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We investigate radial excitation of the quark-antiquark pair in the π0 meson and its effects on the
γγ� → π0 transition form factor in the framework of light cone perturbative QCD. The existing constraints
on the light cone wave function of the lowest Fock state jqq̄i in the π0 meson allow a sizeable radial
excitation of the quark-antiquark pair. We construct the light cone wave function for the quark-antiquark
pair in the first radially excited state (the 2S state) using a simple harmonic oscillator potential. The
distribution amplitude obtained for the 2S state has two nodes in x at low scale ofQ and thereby has a much
strong scale dependence than the 1S state. Contributions from this radial excitation to the γγ� → π0

transition form factor exhibit different Q2-dependence behavior from the ground state and thus can modify
the prediction for the transition form factor in the medium-large region of Q2.

DOI: 10.1103/PhysRevD.104.054025

I. INTRODUCTION

Light cone perturbative QCD has been applied to the
calculations for many inclusive and exclusive hadronic
processes. The test of these calculations against available
experimental data, particularly for many exclusive proc-
esses, is usually retarded by the possible higher order and
higher twist contributions to the theoretical calculations at
low and medium regions of momentum transfer (Q2) and
the limited availability of experimental data at highQ2. The
measurements of the γγ� → π0 transition form factor (TFF)
[1,2], the simplest QCD process involving a hadron, posed
a very interesting challenge to the theoretical calculations.
While the results from the BABAR Collaboration [1] show a
rapid growth for Q2 > 15 GeV2 and a significant deviation
from the asymptotic prediction from perturbative QCD, the
results from the Belle Collaboration [2] are much more in
agreement with theoretical expectations. A lot of theoretical
studies have been done (see, for example, [3–21]) in
explaining these measurements for the pion TFF.
In this work, we investigate the possible radial excitation

of the quark-antiquark (qq̄) pair in the π0 and study its
contribution to the γγ� → π0 transition form factor. The
excited qq̄ pair, when in the first radially excited state with
the lowest angular momentum (i.e., the 2S state), has the
same quantum numbers as the ground state (the 1S state),

i.e., JPC ¼ 0−þ; such an excitation does not violate any
fundamental principles of QCD and thus is allowed in the
quark models of hadrons. In Sec. II, we construct the light
cone wave function for the qq̄ pair in the 2S state using the
wave function in the centre-of-mass (CM) frame for the
simple harmonic oscillator potential, and the Brodsky,
Huang and Lepage (BHL) prescription [22,23] for con-
necting the equal-time (instant-form) wave function in the
centre-of-mass frame and the light-front wave function. We
exam the existing constraints on the pion light cone wave
function and the possibility for the qq̄ pair in the 2S state. In
Sec. III, we calculate the contribution of the possible 2S
state to the γγ� → π0 transition form factor. A summary is
given in the last Section.

II. LIGHT CONE WAVE FUNCTION AND
DISTRIBUTION AMPLITUDE WITH RADIAL

EXCITATION

Light cone wave functions (LCWFs) are universal and
contain all nonperturbative information of partons in the
hadrons. The light cone wave functions can be deduced
from experimental data and/or from nonperturbative QCD
computations [24]. In this study we adopt a widely used
method which was first suggested by Brodsky, Huang and
Lepage [22,23] in computing the LCWFs for the mesons.
In this method, a connection between the equal-time
(instant-form) wave function in the center-of-mass (CM)
frame, usually computed using effective potentials for the
qq̄ pair, and the light-front wave function is established by
equating the off-shell propagator ε ¼ M2 − ðPn

i¼1 kiÞ2 in
the two frames,
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where qi is the momentum of constituent i in the CM
frame, and xi and k⊥i are the light cone momentum fraction
and transverse momentum of the constituent i in the light
cone frame. For a two-identical-particle system with
m≡m1 ¼ m2, q≡ q1 ¼ −q2, k⊥ ≡ k⊥1 ¼ −k⊥2, and
x≡ x1 ¼ 1 − x2, one has

q2 ¼ k2⊥ þm2

4xð1 − xÞ −m2; ð1Þ

and thereby can establish a relationship for the wave
functions both in the light cone form ψðx;k⊥Þ and in
the equal-time form ψðqÞ,

