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We study the effects of pion and sigma meson backcoupling on the chiral order parameters and the QCD
phase diagram and determine their effect on the location of the chiral critical endpoint. To this end, we solve
a coupled set of truncated Dyson-Schwinger equations for Landau gauge quark and gluon propagators with
Nf ¼ 2þ 1 dynamical quark flavors and explicitly backcoupled mesons. The corresponding meson bound-
state properties and the quark-meson Bethe-Salpeter vertices are obtained from their homogeneous Bethe-
Salpeter equation. We find chiral-restoration effects of the pion and/or sigma meson backcoupling and
observe a (small) shift of the critical endpoint towards smaller chemical potentials. The curvature of the
chiral crossover line decreases. Our results indicate that the location of the critical endpoint in the phase
diagram is mainly determined by the microscopic degrees of freedom of QCD (in contrast to its critical
properties).
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I. INTRODUCTION

The phase structure of QCD at finite chemical potential
is probed in heavy-ion-collision experiments at Relativistic
Heavy Ion Collider/Brookhaven National Laboratory [1]
and High Acceptance Di-Electron Spectrometer (FAIR
Phase-0) [2], as well as the future Compressed Baryonic
Matter/Facility for Antiproton and Ion Research experi-
ment [3]. An important goal of these experiments is to
provide answers to the quest of the existence, the location,
and the properties of a chiral critical endpoint (CEP).
Theoretical approaches to QCD agree with each other

that no such CEP may be found in the region of the
temperature–baryon-chemical-potential plane ðT; μBÞ with
μB=T < 2.5. This region is excluded by recent studies on
the lattice; see, e.g., Refs. [4,5] and references therein, as
well as studies using functional methods [6–8]. Beyond this
region, errors in lattice extrapolations accumulate rapidly
and no definite statements can be made. On the other
hand, functional approaches, i.e., approaches via Dyson-
Schwinger equations (DSE) and/or the functional renorm-
alization group (FRG), do in principle allow for a mapping
of the whole QCD phase diagram but inherently depend on

approximations and truncations necessary to make the
equations tractable.
These truncations are necessary due to the infinite hier-

archy inherent in the functional approach. Equations gov-
erning the behavior of n-point functions do depend on
(nþ 1)-point functions and, in some cases, even (nþ 2)-
point functions. A systematic way to address the quality of
truncations is toworkorder byorder in a field expansion.One
starts by solving the equations for the two-point functions
(i.e., propagators) of the theory assuming ansätze for the
higher n-point functions using guiding principles such as
perturbation theory (at large momenta) and Slavnov-Taylor
identities (at small momenta). In a next step, one also solves
for the equations of the three-point functions and so on. In
vacuum QCD, this program has progressed to include all
primitively divergent n-point functions, i.e., all QCD propa-
gators and vertices that appear in the QCD Lagrangian; see
Refs. [9–14]. Direct and systematic comparison with corre-
sponding lattice calculations of these Green functions
suggest that truncations on this level deliver quantitatively
accurate results. Consequently, spectra of mesons and glue-
balls calculated from such truncations are correct on a
quantitative level [10,15]. A corresponding calculation of
the spectrum of baryons that is based on insights gained from
such truncations is also in agreement with experiment [16].
At finite temperature, truncations applied so far have not

yet reached this stage of sophistication; see, e.g., Ref. [17]
for a recent review. While propagators have been deter-
mined from their Dyson-Schwinger and FRG equations
[6–8,18–23], the corresponding vertices have not yet been
determined with comparable precision as in the vacuum.
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This is true in particular for the quark-gluon vertex, which
is the crucial element that couples the Yang-Mills sector of
QCD with its quark sector. Consequently, recent attention
has focused on the details of the medium fluctuations of
this vertex and their effect on the location of the CEP. In the
DSE framework, Ref. [8] explored effects due to non-
primitively divergent vertex structures, while in Ref. [20]
effects due to virtual loops containing off-shell baryons
have been discussed. Furthermore, in the FRG-QCD
framework, mesonic medium effects have been taken into
account in Refs. [7,21,22] and are naturally present in
quark-meson type models; see, e.g., Refs. [24–27]. Due to
the inherent complementarity of truncations in the DSE and
FRG frameworks, it is highly desirable to complement
these studies by a corresponding one in the DSE approach.
This is the purpose of the present work.
The paper is organized as follows. In Sec. II, we discuss

