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Our first aim is to explore the effect of the collision integral with the insurance of instantaneous
conservation of particle number on the charge and heat transport in a thermal QCD medium. The second
aim is to see how the dimensional reduction due to strong magnetic field modulates the transport through
the entangled effects such as the collision-time and occupation probability etc. in the collision integral.
Final aim is to check how the quasiparticle description of partons, through the dispersion relation of thermal
QCD in strong magnetic field, alters the aforesaid conclusions. We observe that the modified collision term
expedites both transport, which is manifested by the larger magnitudes of electrical (σel) and thermal (κ)
conductivities, in comparison to the relaxation collision term. As a corollary, the Lorenz number is
dominated by the later and the Knudsen number is by the former. However, the strong magnetic field not
only flips the dominance of collision term in the heat transport, it also causes drastic enhancement of both
σel and κ and reduction in the specific heat. As a result, the equilibration factor, the Knudsen number
becomes much larger than one, which defies physical interpretation. Finally, the quasiparticle description
of partons in the absence of strong magnetic field impedes the transport of charge and heat, resulting in tiny
decrease of the conductivities. However, the strong magnetic field does noticeable observations: the
conductivities now gets reduced to the physically plausible values, the temperature dependence of σel gets
reversed, i.e., it now decreases with temperature, effect of collision integral gets smeared in κ etc. The
Knudsen number thus becomes much smaller than one, implying that the system be remained in
equilibrium. These findings attribute to the fact that the collective oscillation in the dispersion relation of
thermal QCD in strong magnetic field sets in much larger scale, manifested by the large in-medium flavor
masses.

DOI: 10.1103/PhysRevD.104.054024

I. INTRODUCTION

Quark gluon plasma (QGP), a deconfined state of quarks
and gluons is formed in heavy ion collision experiments at
Relativistic Heavy Ion Collider (RHIC) and Large Hadron
Collider (LHC). It is believed that our present universe was
also in QGP form around one microsecond after the big
bang. There exists such hot and dense matter in the core of
the neutron stars also. In the ongoing heavy ion collision
experiments at RHIC and LHC, a very strong magnetic
field, perpendicular to the reaction plane, could be pro-
duced in the very early stages of the collisions in noncentral
events [1,2] viz. order of m2

π at RHIC [3] and 15m2
π at

LHC [4]. Some very naive estimates predict that the decay
of the magnetic field in the nonconducting medium is very
fast but due to the finite value of the electrical conductivity
of the medium, the decay time for the magnetic field gets
elongated, which may then cause to affect the physical
quantities associated with QGP. In the recent years, the
effects of the background magnetic field on the various
properties of the QGP have been investigated by the various
research groups, such as the chiral magnetic effect [3,5],
magnetic and inverse magnetic catalysis [6–9], axial
magnetic effect [10,11], chiral vortical effect in rotating
QGP [12,13], the conformal anomaly and production of
soft photons [14,15], apart from that the dilepton
production rate [16–18], dispersion relation in the
magnetized thermal QED [19], refractive indices and
decay constants [14,20] and various thermodynamical
properties [21,22].
In the strong magnetic field (jqiBj ≫ T2 and

jqiBj ≫ m2
i , where qiðmiÞ is the electric charge (mass)

of the ith flavor), the dynamics of charged particles are

*skhan@ph.iitr.ac.in
†binoy@ph.iitr.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 054024 (2021)

2470-0010=2021=104(5)=054024(22) 054024-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.054024&domain=pdf&date_stamp=2021-09-21
https://doi.org/10.1103/PhysRevD.104.054024
https://doi.org/10.1103/PhysRevD.104.054024
https://doi.org/10.1103/PhysRevD.104.054024
https://doi.org/10.1103/PhysRevD.104.054024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


constrained only in the lowest Landau levels, so the

dispersion relation (E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

i

p
, involves only the

momentum (p3) along the direction of magnetic field.
Some recent observations [23,24] indicates the similarity of
the timescales between the formation of the locally equili-
brated thermal QCD medium and the production of strong
magnetic field, due to faster thermalization. Thus, the
transport properties of the medium may be affected due
to presence of the strong magnetic field. Electrical con-
ductivity ðσelÞ, which is responsible for the generation of
electric current due to Lenz’s law plays a vital role in the
study of the chiral magnetic effect [5]. Apart from that, σel
plays very crucial role as an input parameter in the
phenomenological studies at RHIC and LHC, such as
the emission rate of soft photons [25]. The effect of the
magnetic field on the electrical conductivity has been
previously studied using different approaches, such as
the dilute instanton-liquid model [26], the nonlinear
electromagnetic currents [27,28], the diagrammatic method
using real time formalism [29], quenched SU(2) lattice
gauge theory [30], axial Hall current [31], the effective
fugacity approach [32] etc.
Another important transport coefficient is the thermal

conductivity (κ), which is the measure of a medium to
conduct the heat through it. The thermal dissipation in the
medium depends on the temperature gradient associated
with the different layers of the fluid. The studies on κ of
the hot QCD matter in a strong magnetic field have
recently been done in [33,34]. In fact, κ plays a crucial role
in terms of Knudsen number to check that the system is in
local equilibrium. The Knudsen number is the ratio of the
mean free path (λ) to the characteristic length of the
system (L), where λ is related to κ by λ ¼ 3κ=ðvCVÞ
(where v is the relative velocity of quark and CV is the
specific heat at the constant volume). The system is said to
be in local hydrodynamic equilibrium if the mean free
path is smaller than the characteristic length of the
medium. The σel and κ are not independent rather their
ratio κ=σel is equal to the product of Lorentz number LR
and the temperature, this relation is commonly known as
the Wiedemann-Franz Law. Metals being good conductor
of heat and electricity follow Wiedemann-Franz law
perfectly. However, violation of the this law has been
recorded in many systems such as, the two-flavor quark
matter in the Nambu-Jona-Lasinio model [35], the
strongly interacting QGP medium [36], thermally popu-
lated electron-hole plasma in graphene [37] the unitary
Fermi gas [38,39] and the hot hadronic matter [40].
In the previous studies [34,41], the transport coefficients

have been calculated from the Boltzmann equation and the
complexities of the collision term was avoided by a mean-
free-path treatment. In this treatment, the collision integral
is simplified by a relaxation term, implying that the
collisions tend to relax the distribution function to an
equilibrium value. The relaxation model then describes the

destruction of phase of an ordered motion on collision and
leads to a damping frequency of order 1=τ in the amplitude,
where τ is some suitable average collision time. This type
of model has a flaw that charge is not conserved instanta-
neously but only on the average over a cycle. It is, however,
easy to remedy this at least in the case of constant collision
time by modifying the collision term due to Bhatnagar-
Gross-Krook (BGK) [42]. The BGK collision term differs
physically from the relaxation type in the following
manner: Each collision term in a Boltzmann equation
consists of two parts, where the first one represents particles
removed or absorbed from a definite momentum range by
collisions and the second one represents the particles
emitted into that range as a result of collisions. The
absorption term is essentially the same as that in the
relaxation term, i.e., particles in a momentum range dp⃗
about the momentum p⃗ are absorbed at a rate proportional
to perturbed distribution fðx⃗; p⃗; tÞ. The emission term is the
real source of difficulty, for which BGK prescribed that
particles emitted at a rate proportional to the product of
perturbed particle density, nðx⃗; tÞ and the equilibrium
distribution function [42]. The effect of the BGK collision
term which ensures the conservation of the particle number
instantaneously has been studied on the plasma instabilities
in [43].
Thus, the aim of the present work is to extend/modify of

the aforesaid recent works [34] on the transport of charge
and heat in a hot quark matter in three fold respects: (i) By
modifying the collision terms as mentioned above, the
solution of Boltzmann equation for the infinitesimal
disturbance gets altered, which, in turn, affects the trans-
port coefficients directly. (ii) The effect of a strong
magnetic field, a possibility in the peripheral events of
ultrarelativistic heavy-ion collisions, is explored, due to
the reduction of phase space and the enhancement of the
collision time etc. (iii) Finally the role of interactions is
explored in the quasiparticle description of partons, where
the vacuum masses of partons are replaced by the masses
generated in the medium. These masses are obtained from
the pole of full propagator, calculated by the perturbative
thermal QCD in the background of strong magnetic
field. Thus, we have employed a kinetic theory approach
with the BGK collision term in Boltzmann equation to
compute the electrical (σel) and thermal (κ) conductivities
and the derived coefficients (Lorenz and Knudsen num-
ber) from them.
We have found that the modified collision integral