ψ

�
k2⊥ þm2

4xð1 − xÞ −m2

�
↔ ψðq2Þ: ð2Þ

For the equal-time wave function in the CM frame, we
employed the wave function computed with the harmonic
oscillator potential for the quark-antiquark system,
VðrÞ ¼ 1

2
mω2r2, where r is the separation between the

quark and antiquark. The wave functions for the ground
state (1S) and the first radially excited state (2S) are [25],

ψ1SðrÞ ¼
�
2B
π

�
3=4

expð−Br2Þ; ð3Þ

ψ2SðrÞ ¼
ffiffiffi
3

2

r �
2B
π

�
3=4

�
1 −

4

3
Br2

�
expð−Br2Þ; ð4Þ

where B ¼ 1
2
mω. The wave functions in the momentum

space can be written in the form of

ψ1SðqÞ ∝ exp

�
−
q2

4B

�
; ð5Þ

ψ2SðqÞ ∝ðq2 − 3BÞ exp
�
−
q2

4B

�
: ð6Þ

Using relationship Eq. (2) one can obtain the spatial parts
of light cone wave functions for the 1S and 2S states. The
obtained LCWF for the ground state is the well-known
Gaussian form. In the widely-used factorized Gaussian
form for the LCWF the dependence on the quark massm is
absorbed into the overall normalization factor for the wave
function. Thus we use the following forms of the LCWFs
for the qq̄ pair in the 1S and 2S state,

ψ1S
qq̄ðx;k⊥Þ ¼ a1 exp

�
−

1

4B

�
k2⊥

4xð1 − xÞ
��

; ð7Þ

ψ2S
ss̄ ðx;k⊥Þ ¼ a2

�
k2⊥

4xð1 − xÞ − 3B
�

× exp

�
−

1

4B

�
k2⊥

4xð1 − xÞ
��

; ð8Þ

where the parameters a1, a2 and B can be fixed, in principle,
by considering existing constraints on the pion LCWF.
The pion distribution amplitude (DA) is defined in the

light-front formalism as the integral of the valance qq̄
LCWF in light cone gauge Aþ ¼ 0,

ϕðx; μÞ ¼
Z

μ

0

d2k⊥
16π3

ψπðx;k⊥Þ; ð9Þ

where μ is an arbitrary scale. Thus one can define the
distribution amplitudes for the 1S and 2S states, ϕ1Sðx; μÞ
and ϕ2Sðx; μÞ, using the LCWFs given by Eqs. (7) and (8),

ϕ1Sðx; μÞ ¼ a1B
π2

xð1 − xÞ
�
1 − exp

�
−

μ2

16Bxð1 − xÞ
��

;

ð10Þ

ϕ2Sðx;μÞ¼ a2B2

π2
xð1−xÞ

×

�
1−

�
1þ μ2

4Bxð1−xÞ
�
exp

�
−

μ2

16Bxð1−xÞ
��

:

ð11Þ
Both distribution amplitudes turn into the asymptotic form,
ϕðxÞ ∼ xð1 − xÞ, at large scale of μ. However, the expo-
nential dependence on the scale μ, via the combination
−μ2=½4Bxð1 − xÞ�, means the DAs could be substantially
different from the asymptotic form for small μ.
Furthermore, the DA for the 2S state have two nodes,
with negative values at the medium x region for μ2 <
11.35B (see Fig. 2).
Four constraints have been identified in determining the

parameters in the LCWF of the lowest Fock state of the
pion [26]. The lepton decay of π → μν suggests

Z
1

0

dxϕðx; μÞ ¼ fπ
2

ffiffiffi
3

p ; ð12Þ

where fπ ¼ 92.4 MeV is the pion decay constant. This
constraint depends on the choice of the scale μ, although it
is common practice in the literature to choose a high
enough value for μ in aiming to reduce this dependence on
the choice of scale for any calculations.
The second constraint is obtained [22] by relating chiral

anomaly prediction for the π0 → γγ decay width to the light
cone formalism prediction for the TFF at the limit Q2 → 0,