the details of our truncation scheme and specify how we
deal with the meson fluctuations. In Sec. III, we then study
the influence of these fluctuations on the chiral order
parameters at zero and finite temperature. In Sec. IV, we
discuss the resulting phase diagram of QCD before we
conclude in Sec. V.

II. TRUNCATION

The dressed quark propagator at finite quark chemical
potential μfq and temperature T for the quark flavor f can be
represented by

S−1f ðpÞ ¼ ip⃗AfðpÞ þ iω̃f
pγ4CfðpÞ þ BfðpÞ ð1Þ

with the four-momentum p ¼ ðp⃗; ω̃f
pÞ, the Matsubara

frequency ω̃f
p ¼ ωp þ iμfq including the quark chemical

potential,1 and the quark dressing functions Af, Bf, and Cf

that encode the nontrivial momentum dependence of the
propagator. Together with the gluon propagator, we obtain
the quark propagator from a coupled set of truncated DSEs
shown in Fig. 1.
The new element that is different from previous finite-

temperature studies within the DSE framework is the
quark-meson loop appearing in the quark DSE. It arises
from a specific diagram in the DSE for the quark-gluon
vertex that involves a four-quark kernel in pole approxi-
mation, shown in the left diagram of Fig. 2. This diagram
provides contributions to all tensor components of the
quark-gluon vertex [28]. In the quark DSE, the resulting
two-loop diagram can be simplified to a one-loop diagram
using the homogeneous BSE as shown in the left diagram
of Fig. 2; see Ref. [28] for details. The effect of this specific
contribution to the quark-gluon interaction has been studied
in a number of works at zero temperature/chemical poten-
tial including a discussion of the analytic structure of the
quark propagator [29], a discussion of its effect onto the
meson spectrum [30], and an exploratory study of meson-
cloud effects in baryons [31]. In all these studies, it has
been noted that meson-backcoupling effects typically
provide contributions of the order of 10–20% as compared
with other components of the quark-gluon interaction.
At finite temperature, however, these contributions may

become dominant due to universality. This happens in the
vicinity of the critical temperature of the second-order
phase transition in the chiral limit of vanishing quark
masses2 and also at finite quark masses close to the CEP. It
is, however, clear that the critical region around the CEP
where these fluctuations are large is actually quite small
[24], and therefore it is not clear to what extent the meson
fluctuations are able to influence the location of the CEP. A
quantitative study of this effect is the purpose of this work.
Preliminary work in this direction has been discussed in
Ref. [33]. Here, we improve upon this study by taking
explicit information on the Bethe-Salpeter wave functions
of the mesons from their BSEs into account.

FIG. 1. Truncated DSEs for the quark propagator (top) and gluon propagator (bottom left), and truncated Bethe-Salpeter equation
(BSE) (bottom right). Quark, gluon, and meson propagators are denoted as solid, curly, and dashed lines, respectively. The intersection
of two quarks and a gluon or a meson represents a quark-gluon or a Bethe-Salpeter vertex, respectively. Dressed quantities are indicated
by big full dots; the remaining ones are bare. The signs and prefactors are absorbed into the diagrams.

1For simplicity we set the isospin μI and strange quark μsq
chemical potential to zero, implying the relation 3μlq ¼ μB
between quark and baryon chemical potential. Note that this
implies μS ≠ 0 and strangeness neutrality is slightly violated. We
have argued in Ref. [6] that this has almost no effect on the
location of the CEP.

