity baryons JP ¼ ð1

2
Þþ but also with JP ¼ 1

2
−

negative parity baryon which was neglected in [8]. Thus, the
dispersion relation of Ξc baryon is modified, and since the
mass difference between these states is around 300 MeV,
the results change considerably.
Our predictions on the branching ratios of Ξþ

c → Λlνl
are also quite in agreement with the results of [5] within the
error. The predictions on the branching ratios can further be
improved by more precise determination of the input
parameters appearing in DAs of the Ξ and Λ baryons, as
well as taking into account OðαsÞ corrections.

IV. CONCLUSION

The form factors of the semileptonic Ξc → ΞðΛÞlν
decays are studied in the framework of the light cone
QCD sum rules method. In order to eliminate the con-
tamination of the negative parity Ξ�

c baryon, the combina-
tion of the sum rules obtained from different Lorentz
structures is used.
Using the obtained results on the form factors and

applying the helicity formalism, we also estimated the
corresponding branching ratios of the considered decays.
Moreover, our results on the branching ratios are compared
with the predictions of the other approaches as well as with
the experimental measurements.
The branching ratios of Ξc → Ξlν decays has already

been studied in various models like the relativistic quark
model [5], LATTICE QCD [6], 3-point sum rules [7], and
light front quark models [20,21]. Our calculations within
the light cone sum rule showed that the results are in good
agreement with the experimental measurements done by
the BELLE [1] and ALICE [2] collaborations.
The discrepancy between our finding and the results of

[8] in which the same method was used can be explained by
taking into account the contributions of the Ξ�

c baryon that
was neglected in [8].
Moreover, we also estimated the decay width of the

CKM suppressed semileptonic Ξ → Λlν decay within the
light cone sum rules. The obtained branching ratios are
close to the predictions of [5] and the magnitude of the
obtained value shows that it has potential to be measured in
the future experimentsTA

B
L
E
IV
.

T
he

ex
is
tin

g
ex
pe
ri
m
en
ta
l
an
d
th
eo
re
tic
al

re
su
lts

on
th
e
br
an
ch
in
g
ra
tio

s
(i
n
%
)
of

th
e
se
m
ile
pt
on
ic

Ξ c
→

B
lν

de
ca
ys
.

D
ec
ay

ch
an
ne
l
Pr
es
en
t
w
or
k

B
E
L
L
E
[1
]

A
L
IC
E
[2
]
SU

(3
)
[3
]

SU
(3
)
[4
]

R
Q
M

[5
]

L
A
T
T
IC
E
[6
]

3P
SR

[7
]

L
C
SR

[8
]
L
FQ

M
[2
1]

L
F
[2
0]

Ξ0 c
→

Ξ−
eþ

ν e
1
.8
5
�
0
.5
6

1
.7
2
�
0
.1
0
�
0
.1
2
�
0
.5
0

1
.8
�
0
.2

4
.8
7
�
1
.7
4

2
.4
�
0
.3

2.
38

2
.3
8
�
0
.3
0
�
0
.3
3
1
.4
5
�
0
.3
1
7
.2
6
�
2
.5
4

1.
35
4

1
.7
2
�
0
.3
5

Ξ0 c
→

Ξ−
μþ

ν μ
1
.7
9
�
0
.5
4

1
.7
1
�
0
.1
7
�
0
.1
3
�
0
.5
0

1
.8
�
0
.2

2
.4
�
0
.3

2.
31

2
.2
9
�
0
.2
9
�
0
.3
1
1
.4
5
�
0
.3
1
7
.1
5
�
2
.5
0

��
�

Ξþ c
→

Ξ0
eþ

ν e
5
.5
1
�
1
.6
5

��
�

��
�

3
.3
8
þ2

.1
0

−
2
.2
6

9
.8
�
1
.1

9.
40

7
.1
8
�
0
.9
0
�
0
.9
8

��
�

2
8
.6
�
1
0

5.
39

5
.2
�
1
.0
2

Ξþ c
→

Ξ0
μþ

ν μ
5
.3
4
�
1
.6
1

��
�

��
�

��
�

9
.8
�
1
.1

9.
11

6
.9
1
�
0
.8
7
�
0
.9
3

��
�

2
8
.2
�
9
.9

��
�

��
�

Ξþ c
→

Λ
0
eþ

ν e
0
.0
9
2
�
0
.0
2
8

��
�

��
�

��
�

0
.1
6
6
�
0
.0
1
8

0.
12
7

��
�

��
�

��
�

0.
08
2

��
�

Ξþ c
→

Λ
0
μþ

ν μ
0
.0
8
9
�
0
.0
2
7

��
�

��
�

��
�

��
�

0.
12
4

��
�

��
�

��
�

��
�

T. M. ALIEV, S. BILMIS, and M. SAVCI PHYS. REV. D 104, 054030 (2021)

054030-8



[1] Y. B. Li et al. (Belle Collaboration), Measurements of the
Branching Fractions of Semileptonic Decays Ξ0

c → Ξ−lþνl
and Asymmetry Parameter of Ξ0

c → Ξ−πþ Decay, arXiv:
2103.06496 [Phys. Rev. Lett. (to be published)].

[2] S. Acharya et al. (ALICE Collaboration), Measurement of
the cross sections of Ξ0

c and Ξþ
c baryons and branching-

fraction ratio BRðΞ0
c → Ξ−eþνeÞ=BRðΞ0

c → Ξ−πþÞ in pp
collisions at 13 TeV, arXiv:2105.05187.

[3] C. Q. Geng, Y. K. Hsiao, C.-W. Liu, and T.-H. Tsai,
Antitriplet charmed baryon decays with SU(3) flavor
symmetry, Phys. Rev. D 97, 073006 (2018).