Z
1

0

dxψπðx; 0⊥Þ ¼
ffiffiffi
3

p

fπ
: ð13Þ
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The prediction for the TFF at Q2 → 0 in the light cone
formalism involves a divergent integral and relies on the
expansion of the wave function under the condition of
q⊥ ≪ k⊥ (with Q2 ¼ q2⊥) [22]. This prescription could be
invalid when the 2S state is included in the calculation since
the wave function for the 2S state given by Eq. (8) has an
additional dependence on transverse momentum apart from
the exponential factor.
The third constraint is the result from requiring the

probability of finding the qq̄ Fock state in the pion to be
smaller than 1,

Pqq̄ ¼
Z

1

0

dx
Z

∞

0

d2k⊥
16π3

jψπðx;k⊥Þj ≤ 1: ð14Þ

With the wave functions given by Eqs. (7) and (8), the

probabilities are found to be P1S
qq̄ ¼ a2

1
B

12π2
and P2S

qq̄ ¼ 5a2
2
B3

12π2
for

the 1S and 2S states, respectively. The requirement of the
probability being smaller than 1 puts constraints on the
combination of parameters a1 and a2 with B.
The fourth constraint comes from considerations of the

average quark transverse momentum of the pion which is
defined as the root-mean-squared for the quark transverse

momentum, hk⊥i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2⊥iqq̄

q
, with

hk2⊥iqq̄ ¼
Z

1

0

dx
Z

∞

0

d2k⊥
16π3

jk⊥j2jψπðx;k⊥Þj2=Pqq̄: ð15Þ

It is known experimentally that the average quark trans-
verse momentum of the pion should be about a few
hundreds MeV. Thus the average quark transverse momen-
tum of the pion in the lowest Fock state should be in the
range of a few hundreds MeV. For the wave functions given
by Eqs. (7) and (8), the average quark transverse momen-
tum is proportional to

ffiffiffiffi
B

p
, with hk⊥i1Sqq̄ ¼

ffiffiffiffiffiffiffiffi
8=5

p ffiffiffiffi
B

p
and

hk⊥i2Sqq̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
72=25

p ffiffiffiffi
B

p
for the 1S and 2S states, respec-

tively. Thus considerations of the average quark transverse
momentum provide information for the parameter B only.
Equations (12), (13), (14), and (15) form a set of

constraints on the pion LC wave function. Applying those
constrains for the 1S state, we have

Ba1 ≥
ffiffiffi
3

p
π2fπ ðlower limit applicable for μ → ∞Þ;

ð16Þ

a1 ¼
ffiffiffi
3

p

fπ
; ð17Þ

Ba21 ¼ 12π2P1S
qq̄; ð18Þ

B ¼ 5

8
ðhk⊥i1Sqq̄Þ2: ð19Þ

Requiring hk⊥i1Sqq̄ to be in the range of (300–500) MeV
together with those constraints we have a1 ¼

ffiffiffi
3

p
=fπ and

B ¼ ð0.0843–0.156Þ GeV2, which suggests the probability
P1S
qq̄ is in the range of 0.25–0.46.1 The obtained probability

suggests the higher Fock state components such as jqq̄gi,
jqq̄qq̄i etc and/or the radial excitation of the lowest Fock
state jqq̄i in the pion are significant. While there are limited
discussions on the former possibility, we are not aware of
any discussion on the latter possibility and its significance
as we mentioned in the previous section.
The parameter a2 cannot be determined by using the first

and the second constraints [Eqs. (12) and (13)] since the DA
for the 2S state have two nodes when μ is not very large and
the contribution from the 2S state to the integral in Eq. (12)
could vanish while it is not clear whether Eq. (13) is
applicable for the 2S state. We will set a2 to be such a value
that the probability for the 2S state is 1=2 of that for the 1S
state and study its effect on the π0 → γγ transition from
factor in the next section. Taking P1S

qq̄ ¼ 25% and P2S
qq̄ ¼

12.5% we have B ¼ 0.0843 GeV2, a1 ¼ 18.4 GeV−1 and
a2 ¼ 70.3 GeV−3. The corresponding average quark trans-
verse momenta for the 1S and 2S states are 367 MeV and
493 MeV, respectively.
The dependence of DAs on the scale μ, which is the