2An explicit study of this limit within the DSE framework can
be found in Ref. [32].
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Before we specify the details of the mesonic part of the
quark DSE, let us briefly summarize our treatment of the
other diagram including the gluon. All technical details
have been published elsewhere [20,34] and shall not be
repeated here in order to keep the paper concise and to the
point. Let us start with the gluon. In the DSE for the gluon,
all diagrams involving only Yang-Mills propagators and
vertices have been replaced by an inverse propagator that is
taken from quenched lattice QCD [35,36]. This procedure
ensures that all temperature fluctuations of the Yang-Mills
diagrams are taken into account. Quark-loop effects in
these Yang-Mills diagrams, however, are neglected.
However, we take into account the explicit quark-loop in
the gluon DSE, which contains Nf ¼ 2þ 1 quark flavors.
The backcoupling of the quarks to the gluon is performed
using an ansatz for the quark-gluon vertex that is given by

Γf
μðp; q; kÞNH
¼ γμΓðp2; q2; k2ÞNH
×

�
δμ4

CfðqÞ þ CfðpÞ
2

þ ð1 − δμ4Þ
AfðqÞ þ AfðpÞ

2

�
;

ð2Þ

Γðp2;q2;k2ÞNH¼
d1

d2þy
þ y
Λ2þy

�
αðνÞβ0
4π

lnðy=Λ2þ1Þ
�

2

;

ð3Þ

with quark momenta p and q and gluon momentum k. The
squared-momentum variable y is identified with the gluon
momentum k2 in the quark DSE and with the sum of the
two squared quark momenta q2 þ p2 in the quark loops of
the gluon DSE to ensure multiplicative renormalizability.
Medium effects in the leading γμ part of the vertex are taken
into account by splitting into longitudinal and transverse
parts with respect to the heat-bath vector u ¼ ð0; 0; 0; 1Þ.
The corresponding dressing functions Af and Cf depend
explicitly on temperature and chemical potential and stem
from the quark propagator; cf. Eq. (1). Their appearance is

dictated by the Abelian part of the Slavnov-Taylor identity
of the vertex. Its non-Abelian part is taken into account by
an infrared-enhanced function Γðp2; q2; k2ÞNH that also
accounts for the correct ultraviolet running of the vertex.
Both scales Λ ¼ 1.4 GeV and d2 ¼ 0.5 GeV2 are fixed
such that they match the corresponding scales in the gluon
lattice data. αðνÞ ¼ 0.3 is the running coupling at a
scale fixed by the quenched gluon from the lattice. The
anomalous dimension is δ ¼ −9Nc=ð44Nc − 8NfÞ and
β0 ¼ ð11Nc − 2NfÞ=3. The only free parameter of the
interaction is the vertex strength d1, which has been
adapted to pseudocritical chiral transition temperature
(at μB ¼ 0) determined on the lattice. This results in
d1 ¼ 4.6 GeV2 for the quenched theory [35] and
d1 ¼ 8.49 GeV2 for the theory with Nf ¼ 2þ 1 quark
flavors [6].
The same quark-gluon vertex appears in the gluonic part

of the quark DSE and, because of the axial Ward-Takahashi
identity, also in the quark-antiquark interaction kernel of
the meson BSE. This has the potential to complicate
matters considerably, since the presence of the quark
dressing functions Af and Cf in the vertex needs to be
taken into account carefully in the construction of the
kernel; see, e.g., Ref. [37]. In order to simplify matters, we
will resort to a truncation that has been explored already in
Refs. [38,39] and use the Oð4Þ-symmetric vertex

Γf
μðp; q; kÞNH ¼ Zf

2γμΓðp2; q2; k2ÞNH; ð4Þ

with Zf
2 being the quark wave-function renormalization

constant and with a different parameter dq1 in Γðp2; q2; k2Þ
in the quark DSE and the meson BSE (d2 and Λ remain
unchanged). The axial Ward-Takahashi identity is then
satisfied trivially. In order to account for the missing
interaction strength due to the omission of the quark
dressing functions, the infrared-strength parameter within
the expression (4) needs to be adapted. The corresponding
values dq1 for different setups are discussed below in
Sec. III.