enhances the magnitudes of both conductivities, especially
more to the electrical conductivity, compared to the
counterparts with the collision term of relaxation type.
As a consequence, the ratio, κ=σel and the Lorenz number,
LR ð¼ κ=σelTÞ gets decreased whereas the equilibration
factor, Knudsen number gets increased. In the presence of
strong magnetic field, interesting thing happens in the
transport. Although there is an overall enhancement of
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both conductivities but κ becomes smaller than in relax-
ation collision integral. This could be attributed to the
constrained motion of quarks in strong magnetic field. As a
corollary, the Knudsen number becomes much larger than
one, due to the enhancement of κ and the reduction of
specific heat, thus necessitates the quasiparticle description
(QPD) of partons for the transport phenomena, at least, in
strong B. In fact, the QPD of partons (mainly for quarks) in
the absence of magnetic field makes the transport coef-
ficients a little bit smaller but in the presence of strong
magnetic field, QPD enriches the transport phenomena
interesting: σel now decreases with temperature and κ
becomes insensitive to the collision integral, except the
temperature is very high. As a result, the Knudsen number
does not depend on the type of collision integral and
becomes much smaller than one, which ensures that the
system is still in local equilibrium even in the presence of
strong B. This could be envisaged by the fact that the
collective oscillation of a thermal QCDmedium in strong B
sets in much bigger scale than in the absence of mag-
netic field.
The paper has been organized as follows: In Sec. II, we

have investigated the effect of the collision term via the
collision integral and the effect of (strong) magnetic field
on the charge and heat transport, separately, in a thermal
medium of noninteracting quarks and gluons. For that
purpose, we have employed the kinetic theory approach
through the relativistic Boltzmann transport equation. In
particular, subsections II A and II B deal with the charge
and heat transport via the computation of electrical and
thermal conductivities, respectively. The subsection II C
explores the transport coefficients related the competition
between thermal and charge transport through the ratio,
κ=σel (and the Lorenz number, LR in Wiedemann-Franz
Law) and the validity of local equilibration through the
Knudsen number. Thus, having explored the sole effect of
collision terms on the charge and heat transport, we
explore the sole effect of background strong magnetic
field on the aforesaid transport coefficients in
subsections II D and II E, respectively. We have found
that the magnitude of conductivities for noninteracting
partons in strong magnetic field defy physical interpre-
tation, contrary to the spirit of the linearization of the
collision integral on the basis of near-equilibrium
assumption. This motivates us to compute the same in
Sec. III with the interactions present among the constitu-
ents of the medium in the guise of quasiparticle descrip-
tion of partons. So we have first revisited the medium
generated thermal masses for the quark flavors in the
presence of the strong magnetic field in subsection III A
and then investigate how the quasiparticle description in
Sec. III A affects the above-mentioned transport phenom-
ena and found the plausible magnitudes of the conduc-
tivities and other derived transport coefficients. Finally
Sec. IV concludes results and discussions.

II. CHARGE AND HEAT TRANSPORT IN A
THERMAL MEDIUM OF NONINTERACTING

QUARKS AND GLUONS

The Boltzmann transport equation for a single particle
distribution function is given by

∂f
∂t þ

p
m
·∇f þ F ·

∂f
∂p ¼

�∂f
∂t

�
coll

; ð1Þ

where F is the force field acting on the particles in the
medium and the term on the right-hand side is added to
describe the effect of collisions between particles. If the
collision term is zero then the particles do not collide,
where individual collisions get replaced with long-range
aggregated Coulomb interactions, referred as the collision-
less Boltzmann equation or Vlasov equation.
The solution of the Boltzmann equation is, in general, a

matter of considerable difficulty even in the cases corre-
sponding to the physically simplest situations. The main
difficulty in handling the full Boltzmann equation arises
from the complicated nature of the collision terms, consist-
ing of absorption and emission terms. The absorption causes
the removal of particles from a definite momentum range by
collisions and then the particles are emitted into that range as
a result of collisions. The absorption term is substantially the
same as that in the Boltzmann equation, i.e., particles in a
momentum range dp⃗ about the momentum p⃗ are absorbed at
a rate proportional to perturbed distribution fðx⃗; p⃗; tÞ. The
emission term is the real source of difficulty for which we
will now discuss some simple kinetic models, which permit
of exact mathematical treatment including the solution of
definite boundary value problems.
In many kinetic problems, it is convenient to avoid the

complexities of the Boltzmann equation by using a mean
free-path treatment, where one replaces the collision
integral by a relaxation term of the form

�∂f
∂t

�
coll

¼ −
1

τðpÞ ðfðx⃗; p⃗; tÞ − feqðjp⃗jÞÞ; ð2Þ

where τ is the momentum-dependent collision time, which
implies that the collisions tend to relax the distribution
function to an equilibrium value feqðjp⃗jÞ, which is a
function of momentum only. We illustrate the collision
models by referring to oscillatory problems, where a
characteristic time enters in a natural way. The above
collision term (2) of relaxation type then describes the
destruction of phase of an ordered motion on collision and
leads to a damping frequency of order 1=τ in the amplitude,
where τ is some suitable average collision time. This type
of model has the defect that the charge is not conserved
instantaneously but only on the average over a cycle. It was
first remedied by Bhatnagar-Gross-Krook (BGK) [42],
where the particles in a range d3p about momentum p⃗
are absorbed at a rate proportional to the number fðp⃗; x⃗; tÞ
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at ðx⃗; tÞ, and are re-emitted at a rate proportional to the
perturbed density, nðx⃗; tÞ (¼ R

fðx⃗; p⃗; tÞd3p). The BGK
collision term is given by [42,43]

�∂f
∂t

�
coll

¼ −
1

τ

�
fðx⃗; p⃗; tÞ − nðx⃗; tÞ

neq
feqðjp⃗jÞ

�
; ð3Þ

which upon integrating over momenta vanishes, i.e., it
conserves the particle number instantaneously. Its effect
was extensively discussed on QCD plasma instabilities [43].
Till now we have discussed the nonrelativistic version of

the Boltzman equation, however, the transport phenomena
for a medium consisting of quarks and gluons could be
better understood by the relativistic generalization of
Boltzmann equation, which is often expressed in a covar-
iant form as

pμ ∂f
∂xμ þ qFρσpσ

∂f
∂pρ

¼ −
pμuμ
τ

�
fðx⃗; p⃗; tÞ − nðx⃗; tÞ

neq
feqðjp⃗jÞ

�
; ð4Þ

where Fρσ is the external electromagnetic force. We will
now see in forthcoming sections how the above-mentioned
collision integral affects the solution of the relativistic
Boltzman equation, which, in turn, alters the transport of
electricity and heat in terms of their respective transport
coefficients, such as the electrical and thermal conductiv-
ities and the derived coefficients from them, namely Lorenz
and Knudsen number. Furthermore we also explore how a
strong magnetic field could modulate the effect of modified
collision term on the aforesaid transport processes.

A. Electrical conductivity in the absence
of magnetic field

The linear response of a medium consisting of mobile
charge carriers to an infinitesimal electric field (E) deci-
phers the electrical properties of the medium. The electric
field induces a current (J⃗) in the medium, which is
proportional linearly to the (infinitesimal) applied E and
the proportionality constant, known as the electrical con-
ductivity (σel), determines the electrical properties of the
given medium. For a thermal QCD medium consisting of
quarks, antiquarks and gluons of different flavors (i), the
four-component induced current, contributed by quarks and
antiquarks only, becomes

Jμ¼
X
i

qigi

Z
d3p
ð2πÞ3

pμ

ωi
ðδfiðx;pÞþδf̄iðx;pÞÞ ð5Þ

where, qi, gi and δfiðx; pÞ are the charge, degeneracy factor
and the infinitesimal deviation from the equilibrium distri-
bution function for ith quark, respectively. Similarly
δf̄iðx; pÞ denotes for ith antiquarks, which, for vanishingly

small quark chemical potential (μ ≈ 0), is the same as for
quarks, δfiðx; pÞ. Therefore, the induced current can be
calculated provided the infinitesimal deviation, δfi is
known. In kinetic theory approach, the δfi is obtained from
the solution of relativistic Boltzman equation, after linear-
izing the collision integral with respect to a (infinitesimal)
perturbation to a medium, which was initially in equilibrium.
In order to see the responce of the electric field, we take

only ρ ¼ i and σ ¼ 0 and vice versa components of the
electromagnetic field strength tensor, i.e., F0i ¼ −E and
Fi0 ¼ E in the relativistic Boltzman equation (RTBE) in
(4). Hence, the RTBE (4) gets reduced for the ith species in
a multicomponent medium

qiE:p
∂fi
∂p0

þ qip0E:
∂fi
∂p ¼ C½f�: ð6Þ

The modified collision integral C½f� in (6) due to BGK is
generalized for the ith species of a multicomponent system as

C½f� ¼ −pμuμνiðfi − nin−1eq;ifeq;iÞ; ð7Þ

where feq;i is the equilibrium distribution function of ith
flavor:

feq;i ¼
1

eβu
αpiα þ 1

; ð8Þ

where pα
i is ðωi; p⃗Þ and uα is the fluid four-velocity, which,

in the local rest frame, is uμ ¼ ð1; 0; 0; 0Þ. The collision
frequency, νi is the inverse of the relaxation-time of the
medium, τi. The relaxation time can also be calculated from
the Boltzmann equation, where the gluon-gluon collision
mainly plays the dominant role in the collision integral, to
bring the perturbed system back to the equilibrium. The
expression for τ is given by [44]