“soft”QCD evolution of the DA discussed in [10], is shown
in Figs. 1 and 2 for the 1S and 2S sates, respectively. The
DA for the 2S state could have negative values in the
medium x region for μ2 < 11.35B. This soft QCD evolu-
tion has a far greater impact on the 2S state than on the 1S
state. This difference in the scale dependence of the two
DAs will modify QCD predictions for exclusive processes
in a large range of Q2 when the 2S state contributions are
included.

FIG. 1. Soft evolution of the pion distribution amplitude for the
1S state. The dotted and dashed curves (color online) are for
μ2 ¼ 0.5 and 1 GeV2, respectively. The solid curve is for the
asymptotic form ϕðxÞ ¼ ffiffiffi

3
p

fπxð1 − xÞ. The parameters in the
LCWF are taken to be B ¼ 0.0843 GeV2 and a1 ¼ 18.4 GeV−1.

1The lower limit is set by Eq. (16).
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III. THE EFFECTS ON THE γγ� → π0

TRANSITION FORM FACTOR

The existence of radially excited components in the pion,
though not at a very significant level, may have potential
impacts on various processes. We study the effects on the
γγ� → π0 transition form factor in the framework of light
cone perturbative QCD. The transition form factor can be
written as, when the involved momentum transfer Q2 is
large [27–29],

FπγðQ2Þ ¼ 2
ffiffiffi
3

p
ðe2u − e2dÞ

Z
1

0

dx

×
Z

d2k⊥
16π3

ψπðx;k⊥ÞTHðx;k⊥; QÞ; ð20Þ

where ψπðx;k⊥Þ is the pion light cone wave function and
TH is the hard scattering amplitude,

THðx;k⊥; QÞ ¼ q⊥ · ðx̄q⊥ þ k⊥Þ
q2⊥ðx̄q⊥ þ k⊥Þ2

þ ðx ↔ x̄Þ; ð21Þ

with x̄ ¼ 1 − x and q2⊥ ¼ −Q2. Calculations based on
Eq. (20) give a good description of experimental data
for the meson transition form factors in a large range of Q2

(Q2 > a few GeV2) [29].
The LCWFs for both the 1S and 2S states, Eqs. (7) and

(8), depend on the transverse momentum through k2⊥. The
transition form factor can be expressed in terms of the
distribution amplitudes for the 1S and 2S sates,

Q2FπγðQ2Þ ¼ 4ffiffiffi
3

p
Z

1

0

dx
x̄
½ϕ1Sðx; x̄QÞ þ ϕ2Sðx; x̄QÞ�: ð22Þ

The first term in Eq. (22) represents the contribution from
the 1S state while the second term represents the

contribution from the 2S state. The ratio of the contribution
to the transition form factor from the 2S state to that from
the 1S state, RðQ2Þ ¼ F2S

πγðQ2Þ=F1S
πγðQ2Þ is shown in

Fig. 3. The contribution from the 1S state is positive for
all Q2. Figure 3 shows that the contribution from the 2S
state changes sign from negative to positive at Q2 just
above 6 GeV2. In terms of the magnitude, the contribution
from the 2S state is about 40% of that from the 1S state at
Q2 ¼ 1 Gev2 and 25% at Q2 ¼ 40 GeV2. It is the combi-
nation x̄Q that sets the scale in the DAs, thus the TFF at a
scale Q is determined by the DAs at all scales up to Q2,
rather than just the DAs at that particular scale. The 2S state
DA evolves more significantly than the 1S state DA. Thus
including the contribution from the 2S state will introduce
stronger dependence onQ2 than including the 1S state only
for a large range of Q2. In Fig. 4 we show the contributions
from both the 1S and 2S states, and the total for the
transition form factor, in comparison with the data from

FIG. 3. The ratio of the contribution to the transition form
factor from the 2S state to that from the 1S state,
RðQ2Þ ¼ F2S

πγ ðQ2Þ=F1S
πγ ðQ2Þ.