FIG. 2. Left: Separation of the full quark-gluon vertex into nonhadronic (NH) contributions (first term) and lowest-order mesonic
contributions resulting from a resonance expansion of the quark-antiquark scattering kernel. For the mesonic contribution, a one-meson
exchange (second term) is considered. Right: Approximation of the meson-backcoupling quark self-energy resulting from the insertion
of the separation of the full quark-gluon vertex into the quark DSE. The blue dot with a white center represents an effective Bethe-
Salpeter vertex, which will be discussed in the text. The remaining components are defined in the same way as in Fig. 1.
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We now come back to the meson diagram in the quark
DSE. Following Ref. [30], we calculate the meson-back-
coupling part of the quark self-energy ΣM

f via

ΣM
f ðpÞ ¼ −δfl

X
X

XZ
q

DXðPÞ
2

½Γ̄0
XSfðqÞΓ̂XðP; lÞ

þ Γ̄0
XSfðqÞΓ̂Xð−P; lÞ�; ð5Þ

with the shorthand notation
PR

q ¼ T
P

ωq

R
d3q=ð2πÞ3 and

the on-shell total P2 ¼ −m2
X and relative l ¼ pþq

2
momen-

tum of the meson. This part of the self-energy contains a
sum over all considered mesons. We restrict ourselves to
the isovector pions and the isoscalar sigma meson, i.e.,
X ⊂ fπ�; π0; σg, because we expect these to have the
biggest influence on the QCD phase diagram. Since we
work in the isospin-symmetric limit, the three different
pions are mass degenerate and sum up to an overall flavor
prefactor of 3=2. The sigma meson on the other hand comes
with an overall flavor prefactor of 1=2. The delta function
δfl indicates that the pion and the sigma do not couple to
the strange quark and are therefore absent in the strange-
quark DSE. A generalization of the framework to include
mesons with open and hidden strangeness, too, is straight-
forward but tedious and postponed to a future work. The
arithmetic mean of the two terms in the square brackets is
necessary to satisfy the axial Ward-Takahashi identity and
therefore preserves the Goldstone nature of the pion.
Whereas one quark-meson vertex is given by the Bethe-

Salpeter amplitude, the effective other one is taken bare
[29]. The corresponding charge-conjugated bare Bethe-
Salpeter vertex is given by

Γ̄0
X ¼

�
Z2γ5 for X ¼ π;

Z21 for X ¼ σ:
ð6Þ

The backcoupling term further depends on the meson
propagator DXðPÞ, which is discussed in
Refs. [32,40,41] and given by

DXðPÞ ¼
1

P2
4 þ u2XðP⃗2 þm2

XÞ
: ð7Þ

The meson velocity uX ¼ fsX=f
t
X is given by the ratio of the

spatial and temporal meson decay constants fsX and ftX,
respectively, and is approximated by uX ¼ 1 in this work.
The last quantity to define is the normalized Bethe-

Salpeter amplitude (BSA) Γ̂XðP; lÞ. In medium, we use the
same tensor decomposition for the BSA of pseudoscalar
(X ¼ P) and scalar (X ¼ S) mesons as in Ref. [39]:

ΓPðP; lÞ ¼ γ5½EPðP; lÞ − i⃗ lP · lGs
PðP; lÞ − iγ4IPðP; lÞ�; ð8Þ

ΓSðP; lÞ ¼ ESðP; lÞ − i⃗ lGs
SðP; lÞ − iγ4ISðP; lÞ: ð9Þ

The dressed BSAs depend on the relative momentum l ¼
ðpþ qÞ=2 and the off-shell total momentum P ¼ q − p,
implying a symmetric momentum partitioning. Note that
strictly speaking, the amplitudes obtained from the homo-
geneous BSE are well defined only for on-shell mesons,
whereas in the quark DSE we need the corresponding off-
shell quantities. These can be extracted from an inhomo-
geneous BSE and are almost identical to the on-shell
amplitudes for the momenta relevant in the quark DSE.
In the preliminary study discussed in Ref. [33], the

