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Understanding the origin and mechanism of the transverse polarization of hyperons produced in
unpolarized proton-proton collision, pp — A'X, has been one of the longstanding issues in high-energy
spin physics. In the framework of the collinear factorization applicable to large- p; hadron productions, this
phenomenon is a twist-3 observable which is caused by multiparton correlations either in the initial protons
or in the process of fragmentation into the hyperon. We derive the twist-3 gluon fragmentation function
(FF) contribution to this process in the leading order (LO) with respect to the QCD coupling constant.
Combined with the known results for the contribution from the twist-3 distribution function and the
twist-3 quark FF, this completes the LO twist-3 cross section. We also found that the model-independent
relations among the twist-3 gluon FFs based on the QCD equation of motion and the Lorentz invariance
property of the correlation functions guarantee the color gauge invariance and the frame independence of

the cross section.

DOI: 10.1103/PhysRevD.104.054023

I. INTRODUCTION

It has been known that the hyperons produced in
unpolarized proton-proton collisions are polarized perpen-
dicularly to the scattering plane, pp — ATX " [1-11]. The
observed polarizations show a tendency that they become
larger in the forward rapidity region, where the asymmetry
is as large as 30%. Hyperon polarization was also observed
in other reactions such as yp — A'X [12,13], quasireal
photoproduction of A’s in lepton scattering [14,15], and
electron-positron collisions, e*e~™ — ATX [16,17]. These
transverse polarizations in unpolarized collisions are the
examples of the transverse single spin asymmetries (SSAs),
where only one particle participating in the scattering
process is polarized. Another well-known SSA is the
asymmetry with regard to the initial (transverse) spin
such as p'p = hX (h=nm K,n,jet, etc.) [18-23] and

'Here, A collectively denotes spin-1/2 hyperons such as A X,
, etc.
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epT — ehX [24,25]. For the last several decades, many
efforts have been made to understand the origin and
mechanism for these large SSAs, since perturbative
QCD at twist-2 level gives almost zero SSAs [26].

For a high-energy collision in which particles with large
transverse momentum are produced, the cross section can
be computed in the framework of the collinear factorization
of perturbative QCD. In this framework, SSAs appear as
twist-3 observables to which nonperturbative multiparton
correlation functions contribute instead of collinear twist-2
parton distribution functions (PDFs) and/or fragmentation
functions (FFs). Through the studies of SSAs, the tech-
nique of calculating the twist-3 cross section has made
much progress and has been applied to many relevant
processes in the leading order (LO) with respect to the QCD
coupling. For example, the complete LO cross section
for p'p — hX (h = 7, D,y,y") has been derived [27-40],
and the Relativistic Heavy Ion Collider data have been
analyzed and interpreted, which suggests the main source
of the asymmetry is the twist-3 fragmentation contribu-
tion [41,42].

In this paper, we study pp — ATX in the collinear
twist-3 factorization. Two kinds of twist-3 cross sections
contribute to this process: (i) twist-3 unpolarized PDF in
one of the initial proton convoluted with the twist-2
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“transversity” FF for the final hyperon and the twist-2
unpolarized PDF in another proton and (ii) twist-3 FFs for
the polarized hyperon convoluted with the twist-2 unpo-
larized PDFs in the initial protons. The complete LO cross
section for i was derived in Refs. [43-45]. The second one
(i1) can be further classified into two, depending on whether
the twist-3 FF is of ii-a) quark-gluon correlation type or of
ii-b) gluon correlation type. The complete LO cross section
for ii-a was derived in Ref. [46], while ii-b has not been
studied so far. In this paper, we focus on the ii-b
contribution and derive the corresponding cross section,
which completes the LO twist-3 cross section for this
process. (A short version of the present work was presented
in Refs. [47,48].) We develop a formalism for deriving the
gauge- and frame-independent contribution to this twist-3
cross section from the purely gluonic FFs and present the
result for pp — ATX.

Besides the intrinsic importance of the formal develop-
ment, we emphasize the phenomenological relevance of the
twist-3 gluon FFs in pp — ATX in comparison to Ay in
p'p — 7X. In the latter case, the twist-3 quark FFs for the
unpolarized final pion are considered to be the main source
of the asymmetry. Since both asymmetries show a similar
tendency, i.e., increase in the forward direction, one may
expect the twist-3 fragmentation contribution to also be
important for pp — ATX. Owing to the chiral-odd nature
of the twist-3 quark FFs for p'p — zX, there are no
counter FFs in the gluon sector for this process. On the
other hand, for pp — A'X, the chiral-even twist-3 quark
FFs accompany the twist-3 gluon FFs, which could play an
important role in the asymmetry, given that the gluons are
ample in the collision environment and the effect of their
correlations leading to hyperon polarizations could be
sizable. In addition, since these chiral-even quark and
gluon twist-3 FFs mix under renormalization, inclusion

|

F(l/)’

=y

PG(z) — iM el (S, - w)AG(z) —

where N = 3 is the number of colors, |h(P),S))) is the
baryon state with the 4-momentum P, (P; = M37) and the
spin vector S, (S2 = —M3), and [Aw, cow] is the gauge link
in the adjoint representation connecting Aw and cow. For
the transversely polarized baryon, we use the spin vector S |
normalized as Si = —1. In the twist-3 accuracy, P; can be
regarded as lightlike. For a baryon with large momentum,

*The importance of these relations for the frame independence
of the twist-3 cross sections has been realized for the twist-3
quark distribution functions and FFs [46,50-52].

of the twist-3 gluon FFs becomes necessary even in LO
when one includes correct scale dependence of these twist-
3 FFs. Therefore, the present work will be important for a
phenomenology as well.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the complete set of the gluonic FFs for
spin-1/2 hadron up to twist 3 defined from correlators of
two- and three-gluon field strengths, which are necessary to
derive the twist-3 cross section. We also recall from
Ref. [49] the exact relations among those FFs based on
the QCD equation of motion and the Lorentz invariance,
which play a crucial role in guaranteeing the gauge and
Lorentz invariance of the cross section.” In Sec. III, we
develop a formalism to derive the twist-3 gluon FF
contribution to the twist-3 cross section and present the
corresponding LO cross section for pp — ATX. We will
discuss how the Lorentz invariance of the twist-3 cross
section is realized, using the relations introduced in Sec. IL
Gauge invariance of the cross section is discussed in
Appendix B. Section IV is devoted to a brief summary.
In other Appendixes, we discuss some technical aspects of
the actual calculations.

II. GLUON FRAGMENTATION FUNCTIONS

A. Three types of twist-3 gluon
fragmentation functions

In this section, we introduce twist-3 gluon FFs for a spin-
1/2 baryon relevant to pp — ATX [49,53,54] and sum-
marize their basic properties derived in Ref. [49]. They are
classified into three types; intrinsic, kinematical, and
dynamical FFs. The intrinsic twist-3 gluon FFs are defined
as the Fourier transform of the light-cone correlator of the
gluon’s field strength F}”,

(0] ([oow, OJF*2(0)) o | (P, $,)X) (P, 1) X | (F**(Aw) [2w, cow]) ,[0)

iMhep"WSL[aWﬁ]AGH(Z) + M}zephwsi{awﬂ}AGﬁ(Z)’ (1)

P ~ (|ﬁh|f’h) another lightlike vector w is defined as
w = 1/(2|P,2)(|P,]. —P}), which satisfies P, - w = 1. In
(1), we use the notation F*/ = F¥*Pw,, and {} ([]) implies
the symmetrization (antisymmetrization) of Lorentz
indices, i.e., for arbitrary 4-vectors a and b’, al*bft =
a®b? + a’b* and al*b” = a®b’ — a’b*. G(z) and AG(z)
are twist 2, and AGs7(z) and AG57(z) are twist 3. We also
note AG57(z) is naively T odd, contributing to SSAs. Each
function in (1) has a support on 0 < z < 1.