τiðTÞ ¼
1

5.1Tα2s logð 1αsÞ½1þ 0.12ð2Ni þ 1Þ� ; ð9Þ

where αs is the running coupling constant, which runs with
the temperature as

αsðTÞ ¼
6π

ð33 − 2NfÞ lnð Q
ΛQCD

Þ ; ð10Þ

where Q is set at 2πT.
The symbol, ni in the above collision integral (7)

represents the perturbed density for ith species

ni ¼ gi

Z
d3p
ð2πÞ3 ðfeq;i þ δfiÞ; ð11Þ

and the equilibrium density for ith flavor, having degen-
eracy factor, gi, is given by
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neq;i ¼ gi

Z
d3p
ð2πÞ3 feq;i: ð12Þ

After linearizing the collision integral with respect to the
infinitesimal perturbation: feq;i → feq;i þ δfi; δfi ≪ feq;i,
the RTBE (6) is recast into the form1 (Details are given in
Appendix A)

δfi − gin−1eq;ifeq;i

Z
p
δfi ¼ 2qiβτi

E · p
ωi

feq;ið1 − feq;iÞ;

ð13Þ

wherein the following partial derivatives have been used:

∂feq;i
∂p0

¼ −βfeq;ið1 − feq;iÞ; ð14Þ

∂feq;i
∂p ¼ −

βp
ωi

feq;ið1 − feq;iÞ: ð15Þ

Therefore, the solution for δfi is obtained (neglecting the
higher order, OðδfiÞ2) as

δfi ¼ δfð0Þi þ gin−1eq;ifeq;i

Z
p0
δfð0Þi ; ð16Þ

where

δfð0Þi ¼ 2βqiτi
ωi

E:pfeq;ið1 − feq;iÞ: ð17Þ

Thus, the spatial component of the four-vector for
the induced current is finally obtained by plugging δfi
into (5),

Jk ¼ 4β
X
i

q2i giτi

�Z
d3p
ð2πÞ3

p2
k

ω2
i ðpÞ

feq;iðpÞð1 − feq;iðpÞÞ

þ gin−1eq;i

Z
p

pk

ωiðpÞ
feq;iðpÞ

×
Z
p0

p0
k

ωiðp0Þ feq;iðp
0Þð1 − feq;iðp0ÞÞ

�
Ek: ð18Þ

Hence, the coefficient of E in the above induced current, J
thus yields the electrical conductivity in the modified
collision term which can be decomposed in terms of the
contribution due to the collision term of the relaxation type
(2) and a correction term as

σel ¼ σRTel þ σCorrel ; ð19Þ

where

σRTel ¼ 4β
X
i

q2i giτi

Z
p

p2

3ω2
i ðpÞ

feq;iðpÞð1 − feq;iðpÞÞ;

ð20Þ

σCorrel ¼ 4β
X
i

q2i g
2
i τin

−1
eq;i

Z
p

p
ωi

feq;iðpÞ

×
Z
p0

d3p0

ð2πÞ3
p0

ωiðp0Þ feq;iðp
0Þð1 − feq;iðp0ÞÞ; ð21Þ

where σCorrel is found to be positive, implying that the
modified BGK collision term always enhances the charge
transport.

B. Thermal conductivity in the absence of
magnetic field

In this section, we will calculate the thermal conductivity
from the surplus of the energy diffusion over the enthalpy
diffusion, known as the heat flow. In four-vector notation,
the heat-flow is defined as

Qμ ¼ ΔμαTαβuβ − hΔμαNα; ð22Þ

where the projection tensor, Δμα is given by

Δμα ¼ gμα − uμuα; ð23Þ

and the enthalpy per particle, h is

h ¼ ðεþ PÞ=n; ð24Þ

where ε, P, and n are the energy, pressure, and particle
number densities, respectively. Nα and Tαβ are the particle
flow number and the energy-momentum tensor (also
known as the first and second moment of the distribution
function, respectively), respectively, and are defined in the
kinetic theory for a multicomponent system as

Nα ¼
X
i

2gi

Z
d3p
ð2πÞ3

pα

ωi
feq;i; ð25Þ

Tαβ ¼
X
i

2gi

Z
d3p
ð2πÞ3

pαpβ

ωi
feq;i; ð26Þ

which yield n, ε, and P by the following contractions:

n ¼ Nαuα; ð27Þ

ε ¼ uαTαβuβ; ð28Þ

P ¼ −
ΔαβTαβ

3
; ð29Þ

respectively.1Using the symbol formomentum integration,
R
p¼

R
d3p=ð2πÞ3.
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In the rest frame of the fluid, the heat flow four vector is
orthogonal to the fluid four-velocity

Qμuμ ¼ 0; ð30Þ

so, both temporal and spatial components are not indepen-
dent rather the heat four vector can be determined by its
spatial component alone. Thus, the spatial component is
read off from (22) and can be expressed in kinetic theory for
a multicomponent system as

Q ¼
X
i

2gi

Z
d3p
ð2πÞ3

p
ωi

ðωi − hiÞδfi; ð31Þ

where, the enthalpy per particle for the ith flavor is,

hi ¼
ðϵi þ PiÞ
neq;i

ð32Þ

with

ϵi ¼ gi

Z
d3p
ð2πÞ3 ωifeq;i ð33Þ

Pi ¼
gi
3

Z
d3p
ð2πÞ3

p2

ωi
feq;i ð34Þ

respectively.
In order to understand the dissipative processes in a

medium in kinetic theory approach, namely the thermal
conduction and viscosity etc., one usually goes to the next
approximation beyond the initial local equilibrium distribu-
tion function: fi ¼ feq;i þ δfi (δfi ≪ feq;i) and δfi is
thereafter obtained from the Boltzmann equation (4), after
linearizing the collision integral with respect to the deviation.
So we start with rewriting the RTBE (4) in a suitable

form through the chain rule of differentiation

pμ ∂fi
∂T

∂T
∂xμ þ pμ ∂fi

∂p0

∂ðpνuνÞ
∂xμ

þ qi

�
F0jp

∂fi
∂p0

þ Fj0p0

∂fi
∂pj

�
¼ C½f�: ð35Þ

Now, going beyond the initial local equilibrium distribution
function, we first compute the left-hand side of RTBE
(35) as

LHS ¼ ðp0∂0T þ pj∂jTÞ
∂feq;i
∂T þ ðpμuν∂μpν þ pμpν∂μuνÞ

∂feq;i
∂p0

þ qi

�
E:p

∂feq;i
∂p0

þEp0

∂feq;i
∂pj

�
;

¼ p0

T
feq;ið1 − feq;iÞ

�
1

T
ðp0∂0T þ pj∂jTÞ −

1

p0
ðpμuν∂μpν þ pμpν∂μuνÞ − 2qi

E:p
p0

�
;

¼ p0

T
feq;ið1 − feq;iÞ

�
1

T
ðp0∂0T þ pj∂jTÞ −

1

p0
ðp0∂0p0 þ pj∂jp0Þ − 1

p0
ðp0pν∂0uν þ pjpν∂juνÞ−2qi

E:p
p0

�

¼ p0

T
feq;ið1 − feq;iÞ

�
1

T
ðp0∂0T þ pj∂jTÞ þ T∂0

�
μ

T

�
þ T
p0

pj∂j

�
μ

T

�
−

1

p0
ðp0pν∂0uν þ pjpν∂juνÞ −

2qiE:p
p0

�
:

ð36Þ

The energy-momentum conservation facilitates to
calculate the partial derivatives appeared in the above
equation as

∂j

�
μi
T

�
¼ −

hi
T2

�
∂jT −

T
neq;ihi

∂jP
�

ð37Þ

∂0uν ¼
∇νP
neq;ihi

: ð38Þ

Thus, the RTBE (35) is written by linearizing the BGK
collision term (7)

p0

T
feq;ið1 − feq;iÞ

�
p0

T
∂0T þ ðp0 − hiÞ

p0

pj

T

�
∂jT −

T
neq;ihi

∂jP

�
þ T∂0

�
μi
T

�
−
pjpν

p0
∂juν − 2qi

E:p
p0

�

¼ −pμuμνi

�
δfi − gin−1eq;ifeq;i

Z
p
δfi

�
; ð39Þ
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which is further solved to obtain δfi (neglecting its higher orders)

δfi ¼ δfð1Þi þ gin−1eq;ifeq;i

Z
p0
δfð1Þi ; ð40Þ

where

δfð1Þi ¼ −
feq;ið1 − feq;iÞτi

T

�
p0

T
∂0T þ ðp0 − hiÞ

p0

pj

T

�
∂jT −

T
neq;ihi

∂jP

�
þ T∂0

�
μi
T

�
−
pjpν

p0
∂juν − 2qi

E:p
p0

�
: ð41Þ

Thus, the spatial part of the heat flow vector is obtained by plugging δfi into Eq. (31).