meson backcoupling in medium was calculated with
mesons approximated by generalized Goldberger-
Treiman-like relations. In this work, we will resolve the
meson-backcoupling effects with BSAs explicitly calcu-
lated in Ref. [39] from the homogeneous BSE. These
solutions incorporate important chemical-potential effects
in the BSA that are mandatory to preserve the Silver Blaze
property of QCD. They do not, however, include effects
due to temperature fluctuations in the meson BSE. Again,
these need to be included in future work.
One of the potentially serious consequences of these

approximations is that the meson masses are fixed to the
ones in the vacuum. While this is certainly correct along the
chemical potential axis at zero temperature (due to Silver
Blaze), in the region of the phase diagram studied here,
temperature and chemical potential-dependent corrections
are expected. In particular we expect the sigma meson to
become massless within the critical region at the critical
point. However, as studied in detail with the functional
renormalization group [24,27,42] this region is quite small.
Outside this region we expect all meson masses to remain
large and therefore constant vacuum masses may very well
be an excellent approximation. We will come back to this
point below in Sec. IV.

III. EFFECT ON THE CHIRAL ORDER
PARAMETERS

Having outlined the formalism we proceed with the
discussion of our results. In this section, we study the effect
of the mesonic backcoupling on the chiral order parame-
ters. As chiral order parameters we consider the dynamical
quark mass MfðpÞ ¼ BfðpÞ=AfðpÞ and the regularized
quark condensate

ΔlsðT; μBÞ ¼ hΨ̄ΨilðT; μBÞ −
Zl
mml

q

Zs
mms

q
hΨ̄ΨisðT; μBÞ; ð10Þ

hΨ̄ΨifðT; μBÞ ¼ −Zf
2Z

f
mNc

XZ
q

Tr½SfðqÞ�; ð11Þ

with Zf
m and mf

q denoting the quark mass renormalization
constant and the renormalized quark mass of the quark
flavor f, respectively. The regularization prescription

PASCAL J. GUNKEL and CHRISTIAN S. FISCHER PHYS. REV. D 104, 054022 (2021)

054022-4



ensures that the quadratic divergence proportional to the
quark mass drops out.
To study the impact of the backcoupled mesons indi-

vidually, we consider the dynamical quark mass first in the
vacuum and display corresponding results in Fig. 3 for
different sets of backcoupled mesons. Compared to the
calculation without backcoupling, the inclusion of pionic
backcoupling reduces the dynamical quark mass by around
7% at vanishing momenta. The sigma meson leads to a
comparable reduction of chiral symmetry breaking of about
5%. Together, the effects add up to about 12% reduction.
The corresponding wave-function renormalization function
Zf
Fðp2Þ ¼ 1=Afðp2Þ reacts much stronger to the pion

backcoupling as to the sigma-meson backcoupling as
shown in Fig. 3.
Next we switch on temperature and study the effect on

the shape of the condensate as a function of T. We extract
the pseudocritical temperature of the chiral crossover at
zero chemical potential from the inflection point of the
regularized quark condensate, i.e.,

TcðμBÞ ¼ argmax
T

���� ∂ΔlsðT; μBÞ
∂T

����: ð12Þ

In order to gauge the strength of our ansatz for the quark-
gluon vertex, Eq. (4), we adapt the parameter dq1 in the
quark DSE such that in all considered cases we obtain the
same pseudocritical transition temperature matched to
the results from lattice QCD [4,43]. To be precise, purely
for reasons of better visibility in the plot we matched the
setup without mesons and the setup with only pion back-
coupling to the pseudocritical temperature of Ref. [43] and
the full result with π & σ backcoupling to the one of