The kinematical FFs contain the transverse derivative of
the correlation functions of the field strengths,
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) 0] ([oow, O] (0)) [ A(P. S )X) (h(Py S )X | (F* (aw) [Aw, cow]) ,0)
M N M A M N
_ 21 gaﬁEPhWSin(Tl)(Z) + ThephwaﬂSiAG(Tl)(Z) _ l?h (€P,,wSl{agi}7 + €P”WY{(IS€_})AH(TI)(Z), (2)

where each function is defined to be real. The kinematical FFs are related to the k%/M3-moment of the transverse-
momentum-dependent FFs [53]. Each function in (2) has a support on 0 < z < 1.
To define the dynamical FFs, we introduce the light-cone correlation functions of three field strengths,

(P (3) = 3 [ 5 [ S S R OR O h(Py S X Py SIS () o)) ()

where the gauge link operators are suppressed for simplicity. The color indices of this correlator can be expanded in terms of
the antisymmetric and symmetric structure constants of color SUNN), —if?*¢ and d?’°, as

R 11\ ifabe 11 N e (1 1
F”ﬂ? - — 1'*(1/”}’ , dabL Ffl/ v — . 4
F,abc (Zl Z2> N FA (Z] Z2> N _4 FS Z] Zz ( )

The dynamical FFs can be defined from lA"‘,ffj{( 1) and o &.0):

f%*y(l’i):_ifabc [ [ e 0 0Py LX) (P 5K g o)

71 2p N2 -1
—m, (Nl < 11 )gayeP,,wSJ_/} TN, (l _) gffy PowSia _ N, <i _ i 1 )gaﬁeP,,wSJ_}/) (5)
71 Z2 1 2 2 11 Zz
e 1 abc d/'l —li —ip(t-L+ wa w
() = 4 ) (O FP(0) (P S1)X) (1P S.)XI 2 () g2 ) )
1 1 1 1 1
_ _Mh (01 (_ _) ga}’ePthJ_/f + 02 (_ _) f}’ P,wS a + 02 (_ -, _> giﬁePthly> . (6)
71 2 21 2 Iy 21 2

Correlation functions (5) and (6), respectively, define two independent set of the complex functions {N,, N,} and {0, 0,}
due to the exchange symmetry of the field strengths. Functions N, and O, satisfy the relations

N 1 1 N 1 1 1

N] T :_N] R K
71 2 2 1 2

N 1 1 A 1 1 1

(L) o). .
21 22 22 21 2p

The real parts of these four FFs are T even, and the imaginary parts are 7" odd, the latter being the sources of SSAs.

A

N12<Z Z—) and O, (— —) have a support on - > 1 and - -> 2> 0.
For the denvatlon of the twist-3 gluon FF contnbutlon to p p — ATX, one also needs another dynamical FF,

(2 2) -5 / [ e O]y ) ) (X )i 00
M, [eaphwwm),»,bn (lel) #1515 Grr (1) . 8)

where we explicitly wrote spinor indices i, j. D FT and GFT are also complex functions, with the T-even real part and the
T-odd imaginary part. They have a support on - > 0, -- <0 and - —% > 1. As was shown in Ref. [49], the constraint

relations for the twist-3 gluon FFs involve these quark gluon correlatlon functions. We collectively call the functions in (5),
(6), and (8) dynamical twist-3 FFs.
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B. Constraint relations among the twist-3 gluon FFs as we will see in the next section, play a crucial role in
Three types of the twist-3 gluon FFs defined in the guaranteeing.the Lorentz and giuge invariance of the twist-

previous subsection are not independent from each other ~ > Cross sections for pp — ATX. Here, we quote from

but are related by the QCD equation-of-motion (EOM) and ~ Ref. [49] the relevant relations. o

the Lorentz invariance properties of the correlation func- First, the intrinsic FFs AGs7(z) can be written in terms of

tions (LIRs). In Ref. [49], the complete set of those the kinematical FFs and the dynamical ones as (see Eq. (50)

relations is derived. Here, we recall those relations, which, of Ref. [49]),

[BS - = (1 1 o (11 o~ (11 « (1 11
_AG3T(Z):_SDFT(Z)+/ d<_/> <1 1>S{2N1 (7,—) +N2<—,,—) —Nz<———,,—>}
Z 0 T)\;—7 7z 7z Z 7z

(G4 (2) + AH (2)), 9)

+
N =

where Dpr(z) is defined as

- 2 1/z 1\ - 1 1 1
D =— dl — D —— =, 10
rr(?) CF/O (Zl> FT<21 2y Z) (10)

with Cp = 21v I and SD indicates the imaginary part of D ;. The kinematical FFs can be expressed in terms of the
dynamical ones as (see Eqgs. (74) and (75) of Ref. [49]):

A1)\ 2/1/2 <1> 4/1/z <1> 3/1/Zz <1> 1 N[A (1 1> N (1 1 lﬂ
G =—— d 3D + d d— | ——3|N{|—,— | =Ny ———,—
r (Z> z? 1 %) K FT(Zz) z 1 22 E 0 I/ZZ_I/ZIJ : 21 22 g 2 21 22
1/z /22 1 1 1 1 N 11 N 1 11
R R C Gt
1 (Zz) ZA <Zl>(1/zz—1/21) [ ! 2 2 ? 71 22 : 2 21 (1

N 4/1/z (1)5~~ S/I/z 1)5/1/z2 1 1 o (1 1\ (1 1)
AH =—=["a 3D +=2 [ d A=) ——— 3|8, (== ) + 8, [ —.—
r () 4 2) rr(22) i %) a) Vn—1/z 1 '\& o o'z
1/ 1/ 1 1 1 1 ~ (1 1
ol ( )/ Qd(‘) {N‘<_ _>+N2<_’_>]' 1
1 22 0 <1 (1/12—1/21) <1 22 21 22

From (9), (11), and (12), the intrinsic FF AG3T(Z) is also written by the dynamical ones. For the derivation of the twist-3
cross section for pp — A'X, one needs derivatives of the kinematic FFs. From (11) and (12), we can obtain those
derivatives in terms of the kinematical FFs themselves and the dynamical ones as

10 ),y anr (1) /1/z11@A11A111
za(l/z)[GT (2)] = =23Dpr(z) +2G; ' (2) + 4 | d 7 %_%J N, 77 N> P

2 [z 1 1 e~ (11 ~ (11 (1 11
T O RS TR
0 ) (-2 7z 7z z 7z

%%[Aﬁ]?)(z)]——4SDFT(z)+4Aﬁ1(Tl)(z)+8A1/Z <>§ { < ) 26%)}
L) (D) m (D) o9

In the next section, we will use (9), (13), and (14) to write the twist-3 gluon FF contribution to pp — A'X in a frame-
independent form.

2\l
_I_

and
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(a) (b) (c)

FIG. 1. Diagrams representing the twist-3 gluon fragmentation contribution to pp — ATX.

III. TWIST-3 GLUON FRAGMENTATION where p, p’, and P}, are the momenta of the particles and S |

CONTRIBUTION TO pp — A'X is the transverse spin vector of AT. We work in Feynman

gauge so that one can check the appearance of the gauge-

invariant FFs explicitly. As in the case of the twist-3 quark

FF [46,55], naively T-odd FFs give rise to the cross section

p(p) + p(p') = AT (P,.S.) + X, (15) as a nonpole cpntribution. The twist-3 FF contribution to
(15) can be written as

In this section, we develop a formalism for calculating
the twist-3 gluon fragmentation contribution to

do(p,p'.Pp;Sy) 1
d*P,, 16728y

dx dx’
E), 7][1 (x) Yfl(x/)Wq,g(xp’x/p/7 Py/z.51). (16)

I
where S; = (p + p’)? is the center-of-mass energy squared;  fragmentation of a quark (gluon) into the final AT, In (16),

E. — /M2 + P2is th fthe h %, % are th summatiqn over all possiblfa chgnnels is implied. The LO
" n T 7 1s the energy of the hyperon; x, X" are the cross section for W, was derived in Ref. [46]. Here, we focus

on the twist-3 gluon fragmentation contribution W, in (16),
which is diagrammatically shown in Fig. 1. W, consists of
three terms corresponding to Figs. 1(a)-1(c),

momentum fractions of the partons coming out of the initial
nucleons; and f(x) is the unpolarized quark or gluon
distributions in the nucleon. W, (W) is the hadronic tensor
representing the partonic hard scattering followed by the
|

W, (xp.x'p' P S) = Wy + Wi + wi)

4 4p
:/éﬁuﬂ%wu<w%/£§'éﬁ[uwwwiﬁﬂy>

vl abc
+ TRl (ke K) S 2 (k. )], (17)

where the factor 1/2 in front of Wéh) and W§”> takes into account the exchange symmetry of the gluon fields in the

fragmentation matrix elements. The 4-momenta k and k" are those of the partons fragmenting into the final A. Sf,(z)’ab(k),