Qj ¼
X
i

2gi

Z
d3p
ð2πÞ3

pj

ωiðpÞ
ðωiðpÞ − hiÞ

��
feq;iðpÞð1 − feq;iðpÞÞτi

T
ðp0 − hiÞ

p0

pj

T

þgin−1eq;ifeq;iðpÞ
Z
p0

feq;iðp0Þð1 − feq;iðp0ÞÞτi
T

ðp0 − hiÞ
p0

pj

T

��
∂jT −

T
neq;ihi

∂jP

�

þ
�
feq;iðpÞð1 − feq;iðpÞÞτi

T
þ gin−1eq;ifeq;iðpÞ

Z
p0

feq;iðp0Þð1 − feq;iðp0ÞÞτi
T

��
p0

T
∂0T þ T∂0

�
μ

T

�

−
pjpν

p0
∂juν − 2qi

E · p
p0

��
: ð42Þ

In order to define the thermal conductivity for a system, the
number of particles in that system must be conserved and
therefore it requires the associated chemical potential to be
nonzero. In the ultrarelativistic heavy-ion collisions at
RHIC and LHC, the value of chemical potential (μ) is
very small [45–47], its value extracted from the charged
particle ratios are in the range of 50–100 MeV. In Navier-
Stokes equation, the heat flow vector is related to the
gradient of the thermal potential, Ui ¼ μi=T as

Qi
μ¼Def − κ

neq;i
ϵi þ Pi

T2∇μUi;

¼ κ

�
∇μT −

T
ϵi þ Pi

∇μPi

�
; ð43Þ

where the coefficient, κ is the thermal conductivity and
∇μ ¼ ∂μ − uμuν∂ν. In the local rest frame of the fluid, only
the spatial (j) component of the heat flow four vector for ith
species is retained and takes the form

Qi
j ¼ −κ

�∂T
∂xj −

T
neq;ihi

∂Pi

∂xj
�
: ð44Þ

Thus, we have obtained the thermal conductivity by
comparing the heat flow (Q) calculated from the kinetic
theory (42) with its definition (44). The effect of the
modified collision term on the thermal conductivity can
be decomposed in terms of the contribution due to the
collision term of the relaxation type (RT) and a correction
term as,

κ ¼ κRT þ κCorr; ð45Þ

where

κRT ¼ β2
X
i

2giτi

�Z
p

p2

3ω2
i ðpÞ

ðωiðpÞ − hiÞ2

× feq;iðpÞð1 − feq;iðpÞÞ
�
: ð46Þ

κCorr ¼ β2
X
i

2g2i τin
−1
eq;i

Z
p

p
ωiðpÞ

ðωiðpÞ − hiÞfeq;iðpÞ

×
Z
p0

p0

ωiðp0Þ ðωiðp0Þ − hiÞfeq;iðp0Þð1 − feq;iðp0ÞÞ:

ð47Þ

Thus, to visualize the effect of collision term on the charge
and heat transport, we have computed both conductivities
as a function of temperature in both scenario of collision
integrals in Fig. 1, wherein we have considered u, d, s
flavors with their current masses. We have found that the
modified BGK collision term enhances both charge and
heat transport, compared to the collision term of relaxation
type. To be specific, the ratio of σel in modified BGK
collision term to the relaxation collision term is approx-
imately 4.0, whereas the ratio for κ is ∼1.76, implying that
the collision integral is more sensitive to the charge
transport.
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C. Wiedemann-Franz law and Knudsen number in the
absence of magnetic field

Wiedemann-Franz Law indicates that the transport of the
charge and heat2 are not entirely different, rather the ratio
of the transport coefficients in the respective cases is
proportional to the temperature

κ

σel
¼ LRT; ð48Þ

and the proportional factor, LR is known as Lorentz
number. The metals, which are good conductors of both
electricity and heat, expectedly obey the Wiedemann-Franz
law perfectly. There are some calculations in which the
statement of the Wiedemann-Franz law have been violated,

such as for the strongly coupled QGP medium [36], two-
flavor quark matter in the NJL model [35], and thermally
populated electron-hole plasma in graphene, describing the
signature of a Dirac fluid [37]. So far we have discussed the
transport of both heat and electricity due to the participation
of quarks only, thus it becomes reasonable to think that the
heat and charge transport are not mutually exclusive as per
the statement of Wiedemann-Franz law. In fact, they are
found to obey the aforesaid law, as seen in Fig. 2(a).
Although the ratio, κ=σel is found to vary almost linearly
with the temperature in Fig. 2(a), but the actual behavior of
the interplay of heat and charge transport can be better
understood through the Lorenz number, LR (¼ κ=ðσelTÞ).
The Lorenz number initially increases monotonically in
relatively smaller temperature and behaves constant in the
high temperature, as seen in Fig. 2(b). The effect of
collision terms seen in the conductivities (in Fig. 1) get
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FIG. 1. Variation of electrical (σel) (a) and thermal (κ) (b) conductivities with the temperature.
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FIG. 2. Variation of the ratio of the thermal conductivity to the electrical conductivity (κ=σel) (a) and Lorenz number (LR) (b) with
temperature.

2at least, by the charged particles alone.
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also reflected into the relative behavior through the ratio,
κ=σel and in the Lorenz number, LR as well, where the
relaxation collision integral is found to dominate over the
modified BGK collision integral.
The validity of the assumption of a system to be in local

equilibrium is tested with the help of the Knudsen number
(Ω). It is defined as the ratio of the mean free path (λ) to the
characteristic length scale (L) of the system as

Ω ¼ λ

L
: ð49Þ

The mean free path, λ is computed from the thermal
conductivity of the medium as

λ ¼ 3κ

vrelCV
; ð50Þ

where CV is the specific heat of the medium and vrel is the
relative speed. The specific heat is contributed both by
quarks and gluons,

CV ¼ Cq
V þ Cg

V; ð51Þ

where the quark contribution is

Cq
V ¼ ∂ϵq

∂T ;

¼ β2

π2
X

gi

Z
dpp2ω2

i feq;ið1 − feq;iÞ; ð52Þ

and the gluon contribution is

Cg
V ¼ ∂ϵg

∂T ;

¼ β2gg
2π2

Z
dpp2ω2

gfgð1þ fgÞ; ð53Þ

where fg is the gluon distribution function, given by

fg ¼
1

eβωg − 1
: ð54Þ

Finally, we have computed the Knudsen number as a
function of temperature in Fig. 3(a), wherein the modified
BGK collision term is found to dominate over its counter-
part (RT) and can be understood from the behavior of κ.
The magnitude of Ω is seen much lesser than one and
decreases with the temperature, thus ensures the validity of
the system being in local equilibrium. This can be under-
stood by the competition between CV , which is measure of
the heat content, and κ, a measure of the ease by which the
heat can be transported in the system. Ω becomes smaller
than one because both the magnitude and the rate of
increase of CV with T is greater than the same in κ [seen
in Fig. 3(b)].
Thus, the Secs. II A and II B decipher the effect of the

modified BGK collision term on the transport coefficients
of the charge and heat, which, in turn, do the same for the
Lorenz and Kundsen number in Sec. II C. In next
section(s) II D and II E, we will see how the strong
magnetic field modulate the effect of collision term on
the charge and heat transport, respectively. This, in turn,
will explore the same on the Lorenz and Knudsen number.

D. Electrical conductivity in a background of
strong magnetic field

In the presence of the strong magnetic field (B), the
motion of quarks becomes purely longitudinal (in the
direction of magnetic field, say 3-direction), which is
evident from the quantum mechanical relation: ωi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

i

p
in strong B. This is because that only the

lowest Landau level (n ¼ 0) is populated due to the larger
value of jqiBj (≫ T2). Thus, when the medium is perturbed

0.16 0.2 0.24 0.28 0.32 0.36 0.4
T (GeV)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
BGK
RT

Current quark mass (B = 0)

0.16 0.2 0.24 0.28 0.32 0.36 0.4
T in GeV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
V

Current quark mass (B = 0)

(a) (b)

FIG. 3. Variation of the Knudsen number (Ω) (a) and specific heat (CV) (b) with temperature
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by the external magnetic field in 3-direction, an electro-
magnetic current is generated only in the longitudinal (3-)
direction,

J3 ¼ 2
X
i

qigi
jqiBj
4π2

Z
dp3

p3

ωi
δfBi ðx; pÞ: ð55Þ

Thus, the electrical conductivity relates the longitudinal
current generated to the electrical field as

