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The mass radius is a fundamental property of the proton that so far has not been determined from
experiment. Here, we show that the mass radius of the proton can be rigorously defined through the form
factor of the trace of the energy-momentum tensor (EMT) of QCD in the weak gravitational field
approximation, as appropriate for this problem. We then demonstrate that the scale anomaly of QCD
enables the extraction of the form factor of the trace of the EMT from the data on threshold
photoproduction of J=ψ and ϒ quarkonia, and use the recent GlueX Collaboration data to extract the
rms mass radius of the proton Rm ¼ 0.55� 0.03 fm. The extracted mass radius is significantly smaller than
the rms charge radius of the proton Rc ¼ 0.8409� 0.0004 fm. We attribute this difference to the interplay
of asymptotic freedom and spontaneous breaking of chiral symmetry in QCD, and outline future
measurements needed to determine the mass radius more precisely.
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I. INTRODUCTION

The mass distribution is a fundamental property of a
physical object. Yet, while a lot of information is available
about the charge distribution inside the proton, nothing is
known at present about its mass radius. In astrophysics and
cosmology, the study of the mass distribution in galaxies
has led to establishing the presence of dark matter that is
believed to constitute about 85% of the total mass of matter
in the Universe. Drawing an analogy to the physics of the
proton, the electron scattering experiments reveal the
spatial distribution of quarks (matter visible to photons)
but do not directly constrain the spatial distribution of
gluons—“dark matter of QCD” that is not visible to
photons. One may thus fully expect that an experimental
determination of the mass distribution would constitute a
big advance in the understanding of proton structure.
Because of the extreme weakness of the gravitational

field created by a single proton, its direct measurement at
short distances is clearly impossible. Likewise, a study of
graviton–proton scattering is off limits for present experi-
ments. Does this mean that the mass radius of the proton
cannot be measured? We believe that the possibility to
measure the mass distribution inside the proton is provided

by the scale anomaly, reflecting the asymptotic freedom of
QCD [1,2]. In the chiral limit of massless quarks, the scale
anomaly [3,4] expresses the trace of the energy-momentum
tensor (EMT) of QCD in terms of the scalar gluon operator
[5,6]. It has been proposed [7,8] that the matrix elements of
this operator (which is largely responsible for the mass
of the proton) can be extracted from the photoproduction of
heavy quarkonia near the threshold. Below, we will show
how the form factor of the scalar gluon operator can
be determined from the recent data on photoproduction
of J=ψ near the threshold recently reported by the GlueX
Collaboration [9]. We will then use this form factor to
extract the mass radius of the proton from the GlueX data.

II. THE MASS DISTRIBUTION AND
GRAVITATIONAL FORM FACTORS

As a first step, let us review how the Newton’s law of
gravitation emerges from the Einstein theory [10] in the
weak gravitational field, nonrelativistic approximation. The
Einstein equation reads

Rμν −
1

2
gμνR ¼ 8πGTμν; ð1Þ

where gμμ is the metric tensor, Rμν is the Ricci curvature
tensor, R is the scalar curvature (Ricci scalar), G is the
Newton’s constant, and Tμν is the EMT. We have omitted
the cosmological constant term that is not relevant for our
present discussion and put the speed of light c ¼ 1.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 054015 (2021)

2470-0010=2021=104(5)=054015(10) 054015-1 Published by the American Physical Society

https://orcid.org/0000-0002-3811-6952
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.054015&domain=pdf&date_stamp=2021-09-15
https://doi.org/10.1103/PhysRevD.104.054015
https://doi.org/10.1103/PhysRevD.104.054015
https://doi.org/10.1103/PhysRevD.104.054015
https://doi.org/10.1103/PhysRevD.104.054015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Taking the trace with respect to the metric on both sides
of (1), we get

−R ¼ 8πGT; ð2Þ

where T ≡ Tμ
μ is the trace of the EMT. This equation

relates the trace of the EMT to the scalar curvature of
space-time—in fact, this relation first appeared in the
extension of Nordström’s scalar gravity theory [11]
proposed by Einstein and Fokker [12]; see [13] for a
historical overview. In classical Maxwell electrodynam-
ics, TEM ¼ 0 without massive charges, so the electromag-
netic field does not curve space-time and does not
gravitate. Moreover, light does not bend in the presence
of massive bodies if they induce only a scalar curvature—
and thus the observation of light bending has ruled out the
scalar gravity in favor of the tensor one (1) proposed by
Einstein [10] in 1915.
Nevertheless, in weak gravitational fields, the trace of the

EMTand the temporal component of the EMT T0
0 coincide.