S (k. k'), and S§y 1< (k. K') are the partonic hard scattering parts, and [ (k), T2} (k. k), and [ 14’ (k. k') are the
corresponding hadronic matrix elements representing fragmentation of partons into 4 (h = A'). The upper indices (0) and
(1) represent the number of extra gluon lines compared with the lowest-order gluon fragmentation contribution to the cross

section. Hadronic matrix elements are defined as

o™ ( Z/d“ée‘l’“f 0]A3(0)[AX) (hX|Aa(£)]0), (18)
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L) = 37 [ e [ atper e b =n0iag 0)1) (14t 9L )10 (19)
T k) = 3 [ i [ atnerieen 6 0m0lag 0)ga20n) 1) (X1 A%(6) ), (20)
X

where the gauge coupling g associated with the attachment of the extra gluon line to the hard part is included in f(1> (k, k')
and fg)(k, K'). Therefore, the hard parts S©), §; () and Sﬁe) are of O(g*) in the LO calculation. From Hermiticity, one has
il e k) = Fge (K k) and SV Lff (k) = Sgif (K, k), which guarantees W, in (17) is real. One can extract the
twist-3 effect from (17) by applying the collinear expansion. The collinear expansion of S, S(Ll), and Sg) with respect to
the parton momenta k* and kK’ around the parent hadron’s momentum P), reads

(0),ab 2 (0).ab 3 (0),ab
0).ab /7y o(0).ab S (k) @ 1o, 1078 ;w (k) apob 10°S§ /w (k) @ 10Of s
SI (k) = Si0 | K | QKO o QA Qi (21
w R =Sw @ | KK e |, 6 ororPoir |, , e (20)

and

aS(l),ubc(k k) aS(l)Jle(k k) 1025(1)~“b"(k k)
(1).abe , (1),abe , L s . L.uv s _— L.uvi ’ B 1p
S kk')=S , — T Qe kT Qe ke T QA ke Qf ke
Lwd ( ) Ll (Z e )+ ke oL oK+ ok .l c +2 akaakﬁ el o P
2 o(l).abe ’ 2 o(1).abe ’ 3 ).abc ,
1080s KN o oy oy St KK kP K+ 108} (k4) QY QY kT
3 K DIP o c p 8kaak//} ol 6 Ok Okl Okr el c p T
1078} (k.K) 19 S{U ()
S Thoppr N7 Qa k/o"Q/)’ k//)Qy kT4 - TLuwd VT Qo k(rQ/} kPQr k't
6 DRI |, T2 ok |,
198 i (k.K)
198w QK7 KPQ K -, 2
2 8kaak/ﬂak/y el o P T + ( )

where QF, = ¢, — P%w,;: Si(2) = S (Ph/ )i S (2.2) = 80 (Py /2. Py/2): #)e,” indicates taking the
collinear limit, i.e., k — Pj,/zand k' — P;,/Zz’; and - - - denotes the contribution of twist 4 or higher. The collinear expansion
for Sg> can be performed similarly. We also decompose the gauge field A* as

A= (A-w)P! + Qr A, (23)

Inserting this decomposition into the expression for f(o), f(Ll), and f};% one obtains

rlOm — puperlO  pugy 1O o prow 1O L on ov T, (24)

L = PRI+ PO + e T+ pipier T

+ P, 94 Lwer y proe o2 T proe o TV 4o or v o T (25)
and likewise for r‘ﬁe‘,ﬁ;gf. Inserting the above expansion into k#Sab (k) = k*S4 (k) = 0, (26)

(17) and keeping the terms with two or three Q¥ s in the
—i fabc
N? -1

product of the hard parts S(*), § (L ), 4 % ) and the fragmentation

matrix elements (), F<L ) I Ee ), one can obtain the twist-2 and

-3 contributions to the cross section. To get a gauge-invariant )
cross section, one needs to fully utilize the following Ward keSabe (kK ifee S )+ Gb (K — k. K 28
identities for the hard parts (see Appendix A): Lusa (k- K') = N2 -1 (k) + G k), (28)

(k' — k)lSZ’;;l(k, k') = S (k') + G,‘jfj"(k, k), (27)

054023-6
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k’”SiZiJ(k, K)y=0, (29)
/ AQabc / lfabc bac (1, *
(k _k) SR/w/l(k k) N2 — lsﬂv(k)+(Gbﬂ (k vk)) ’ (30)
v Qabce / ifabc cab / *
RS (k) =5 S,,(0) + (G5 (k=K. (31)
ke Sghe (k. K') = 0. (32)

Here and below, we suppress the upper indices (0) and
(1) from the hard parts 50), S(Ll) , and Sg) for simplicity and
SH (k) = S#a*(k)5,,. The G terms appear due to the off-
shell-ness of the parton momenta entering the fragmentation
matrix elements. We present the actual forms of those “ghost

|
“ 1
Wi _ Qﬂagyﬁz / P <E> 2(10)

P (z)

— i, QY Z/ ( ) 2T (2) -

17 (2) + T

- [a(2)2(r
4%%%2/<%

rl/)’r
O[F]

) [

1

terms” in Appendix A. Here, we only mention that they are
proportional to f°¢ and satisfy the relation

KGabe (k, ') = KV Gabe (k, k') = 0. (33)

We have found that the ghost terms do not contribute to the
twist-3 cross section.’ We thus discard them in the following.
To get the twist-3 cross section in the gauge-invariant form,
we use the collinear limit of these identities as well as the first,
second, and third derivatives with respect to k and k" of these
Ward identities in the collinear limit.

After very lengthy calculation, one eventually obtains
the twist-2 and -3 contributions from Figs. 1(a)-1(c) to W,
in the following form:

Q af
T (2) =T (2)S,(2)

c v Q| (l}
Wi e, [ d(g)z%rgz]ﬁ( )+ T2 (2)8,(2)

— i QO Z / ( >

e (o) [1) i

Each fragmentation matrix elements I" appearing in the above expression is defined as follows:

09 (z)

e

Fg )a/f;' 5ab Z /

N2

“ apr s 208, (k)
Tt (2) = Tl () —2o=| (34)
ak c.l.
/(2)) Su(2)
Q a, Q) aS ( )
&)+ Doy (@) + Tl () + T ()55
ak c.l.
« 11 abe ,
F%‘.LJ’Z( : )S,fm” (2.2, (35)
Z Z
o apy, \OSu(k)
Cowg () + Tk ()55
(1)apy 11 R.,abc
FFR.uhc Z’Z Smnl (Z’Z)' (36)
S0 (0)[hX) (hX|F&* (Aw)|0), (37)
(0| F" (0)|hX) (hX|F2* (w) ' |0). (38)

This was also the case for the twist-3 quark FF contribution to ep! — ehX [55] and the three-gluon distribution function

contribution to pp' — DX [56].
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) = ﬁz / j—je-f%<0|F£W<o>|hx><hX|gfabcAz<zw>sz<ﬂw>|o>, (39)
Pk () “H0lgf ane A (0)AY (0) [1X) (X | F5 (Aw) 0). (40)
M0 = o / (O] P2 (0) X (X af o A ) A2 ()0, (@)
T ) = 5oy 3 [ 55 0 e ALO)AZO) ) (17 ) ), 2)
i) = LS [ et ot g [ it oo (3)
(o) = LS [ e Olrt Ol i | aur? o) (44)
Tt () = (,_Viffh?; [0l @) Xt )i [ duaron)0) (45)
FRCEEDY / %e-’%mwﬁiwmﬂhm (1| P32 ) igAL )]0, (6

M (L 5) = [ [ e te oL O ) | ) o)), )
rie( = G >/ ;’—je-f%mug / " duA (o) Y (0) |1 X) (X F2 (20) 0) (48)
(o) =SS [ el [ dur o)L 1) (1) ) (49)
M (53) = 3 [ 55 [ et lare G L Q) (X1 o)) (50

In the LO calculation of Figs. 1(a)-1(c), only O(1) and
O(g) contributions from the hadronic matrix elements are
produced. We thus note that, in (34)—(36), one can identify
the correlation functions of the field strength Fy, = 0,A7] —
9,A% + gf**AbA¢ to this accuracy. The first term in

W_E,a) is the O(1) contribution from ['(z) in (1), ignoring
O(¢*) terms ~(0|gf®cAPAc|hX)(hX|gf’'< AY A€|0).

The first terms in W() and Wg) are the O(g) terms
arising from the expansion of the gauge link and
the O(g) part of the field strength in ['(z). These terms
contain both twist-2 and intrinsic twist-3 FFs. Likewise,

the second term in W( “) is the O(1) contribution from the

|

kinematical twist-3 FFs [y(z) in (2). The second
terms in Wéb) and W;C) are the O(g) terms arising
from the expansion of the gauge link and the O(g) part
of the field strength in I'y(z). The third term in Wéb) is the
O(g) contribution from " defined in (5) and (6). Like-
wise, the third term in Wéc) is associated with
['pg ~ ([p)*. This way, we have obtained the sum of
WE,“), Wéb), and Wff) in the color-gauge-invariant
form in terms of the intrinsic, kinematical, and dynamical
FFs. Inserting these expressions into (16), one can

eventually express the twist-3 gluon FF contribution to
the cross section as
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do(p.p'.Pp:S)) 1 /1dx /ldx
E = s
h dBPh 1677:2SE 0 .Xfl( ) fl( )

— i QO / dz Tr [fg”y(z)
0

where we have used the expression (4) and |,; implies the
collinear limit, k — Pj,/z. In writing down the contribution
from the dynamical FFs in (51), we have interchanged the
role of the variables, z and z, from (35) and (36) for later
convenience.