J3 ¼ σelE3; ð56Þ

where σel is the longitudinal component of the electrical
conductivity of the medium and the term “longitudinal”
refers with respect to the direction of the strong magnetic
field. The component of σel transverse to the magnetic field
vanishes due to Landau quantization of the transverse
motion in the strong magnetic field [48].
Therefore, in order to obtain σel, we need to know the

infinitesimal deviation of the medium (δfBi ) in the presence
of strong magnetic field. As earlier, this will be obtained by
solving the Boltzmann equation (4) with the linearized
collision integral. So, we start with the Boltzmann equation
in a strong magnetic field as

p0
∂fBi
∂x0 þ p3

∂fBi
∂x3 þ qiF03p3

∂fBi
∂p0

þ qiF30p0

∂fBi
∂p3

¼ −pμuμνBi ðfBi − nBi n
B−1
eq;i f

B
eq;iÞ; ð57Þ

where nBi is the perturbed density and nBeq;i is the equilib-
rium density in the presence of the strong magnetic field,
which is given by

nBeq;i ¼
gijqiBj
4π2

Z
dp3fBeq;i; ð58Þ

with the equilibrium distribution function

fBeq;i ¼
1

eβωi þ 1
: ð59Þ

The collision frequency in a strong B, νBi runs with the
(longitudinal) momentum (p3), unlike that τi in pure
thermal medium (9) is independent of momentum.
Moreover, τBi depends strongly on the magnetic field
and weakly on the temperature because the dominant scale
assigned to quark degrees of freedom in a thermal medium
in strong B, being the magnetic field, in the same way that
the temperature dominates in a thermal medium in the
absence of magnetic field. The collision time, the inverse of
the collisional frequency (νBi ), in strong B has been
calculated recently in [49]

τBi ðp3;T; jqiBjÞ¼
ωiðeβωi −1Þ

αsCFm2
i ðeβωi þ1Þ

�Z
dp0

3

ω0
iðeβω0

i þ1Þ

�
−1
;

ð60Þ

where CF (¼ 4=3) is the Casimir factor and the strong
coupling, αs now runs with the magnetic field only

αsðjqfBjÞ ¼
1

ðα0ðμ0ÞÞ−1 þ 11NC
12π lnðkz2þM2

B
μ2
0

Þ þ 1
3π

P
i
jqiBj
σ

;

ð61Þ

where

α0ðμ0Þ ¼
12π

11NC ln
	
μ2
0
þM2

B

Λ2
V


 :

HereMB is infrared mass (1 GeV) and ΛV and μ0 are taken
as 0.385 GeVand 1.1 GeV, respectively and kz ¼ 0.1

ffiffiffiffiffiffi
eB

p
.

Thus, going to the next approximation beyond the initial
(equilibrium) configuration, the total time-derivative of the
probability distribution in Boltzmann equation in the
presence of strong magnetic field is simplified into

dfBi
dt

¼ −2qiβp3E3fBeq;ið1 − fBeq;iÞ; ð62Þ

wherein the partial derivatives of the equilibrium distribu-
tion, fBeq;i have been used:

∂fBeq;i
∂p0

¼ −
1

T
fBeq;ið1 − fBeq;iÞ; ð63Þ

∂fBeq;i
∂p3

¼ −
p3

Tp0

fBeq;ið1 − fBeq;iÞ: ð64Þ

Next, linearizing the collision integral, the Boltzmann
equation gives the transcendental equation for the linear
infinitesimal disturbance, δfBi for ith flavor as3

δfBi − ginBeq;i
−1fBeq;i

Z
p3

δfBi ¼ 2qiβτBi
p3E3

ωi
fBeq;ið1 − fBeq;iÞ;

ð65Þ

which yields the disturbance, δfBi up to the first-order
(neglecting OðδfBi Þ2 terms) as

δfBi ¼ δfBð0Þi þ ginBeq;i
−1fBeq;i

Z
p0
3

δfBð0Þi ; ð66Þ

3Using the symbol for one-dimension momentum integration
in strong B,

R
p3

¼ jqiBj
2π

R dp3

2π .
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where

δfBð0Þi ¼ 2qiβτBi
ωi

p3E3fBeq;ið1 − fBeq;iÞ: ð67Þ

Therefore, we can now calculate the current density, J3
from (55) with δfBi taken from (66) as

J3¼
β

π2
X
i

q2i gijqiBj
�Z

dp3

p2
3

ω2
i
τBi ðp3ÞfBeq;ið1−fBeq;iÞ

þginBeq;i
−1
Z

dp3

p3

ωi
fBeq;i

Z
p0
3

p0
3

ωi
τBi ðp0

3ÞfBeq;ið1−fBeq;iÞ
�
E3:

ð68Þ

So we extract the coefficient of the electric field, E3 as
the electrical conductivity of a thermal QCD medium in a
strong B, which, in modified BGK collision term, yields as
the sum of the contribution due to the RT collision term and
a correction term

σBel ¼ σB;RTel þ σB;Correl ; ð69Þ

where

σB;RTel ¼ β

π2
X
i

q2i gijqiBj
Z

dp3

p2
3τ

B
i

ω2
i

fBeq;ið1 − fBeq;iÞ; ð70Þ

σB;Correl ¼ β

π2
X
i

q2i g
2
i jqiBjnBeq;i−1

×

�Z
dp3

p3

ωi
fBeq;i

Z
p0
3

p0
3

ωi
τBi ðp0

3ÞfBeq;ið1 − fBeq;iÞ
�
;

ð71Þ

where the correction, σB;Correl is found to be positive,
implying that even in the presence of strong magnetic
field, the dominance of modified BGK collision integral
over RT collision integral is still retained in the charge
transport.

E. Thermal conductivity in a strong magnetic field

In this section, we will calculate the thermal conductivity
of a hot QCD medium in the presence of strong magnetic
field. Thus, we closely follow the previous section II B. In
the presence of the strong magnetic field (B), only the
component along the direction of the magnetic field
(3-direction) survives and takes the form

Q3 ¼
X
i

gijqiBj
2π2

Z
dp3

p3

ωi
ðωi − hBi ÞδfBi ; ð72Þ

where

hBi ¼ ðϵBi þ PB
i Þ

nBeq;i
; ð73Þ

ϵBi ¼ gijqiBj
4π2

Z
dp3ωifBeq;i; ð74Þ

PB
i ¼ gijqiBj

12π2

Z
dp3

p2
3

ωi
fBeq;i: ð75Þ

On the other hand, the spatial component of heat flow
vector (43) in the Navier-Stokes equation, takes the form in
a strong B (along the 3-direction),

Qi
3 ¼ −κ

�∂T
∂x3 −

T
nBeq;ih

B
i

∂Pi

∂x3
�
;

¼ κ

�
∂3T −

T
nBeq;ih

B
i
∂3Pi

�
; ð76Þ

where the coefficient, κ is the thermal conductivity.
Therefore, once we compute the heat flow vector from
the kinetic theory (72) and express it in the form (76), we
could then pick up the coefficient of gradient term as κ. So
we start with the Boltzman equation in the presence of
strong magnetic field, in terms of velocity and temperature
gradients through the chain rule of differentiation,

pμ ∂fBi
∂T

∂T
∂xμ þ pμ ∂fBi

∂p0

∂ðpνuνÞ
∂xμ

þ qi

�
F03p3

∂fBi
∂p0

þ F30p0

∂fBi
∂p3

�
¼ C½f�: ð77Þ

For vanishingly small value of μi, the infinitesimal
deviation, δfBi is obtained by solving the Boltzman
equation, after linearizing the collision integral with respect
to the deviation (see the Appendix B)

δfBi ¼ δfBð1Þi þ ginBeq;i
−1fBeq;i

Z
p0
3

δfBð1Þi ; ð78Þ

where

δfBð1Þi ¼ −
fBeq;ið1 − fBeq;iÞτBi

T

×

�
p0

T
∂0T þ ðp0 − hBi Þ

p0

p3

T

�
∂3T −

T
nBeq;ih

B
i
∂3Pi

�

þ T∂0

�
μi
T

�
−
p3pν

p0
∂3uν − 2qi

E3p3

p0

�
: ð79Þ

Nowwe are in a position to calculate the heat-flow vector
(Q3) in the presence of strong magnetic field from the
kinetic theory by plugging δfBi in (72),
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Q3 ¼
X
i

gijqiBj
2π2

Z
dp3

p3

ωi
ðωi − hBi Þ

��
fBeq;ið1 − fBeq;iÞτBi

T
ðp0 − hBi Þ

p0

p3

T

þginBeq;i
−1fBeq;i

Z
p0
3

fBeq;ið1 − fBeq;iÞτBi
T

ðp0 − hBi Þ
p0

p3

T

��
∂3T −

T
nBeq;ih

B
i
∂3Pi

�

þ
�
fBeq;ið1 − fBeq;iÞτBi

T
þ ginBeq;i

−1fBeq;i

Z
p0
3

fBeq;ið1 − fBeq;iÞτBi
T

��
p0

T
∂0T þ T∂0

�
μ

T

�

−
p3pν

p0
∂3uν − 2qi

E3p3

p0

��
: ð80Þ

Thus, we obtain κ from the heat flow vector, by matching the coefficient of the gradient of thermal potential in the Navier-
Stokes equation (76) with the same in the kinetic theory (80) and similar to the absence of (strong) magnetic field, κ in
modified collision term is decomposed into the contribution due to collision term of relaxation type and a correction term