Ref. [4], which is about 2 MeV larger. Since the numerical
error of our matching procedure is anyhow about the same
size as this difference there is no significance attached. The
resulting values are given in Table I together with the
resulting pseudocritical temperature at vanishing chemical
potential.
In Fig. 4, the vacuum-normalized regularized quark

condensate is plotted against the temperature at vanishing
chemical potential for the two rescaled parameter sets with
meson backcoupling. We additionally compare with cor-
responding lattice data from Ref. [43] and previous data
without meson backcoupling from Ref. [38]. Within error
bars, all setups agree well with the lattice data. Note that the
systematic shift of the full setup (π & σ) of about 2 MeV to
the right is a trivial result of the slightly larger transition
temperature this set is matched to. For large temperatures,
the sets with meson backcoupling agree with each other and
with the lattice data, whereas the set without backcoupling
reveals slightly too large quark masses, which we did not
fine-tune for simplicity.

FIG. 3. Dynamical quark mass (left) and corresponding quark wave-function renormalization function Zf
FðpÞ ¼ 1=AfðpÞ (right) for

light quarks and different numbers of backcoupled mesons in vacuum. The results are obtained with a fixed strength parameter
dq1 ¼ 12.85 GeV2 [38] in order to make the effects of the additional diagrams visible.

TABLE I. Parameters of the truncation and parameters of QCD
together with the pseudocritical temperature at vanishing chemi-
cal potential. The first two entries are the vertex-strength
parameters dq1 and d1 used in the quark and the gluon DSE,
respectively. ml

q and ms
q are the light and strange quark masses at

an renormalization point of 80 GeV. The last entry is the resulting
pseudocritical temperature at vanishing chemical potential.

dq1 [GeV2] d1 [GeV2] ml
q [MeV] ms

q [MeV] Tcð0Þ [MeV]

no 12.85 8.49 1.47 37.8 155� 1
π 13.54 8.49 1.47 37.8 156� 1
π & σ 14.18 8.49 1.47 37.8 157� 1
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IV. EFFECT ON THE QCD CHIRAL PHASE
DIAGRAM

In Fig. 5, we show the chiral symmetry QCD phase
diagram for the two rescaled meson backcoupling param-
eter sets introduced above and Nf ¼ 2þ 1 quark flavors.
We compare these two sets with the corresponding phase

diagram without meson backcoupling (first results for this
case have been reported in a contribution to conference
proceedings [44]) and previous results from Ref. [6]. In
each case, we find a crossover at low chemical potential
that becomes steeper for increasing chemical potential and
terminates in a second-order CEP followed by the coex-
istence region of a first-order transition. This coexistence
region is bound by the spinodals of the chirally broken
Nambu-Goldstone and the chirally symmetric Wigner-
Weyl solution of the quark DSE. For the truncations with
meson backcoupling, we only show the upper boundary.3

First, we need to discuss the shift in the CEP not
associated with the meson backcoupling but with the
additional approximation Eq. (4) as compared to the more
advanced truncation using Eq. (2) for both the quark-gluon
interaction in the gluon and the quark DSE (gray lines in
Fig. 5 from Refs. [6,19,34]). Comparing the two CEPs for
the truncations without backcoupling in Table II, we
observe that the main effect of the additional approximation
is a (considerable) shift of the CEP to larger chemical
potential by almost 30%. This large shift emphasizes the
need to carefully take into account temperature and
chemical potential effects in the leading structure of the
quark-gluon vertex, as it has been done in previous work.
Thus, the absolute values for the location of the CEP
presented in this work should not be regarded as best results
available but only serve to highlight the relative difference
of calculations suppressing and including the explicit
influence of meson effects.
As a result, we find that the meson backcoupling effects

on the quark (and the associated additional terms generated
in the quark-gluon interaction) have only a small effect on
the location of the CEP. The most prominent effect of the
introduction of the mesonic backcoupling is the shift of the
CEP towards (slightly) lower chemical potential and
(slightly) higher temperatures. We find a chemical-potential
shift of 10% for pion and a reduced shift of only 6% for
pion and sigma meson backcoupling as compared to the

FIG. 4. Vacuum-normalized regularized quark condensate of
the truncated DSE calculation at μB ¼ 0 without meson back-
coupling (solid, gray line, taken from Ref. [38]) and with pion
(dashed-dotted, black line) as well as pion and sigma (dashed,
blue line) backcoupling compared to continuum-extrapolated
lattice results [43] (solid, red circles). The parameters for the
meson backcoupling data were rescaled as detailed in the text.