Therefore, the distribution of mass can be obtained from the
form factor of the trace of the EMT—we will call it for
brevity the “scalar gravitational form factor,” because this
would be the only form factor in Nordström’s scalar gravity
[11]. To show the equivalence of the distributions of T and
T0
0 in a weak gravitational field, let us review how the

Newtonian limit emerges from the Einstein theory; see,
e.g., [14].
In the nonrelativistic limit,

g00 ¼ 1þ 2φ; ð3Þ

where φ is the gravitational field potential, and the EMT is
given by

Tν
μ ¼ μuμuν; ð4Þ

where μ is the mass density, and the four velocity of the
nonrelativistic body can be chosen as u0 ¼ u0 ¼ 1, with all
spatial components equal to zero, ui ¼ 0. Therefore, in this
limit,

T0
0 ¼ μ; T ≡ Tμ

μ ¼ T0
0 ¼ μ; ð5Þ

so the distribution of mass and the distribution of the trace
of the EMT indeed coincide.

Equations (1) and (2) lead to

Rμν ¼ 8πG

�
Tμν −

1

2
gμνT

�
; ð6Þ

the temporal component μ ¼ ν ¼ 0 of this equation is

R0
0 ¼ 4πGμ; ð7Þ

and all other components vanish. For the metric (3), we get

R0
0 ¼

∂2φ

∂xμ2 ≡ Δφ; ð8Þ

and thus (7) yields the equation describing the gravitational
field in Newtonian mechanics,

Δφ ¼ 4πGμ: ð9Þ

Its solution gives the gravitational field potential created by
a distribution of mass μðRÞ,

φ ¼ −G
Z

μðRÞdV
R

: ð10Þ

For a particle of mass M ¼ R
μdV, the total potential is

φ ¼ −GM=R, and the force acting on a probe mass m is
Fg ¼ −m∂φ=∂R, which yields the Newton’s law of grav-
ity,

Fg ¼ −G
mM
R2

: ð11Þ

We have reviewed this textbook derivation to show that
the distributions of mass and of the trace of the EMT are
identical in the weak gravitational field limit; see (5).
Therefore, to measure the mass distribution of a micro-
scopic object with a weak gravitational field, instead of
utilizing graviton scattering, we can measure its scalar
gravitational form factor (i.e., the form factor of the trace of
the EMT).
We can arrive at the same conclusion by comparing the

form factor of the EMT with the scalar gravitational form
factor. Let us consider first the form factor of the EMT for a
proton (spin 1=2 particle of mass M) [15,16],

hp1jTμνjp2i ¼
�

M2

p01p02

�
1=2 1

4M
ūðp1; s1Þ

�
G1ðq2Þðpμγν þ pνγμÞ þG2ðq2Þ

pμpν

M
þ

þ G3ðq2Þ
ðq2gμν − qμqνÞ

M

�
uðp2; s2Þ; ð12Þ
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where pμ ¼ ðp1 þ p2Þμ, qμ ¼ ðp1 − p2Þμ, p2
1 ¼ p2

2 ¼ M2,
and the four-component spinor uðp; sÞ satisfies the free
Dirac equation ðp̂ −MÞuðp; sÞ ¼ 0 and is normalized
according to

P
s ūðp; sÞuðp; sÞ ¼ ðp̂þMÞ=2M. The form

factors Giðq2Þ completely describe the mechanical struc-
ture of the spin 1=2 particle.
The energy-momentum conservation,

∂μTμν ¼ 0; ð13Þ

implies

qμhp1jTμνjp2i ¼ 0; ð14Þ

it is easy to check that (12) satisfies the condition (14) for
on shell nucleons that obey the free Dirac equation. The
symmetry of (12) with respect to the interchange of p1 and
p2 is necessary for (14) to hold.
In the limit of vanishing momentum transfer qμ → 0, the

forward matrix element of the energy-momentum tensor
takes the form,

hpjTμνjpi¼
�
M2

p2
0

�
1=2

ūðp;sÞuðp;sÞpμpν

M2
½G1ð0ÞþG2ð0Þ�;

ð15Þ

characterized by the q2 ¼ 0 values of the form factors
G1ðq2Þ and G2ðq2Þ. The Hamiltonian H is given by the
temporal component of the energy-momentum tensor,