Next, we substitute (1), (2), (5), and (6) into (51). We
recall that the ggg-type FFs (8) are related to the purely
gluonic FFs, as was shown in Sec. II B. Therefore, we
consider the contribution shown in Fig. 2 together. Note also
|

do-(p,p’,Ph;Sl)_Mhag/ldx
d*P,, Sy Jo x
1

inm‘f' (G(T)

h

N uv ( )
ok*

N T 1 1 N
x Tr [ dabe

(2)Hypg +

1z (1) [ as 1
o)1) ot

3

= A~ 1 1 1 ~ 0. ~ 0, ZIZAO_
NS0, (s Y HY 4 7B+ HY
+:lo ’<l/z—1/z’ 04 = (1/z—1/> R

Qg Al dz Tr[[(2)S,,(Py/z)]

ldz [eod? 1
R QO 00 / —/ —<7>
041.:| { R N A ANV R Ve
i (11
L (502) ) S} 51
|
that each hard part contains the factor 5((xp + x'p’ — k)?) ~

5((xp + x'p’ — P,/z)?) corresponding to the on-shell con-
dition for the final unobserved parton, and its derivative with
respect to k causes the derivative of the kinematical FFs by
partial integration with respect to 1/z. Separating various
contributions based on the 7' dependence of the hard cross
sections for the dynamical FFs (see Appendix C), we can
write the cross section as

7)) [ azaten o = P2

196G ()HDG>+<

1 aAH ( )
(Z)HNDH + - 2 0(1/7)

HDH)

a(1/z)

ﬁN,-+1 1 2HN"+ /ﬁNi+Z/ZI:1Nf
1 \1/z-1/7 2 T T3 L 4

+/l/zd bt -Y(a +1 L _n +Z/H
0 F ZI ’ZI z DF1 z l/Z _ 1/Z/ DF2 z DF3

3
<ﬁ1 +1
Z orl z1/z

where H,,, Hypc, Hpg, etc., represent the partonic hard
cross sections for each FF (after separating the 7’ dependence
for dynamical FFs), and they are the functions of the
Mandelstam variables in the parton level, s = (xp +x'p’)> =
2xx'p-p',  t=(xp-P,/z)*=-2(x/z)p-P,,  and
u=(x'p'—P,/z)> = -2(x'/z)p" - P;, multiplied by kin-
ematic factors with e??S1 and e P51 [See Eq. (54)
below as an example.] In (52), we have used the shorthand

notation, N3——N2(f—l,,é) and O; = 02(——?%), A
L1
Jol-1in the 7/ and z7?/z

change of the variable -
terms in the contribution from N; and O,- leads to the
following form, owing to the exchange symmetry (7) of N,

and O:

ST}
177 Gr2 - HGrs )

(52)

FIG. 2. Diagram for the g¢gg-type correlation function in
pp — A'X. The mirror diagram also contributes.
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do(p,p'.P;;S.) M,a? [ldx /ldx’ /1
E = - — —f1(¥ dzo(s+t
! d’P, S: Jo fl(x) . ¥ f1(x) | dzd(s+t+u)
AGy(z ) (1) 106 (2) (1) 108 (2)
{ z Hin+ Gy (2 )HNDG+ a(1/2) ———Hpg+AH (2 )HNDH+Z (170 o

I/Z l 1 A 11 /\N /\N A 11 /\N AN
d\ = | |——=SIN| 55— |(H,'—H;")+N,|=5,— |(H|"—Hj’
+A (/) |:1/Z_1/ZI\S{ I(ZI Z>( 1 3 )+ 2<Z/ Z>( 1 3)
. (1 1 1
W (15 )i )
Z Z Z

(i) (W (e ) - (G )= (G- ) (- |
+ﬁs{él(§,§><H?l+H?‘>+éz %)(H?%H?‘)wz(——#l)(l’ Y
(i) s{on(pr o (i)

o1 g )|

+A1/Zd<%>cip[8f) <zl ;—i) (I:IDF1+171/ _l 1/ /[:IDF2+ZE/I:IDF3>

+SGF(§,Z1, i) (I:IGFl‘i‘iﬁHch‘f' HGFS)]} (53)

Here, we remind the reader that the gauge invariance and the frame independence of the cross section (53) are realized in a
very nontrivial manner. We show that those properties are guaranteed by the EOM relation and the LIRs introduced in the
previous section. The gauge invariance is satisfied by the EOM relation (9), which is discussed in detail in Appendix B.
Here, we demonstrate how the frame independence of the cross section is achleved

To make clear the issue of frame dependence, we pick up the hard cross sections H - H f‘v ', Hpg, and Hpyy in (53) in the
qg — gq channel, as an example. They can be computed to be

g g = CF PywS sy (S ] PywS PR it
Hy' — H, = — (2t + u)xePPvSe 4 e PrvSi) (e ) — = (u(21 + u)xePPivSe 4 1(21 + 3u)x'el PivSe) .
N st 2 stu’
2, 2 5o
HDG — _& (xepPhWSl + Xlep/PhWSL) se 4+t n <x€pPhWSL i x’ep/PhWSL) sc 4t ’
N s*t su?
Hpy =0. (54

We note that each cross section contains the lightlike vector w¥. On the other hand, the physical cross section
should be able to be represented in terms of the vectors p, p’ P,, and S| in a Lorentz-invariant form. Since w* is defined
from P}, its actual form depends on the frame. One can express the vector w in terms of p, p’, and P;, as[52]

w=aqa P —l—(l—a),p—ﬂ—l—{—a(l—a)p.ilfl—l—ﬂzp-p’p-Php’-Ph}P’;l+ﬁ€”””Ph, (55)
PPy p Py p-Pyp - Py

|
which satisfies P, - w = 1 and w> = 0. The values of e and  and the derivative of the two kinematical FFs by
p specify the frame we choose, and the above form of the  using those relations. Then, the resulting cross section is
hard cross sections leads to a- and f-dependent cross  written in terms of the (nonderivative) kinematical FFs and
sections. However, use of the EOM relation (9) and the  the dynamical FFs. If we pick up the hard cross section for
LIRs (13) and (14) leads to the cross section independent
from a and S as will be seen below. In the twist-3 cross 1 / 1/z (1) 1 . (1 1> (56)

0 ( ’

1/z—1/7')? SN

section (53), we eliminate the intrinsic FF AG;7(z)/z Z z
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we have the combination

f{gjl —[,'\Iivl +2I:]DG+4I:]DH:86DN1’ (57)
where
Cr (1 1\ (Qt—u)s>+1?)
6 =——|\5+t5| 7", 58
DN N <52 t2) 2stu’ (58)
xx'
£ = x'te?'PSL — xyePtSL = 27" err'PiSL - (59)

Z

One should note that the kinematical factor £ appearing in
this combination is free from a and 3, which is written after
the last equal sign in (59). We have found that all the
coefficient hard cross sections for all FFs with the same 7’
dependence define the frame-independent cross section with
the common kinematic factor £. This shows that the frame
dependence has been removed from the twist-3 cross section
thanks to the EOM relations and the LIRs. This way, we can
define the following set of frame-independent hard cross
sections [in addition to (57)]:

~ 1. N
E6G = Hypg + zHint +2Hpg. (60)
. 1. )
Eoy :HNDH+§Hint+4HDH’ (61)

géNl — FI?II - Hé\ll + 2Hint + 4HDG, + SﬁDH’ (62)

Eéyy = H e HéV3+ﬁIint+8ﬁIDHv (63)

Ebyy = _Hzlv3 +I:132 — Hyp — 4H g, (64)

do(p,p'.Pp:S1)
a&p,

E,

Ebpyny = HY — HY* 4 2H 6 + 4Hpy,  (65)
Ebpys = —HY* + H)? —4H g, (66)
E601 =AY + HY', (67)

E60y = HY + HY, (68)

E6oy = H + A2, (69)

Eopor = HY' + HY", (70)

Ebpor = A + HY", (71)

Ebpos = HY + HY", (72)

ga—DFl :HDFI _Hint_zl:IDG_é‘I:IDH’ (73)
g&DFZ = HDFZv (74)

E6prz = HDF% (75)

ga'GFl = [AJGFlv (76)

ga—GF2 = HGFZv (77)