FIG. 4. Transition from factor shown asQ2FπγðQ2Þ. The dotted
and dashed curves are the contributions from the 1S and 2S states,
respectively. The solid curve represents the results when con-
tributions from both 1S and 2S states are included. The results are
for P1S

qq̄ ¼ 25% and P2S
qq̄ ¼ 12.5%. The data are taken from

[1,2,30,31].

FIG. 2. Soft evolution of the pion distribution amplitude for the
2S state. The dot-dashed and dotted curves (color online) are for
μ2 ¼ 0.5 and 1 GeV2, respectively. The dashed cure is for the
distribution amplitude at the asymptotic limit μ2 → ∞. The solid
curve is for 1=2 of the asymptotic form ϕðxÞ ¼ ffiffiffi

3
p

fπxð1 − xÞ for
the 1S state. The parameters in the LCWF are taken to be B ¼
0.0843 GeV2 and a2 ¼ 70.3 GeV−3.
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various experimental groups. Including the 2S state con-
tribution in the calculations makes the TFF grow faster than
including the 1S state only, but the growth is still far below
what is suggested by the BABAR data. This reaffirms the
conclusion made in [6,10,11] that the TFF measured by the
BABAR Collaboration is difficult to explain in the current
framework of QCD. Including the 2S state contribution
in the calculations improves the agreement with the
Belle’s measurement. The next-to-leading order correc-
tions to the TFF are about 10% at Q2 ∼ 30 GeV2 [10]. A
better agreement with the Belle’s data could be achieved
by including the next-to-leading corrections and fine
turning the probability for the 2S state to be in the range
of 10–15%. The calculations for the small Q2 region
(Q2 < 10 GeV2) are much smaller than the experimental
data as the nonperturbative contributions are expected to be
dominant in this region [5,21].

IV. SUMMARY

In the Fock state expansion for the light mesons, the
probability of finding the qq̄ pair in the 1S state is generally
very small. Analyzing all constraints for the pion light cone
wave function and distribution amplitude from considering
the lepton and two-photon decays and experimental infor-
mation for the quark transverse momentum, we found the
probability for the pion to be in the 1S state is in the range
of 25%–46%. Apart from higher Fock states involving
multiple quark-antiquark pairs and gluons, the qq̄ pair
could be in the radially excited states. We constructed the
light cone wave function for the first radially excited state
(the 2S state) of the pion employing a phenomenological
connection between the light cone wave function and the

equal-time wave function in the center-of-mass frame
which is obtained using an effective simple harmonic
oscillator potential. The distribution amplitude of the 2S
state at low scale has two nodes in x due to the light cone
wave function having a node in the momentum space. This
is significantly different from the distribution amplitude of
the 1S state which is positive in the whole range of x at any
scale. The soft QCD evolution has a much stronger impact
on the distribution amplitude for the 2S state than the
1S state.
We calculate the contribution from the radially excited

component (the 2S state) to the γγ → π0 transition form
factor. It is found that this contribution grows faster (when
the TFF is expressed as Q2FπγðQ2Þ) than the 1S state. A
probability for the 2S state in the range of 10%–15% gives
a good agreement with experimental data from the Belle
Collaboration; however, it is still very difficult to describe
the fast growth shown by the data from the BABAR
Collaboration.
The existence of radial excitations in the light mesons

will have impacts on predictions for many observables. A
study on the TFFs for the other light mesons such as the η
and η0 might provide some insights on the nature and extent
of the radial excitations in the hadrons, although the η − η0
mixing might complicate the conclusions one can draw
from such a study. Such an analysis and further studies for
the other processes will be presented in future work.
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