H ¼
Z

d3xT00ðxÞ; ð16Þ

therefore, in the rest frame of the particle, the forward
matrix element of T00 should yield the mass of the particle,

hp ¼ 0jT00jp ¼ 0i ¼ M: ð17Þ

Imposing this constraint on (15), we get the condition,

G1ð0Þ þG2ð0Þ ¼ M: ð18Þ

The derivation of this condition is completely analogous to
the derivation of the condition on the electromagnetic form
factor Fðq2 ¼ 0Þ ¼ e, where e is the electric charge e of the
particle.
Let us now consider the matrix element of the trace of the

EMT T ≡ Tμ
μ; from (12), we find

hp1jTjp2i ¼
�

M2

p01p02

�
1=2

ūðp1; s1Þuðp2; s2ÞGðq2Þ; ð19Þ

with a new form factor,

Gðq2Þ ¼ G1ðq2Þ þ G2ðq2Þ
�
1 −

q2

4M2

�
þG3ðq2Þ

3q2

4M2
:

ð20Þ

In the rest frame of the particle,

hp ¼ 0jTjp ¼ 0i ¼ hp ¼ 0jT00jp ¼ 0i ¼ M; ð21Þ

therefore,

Gð0Þ ¼ M; ð22Þ

that is obviously consistent with (20) and (18).

III. THE MASS RADIUS

The charge radius of the proton is usually defined [17]
through the derivative of its electromagnetic form factor
with respect to the momentum transfer t ¼ q2 ≡ −Q2

evaluated at t ¼ 0,

hR2
Ci ¼ −6

dGEM

dQ2

����
Q2¼0

: ð23Þ

To enable a direct comparison to the charge radius, we
propose to define the mass radius analogously through the
form factor of mass density T00 given by (12). Let us
compare the derivatives of T00 and of the scalar gravita-
tional form factor (19) with respect to t at t ¼ 0. Because
the form factor of T00 depends on the reference frame
(strictly speaking, we can interpret it in terms of mass
distribution only in the rest frame of the proton), we have to
specify it.
It is natural to choose the Breit frame in which p2 ¼ 1

2
q,

p1 ¼ − 1
2
q. Evaluating the derivatives of the form factors of

T00 and of the trace of the EMT with respect to t at t ¼ 0,
we find that they differ by terms Gið0Þ=ð4M2Þ that have to
be compared to dGi=dtjt¼0 ≡Gið0Þ=m2

i that depend on the
compositeness scalesm2

i of the corresponding form factors.
This difference results from the frame dependence

of the form factor of T00. Indeed, the relativistic γ
factor for a nucleon moving with momentum p ¼ 1

2
q is

γ ¼ E=M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðq2=4Þ

p
=M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2=ð4M2Þ

p
, so

for q≡ jqj ≃mi, the nucleon is Lorentz contracted by
1=γ ≃ ð1þm2

i =ð4M2ÞÞ−1=2. This is why in a general
relativistic case the form factor cannot be interpreted as
a three-dimensional Fourier transform of a density; see
discussion in [18–20]. However, in the nonrelativistic limit,
when 2M ≫ mi, this is a small effect—the size R ∼ 1=mi
of a massive nonrelativistic body is much bigger than its
Compton wavelength λ ∼ 1=M.
Because of this, the mass distribution can be defined

through the Lorentz-invariant scalar gravitational form
factor (20) instead of the form factor of T00,
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hR2
mi ¼

6

M
dG
dt

����
t¼0

; ð24Þ

where we took into account the normalization (22).
This conclusion agrees with the arguments given
above on the basis of weak gravitational field limit of
the Einstein equation. Later, we will verify that the
compositeness scale of the scalar gravitational form factor
m2

s ≡Gð0Þ=ðdG=dtjt¼0Þ extracted from the experimental
data is indeed much smaller than 4M2.

IV. SCALE ANOMALY OF QCD AND THE MASS
DISTRIBUTION

Now that we have established that the mass radius of the
proton can be extracted from the form factor of the trace of
the EMT, let us discuss how this form factor can be
measured. The key to this is the scale anomaly of QCD.
In this theory, quantum effects lead to a nonvanishing trace
of the EMT even for massless quarks [5,6],

T ≡ Tμ
μ ¼ βðgÞ

2g
GμνaGa

μν þ
X

l¼u;d;s

mlð1þ γml
Þq̄lql

þ
X

h¼c;b;t

mhð1þ γmh
ÞQ̄hQh; ð25Þ

where Gμνa is the gluon field strength tensor with color
index a, the sum in the second and third terms runs over the
light and heavy quark flavors ql andQh with massesml and
mh, respectively, and γm are the anomalous mass dimen-
sions. The beta function of QCD [1,2] βðgÞ ¼ ∂g=∂ðlogμÞ
governs the renormalization group running of the QCD
coupling g with the scale μ,