E66r3 = Hers. (78)

With these hard cross sections, the manifestly frame-
independent twist-3 cross section is given by

Mo [1d Ldx' —
= ”a“/ _xfl(x)/ x ’)/ dzd( s+t+u)< 2 eppPhSi>
Sg Jo x 0 Z

~(1) R ~ (1) “ 1/z 1 1 ~ 11 R ~ 11 N
X{GT (2)66 AHp (Z)O'H‘l'/o d(z) [ms N, Z’E on1 TN ?’Z ON2

_|_
~ (1 11\, 1 1 20, ~ (1 1), ~ (1 1\,
+N2 ———>_ |ON3 —+— T 177 ~ Nl T 6DN1+N2 T 6DN2+
z 7'z z\1/z—1/z 7'z 7'z

~ (1 11\,
N, ———,_ |ODN3
Z 7 Z

1 ~ (11 11 ~ (1 11
+——5( 0, (== 601402 5= 602+ 01 [ ===
1/z—1/7 l(z z)am 2(1 Z>602 <z 7’ z>603>
1 1 2 A 1 1 ~ (1 1\, ~ (1 11
+=\ 7= ) S| 0152 )6po1+02( .= |6po2+ 02 ===~ |6po3
z\1/z—1/z 7’z 7'z z 7'z

Ve (1N 2 [on (11 1\/, | S
+ ; d 7 C—F SDyp 772 JDF1+EWGDF2+;GDF3
s (LU 1] 7
+SGF<,’,— < GF ———— 06t — GGF3>:|} (79)
7’7 z zl/ 1/7 z
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Equation (79) is the final result for the twist-3 gluon FF  sections, using the partonic Mandelstam variables, s, f,

contribution to pp — ATX. and u:
Below, we give the LO Feynman diagrams for the hard (1) gg = gq channel (Figs. 3 and 4):
part in each channel and present the results for hard cross
|
R Cr(1 1 2(s—1t R
5 :‘N<sz‘,2> "Gt =0
) Cr4 48 +10%u + 4tu® + . . )
ON1 :_Ws_z_ tu3(t—|—u) > on2 =0, ON3 = —ON1,
2, P
6pn1 = —% (Siz + tiz) +%§:;t>’ 6pN2 = Gpn1s 6pN3 = —26pn1-
2.0
601 =0, 602 = —% (s22 t22> +i£€s—_:——tt)2)’ 603 = 602:
. Cr(1 1 3(s>+1%) . . . .
Opo1 = N (S—2 t_2> m O0po2 = Opol>» 6po3 = 26po1-
. Crp2 48 +10Pu + 4tu® + u?
ODFL =N 32 2003 (1 + u)
. Cr (s> +1) (s+20(s*>+7) 1 s Cr 1
RSN GG+ 02 st(s+0Pu  N2u(s+ 1P NP2R
R Cr (s2+7) (2s+0)(s>+7) 1 t Cr 1
oDF3 = N st(s +1)? 4st(s+1)3  N2s(s+1)> - N22s2°
66r1 =0, 6Gr2 = —0pF2, 6GF3 = OpF3- (80)

(i) gg — gg channel (Figs. 5 and 6):

. Ce(1 1 (t—u)(2 4+ u®) (£ + 4tu + u?) .
o=~ () - i+ uy A
Cr 4(t—u) 6(t —u) (> + u?)

6 ) - ) 0 = 0’ 0 =—0 )

ON1 N2 tu(t + u) F u(t+ u)? ON2 ON3 ON1
R Cr(t—u) (£ +u?) (2 +u?) (£ — 1) X R ) )
OpN1 = —F tzuz(t+ u) Cr tzuz(tJr u)3 ) OpN2 = ODN1>» 6pn3 = —26pn1,

A Cr(2 2 2(22 + u?) (£ — tu + u?) . )

b01=0. b02=13n <t_2 7) —Cr P21 + u)? Lo
5o —Cr(L 1\ _o @ru)@ -t b003 = 26

por =\ 212 F 2 (i + )’ , DpO2 = 0Opo1s DO3 DO1>
5 __Cr 2(t—u) 3(t—u)(? + u?)

Pr Nw(t+u) " m(+up
5 :_&(t2+u2) (P+u?) Cp (P+u’) Cpl

PR N tu(r+u)? P 2u(t+u)? N 22(t+u)?  N322
5 _Cp (PHw?) L (P+w?)  Cp (PHu’)  Cp L

PE TN (4 u)? T 2u(t+u)® T N 2u3(t+u)? N3 2uP
66r1 =0, 6Gr2 = —6pr2, 6GF3 = Opr3- (81)
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e

/

3

FIG. 3. Diagrams in the gg — gq channel for the hard part S(k)
and S;(Z,z) in Eq. (51). For S;(z',z), an extra gluon line
connecting ® and each of the black dots should be added for each
diagram.

FIG. 4. Diagrams for the hard part in Fig. 2. For the upper
middle diagram, a quark loop with the reversed arrow also needs
to be included.

(iii)) gg — gg channel (Figs. 7 and 8):

" l

/

{
><§ <
\

FIG. 5. Diagrams in the gg — gg channel for the hard parts
S(k) and S; (7, z) in Eq. (51). For S; (7', z), an extra gluon line
connecting ® and each of the black dots should be added for each
diagram.

FIG. 6. Diagrams for the hard part in Fig. 2. For the upper left
diagram, a quark loop with the reversed arrow also needs to be
included.

_EZ(SZ +st+12)2(s — 1)(2s + 1) (s + 21)

%6=T¢, $6(s + 1) - =0
R N 2(2 + tu+ u?)?(t — u)(2 + Ttu + 2u?) . . R
ON1 = _C_F t3u3(t+ u)3 ) ony =0, ON3 = —ONI1,
. N (2 + tu+ u?)*(t — u) (2% + 3tu + 2u?) . . . .
GpN1 = c, Fud(i+ ) , 6pN2 = OpN1> 6pN3 = —26pn1s
. N (@ +u+u?)(r—u) (20 + Ttu+ 2u?)
oprL= Cr Pud(t + u)? '
. N (P4 mu+u?)(r—u)(2r + u)(t + 2u)
opr2 = Cr 483u3 (1 + u)? '
. N (P4t u?)(r—u)(2t + u)(t + 2u)
opE = Cr 48R3 (1 + u)? '
66r1 =0, 6Gr2 = —0pr2, 6Gr3 = 6pF3- (82)
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FIG. 7.

Diagrams in the gg — gg channel for the hard parts S(k) and S; (7', z) in Eq. (51). For S; (7', z), an extra gluon line connecting

® and each of the black dots should be added for each diagram. A white circle represents a four-gluon vertex, making clear the difference

from the attachment of the extra gluon line.

FIG. 8. Diagrams contributing to the hard part in Fig. 2 in the
gg — gg channel. For all diagrams, a quark loop with the reversed
arrow also needs to be included.

IV. CONCLUSION

In this paper, we have studied the transverse polariza-
tion of a spin-1/2 hyperon produced in the unpolarized
proton-proton collision, pp — A'X, within the frame-
work of the collinear twist-3 factorization, which is
relevant for the large-py hyperon production. We focused
on the contribution from the twist-3 gluon FFs, which had
never been studied in previous studies. To this end, we
have developed a formalism to include all effects asso-
ciated with the twist-3 gluon FFs. The twist-3 cross
section receives contributions from three types of the
gluon FFs, i.e., intrinsic, kinematical, and dynamical
(purely gluonic and quark-antiquark-gluon type) ones.
Applying the formalism, we have calculated the LO cross
section for pp — ATX. This completes the LO twist-3
cross section combined with the known results for the

other contributions from the twist-3 distribution in the
unpolarized proton and the twist-3 quark FFs for the
hyperon. Using the EOM relation and the LIRs for
the twist-3 gluon FFs, we have shown that the derived
cross section satisfies the color gauge invariance and the
frame independence. Since the formalism developed here
is a general one, it can be applied to other processes to
which the twist-3 gluon FFs contribute.
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APPENDIX A: WARD IDENTITIES FOR THE
GLUON FRAGMENTATION CHANNELS

1. Derivation of the Ward identities

To get a twist-3 gluon fragmentation contribution to the
cross section in a gauge-invariant form, one needs to fully
utilize the Ward identities for the hard parts (26)—(32).
Here, we present their derivation.

054023-14



TWIST-3 GLUON FRAGMENTATION CONTRIBUTION TO ...