κB ¼ κB;RT þ κB;Corr; ð81Þ

where

κB;RT ¼ β2

2π2
X
i

gijqiBj
Z

dp3

p2
3τ

B
i

ω2
i

ðωi − hBi Þ2fBeq;ið1 − fBeq;iÞ; ð82Þ

κB;Corr ¼ β2

2π2
X
i

g2i jqiBjnBeq;i−1
�Z

dp3

p3

ωi
ðωi − hBi ÞfBeq;i

Z
p0
3

p0
3τ

B
i ðp0

3Þ
ω0
i

ðω0
i − hBi ÞfBeq;ið1 − fBeq;iÞ

�
; ð83Þ

where the correction factor in strong B, unlike in the
absence of magnetic field (47), becomes negative. As a
result, the dominance of the modified BGK collision term
over the RT collision term is lost.
To see how the strong magnetic field modulates the

effect of collision term on the electrical and thermal
conductivities pictorially, we have computed them as a
function of temperature at increasing strengths of magnetic

fields: eB ¼ 10m2
π and eB ¼ 15m2

π. The observations are
two fold: (i) The strong B enhances overall magnitudes of
both σel and κ by orders of two-to-three in high and low
temperature region, respectively. Especially, the B affects
the charge transport with RT collision terms. (ii) it flips the
dominance of the collision terms from BGK to RT in heat
transport. This is due to the fact that unlike in B ¼ 0 case,
the correction term in (83) becomes negative, because the

0.16 0.2 0.24 0.28 0.32 0.36 0.4
T (GeV)

0

5

10

15

20

25

30

35

40

45

50

el
 (

G
eV

)

(BGK) eB=15m
2

(BGK) eB=10m
2

(RT)    eB=15m
2

(RT)    eB =10m
2

Current quark mass (B 

0.16 0.2 0.24 0.28 0.32 0.36 0.4
T(GeV)

0

50

100

150

200

250

300

350

400

450

500

 (
G

eV
2 )

(BGK) eB=15m
2

(BGK) eB=10m
2

(RT)    eB=15m
2

(RT)    eB=10m
2

Current quark mass (B 

(b)(a)

FIG. 4. Variation of electrical (σel) (a) and thermal (κ) (b) conductivities with the temperature.
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dispersion relation in strong B makes the relaxation-time
momentum dependent,4 which in low momentum limit
(p3 → 0) becomes constant and in high momentum limit
(p3 → ∞), increases indefinitely with p3. As a result, the
second integral in the correction, κB;Corr becomes positive
and makes the overall correction negative (because the first
integral—

R
p3

p3

ωi
ðωi − hBi ÞfBeq;i is always negative).5

Thus, having deciphered the sole effects of collision term
and strong magnetic field on the electrical and thermal
conductivities for a medium consisting of noninteracting/
ideal partons, we will examine how the above-mentioned
affects modulates the interplay between heat and charge
transport and the affiliated transport coefficient derived by
them. Thus, the relative behavior is checked by the ratio,
κ=σel (and the Lorenz number, LR) and the derived
coefficient is the equilibration factor, quantified by the
Knudsen number (Ω). It is found that both the ratio, κ=σel
and the Knudsen number are dominated by the RT collision
term over the BGK term in a fixed (strong) B whereas for a
collision term, the effect of strong B can be understood as
follows: One of the factor in the denominator of the
Knudsen number is the specific heat and the quark
contribution to the specific heat gets severely affected
due to the dimensional reduction in strong B as

Cq
V ¼ ∂εq

∂T ¼ ∂ðuαTαβuβÞ
∂T ð84Þ

¼ β2
X
i

gijqiBj
2π2

Z
dp3ω

2
i f

B
eq;ið1 − fBeq;iÞ; ð85Þ

resulting an overall decrease in the specific heat. As a
consequence, the Knudsen number becomes too large to
understand physically because the validation of the equi-
librium thermodynamics requires Ω to be less than one
because the large Knudsen number contradicts with the
basic idea of near-equilibrium assumption that is used to
linearize the kinetic equation. This motivates us to treat the
partons interacting because the interactions among the
partons in a thermal medium generate the masses, which,
in turn, behaves as an infrared cutoff in the cross section of
gg → gg scattering, responsible for bringing the system into
equilibrium. Hence, the unusually larger value of relaxa-
tion-time in a strong magnetic field becomes finite and
causes the thermal conductivity smaller. This possible way-
out resonates with the idea that the more the constituents
interact among themselves the quicker the system achieves
the equilibrium. Thus, the necessity of quasiparticle
description of partons gets motivated in the next section.

III. CHARGE AND HEAT TRANSPORT
WITH THE QUASIPARTICLE DESCRIPTION

OF PARTONS

The transport of charge and heat in a thermal QCD
mediumwith the noninteracting quarks and gluons in strong
B hereinabove described yields unusually large values of
electrical and thermal conductivities and the affiliated
coefficients (Lorenz number, Knudsen number) therein,
which defy physical interpretation. As we know, the thermal
medium generically ascribes the masses to the constituents,
whichmotivates us for a quasiparticle description of partons
participating in the transport phenomena in this section.

A. Quasiparticle description of partons

The idea of quasiparticle description (QPD) of a parton
in a medium is to encrypt the interaction of the given parton
with the remaining partons in terms of its in-medium mass,
known as quasiparticle masses or thermal masses6 and then
treat these quasiparticles as noninteracting particles. In a
sense, at the scale of the quasiparticle mass, the indepen-
dent (single) behavior of partons ceases to exist and the
collective behavior of the medium sets in. There are some
variants of quasiparticle description where the inter-
actions among themselves are also taken into account.
Different versions of quasiparticle description exist in the
literature based on different effective theories, such as
thermodynamically consistent quasi particle model [50],
Nambu-Jona-Lasinio (NJL) model and its extension
Polyakov NJL (PNJL model [51–53], Gribov-Zwanziger
quantization model [54,55]. In this work we employ the
medium generated masses for quarks and gluons in the
framework of perturbative QCD at finite temperature and/
or strong B from the poles of resummed propagators
calculated from the respective self-energies.
Let us start with a thermal QCD medium in the absence

of magnetic field. The quasiparticle masses of ith flavor is
written phenomenologically as [50]

m2
i ¼ m2

i0 þ
ffiffiffi
2

p
mi0miT þm2

iT ; ð86Þ

where mi;0 and mi;T are the current quark mass and
thermally generated mass respectively. The thermal mass
for the quarks have been calculated in hard-thermal-loop
perturbation theory with the temperature as the hardest
scale [56,57] as

m2
iT ¼ g02T2

6
; ð87Þ

where g0 is the strong coupling which runs with the
temperature [Eq. (10)]. Similarly the gluons also acquire
a thermal mass, which is also calculated as

4Unlike the relaxation time (9) in pure thermal medium
(B ¼ 0).

5In the absence of strong magnetic field, the product of the
negative contributions coming from first and second integral
make the correction term (47) positive. 6In addition to its current mass.
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m2
g ¼

g02T2

6

�
NC þ Nf

2

�
: ð88Þ

Now, for thermal QCD medium in the presence of strong
magnetic field, the form of thermal/quasiparticle mass can
be generalized as

m2
i ¼ m2

i0 þ
ffiffiffi
2

p
mi0miT;B þm2

iT;B; ð89Þ

where the thermal mass, miT;B are obtained from the
dispersion relation of the full quark propagator in strong
B, by solving the Dyson-Schwinger equation self-
consistently:

S−1ðpkÞ ¼ γμpkμ − ΣðpkÞ: ð90Þ

The ΣðpkÞ in the above is the quark self-energy, which
needs to be evaluated at finite temperature in the presence
of strong B. Up to one-loop, its expression is given by

ΣðpÞ ¼ −
4

3
g2i

Z
d4k
ð2πÞ4 ½γμSðkÞγνD

μνðp − kÞ�; ð91Þ

where the QCD coupling, g now runs with the magnetic
field, mentioned in (61).
The quark propagator, SðkÞ in an external magnetic field

is calculated [58] by the Schwinger proper-time method in
the momentum space in terms of Laguerre polynomials,

iSnðkÞ ¼
X
n

−idnðαÞDþ d0nðαÞD̄
k2k −m2

f þ 2njqfBj
þ i

γ · k⊥
k2⊥

; ð92Þ

where the label, nð¼ 0; 1; 2;…Þ denotes the Landau levels.
The above symbols are defined as [59]

D ¼ ðmf þ γ · kkÞ þ γ · k⊥
m2

f − k2k
k2k

;

D̄ ¼ γ1γ2ðmf þ γ · kkÞ;
dnðαÞ ¼ ð−1Þne−αCnð2αÞ;

d0nðαÞ ¼
∂dn
∂α ;

with the dimensionless variable, α ¼ k2⊥=jqfBj. The Cn’s
are expressed in terms of Laguerre polynomial (Ln)

Cnð2αÞ ¼ Lnð2αÞ − Ln−1ð2αÞ:

In the strong magnetic field limit, only the lowest Landau
levels get populated, so SðkÞ is simplified into a form