βðgÞ ¼ −b
g3

16π2
þ � � � ; b ¼ 11 −

2nl
3

−
2nh
3

; ð26Þ

where the first term in b is due to gluon loops, and the
second and third terms are the contributions from light and
heavy quark loops.
To determine the mass radius of the proton, we will be

interested in the matrix element of the operator (25) at small
momentum transfer jtj < 4m2

h; the lightest heavy quark is
the charm with a mass mc ≃ 1.25 GeV, so this inequality
implies jtj ≤ 6.25 GeV2. In this kinematical region, heavy
quarks appear only in virtual QQ̄ pairs; as a result, the
heavy quark part of (25) cancels the heavy quark contri-
bution to the gluon term [21],

X
h¼c;b;t

mhð1þ γmh
ÞQ̄hQh ≃ −

2nh
3

GμνaGa
μν: ð27Þ

As a result, the trace of the energy-momentum tensor that
will determine the mass radius of the proton contains only
the contributions from light quarks and gluons,

T ≡ Tμ
μ ¼ β̃ðgÞ

2g
GμνaGa

μν þ
X

l¼u;d;s

mlð1þ γml
Þq̄lql; ð28Þ

where β̃ is the beta function with b ¼ 11 − 2nl=3 ¼ 9 for
three flavors of light quarks, u, d, and s.
It is well known that the chiral limit of massless quarks

provides an accurate approximation to the physical world;
in this limit, the trace of the EMT (28) contains only the
gluon term. Therefore, since the forward matrix element of
(28) according to (21) yields the mass of the nucleon, we
have to conclude that the mass of the proton in the chiral
limit is entirely due to gluons. The contribution of the
second term (“σ term”) in (28) for physical values of light
quark masses can be extracted from the experimental data
on pion and kaon scattering amplitudes (for recent work,
see [22]) or computed in lattice QCD [23]; it contributes
about 80 MeV, or about 8%, to the total proton mass—so
the chiral limit is indeed reasonably accurate.

V. QUARKONIUM PHOTOPRODUCTION NEAR
THE THRESHOLD

In the chiral limit, the information about the mass radius
of the proton is contained in the matrix element of the scalar
gluon operator in (28) at a nonzero momentum transfer.
The zero-momentum transfer, forward matrix element of
this operator, yields the proton’s mass, and this can be used
for evaluating the scattering length in quarkonium-nucleon
interaction [7,24,25].
At finite momentum transfer, the matrix element of the

scalar gluon operator in (28) can be measured in the
photoproduction of vector heavy quarkonium states, J=ψ
andϒ close to the threshold [7,8]. This proposal is based on
the following arguments:
(1) Because J=ψ and ϒ are made of a heavy quark and

an antiquark, and the proton at small momentum
transfer contains only light quarks, the correspond-
ing amplitude is dominated by the exchange of
gluons.

(2) Close to the threshold, the characteristic size of the
heavy quark-antiquark pair is ∼1=ð2mhÞ; for charm
quarks, this is about 0.08 fm. Because this size is
much smaller than 1=ΛQCD, the coupling of gluons
to the heavy quark is perturbative, is characterized
by a small coupling constant, and can be described
by a local color-neutral gluon operator of the lowest
possible dimension [26–28].

(3) Because of the vector quantum numbers JPC ¼ 1−−

of J=ψ and ϒ, the threshold photoproduction is due
to the t—channel exchange of gluons in scalar 0þþ
and tensor 2þþ states; the scalar exchange is
described by the operator that is proportional to
the first term in (28). Because of the scale anomaly,
its matrix element does not depend on the QCD
coupling constant g2, whereas the matrix element of
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the tensor operator appears proportional to g2 and is
subleading at weak coupling [7,8,24,25,29].