PHYS. REV. D 104, 054023 (2021)

=’y kia,p

w zp+2p — ko

~
~

' e,

+ |Ghost — term)|

[Ghost — term)

FIG.9. Ward identity (A1) for the ¢g — gg channel. The figure shows the left side of the cut, representing the attachment of the scalar
polarized gluon (dotted line) with the momentum k, — k;. Note that the hard part represented on the lhs does not contain the diagram in
which the scalar polarized gluon is directly attached to the gluon line fragmenting into the final hadron; hence, it appears in the first term
of the rhs. For the meaning of the notations in the figure, see Appendix A 2.

PN
JO5 - 00 T X 0

FIG. 10. Attachment of the scalar polarized gluon of momentum k, — k| to gg — gg diagrams. On the rhs, it is implied that the scalar
polarized gluon is attached one of the black dots in all possible ways.

a. qq — gg channel

Ward identities in this channel read

vl,abc _ifabc v v,abc
(ka = ki), SE (o y) =5 5% (ko) + Gl (K Ko ),
(A1)
uvi.abe ifabc AU Av,cab
klﬂSL (kl,k2> :NZ—IS (k2)+Gqu—>gg(k2_kl’k2>v
(A2)
ko S (K ky) = 0, (A3)
(ky = k), Si5 (ke o)
ifabc v vu,bac *
=27 3 k) + (G (ko ki)™, (Ad)
k2DS;1$D/1,ubC(k1 7k2)
_ i S (ky) 4 (G (k) —ky k) A5
_N2—1 ( 1 ( qq—>_q_q( 1 2 1)) ’ ( )
ki, S (ki ko) = 0, (A6)

where S’Z’&”bc(kl,kz) represents a hard part for a three-
gluon correfation functions which has two gluon legs in the
left (right) of the final-state cut and S$*(k) = S, (k)5
represents a hard part for a two-gluon correlation functions.
G terms in the right-hand side of these equations are ghost
terms. Figure 9 shows the Ward identity (A1), which states
that the attachment of the scalar polarized gluon with the
momentum k, — k; to the hard part Sﬁ’lfd(kl,kz) can be

decomposed into the two-body hard part and the ghost
terms. To identify the ghost terms, we consider the
diagrams in Fig. 10. The first term on the lhs of the figure
represents the hard part S/‘iiix(kl’ k,), and the second term
represents the attachment of the scalar polarized gluon to
the gluon line fragmenting into A'. The LO diagrams
can be classified into three types as shown in the rhs
of this figure. Using the tree level Ward identities (See
Appendix A 2), each diagram in Fig. 10 can be decom-
posed into several pieces, and some of them cancel each
other, owing to the on-shell condition of the external lines
(see Appendix A 3). Taking these facts into account, we
rearrange each term on the rhs of Fig. 10.

First, diagrams in Fig. 10(a) can be rewritten as
in Fig. 11.

Similarly, Fig. 10(b) can be rewritten as in Fig. 12.

Likewise, Fig. 10(c) can be rewritten as in Fig. 13.
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14 - \
(a) (a-1) (a-2) (a-4)
- o
+ + + +
™ //
(a-5) / (a-6) (a-7) (a-8)
7
+ o+ + +
N / >
\ /
(a-9) (a-10) \ (a- 11 (a-12)
7
= +
(a-8-i) (a-8-ii) (a-9) (a-11-i) (a-11-ii)

FIG. 11. Decomposition of Fig. 10(a) and the resulting terms due to the cancellation among diagrams. Diagrams (a-1), (a-5), and (a-
12) vanish, owing to the on-shell condition. Combination of (a-2), (a-3), and (a-7) cancels that of (a-4), (a-6), and (a-10), owing to (A18).

" b-2) (b3) (b-4)
m

5{:
(b-1)
\
- \

(b-7) (b-8)
+ SO

7/

b
(b-11) (br-12)
\
— AN
+ N:T
(b-8-i) (b-8-ii) (b-9) (b-11-i) (b-11-ii)

FIG. 12. Decomposition of Fig. 10(b) and the resulting terms due to the cancellation among diagrams. Diagrams (b-1), (b-5) and (b-
12) vanish, owing to the on-shell condition. Combination of (b-2), (b-4), and (b-10) cancels that of (b-3), (b-6), and (b-7), owing
to (A18).

054023-16



TWIST-3 GLUON FRAGMENTATION CONTRIBUTION TO ... PHYS. REV. D 104, 054023 (2021)

WWMM

(c-3)

%

(05) (c-7) (c-8)
v
(c-9) (c-10) (c-11) (c-12)
\
\
+ W >zp-rrr(§2zi >fmn-(§2:i
(c-13) (c-14) (c-15)
e e e e
(c-8-i) (c-8-ii) (c-10-i) (c-10-ii) (c-10-iii)
Rayiv/ %
W@ oo
(c-11) (c-13-i) (c-13-ii) (c-13-iii)

FIG. 13. Decomposition of Fig. 10(c) and the resulting terms due to the cancellation among the diagrams. Contributions from (c1), (c-
3), (c-6), and (c-1)4 vanish due to the on-shell conditions. Diagrams (c-2), (c-4), and (c-5) cancel each other by (A18). Diagrams (c-7),
(c-9), (c-12), and (c-15) cancel each other by (A19).

Using the on-shell condition, we find that diagrams  (a-11-i), (b-11-i), and (c-13-i) by (AI8). Therefore,
(a-8-i), (a-11-i), (b-8-i), (b-11-i), and (c-8-ii) vanish, and  besides (a-9), (b-9), and (c-11) (see Fig. 9), remaining
diagrams (c-10-ii), (c-10-iii), and (c-13-ii) also vanish. In  contributions (c-8-i) and (c-13-iii) become the ghost term in
addition, contribution from (a-8-ii), (b-8-ii), and (c-10-1) (A1). The ghost term takes the following structure in the
cancels among them, and likewise for the combination of ~ ¢g — gg channel,
|

ky — k ky —ky)°
Gt ko) = = (i) Cip gt e i i) R
x Hixp, ¥ P (xp 4+ 21 = ko) x (M3 (Ks))", (A7)

(xp +x'p')?

“In these Appendixes, we follow the convention of Ref. [57] for the Feynman rule.
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where d* (k) = k3g"® — k{kS, HY(xp, x'p') represents the
quark-line part in the left of the cut, which is connected to
the right of the cut (M%"*(k,))*, and the gluon’s polari-

zation tensor is given by
P (xp +x'p' = ky)

(xp +x'p' = k)’ K 4 (xp + X'p' = &y )k}
(xp+x'p' —ky) -k .

=—g"7 +
(A8)

Diagrammatically, the ghost term (A7) can be written as in
Fig. 14. This completes the derivation of the Ward identity
in the gg — gg channel.

|

[Ghost-term] =

g >

(c-8-i) (c-13-iii)
FIG. 14. Diagrams for the ghost term (A7) in the ¢g — gg
channel.

b. gg¢ — gq channel

Ward identities in this channel are given by (A1)-(A6),
except that the ghost terms G’;’g'il;;(kl ,k,) are replaced by
G4 (ky., k,), which takes the structure

Gt ) = ={ (ir ) =ipoge) SR ooy capregann) B
< Hapxp + X1 = o) s (M) (A9)
where H'S(xp,xp + x'p' — k;) is the quark-line part connected to the left of the cut (M%5 (k)™
c. gg — gg channel
Ward identities in this channel are given by (A1)~(A6), in which G%" (k;.k,) is replaced by Gy lhs(ky. k,),
Glaog (ki ko) = Gloetle (ki ky) + Ghyalle (ki o) + Ghealle (ki ko) + Gloelle (Ky Ka), (A10)

where G4, 4, through G, are the ghost terms which occur from four types of diagrams shown in Fig. 15 for the hard
scattering amplitudes in this channel. Each term in (A10) takes the structures

(ks — k)"

v,abc — (—jfed
G* (kl,kz) - ( if fl) (x'p' — (kz - kl))2

lgg—g9

{(—if-"f”)(—if’”“)d"”(kl)

(.X'/p/ - (k2 - kl))/)

(x'p" = (ky — kl)>ﬁ
(xp+x'p' = (ky = ky))?

+ (=if9m) (=if M) (k)

(xp - k1)2

1
_ (_ifgha V{f"’fed”” k
( lf ) 4 ( 1) (x/p/_k2)2

X P/ (xp +'p' = ky) x (MLS4 (k)" (Al1)
v,abc _ . ref (k2 - kl)ﬂ . __:rhea (xp B (k2 B kl))a
Gggg—»gg(kl’ kZ) - (_lf fg) (xp _ (kz _ kl))z {( lfgdh)( lfh )dllﬂ(k]) (xp + x/p/ _ (k2 _ kl))z
: whde ms 1 ooins s endas marr (XD — (ka — ki)
— (—ifoha)Viea (’ﬂ)m+ (=if*") (=if")a (ky) Wy i kl); p}
X PP (xp + X'p' = ky) x (Myed (k)" (A12)

Gyv,abc (kl,kz) — (_l-fcgh)(kz _ kl)”{(—ifhe“)Vg/”df”d””(kl)

399—99

1

1 1

(xp +x'p' = (ky — k1))? (xp +x'p')?