SðkÞ ¼ ie−
k2⊥
jqiBj

ðγ0k0 − γ3kz þmiÞ
k2k −m2

i
ð1 − γ0γ3γ5Þ; ð93Þ

where the four vectors are defined with the metric tensors:
gμν⊥ ¼ diagð0;−1;−1; 0Þ and gμνk ¼ diagð1; 0; 0;−1Þ,

k⊥μ ≡ ð0; kx; ky; 0Þ; kkμ ≡ ðk0; 0; 0; kzÞ:

The gluon propagator, Dμνðp − kÞ is not affected by the
magnetic field, so it takes the form

Dμνðp − kÞ ¼ igμν

ðp − kÞ2 : ð94Þ

In imaginary-time formalism, the quark self-energy (91)
in strong magnetic field can be simplified into (see the
Appendix C)[34]

ΣðpkÞ ¼
g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�

×

�
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

�
; ð95Þ

which can further be decomposed in the covariant form as
[22,60]

ΣðpkÞ ¼ Aγμuμ þ Bγμbμ þ Cγ5γμuμ þDγ5γμbμ; ð96Þ

where A, B, C, andD are the form factors. uμð1; 0; 0; 0Þ and
bμð0; 0; 0;−1Þ represents the direction of the heat bath and
magnetic field respectively. These vectors are behind the
breaking of the Lorentz and the rotational symmetry
respectively. The form factors can be calculated in LLL
approximation as

A ¼ 1

4
Tr½Σγμuμ� ¼

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
p0

p2
k
; ð97Þ

B ¼ −
1

4
Tr½Σγμbμ� ¼

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
pz

p2
k
; ð98Þ

C ¼ 1

4
Tr½γ5Σγμuμ� ¼ −

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
pz

p2
k
; ð99Þ

D¼−
1

4
Tr½γ5Σγμbμ�¼−

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
p0

p2
k
; ð100Þ

we get C ¼ −B and D ¼ −A. In terms of chiral projection
operators, the quark self energy takes the form

ΣðpkÞ ¼ PR½ðAþ CÞγμuμ þ ðBþDÞγμbμ�PL

þ PL½ðA − CÞγμuμ þ ðB −DÞγμbμ�PR; ð101Þ

ΣðpkÞ ¼ PR½ðA − BÞγμuμ þ ðB − AÞγμbμ�PL

þ PL½ðAþ BÞγμuμ þ ðBþ AÞγμbμ�PR; ð102Þ
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where PR ¼ ð1þ γ5Þ=2 and PL ¼ ð1 − γ5Þ=2 are the right
handed and left handed chiral projection operators respec-
tively. The effective quark propagator in terms of the chiral
projection operators can be written as

S−1ðpkÞ ¼ PRγ
μXμPL þ PLγ

μYμPR; ð103Þ

where

γμXμ ¼ γμpkμ − ðA − BÞγμuμ − ðB − AÞγμbμ; ð104Þ

γμYμ ¼ γμpkμ − ðAþ BÞγμuμ − ðBþ AÞγμbμ: ð105Þ

The effective propagator can be further written as

SðpkÞ ¼
1

2

�
PR

γμYμ

Y2=2
PL þ PL

γμXμ

X2=2
PR

�
ð106Þ

where

X2

2
¼ X2

1 ¼
1

2
½p0 − ðA − BÞ�2 − 1

2
½pz þ ðB − AÞ�2; ð107Þ

Y2

2
¼ Y2

1 ¼
1

2
½p0 − ðAþ BÞ�2 − 1

2
½pz þ ðBþ AÞ�2: ð108Þ

We take static limit (p0 ¼ 0; pz → 0) of either X2
1 or Y2

1

(which are equal in this limit) to get thermal mass (squared)
at finite temperature and strong magnetic field as

m2
iT;B ¼ g2jqiBj

3π2

�
πT
2mi

− lnð2Þ
�
; ð109Þ

which depends on both the magnetic field and the
temperature.

B. Electrical and thermal conductivity in B= 0:
Wiedemann Franz law and Knudsen number

In kinetic theory approach of evaluating the transport
coefficients, the quasiparticle description (QPD) of partons
encodes the interactions present in the medium through the
dispersion relation, where the vacuum masses in non-
interacting scenario get modified by the quasiparticle
masses (which depend on the T and B). Thus, the
occupation probability (distribution function) gets modified
through the dispersion relation, which, in turn, will affect
the transport process of heat, charge etc. In short, we follow
the derivation of the conductivities and their derived
coefficients in QPD scenario, in the same way as was
done in the previous section, except that the distribution
function now involves the masses generated by the
medium.We have found that the forms of the conductivities
as in noninteracting scenario remain the same, so we
compute the electrical and thermal conductivities as a
function of temperature with the in-medium masses (87)
and (88) for quarks and gluons in the respective distribution
functions (8) and (54), respectively. It is found that both
charge and heat transport get impeded due to the in-
medium (heavier) masses (see Table I) of quarks (which
reduce the mobility of the carriers), compared to the
noninteracting scenario with current quark masses, which
are reflected in the slight reduction of σel and κ in Fig. 5.
However, the BGK collision term still retains the domi-
nance over the RT collision term for both thermal and
electrical conductivities, even in the QPD of partons.
Now we will see how the QPD of partons affect the ratio,

κ=σel (and the Lorenz number as well) and the Knudsen
number in the absence of magnetic field. The aforesaid
discussion on the charge and heat transport helps to
understand the slight decrease in the ratio (κ=σel) and
the Lorenz number in Fig. 6 with respect to the non-
interacting scenario (in Fig. 2).
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FIG. 5. Variation of electrical conductivity σel (a) and thermal conductivity κ (b) with respect to the temperature.
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Similarly, the QPD of partons in the absence of magnetic
field also reduces the Knudsen number a little bit, in
comparison to noninteracting case [as in Fig. 3(a)], which is
mainly due to the opposite behavior in thermal conductivity
and specific heat in quasiparticle description [as seen in
Figs. 5(b) and 7(b), respectively]. The reduction in Ω is in
line with the fact that the more the interactions among the
constituents the quicker the system comes to local
equilibrium.

C. Electrical and thermal conductivity in B ≠ 0:
Wiedemann Franz law and Knudsen number

To see how the unusually larger values of σel and κ for
noninteracting partons in a strong B (in Fig. 4) could be
affected by the QPD of partons, we have now computed
them in Fig. 8 with the in-medium quark masses at finite
temperature and strong B from (109).

We find that both σel and κ gets reduced by an order three,
compared to the noninteracting picture (Fig. 4). The primary
reason behind this observation lies in the dispersion relation
of partons in strong B, where the collective oscillation sets in
much bigger scale than in the absence of B. As a secondary
reason, the dispersion relation, in turn, tames the relaxation-
time, τB in strong B (seen in Fig. 11, which can be
understood by the fact that the infrared singularity in
gluon-gluon cross section in τB is cured by the mass
generated in the medium, which, in the presence of
strong B, becomes much larger than in B ¼ 0 (seen in
the Fig. 12).
Finally, the aforesaid behavior of σel and κ in strong B

facilitates to understand the effect of QPD on the ratio,
κ=σel and subsequently on the Lorenz number, LR in
Fig. 9(a) and Fig. 9(b), respectively, wherein both of them
get amplified. Last but not the least, the best reward of
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FIG. 6. Variation of the ratio of the thermal conductivity to the electrical conductivity (κ=σel) (a) and Lorenz number (LR) (b) with
temperature.
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quasiparticle description gets reflected in the drastic reduc-
tion of Knudsen number, Ω, which looks now feasible
[as seen in Fig. 10(a)]. Earlier in noninteracting description,
Ω in strong B becomes much larger than one, implying that
the system runs away from equilibrium. To understand the
above-mentioned behavior of Ω, we also compute the
another factor in Ω, the specific heat as a function of T
in the same description in Fig. 10(b). Finally, the excerpts
of our exploration is that the QPD of partons almost smears

the effect of the collision terms, at least, on the heat
transport (κ) in strong B, [as seen in 8(b)], which is being
translated into a interesting collision term dependence in
the Lorenz number and Knudsen number in Fig. 9(b) and
Figure 10(a), respectively.
Finally, we have shown in Table II how the quasiparticle

description affects the overall effect of collision term and
the subsequent modulation of strong B on the charge and
heat transport.
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TABLE I. Masses generated for u, d and s flavors in a thermal QCD medium in the absence and presence of strong B background.

mi (B ¼ 0) mi (B ≠ 0)

u quark d quark s quark u quark d quark s quark
(GeV) (GeV) (GeV) (GeV) (GeV) (GeV)

Low T (0.16 GeV) 0.1464 0.1485 0.2275 0.7622 0.4187 0.1652

High T (0.40 GeV) 0.2935 0.2992 0.3735 1.2156 0.6669 0.2224
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IV. CONCLUSION AND FUTURE OUTLOOK