Let us now examine these arguments in more detail and
use them for the extraction of the mass radius of the proton.
Consider the interaction of the heavy quark pair with
the proton near the threshold, where the velocity of the
quarkonium in the center-of-mass is small: vψ ≪ c. The
coupling of a small color-neutral heavy quark-antiquark
state to gluons can be described by the operator g2Ea2,
where Ea is the chromoelectric field—this is the quadratic
QCD Stark effect (the first-order effect is forbidden by
color neutrality). The chromomagnetic contribution is
proportional to ðvψ=cÞ2 and is suppressed; the operators
that contain covariant derivatives are suppressed by the
powers of ðvψ=cÞ2 as well. The g2Ea2 operator can be
identically represented as a sum of the scalar 0þþ and
tensor 2þþ gluon operators [30],

g2Ea2¼g2

2
ðEa2−Ba2Þþg2

2
ðEa2þBa2Þ¼8π2

b
Tþg2TðgÞ

00 ;

ð29Þ

where T is the trace of the EMT (28) in the chiral
limit,

T ¼ β̃ðgÞ
2g

GμνaGa
μν ¼ −

bg2

32π2
GμνaGa

μν; ð30Þ

and TðgÞ
00 is the temporal component of the gluon part of the

EMT of QCD,

TðgÞ
00 ¼ 1

2
ðEa2 þBa2Þ: ð31Þ

The amplitude of J=ψ photoproduction close to the
threshold factorizes into a short-distance part describing the
electric polarizability of the cc̄ pair, and the matrix element
of the operator (29) over a proton; see Fig. 1 (left),

MγP→ψPðtÞ ¼ −Qec22MhP0jg2Ea2jPi; ð32Þ

where Qe ¼ 2e=3 describes the coupling of the photon to
the electric charge of the charm quark, c2 is the short-
distance coefficient describing the coupling of the chromo-
electric fields to the heavy quark pair, and its transition to
the J=ψ , t ¼ ðP0 − PÞ2 is the momentum transfer, and the
factor 2M is needed to reconcile the relativistic normali-
zation of states with our normalization of the EMT form
factors (17), (21).
The expression (32) holds only near the threshold, where

the scalar gluon operator dominates over the operators that
contain derivatives; they are suppressed by powers of J=ψ
velocity squared, ðvψ=cÞ2. Note that in this kinematical
region, the scalar gluon form factor that enters (32) cannot
be interpreted in terms of the gluon structure functions—
indeed, the gluon structure functions are defined through the
matrix elements of traceless gluon operators in the operator
product expansion, and we are interested in the trace part.
Substituting the relation (29) in (32), we observe that the

matrix element of the first term does not contain the
coupling g2 as a consequence of scale anomaly, whereas
the second term in (29) is suppressed by g2, which is small
at the scale of Q2 ¼ 4m2

c; in addition, the first term is
enhanced by a numerical factor. Therefore, we can rewrite
the amplitude (32) in terms of the scalar gravitational form
factor,

FIG. 1. Left: the Feynman diagram of J=ψ photoproduction off a proton. Right: the differential cross section of J=ψ photo-
production at the center-of-mass energy Ecm ¼ 4.58 GeV (laboratory energy of the photon Eγ ¼ 10.72 GeV, minimum momentum
transfer tmin ≃ −0.44 GeV2); the data is from the GlueX Collaboration [9]. The theory curve corresponds to the dipole form of the
scalar gravitational form factor with the parameter ms ¼ 1.24� 0.07 GeV, corresponding to the mass radius of the proton
Rm ¼ 0.55� 0.03 fm.
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MγP→ψPðtÞ ¼ −Qec2
16π2M

b
hP0jTjPi: ð33Þ

The differential cross section and the integrated cross
section of the J=ψ photoproduction can now be computed
using the standard formulae; see, e.g., [31],

dσγP→ψP

dt
¼ 1

64πs
1

jpγcmj2
jMγP→ψPðtÞj2; ð34Þ

and

σγP→ψPðsÞ ¼
Z

tmax

tmin

dt
dσγP→ψP

dt
; ð35Þ

where pγcm is the photon momentum in the c.m. system of
the process, and s ¼ ðpγ þ PpÞ2 is the square of the c.m.
system energy; tmin and tmax are the minimum and
maximum values of the invariant momentum transfer t at
a given

ffiffiffi
s

p
. We expect that the short-distance coefficient c2

is on the order of πr2cc̄, where the size of the cc̄ pair
rcc̄ ≃ 1=2mc ≃ 0.08 fm. We will fit this parameter to the
GlueX Collaboration data [9] and then check that it is in the
expected range.
Let us briefly discuss the kinematics of the γ þ p →

J=ψ þ p process. Because of the large mass of J=ψ , close
to the threshold the process is characterized by a sizable
minimum momentum transfer tmin; right at the thres-
hold, its value is tmin¼−M2