+ (=if )V (ky)
X Ph(xp +x'p' —ky) x (M?“% (ky))*,

vy,aff

and

(xp — k1)2 (xp — k2)2 *

- 1 1

_;fgda Vg/’»hfed,ua k

( lf ) ( l)(x/p/_k2)2 (x/p/_kl)Z
(A13)
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= ko — Ky

TS ky

x

s A
Gy Go

FIG. 15.

G3

Diagrammatic representation of the ghost terms in the gg — gg channel. Depending on the position of attachment of the

scalar polarized gluon, diagrams can be classified into four types. Figure G5 represents diagrams in which the scalar polarized gluon is

attached to an internal propagator.

(ky—Fk)
(xp+x'p'—ky)?
(kl —X/P/ b

GZ;;—I»);g(kl 7k2) = (_ifceg)

+ (—ifgfh)(—ifhda)d”a(kl)ﬁ}pﬂy(xp +x'p'—ky) x (Mff;;’l/{(kz))*,

ky

where V{f’phf ¢ represents an appropriate three-gluon vertex
in each channel.

2. Decomposition of vertices

Attachment of the scalar polarized gluon to a quark or
gluon line can be decomposed as follows:
(1) quark-gluon vertex (Fig. 16):

k- (7a)ijTa = (V+ k)ijTa - (W;’jTav (AIS)

where 7 is the generator of color SU(N) group;
(ii) three-gluon vertex (Fig. 17):
k. Vabe(k, p,—p — k)

= F”b"dﬁy(p + k) + F”deﬁy(p), (A16)

where V4 (p1, pa, p3) = F((p1 = pa), Gopt
(pZ - p3)ag/)’y + (pS - pl)ﬁgay] and Fabc = _ifuhc'

1k, e
j25] a p+ki

FIG. 16. Attachment of a scalar polarized gluon to a quark-
gluon vertex corresponding to (A15).

[ k,a,c '\ ;
S [ ] -
»b B p+k ey

FIG. 17. Attachment of a scalar polarized gluon through a
three-gluon vertex corresponding to (A16).

P {_(_ifgha)vzﬂadfhduo(kl)

; —jfodh(_jfhfay up (kl—xp)“
(xp_l_x/p/)2+( f )( f )d (kl)(xp—k1)2
(A14)

Furthermore, d”’ in the above equations is decom-
posed as (Fig. 18)

Fucbd/}y(p) — pZQﬂyFacb + (_pﬁpy)Fucb_ (A17)
3. Cancellation among vertices

After decomposition of vertices, the following cancella-
tion holds among vertices:
(1) quark-gluon vertex (Fig. 19):

[=(TT)y, + (T°T) , + F(TT) ) (1)

;=0

(A18)
(i1) purely gluon vertex (Fig. 20):

(=Px)” - Waped + FV I (=py = P, P2, p3)

+ FPVae (py,—p1 = p3. p3)

+ Fval(py, pr.—p1 — p2) =0, (A19)
where Py = p; + p2 + ps.
<ssvovTOTOTTYS = Lysooooososoo + [Pa—— TETT

FIG. 18. Decomposition of d? in (A17).

pLLa,a

P25 P+ pr+py, il

FIG. 19. Cancelation for quark-gluon vertices (A18).
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FIG. 20. Cancellation among three- and four-gluon vertices (A19).

APPENDIX B: COLOR GAUGE INVARIANCE OF
THE TWIST-3 CROSS SECTION

Here, we prove that the twist-3 cross section in (51)

shown in Fig. 2 is color gauge invariant, owing to the EOM
relation (9). We illustrate this property for the gg — gq
channel. The proof for other channels is essentially the
same. The cross section in this channel can be written as

supplemented by the quark-antiquark-gluon contribution
|

dx’'

do(p,p',Py; S 1 dx
( l; J_) _f](x)/ -
X X

&P,

£ L) [ az(=3870) ) Woelapdp Pt (1)

a 167T25E

where G(x') is the unpolarized gluon distribution in the proton with momentum p’ and the Lorentz indices p and o are
contracted with ¢’ (p') = ¢”° — p’n’® — p’°n’?, where n’ is the usual lightlike vector satisfying p’ - n’ = 1 to extract the
contribution from G(x’). From (51), we can read off W ,,(xp,x'p', P,/z) as

Aa . A oS .. a(k)
ng(xp,x’p’, Ph/z) = QﬂaQ"ﬂTr[]—‘ ﬂ(Z)SMv,pa<Ph/Z)] - lQﬂaQDﬂQ‘lyTr [Faﬁy(z) ﬂallc)2 ]
cl
1 [d7 1
R Qv QF — | = ————
+ {l a p VZ/ Zl <1/Z—1/Z/>
ifabc [Pr 11 abc N rapy 11 L,abc
X Tr[(— N | s <Z,; +d N 4FFS ?,2 Sﬂu&,/m(zl, 2)

+ Wi (xp. X' D', Py/2),

where the hard part S4° , (k) is related to the hard part
Sab (k) in (51) by (-3 f(P’))S;jf’/m(k) = 84 (k) and like-
wise for S;fjj’_ 1o (k), and widd(xp,x'p', P,/z) represents the
contribution from Fig. 2. Then, the color gauge invariance
of the cross section implies

X' pPW o (xp. X' p', Py /2) = X' p'"W 5 (xp.X'p'. P}, /2) = 0.
(B3)
To show (B3), we use the EOM relation (9) and eliminate

the intrinsic twist-3 FF AG57(z) in the first term of the rhs
of (B2). Then, W ,, can be decomposed into three pieces,

W/)o’(xp’ x/p,’ Ph/Z)
bo(xp.X'p Py /2) +

+ W (xp,x'p, Py /2),

W (xp.x'p'. Py/2)

(B4)
where Wl(,iz)7 represents the contribution from the dynamical
three-body correlation function in (5) and (6), Wf,lf,)

(B2)

[
represents the one from the dynamical ggg-correlation

function in (8), and W,(,i(i;i) represents the one from the
kinematical FFs in (2). To show (B3), it suffices to prove
that each term of (B4) separately satisfies (B3).

1. Contribution from dynamical FFs: WS,,)

We first show W,Q satisfies (B3). Relevant diagrams are
shown in Figs. 21(a)-21(c). Here, Fig. 21(b) is meant to
contain diagrams including those of Fig. 21(c), which is not
a part of partonic cross sections for the dynamical FFs.
Therefore, after using the EOM relations, we get the
following combination of the hard cross section,

()L

i a c)L b)R ¢)R
Wha = Whe! + (Wl — Wby + (Wi — wid®), (BS)

where the hard part with index L indicates diagrams in
Fig. 21(b) and 21(c) and that with R indicates their
Hermitian conjugate diagrams. We define the amplitude
M, for qg— gq scattering and M%% for gqg — ggq

p.a p.ay

scattering as shown in Fig. 21. With the physical
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oy &g

Tp

(©

FIG. 21. Diagrams contributing to W‘(,',l M/“,fl, and M/‘ffady, respectively, represent the gg — gq and gg — ggq scattering amplitudes,

which constitute the hard cross section as shown in the figure.

polarizations for the Lorentz indices a and y, these

amplitudes satisfy the following relations: N
: G
X' pPM4d =0, X' pPMis = 0. (B6)

This implies

x’p”’W,(f,},)L =0, x’p”’WS,’,)R =0, x’p”’Wég)R:O. (B7)

We thus have
FIG. 22. Diagrammatic representation for x’p’” WE,?.

)c’p’/’W,()i,)r = x’p”’W,(ff;) - x’p’”W},f,)L. (B8)

The first term on the rhs of (B8) reads

Fade . A
W P X TP B TM S 10812
1 Fade AG57(2)
_ - pPws, e pg*.ad i
_ L. X Te[Px PupT M) , (B9)
< (X/p’ - Ph/z)2 ’ < 3—gluon
|
where Py =xp+x'p' —P,/z, F%® =—if*c  and Next, we consider the second term on the rhs of (BS).

d" (k) = k>¢"° — k"k° and we have denoted the N; con-  Since its hard part is proportional to £, the contribution

tribution to AGs7(z) on the rths of (9) by AGST(Z)|3—g1u0n' from %7 drops. The contribution from [%% can be
This result is shown in Fig. 22. written as
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Fade

1
/ /pW(C)LN__ SPywS | /d -
A S Ve

ZI

7 1 4 d
= 1—23)T TeM:
) Zz 1— Z/Z/ < Z/> rUbXPhﬂ o.p ]

(1 11 ~ (11 ~ (11
X —N2 e +N2 i +2N1 T
Z T Z X I I

d
— _lze/fPhWSJ_ L
2 (¥'p' = Pu/2)?