[4] C.-Q. Geng, C.-W. Liu, T.-H. Tsai, and S.-W. Yeh, Semi-
leptonic decays of anti-triplet charmed baryons, Phys. Lett.
B 792, 214 (2019).

[5] R. N. Faustov and V. O. Galkin, Semileptonic Ξc baryon
decays in the relativistic quark model, Eur. Phys. J. C 79,
695 (2019).

[6] Q.-A. Zhang, J. Hua, F. Huang, R. Li, Y. Li, C.-D. Lu, P.
Sun, W. Sun, W. Wang, and Y.-B. Yang, Ξc → Ξ form
factors and Ξc → Ξlþνl decay rates from lattice QCD,
arXiv:2103.07064.

[7] Z.-X. Zhao, Semi-leptonic form factors of Ξc → Ξ in QCD
sum rules, arXiv:2103.09436.

[8] K. Azizi, Y. Sarac, and H. Sundu, Light cone QCD sum
rules study of the semileptonic heavy ΞQ and Ξ0

Q transitions
to Ξ and Σ baryons, Eur. Phys. J. A 48, 2 (2012).

[9] V. M. Braun, A. Lenz, and M. Wittmann, Nucleon form
factors in QCD, Phys. Rev. D 73, 094019 (2006).

[10] A. Khodjamirian, Ch. Klein, Th. Mannel, and Y.M. Wang,
Formfactorsand strongcouplingsofheavybaryons fromQCD
light-cone sum rules, J. High Energy Phys. 09 (2011) 106.

[11] T. M. Aliev, K. Azizi, T. Barakat, and M. Savcı, Diagonal
and transition magnetic moments of negative parity

heavy baryons in QCD sum rules, Phys. Rev. D 92,
036004 (2015).

[12] E. Bagan, M. Chabab, H. Gunter Dosch, and S. Narison,
Spectra of heavy baryons from QCD spectral sum rules,
Phys. Lett. B 287, 176 (1992).

[13] Y.-L. Liu and M.-Q. Huang, Light-cone distribution ampli-
tudes of Ξ and their applications, Phys. Rev. D 80, 055015
(2009).

[14] Y.-L. Liu and M.-Q. Huang, Distribution amplitudes of Σ
and Λ and their electromagnetic form factors, Nucl. Phys.
A821, 80 (2009).

[15] P. Wein and A. Schäfer, Model-independent calculation of
SUð3Þf violation in baryon octet light-cone distribution
amplitudes, J. High Energy Phys. 05 (2015) 073.

[16] P. A. Zyla et al. (Particle Data Group), Review of particle
physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[17] K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P.
Marquard, M. Steinhauser, and C. Sturm, Charm and
bottom quark masses: An update, Phys. Rev. D 80,
074010 (2009).

[18] C. Bourrely, I. Caprini, and L. Lellouch, Model-independent
description of B → πlν decays and a determination of jVubj,
Phys. Rev. D 79, 013008 (2009); Erratum, Phys. Rev. D 82,
099902 (2010).

[19] T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, P.
Santorelli, and N. Habyl, Semileptonic decay Λb → Λc þ
τ− þ ντ in the covariant confined quark model, Phys. Rev. D
91, 074001 (2015); Erratum, Phys. Rev. D 91, 119907 (2015).

[20] H.-W. Ke, Q.-Q. Kang, X.-H. Liu, and X.-Q. Li, The weak

decays of Ξð0Þ
c → Ξ in the light-front quark model, arXiv:

2106.07013.
[21] Z.-X. Zhao, Weak decays of heavy baryons in the light-front

approach, Chin. Phys. C 42, 093101 (2018).

SEMILEPTONIC Ξc BARYON DECAYS IN THE LIGHT … PHYS. REV. D 104, 054030 (2021)

054030-9

https://arXiv.org/abs/2103.06496
https://arXiv.org/abs/2103.06496
https://arXiv.org/abs/2105.05187
https://doi.org/10.1103/PhysRevD.97.073006
https://doi.org/10.1016/j.physletb.2019.03.056
https://doi.org/10.1016/j.physletb.2019.03.056
https://doi.org/10.1140/epjc/s10052-019-7214-5
https://doi.org/10.1140/epjc/s10052-019-7214-5
https://arXiv.org/abs/2103.07064
https://arXiv.org/abs/2103.09436
https://doi.org/10.1140/epja/i2012-12002-1
https://doi.org/10.1103/PhysRevD.73.094019
https://doi.org/10.1007/JHEP09(2011)106
https://doi.org/10.1103/PhysRevD.92.036004
https://doi.org/10.1103/PhysRevD.92.036004
https://doi.org/10.1016/0370-2693(92)91896-H
https://doi.org/10.1103/PhysRevD.80.055015
https://doi.org/10.1103/PhysRevD.80.055015
https://doi.org/10.1016/j.nuclphysa.2009.02.003
https://doi.org/10.1016/j.nuclphysa.2009.02.003
https://doi.org/10.1007/JHEP05(2015)073
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.80.074010
https://doi.org/10.1103/PhysRevD.80.074010
https://doi.org/10.1103/PhysRevD.79.013008
https://doi.org/10.1103/PhysRevD.82.099902
https://doi.org/10.1103/PhysRevD.82.099902
https://doi.org/10.1103/PhysRevD.91.074001
https://doi.org/10.1103/PhysRevD.91.074001
https://doi.org/10.1103/PhysRevD.91.119907
https://arXiv.org/abs/2106.07013
https://arXiv.org/abs/2106.07013
https://doi.org/10.1088/1674-1137/42/9/093101