ψM=ðMψ þMÞ≃−2.23GeV2≃
−ð1.5GeVÞ2, where Mψ ≃ 3.097 GeV is the mass of J=ψ
and M ≃ 0.938 GeV is the mass of the proton. The large
magnitude of tmin close to the threshold makes the use of
the vector meson dominance model questionable. On the
other hand, t is still much smaller than 4m2

c ≃ 6.25 GeV2,
which justifies the approach based on Eqs. (33) and (34). In
this kinematical domain, the factor c2 in (33) can indeed be
treated as a constant; when the magnitude of t becomes
comparable to 4m2

c ≃ 6.25 GeV2; this factor can be
expected to acquire a significant t dependence. Because
tmin rapidly varies with the c.m. system energy close to the
threshold, the energy dependence of the integrated cross
section (35) is sensitive to the scalar gravitational form
factor. However, the quantity that is most sensitive to the
scalar gravitational form factor is the differential cross
section (34).
The dominance of the scalar gluon operator over the

operators with covariant derivatives in the QCD multipole
expansion is justified by the smallness of the heavy quark
pair velocity in the c.m. system, vψ . The operators
with derivatives are suppressed by even powers of vψ—
therefore, to limit their contributions by less than about
10%, we have to limit vψ ≤ 0.3—this translates into the
limit on the c.m. system energy Ecm ≤ 4.6 GeV, or the
photon lab. frame energy of Eγ ≤ 11.3 GeV.

VI. EXTRACTING THE MASS RADIUS OF THE
PROTON

To make a direct comparison with the charge radius of
the proton that has been traditionally extracted by using the
dipole form factor [17], we will assume, as a first step, a
simple dipole parametrization for the scalar gravitational
form factor as well,

GðtÞ ¼ M
ð1 − t

m2
s
Þ2 ; ð36Þ

where ms is the only adjustable parameter. With the
standard definition (24), this parameter relates to the rms
mass radius of the proton in the following way:

hR2
mi ¼

12

m2
s
: ð37Þ

Using (33) with the form factor hP0jTjPi ¼ GðtÞ given
by (36) to evaluate the differential cross section (34), we
can now perform the fit of the recent data from the GlueX
Collaboration [9] at Jefferson Lab that is available at
Eγ ≃ 10.72 GeV, which is within our desired kinematical
range as described above. The resulting fit of the data is
shown in Fig. 1 (right); the extracted value,

ms ¼ 1.24� 0.07 GeV; ð38Þ

corresponding to

Rm ≡
ffiffiffiffiffiffiffiffiffiffi
hR2

mi
q

¼ 0.55� 0.03 fm; ð39Þ

provides an excellent fit with adjusted r̄2 ¼ 0.99 (r̄2 ¼ 1.0
implies a perfect fit); the corresponding χ2 ≃ 0.1.
The corresponding value of the short-distance coefficient

in (33) describing the coupling of the gluons to the heavy
quark pair is jc2j2 ¼ 0.043� 0.006 fm4. Each gluon cou-
ples to the chromoelectric dipole moment of the heavy
quark pair, and so c2 has dimension of length squared. As
discussed above, we expect that c2 is on the order of πr2cc̄,
where the size of the cc̄ pair rcc̄ ≃ 1=2mc ≃ 0.08 fm. The
extracted value of jc2j2 ¼ 0.043� 0.006 fm4 corresponds
to rcc̄ ≃ 0.1 fm, which is in line with our expectations.
We can compare the value of the mass radius (39) to the

proton charge radius [31],

RC ≡
ffiffiffiffiffiffiffiffiffiffi
hR2

Ci
q

¼ 0.8409� 0.0004 fm; ð40Þ

that is known with a much better precision; see [32] for a
recent review. It appears that the mass radius of the proton
is about 50% smaller than its charge radius. This
observation is statistically significant given the statistical
error bar of our value (39). Of course, there is also a
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theoretical systematic uncertainty that we will discuss
below; however, it does not appear large enough to explain
the observed difference between the charge and mass radii
of the proton.

VII. THE MASS RADIUS PUZZLE

At first glance, this difference may seem surprising—
but only if one thinks of a proton as of a charged ball of a
fixed radius, and not as of a quantum object. First, the
charge radius is extracted from the coupling of the photon
to quarks, whereas the mass radius results from the
coupling to gluons—and it appears that the gluon radius
of the proton is significantly smaller than its quark radius.
If we write down the spectral representation for the scalar
and charge form factors (see Fig. 2), the radii of the mass
and charge distributions can be seen to be set by the
masses of the lightest physical states excited from the
vacuum by the scalar gluon and vector quark currents,
correspondingly. For the vector quark current, the lightest
physical state is the ρmeson with mass ofmρ ≃ 770 MeV,
whereas for the scalar gluon current it is the scalar
glueball, with a much larger mass of mG ≃ 1600 MeV;
see, e.g., [33].
While this argument does explain a much smaller mass