Our aim is to study the charge and heat transport in a
strongly interacting thermal QCDmedium in a background of
strong homogeneous magnetic field, through the respective
transport coefficients. This is a complicated proposition to start
with, so we have adopted a bottom-to-top approach to handle
the problem in a kinetic theory approach. First of all, we have
checked how the modified BGK collision integral, unlike the
commonly employed collision terms of relaxation type (RT),
affects the charge and heat transport in a thermal QCD
medium. This exploration is germinated due to the fact that
the BGK collision term ensures conservation of particle
number, momentum and energy in each collision, unlike the
usually adopted collision terms of relaxation type, where the
conservation of particle is ensured only on the average of a
cycle. Second, we see that how an ambient strong magnetic
field (may be produced in the peripheral events of ultra-
relativistic heavy-ion collisions) modulates the collision inte-
gral, which, in turn, affects the aforesaid heat and charge
transport. This exploration is motivated by the fact that the
strongB strongly affects the phase space, and the collision time
too, which will ultimately affect the solution of the Boltzmann
equation. Third, instead of independent particle excitations,we
see how the collective oscillation of the medium through the
quasiparticle description of partons affects the occupation
probability,which, in turn, affects the charge and heat transport
coefficients and their derived coefficients.
ThemodifiedBGKcollision integral enhances both charge

and heat transport, especially more to the charge transport,
compared to RT collision integral. As a consequence, the RT
collision integral dominates the ratio of thermal-to-electrical
conductivity (and the Lorenz number, LR) whereas the BGK
collision integral dominates the equilibration through the
Knudsen number (Ω), for B ¼ 0. However, in the presence of
strong B, both electrical and thermal conductivities get
amplified but the collision integrals affect on charge and
heat transport differently. To be specific, BGK collision
integral still dominates the charge transport whereas RT
collision integral dominates the heat transport and overall
strong B smears the effect of collision integral. However, the
large values of thermal conductivity and the reduction of
the specific heat due to the dimension reduction make the
equilibration factor, Knudsen number unusually large, which
defies physical interpretation. Finally the quasiparticle

description of the partons in the absence of strongB impedes
both charge and heat transport, which is reflected in the slight
decrease of the conductivities. However, the quasiparticle
description in strong B makes the transport phenomena
interesting (as seen in Table II): (i) the large values of σel
and κ are tamed to the physically plausible values, (ii) the
effect of collision integral is no more sensitive to the heat
transport, except T is very large, and (iii) the characteristic
T-dependence of conductivities get reversed, namely σel now
decreases with T and the increase of κ with T is linear. As a
consequence,LR gets bigger and increases rapidlywithT and
becomes almost independent of B.
In future we are planning to explore the above study to the

momentum transport and the affiliated coefficients associ-
ated to the momentum transport and investigate its impli-
cations in heavy-ion phenomenology by studying the
hydrodynamic evolution of the medium along with strong
B produced in ultrarelativistic heavy ion collisions.
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APPENDIX A: DERIVATION OF EQ. (13)

Putting the partial derivatives from (14) and (15) in (6),
we get

−qiβE:pfeq;ið1−feq;iÞ−qiβp0

E:p
ωi

feq;ið1−feq;iÞ¼C½f�;

ðA1Þ
where the BGK collision term is given by (7) as

C½f� ¼ −pμuμνiðfi − nin−1eq;ifeq;iÞ

¼ −pμuμνi

�
fi −

gi
R
pðfeq;i þ δfiÞ

neq;i
feq;i

�

¼ −pμuμνi

�
fi −

ðgi
R
p feq;i þ gi

R
p δfiÞ

neq;i
feq;i

�

¼ −pμuμνi

�
δfi − gin−1eq;ifeq;i

Z
p
δfi

�
: ðA2Þ

TABLE II. Effect of collision term on the charge and heat transport in the absence and presence of strong magnetic field with the
masses of u, d and s flavors generated in the thermal medium in background of strong B.

B ¼ 0 B ≠ 0

Temperature
σBGK

σRT
κBGK

κRT
κ
σ
BGK

κ
σ
RT

LBGK
R
LRT
R

ΩBGK

ΩRT cV
σBGK

σRT
κBGK

κRT
κ
σ
BGK

κ
σ
RT

LBGK
R
LRT
R

ΩBGK

ΩRT cV

Low temperature (0.160 GeV) 4.06 1.76 0.43 0.42 1.68 0.20 1.68 ≈1.0 0.58 0.59 ≈1.0 0.08

High temperature (0.400 GeV) 4.03 1.70 0.42 0.43 1.70 3.58 1.71 0.98 0.57 0.57 ≈1.0 1.07
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Now putting the value of C½f� in (A1) we get

2qiβτi
E:p
ωi

feq;ið1 − feq;iÞ ¼
�
δfi − gin−1eq;ifeq;i

Z
p
δfi

�

ðA3Þ

APPENDIX B: DERIVATION OF THE
INFINITESIMAL DEVIATION (δf Bi ) FROM THE

LOCAL EQUILIBRIUM

In order to find the deviation (δfBi ) in the distribution
function, we solve relativistic Boltzmann equation (77).
Substituting the partial derivatives from (63) and (64) on
the left-hand side (denoted as lhs) of Eq. (77), we get

lhs ¼ ðp0∂0T þ p3∂3TÞ
∂fBi
∂T þ ðpμuν∂μpν þ pμpν∂μuνÞ

∂fBi
∂p0

þ qi

�
F03p3

∂fBi
∂p0

þ F30p0

∂fBi
∂p3

�
;

¼ p0

T
fBeq;ið1 − fBeq;iÞ

�
1

T
ðp0∂0T þ p3∂3TÞ −

1

p0
ðpμuν∂μpν þ pμpν∂μuνÞ − 2qi

E3p3

p0

�
;

¼ p0

T
fBeq;ið1 − fBeq;iÞ

�
1

T
ðp0∂0T þ p3∂3TÞ −

1

p0
ðp0∂0p0 þ p3∂3p0Þ − 1

p0
ðp0pν∂0uν þ p3pν∂3uνÞ−2qi

E3p3

p0

�

¼ p0

T
fBeq;ið1 − fBeq;iÞ

�
1

T
ðp0∂0T þ p3∂3TÞ þ T∂0

�
μ

T

�
þ T
p0

p3∂3

�
μ

T

�
−

1

p0
ðp0pν∂0uν þ p3pν∂3uνÞ −

2qiE3p3

p0

�

ðB1Þ

substituting ∂3ðμiTÞ ¼ − hBi
T2 ð∂3T − T

nBeq;ih
B
i
∂3PÞ and ∂0uν ¼ ∇νP

nBeq;ih
B
i
from the energy momentum conservation on the left-hand

side (lhs) and BGK collision term on the right-hand side of (77)

p0

T
fBeq;ið1 − fBeq;iÞ

�
p0

T
∂0T þ ðp0 − hBi Þ

p0

p3

T

�
∂3T −

T
nBeq;ih

B
i
∂3P

�
þ T∂0

�
μ

T

�
−
p3pν

p0
∂3uν − 2qi

E3p3

p0

�

¼ −pμuμνBi

�
δfBi − ginBeq;i

−1fBeq;i

Z
δfBi

�
; ðB2Þ

which can further be solved for δfBi up to first order as

δfBi ¼ δfBð1Þi þ ginBeq;i
−1fBeq;i

Z
p0
δfBð1Þi ; ðB3Þ

where

δfBð1Þi ¼ −
fBeq;ið1 − fBeq;iÞτBi

T

�
p0

T
∂0T þ ðp0 − hBi Þ

p0

p3

T

�
∂3T −

T
nBeq;ih

B
i
∂3P

�
þ T∂0

�
μ

T

�
−
p3pν

p0
∂3uν − 2qi

E3p3

p0

�
: ðB4Þ

APPENDIX C: CALCULATION OF THE QUARK
SELF-ENERGY

The transverse component of the momentum in the
quark propagator becomes very small ðk⊥ ≈ 0Þ, so the
exponential factor (e−k⊥=jqiBj) in (93) becomes unity.
The quark self energy (91) in the strong magnetic field
can be written as

ΣðpkÞ¼
2g2

3π2
jqiBjT

X
n

Z
dkz

×
½ð1þγ0γ3γ5Þðγ0k0−γ3kzÞ−2mi�

½k20−ω2
k�½ðp0−k0Þ2−ω2

pk�

¼2g2jqiBj
3π2

Z
dkz½ðγ0þγ3γ5ÞL1−ðγ3þγ0γ5ÞkzL2�;

ðC1Þ
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where ω2
k ¼ k2z þm2

i , ω
2
pk ¼ ðpz − kzÞ2 and L1 and L2 are

the frequency sum which are given by

L1 ¼ T
X
n

k0
1

½k20 − ω2
k�

1

½ðp0 − k0Þ2 − ω2
pk�

; ðC2Þ

L2 ¼ T
X
n

1

½k20 − ω2
k�

1

½ðp0 − k0Þ2 − ω2
pk�

ðC3Þ

after summing the above frequency sum the self energy
(C1) becomes

ΣðpkÞ ¼
g2jqiBj
3π2

Z
dkz
ωk

�
1

eβωk − 1
þ 1

eβωk þ 1

�

×

�
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

�
; ðC4Þ

which after integration over kz simplified into

ΣðpkÞ ¼
g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�

×

�
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

�
: ðC5Þ
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