FIG. 5. QCD phase diagram for the setups explained in the text:
no meson contributions to the quark-gluon interaction (black),
taking into account only the pion backcoupling (red) and both
pion and sigma (blue). We further compare with results from
Ref. [6] (gray). Dashed lines correspond to crossover transitions
while solid lines represent a first-order spinodal. The big dots
show the location of the second-order CEP of the corresponding
truncation. The shaded area represents the coexistence region
within the physical first-order phase transition takes place.

TABLE II. CEP and curvature κ of the parameter sets intro-
duced above with meson backcoupling and corresponding values
for the truncations without meson backcoupling.

Backcoupling ðμB; TÞCEP [MeV] κ

no [6] (495,119) 0.0246
no (636,112) 0.0173
π (570,118) 0.0210
π & σ (600,117) 0.0167

3The reason is technical: a determination of the lower
boundary would require the calculation of the bound-state
amplitudes using the Wigner-Weyl solutions. This is technically
demanding and has, so far, only been accomplished in the
vacuum [45].
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result with no backcoupling. The location of the three CEPs
is detailed in Table II.
Overall, this is similar to the results found in Ref. [20] for

effects due to baryon backcoupling.4We find strong evidence
that the location of the CEP is mainly driven by the
nonresonant part of the quark-gluon vertex and the gluon,
i.e., by the microscopic degrees of freedom of QCD. Of
course, this is not true for other properties of the CEP like its
critical exponents. These only appear within a small critical
region around the CEP [24,27,42,46], where the long-range
sigmamode becomesmassless and drives the physics putting
the system in the associated Zð2Þ universality class of the
Ising model in three dimensions [24]. This behavior is not
captured by our current truncation, since the mass of the
sigma meson is kept constant. With suitable adaptations,
however, a corresponding analytic scaling analysis in our
framework is straightforward along the lines ofRef. [32]. The
numerical confirmation, however, would require a tremen-
dous additional effort that is outside the scope of this work.
Finally, we observe changes in the curvature of the

crossover line at small chemical potentials. The curvature κ
is defined by

TcðμBÞ
Tcð0Þ

¼ 1 − κ

�
μB

Tcð0Þ
�

2

þ � � � : ð13Þ

We find an increase of the curvature with the introduction
of pion backcoupling effects and a slight decrease when
taking into account both pion and sigma backcoupling
effects. The corresponding values are shown in Table II.
The biggest influence on the curvature, however, has the
additional approximation of Eq. (4) as can clearly be seen
in the QCD phase diagram.

V. CONCLUSIONS AND OUTLOOK

In this work, we studied the effect of (off-shell) meson
contributions to the quark-gluon vertex onto the location of
the CEP of QCD as determined by functional methods from
a coupled set of DSEs. Our study suggests that these effects
are qualitatively irrelevant and quantitatively small. The
location of the CEP is driven to a large extent by the
microscopic degrees of freedom of QCD, the quarks and
gluons. Due to the approximations made in our framework
this result depends on the assumption of a small critical
region around the CEP, a fact which is supported by a
number of studies using the functional renormalization
group [24,27,42,46]. Our results for the impact of meson
effects is nicely complemented by similar previous findings
for effects due to the backcoupling of baryons onto the
quarks [20].
It should be kept in mind, however, that microscopic

degrees of freedom only dominate with regard to the
location of the CEP. With regard to its properties, in
particular with regard to the critical behavior very close
to the CEP, it is expected that macroscopic degrees of
freedom (in particular the sigma meson) take over as
expected from a system in the Zð2Þ universality class.
This has been explored in detail in effective models of QCD
(see, e.g., Refs. [24,42,46]). A corresponding analysis in
our framework requires additional efforts and is postponed
to future work.
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