radius, it is too naïve—in the QCD vacuum, the scalar
gluon current strongly mixes with the scalar quark one. In
fact, there exists a low energy theorem [34] that can be used
to relate the off diagonal correlation function of the scalar
gluon and quark currents to the quark condensate. The
analysis [29,35] based on this low energy theorem and the
experimental hadron spectrum shows a very strong mixing
of the scalar glueball state with the f0ð980Þ meson and a
broad σð500Þ resonance in the ππ spectrum, which is
lighter than the ρmeson. Therefore, the hadron spectrum in
the scalar and vector channels alone cannot explain the
difference between the mass and charge radii.
The reason for the smallness of the mass radius in our

opinion is the interplay of scale anomaly and spontaneously
broken chiral symmetry. The dominant contribution at large

distances in the dispersion representation of the proton
form factor stems from the scalar ππ exchange; see Fig. 2,
left. Because the trace of the EMT is invariant under the
renormalization group (RG), its matrix element at small
momentum transfer (responsible for the long-range tail of
the mass distribution and thus for the mass radius) can be
calculated [36] using the effective chiral theory. Matching
onto the chiral perturbation theory allows us to evaluate the
matrix element of the trace of the EMT in a model-
independent way. In the chiral limit, T ¼ −ð∂μπÞ2 þ…,
so we get [36]

h0jTjπþπ−i ¼ q2; ð41Þ

where q2 is the invariant mass of the ππ pair; the expression
(41) holds at small q2. In QCD with Nf light quark flavors,
the rhs of (41) gets multiplied by ðN2

f − 1Þ after summing
over all possible pion combinations, so the corresponding
spectral density of the correlation function of T is

ρππðq2Þ ¼ N2
f − 1

32π2
q4: ð42Þ

The matrix element (41) and the spectral density (42) are
strongly suppressed at small invariant masses, correspond-
ing to long-range tail of the proton mass distribution—as a
result, the spectral density of the correlation function of T
peaks at masses about ∼1 GeV [29], consistent with our
finding (38). The underlying reason for the suppression of
the matrix element (41) at low q2 is the fact that Goldstone
bosons decouple from the scalar curvature induced by the
scale anomaly—this is analogous to the absence of light
bending in scalar gravity discussed in Sec. II.
At short distances, where the invariant masses in the

spectral representation are large, the relevant matrix
element of the trace of the EMT can be computed using
the leading order QCD perturbation theory; in this case, the
two-gluon state dominates (see Fig. 2, right), with the
spectral density [29],

ρpertðq2Þ ¼
�
bg2

32π2

�
2N2

c − 1

4π2
q4; ð43Þ

where b ¼ ð11Nc − 2NfÞ=3 is the coefficient of the QCD
beta function. We thus see that the mass distribution at short
distances is governed by the renormalization group flow,
and at large distances—by the interplay of scale anomaly
and spontaneously broken chiral symmetry. Because pions
are Goldstone bosons, their couplings involve derivatives of
the pion field—otherwise, they would not be invariant with
respect to the chiral rotations. Because of this, at small
momenta, pions decouple from the trace of the EMT, and
this confines the mass distribution of the proton to shorter
distances, where it is dominated by the RG flow of QCD.

FIG. 2. Spectral representation of the scalar gravitational form
factor. Left: large-distance, small invariant mass region, where the
dominant contribution is from the pion pair. Right: short-distance,
large invariant mass region that is dominated by gluon pairs.
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It would be interesting to decompose the mass distri-
bution into the quark and gluon ones. The mass decom-
position for the proton [7,37–42] is a subject of a lively
debate at present and is subject to the renormalization scale
and scheme dependence, as well as to the frame depend-
ence in the case of T00. When quark and gluon contribu-
tions are separated, an additional term appears in the
decomposition (12) that corresponds to the anomalous
gravimagnetic moment and gravielectric dipole moment.
These terms however should cancel each other in the total
EMT of the nucleon to obey the Einstein equivalence
principle, and this is why we did not consider them.
The form factor of the traceless gluon term T00 in the