Tr[Px P pTM ;,’Zd}

1\1 1 7 ~ (1 11 N 1 1 N 11
X d vl e ,+— —N2 —— +N2 - +2N1 5
7]z 1-z/7 z 7z 7z 7z 7z

Fade

1
— —_PPwS, _ ©
zZ€
(X'p' = Py/z)?

[ i)

d
_Lpps,
z (x'p’ = Py/2)?

1 1
. /d(g> 1/z—1/7

which can be diagrammatically written as Fig. 23. Using
the EOM relation (9), one finds (B9) is equal to (B10),
which implies EBS):O. This completes the proof for the
relation x’p’”W,,'g(xp,x’p’, P,/z) =0.

2. Contribution from quark-antiquark-gluon FF: W,(,i,,i)

Next, we show WS;) shown in Fig. 24 satisfies (B3).
Figure 24(b’) is defined to include the contribution of the
type Fig. 24(c’), which is not a part of the hard cross section
for a quark-antiquark-gluon contribution. Accordingly the
corresponding hard cross section is written as

iii a b)'L c)L b)'R ¢)'R
”,<0¢7) - ”,S)o') (”/()o') ”/()o‘) ) (”/(m) ”/(m> )

Diagrammatic representation for x’ p"’Wf,f,)L

qg — gq channel.

FIG. 23. in the

Te[PxPupTM 5]

(1 11 (11 (11
No(—==,= |+ Na| .= ) +2Ny( .-
Z 2 Z < Z < Z

Te[PxPipT M5

4l

(B10)

11 (11 (11
—,— | +No{ .= ) +2Ni | .- |
Z Z Z Z Z Z

[

Taking into account the relation (B6), we have

KWyt =0, w0, Kprwit =o.
(

B12)

Therefore, we obtain

()L

x/pl/) W‘E;‘l)_l) — x/p//) W;(::F) _ x/p/p ng (B 1 3)

The second term on the rhs of this equation can be written
as

d.
x/p/pw(‘?),l‘ ~ — lieﬁPthl Fece

r Cr (x'p' = P,/z)*

X Tr[PXPhﬂTeM;IZd]DFT’ (B14)

which is diagrammatically written as Fig. 25. We again find
the coefficient of (2/Cp)Dpr in (B14) is equal to the
coefficient of AGs7(2)/zl5_guon in (BY), which shows
(B13) vanishes, owing to the EOM relation (9).

3. Contribution from kinematical FFs: W,(,it,ii)

Using the explicit forms of the intrinsic and kinematical
FFs in (1) and (2), W,()lf,l) (xp,x'p’, P,/z) can be written as
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(a)

FIG. 24.

FIG. 25. Diagrammatic representation of x’p’” W,(,f;)/l‘.

W (xp.x'p'.Py/2)
M
:—hT [(ePrSibw? 4 ePvSivyn)S, (Py/2)]
( l

(z —|—AH ( )
——Tr [éfw Phwm
g

m/ PO (k )
ok

~(1
]Gm
c.l.

aSﬂD,/)O‘ (k)

PywS {u VA Prwi{u v}
g +etminsy)
ok*

——Tr

.

x AH (TI (2). (B15)

with ¢"=g"*—Piw*—Piw*. To prove x’p’/’W(l”)(xp,
xX'p',P,/z)=0, one needs to show the coefficients of
GV (z) and AAY(z) in (B15) satisfy this property. To
this end, we first note that one can set k on shell,

k= (k*. k=, ky) = (k*, 25 k,), in S, (k) by regarding

k™ as a dependent variable, since we take the collinear limit

2 d,p

Diagrams contributing to W,(,',l,l> Mg represents the gg — ggq scattering amplitude.

k — P,/ z after taking the derivative. We also introduce the
following tensors for an on-shell k,

AR (k) = €St (k). (B16)
A (K) = o (RS (k) + €S (k)
+ S (k) + S (K)), (B17)
where
KW - kY wH k-S
Fr) =g N gy =gt B
k-w
(B18)

Since ¢{'(k)k, = 0 and S (k)k, =0, A5 (k)k, =
A% (k)k, = 0. A (k) also satisfy the following relations:

A (P [z) = ePiSidgy, (B19)
AMM(P /Z) _ (:.P;,W.S‘L{Mg’/}/1 + €Phw/1{/4871}’ (BZO)
DAM™ (k
1 /1( ) — —Z(SPhWSi”W” + €PthLvW;4)’ (B21)
ak k:Ph/Z
AR (k
271() — —4Z(€P"WSL”WD 4 €PthlyW;4). (B22)
ok k=P, /2
From these relations, we have
AL (K)S 0 (K)X' ' = 0. (B23)
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This is because the Lorentz indices ¢ and v provide physical
polarizations for the on-shell gluon with momentum k. By

taking the derivative of (B23) with respect to k* and setting
k — P,/z, it is easy to see x’p’pW,(,l,l,')(xp,x’p’, P,/z) =
x p"’W,(,l,l;l) (xp,x'p', P,/z) = 0, which completes the proof.

APPENDIX C: SEPARATION OF THE
THREE-BODY PARTONIC CROSS SECTIONS
BASED ON 7' DEPENDENCE

Here, we discuss separation of the three-body cross
section (52) based on z’ dependence. Inserting (5) into (51),
we write the cross section for SN, as

do(p.p'.Py:S))
a’p),

N/<%>22/d<§>5((xp+x’p’—Ph/Z)z)

z 1 3 11
s (UZ-UZ),Z “ (Z 3)’

where (%, 1) is a partonic hard cross section defined by

E,

(C1)

‘O*OY Aifabc rapy 1 1 L /
R _lQaQﬂQV N FA Z S/w/labc(z’z))
3 11
=5((xp+x'p —P SN , C2
(G + =P/ (52 @

i=

to which diagrams shown in Fig. 26 contribute in the gg —
gq channel.

The amplitude in Fig. 26 has two propagators with 7/
dependence (® and ®). For these two propagators, 7z’
dependence is written as follows:

Xy — Zz " x
(x p— Iibh//z')2 N Ph?/z * ZE Tﬂ (©3)
P h R ,
-1 ®-11
and
® xp+x g =P,
(xp+x'p' = P,/7)?
1 ! g _
—P};/Z‘i‘l_//Xﬂ—’_xﬁ,\ }bh/z (C4)
z7/z K
-1 o-II

In these two equations, we call each term on the rhs ©-1, ®-
II, @-1, and @-II as shown in the figure. Then, depending on
the combination of the propagators, one can separate the 7/
dependence of the cross section as

pe

24 CLIRY

O :xp—pd

pd — pe

Trp I

cap + 2’y — pd
I I I

FIG. 26. An example of diagrams which contribute to gg — gg
channel. Notation pc = P, /z and pc’ = P;,/7' is used.

do(p,p'.Py:Sy)
&p,

. / @ 2 / d@ 5((xp + X'p' = Py/2)?)

7 1 .. 1
‘p(—— SN |6 5
7 <1/z—1/2’)zd ,[a,,1+1_z/z,a,,2

i=1

E,

Z/
+Z&P3]’ (C5)
where each partonic cross section is defined as

Gy~ Trl - (@=Dp(@=T)--]---,  (C6)

Gy Trl - (@=I)H(@—=T) -]
+o Tl (@ =)@ =T -]+, (CT)

Gy~ Trl- - (@=Dp(@—T1) -]
o Trf e (@=(@—T0)--],-- (C8)

and we used the relation 7//zx1/(1-z2/7)=7/z+
1/(1=z/2).

Taking into account of the overall factor z'/z x 1/(1/z —
1/7) and rearranging the 7z’ dependence, one obtains the
cross section in the form

do(p,p',P,;S1)
&P,

N/(%)zz/d<%)5((xp+X,P/_Ph/z>2>

Sl
— l/z—l/z’l Z

E,

A

(1/z= 177"

C’l

. Z/2 R
+ 703 +?0'4 s (C9)

where
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61 :&p1+&p2+&p3, (CIO)
62 :6172, (Cll)
63:8p1+8p2+6p3’ (CIZ)

(C13)

This form is the expression used in (52). One can thus
separate different 7' dependence of the cross section.
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