EMT has been recently evaluated in lattice QCD [43]. The
authors fit this form factor by the dipole form and extract
the effective mass ofms ¼ 1.13� 0.06 GeV—remarkably,
this is consistent with the value ms ¼ 1.24� 0.07 that we
have extracted above from the GlueX data [9]. This is in
accord with the argument presented in Sec. III about the
approximate equality of the radii extracted from the T and
T00 form factors for the proton. The scalar and tensor
gravitational form factors that enter the photoproduction
amplitude have also been evaluated in the approaches based
on holography [44–46]. In this case, the scale of the form
factor is encoded in the dilaton potential in the bulk that is
constructed to reproduce the hadron spectrum and Regge
trajectories.
A number of papers address the proton mass decom-

position basing on the vector meson dominance [7,8,
47–50]. Near the threshold, the scattering amplitude of
quarkonium possesses a large real part directly related to
the scale anomaly that strongly affects the cross section,
which thus becomes sensitive to the mass decomposition of
the nucleon [7,8]. However a big problem of this approach
stems from a large value of tmin near the threshold that
necessitates taking account of excited cc̄ states, with
unknown and interfering scattering amplitudes.
Perturbative approaches to the threshold photoproduc-

tion of quarkonium introduce the two-gluon form factors
and relate them to gluon distributions [51,52]. While these
approaches are close to ours in terms of phenomenology,
we stress that the scalar gravitational form factor that we
have considered cannot be interpreted in terms of
gluon structure functions that are defined through the
matrix elements of traceless gluon operators; instead,
they originate from the trace operator that dominates
near the threshold. In the language of operator product
expansion (OPE), the trace terms correspond to the target
mass corrections to the parton model; see, e.g., [53].
Nonperturbative instanton contributions to scalar form
factors have been recently evaluated in [54].
The contribution from ΛD̄� t-channel exchanges has

been studied in [55]; in our approach based on the OPE,
this contribution corresponds to higher dimensional

operators that should be suppressed by the heavy
quark mass.

VIII. THEORETICAL UNCERTAINTIES
AND AN OUTLOOK

The error bar in the mass radius (39) originates only from
the precision of the current data [9] and does not take into
account uncertainties caused by theoretical uncertainties.
But what is the “theoretical systematic error” involved in its
extraction?We can categorize the sources of the uncertainty
in (39) as follows:

(i) The contribution of gluon operators with derivatives:
as mentioned above, the contamination from these
operators is suppressed by powers of the J=ψ
velocity in the c.m. system, vψ . The GlueX data
[9] on the differential cross section that we used are
at the energy of Eγ ≤ 11.3 GeV, corresponding to
vψ ≃ 0.3. This means that the potential contribution
of operators with derivatives is about 10%. This
contribution can be further reduced by measuring the
differential cross section at a lower energy—for
example, at Eγ ≤ 9.4 GeV, it should be less than
5%. Such measurements are planned by the GlueX
and SoLID [56] experiments.

(ii) Operators of higher dimension, e.g., the quark-gluon
operators: the contribution from these operators is
suppressed by the powers of Λ2=ð4m2

cÞ, where Λ is a
nonperturbative parameter. Assuming Λ ∼ 1 GeV,
we expect these contributions to be on the order of
∼10%–15%. Note that in threshold photoproduc-
tion, the convergence of the multipole expansion is
much better than for the interaction of on shell
quarkonia, where it is governed not by the heavy
quark mass but by the quarkonium binding energy
[7,28]. The contributions of higher-dimensional
operators can be further suppressed by extending
the studies of threshold photoproduction to the ϒ
states, that should become possible with the advent
of the Electron Ion Collider [57]. It could also be
possible to study this process in ultraperipheral
collisions at RHIC and LHC.

(iii) The extrapolation in momentum transfer t and the t
dependence of the short distance coefficient c2: we
have assumed that the coefficient c2 is t indepen-
dent. This is justified by the fact that the momentum
transfer in the threshold photoproduction is not large
enough to resolve the internal structure of the
produced heavy quark pair with the size
∼1=ð2mcÞ, t ≪ 4m2

c. The range of extrapolation
to t ¼ 0 from tmin is also much smaller than
4m2

c, which justifies the assumption of a constant
c2. Additional information about the structure
of the amplitude can be obtained by looking at
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the electroproduction of quarkonium that will also
be studied in the near future as well [58,59].

A careful evaluation and reduction of the uncertainty in
(39) will require a lot of dedicated theoretical and exper-
imental effort. However, the mass distribution is definitely a
fundamental property of the proton. Therefore, the mea-
surements of this distribution, combined with measure-
ments of other “mechanical” properties of the proton, such
as the pressure distribution [60], will definitely advance our
understanding of the quantum origin of mass.
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