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We discuss transverse momentum dependent (TMD) gluon distributions within high energy factorization
at next-to-leading order in the strong coupling within the framework of Lipatov’s high energy effective
action. We provide a detailed discussion of both rapidity divergences related to the TMD definition and its
soft factor on the one hand, and rapidity divergences due to high energy factorization on the other hand, and
discuss common features and differences between Collins-Soper (CS) and Balitsky-Fadin-Kuarev-Lipatov
(BFKL) evolution. While we confirm earlier results which state that the unpolarized and linearly polarized
gluon TMD agree in the BFKL limit at leading order, we find that both distributions differ, once next-to-
leading order corrections are being included. Unlike previous results, our framework allows us to recover
the complete anomalous dimension associated with the Collins-Soper-Sterman (CSS) evolution of the
TMD distribution, including also single-logarithmic terms in the CSS evolution. As an additional result, we
provide a definition of kT factorization, i.e., matching of off shell coefficients to collinear factorization at
next-to-leading order within high energy factorization and the effective action framework. We furthermore
establish a link between the QCD operator definition of the TMD gluon distribution and a previously
derived off shell TMD gluon-to-gluon splitting function, which is within the present framework obtained as
the real one-loop correction.

DOI: 10.1103/PhysRevD.104.054014

I. INTRODUCTION

Transverse momentum dependent (TMD) parton distri-
bution functions (PDFs) [1–3] are objects of increased
interest, since they allow us to provide a more precise
kinematic description of partonic scattering processes
already at the leading order (LO) of perturbation theory.
This is in particular true, if the observable of interest is not
entirely inclusive. In that case, TMD PDFs provide an
important advantage over a description based on collinear
parton distributions. TMD PDFs arise naturally in processes
that are characterized by a hierarchy of scales. With Q, the
scale of the hard reactions, TMD PDFs are at first defined for
the hierarchy Q ≫ qT ≫ ΛQCD with qT , the transverse
momentum of the parton, and ΛQCD, the QCD characteristic
scale of a few hundred MeV. The QCD description of such
events gives then rise to the so-called Collins-Soper-Sterman
(CSS) [4–6] resummation formalism. A different kinematic
hierarchy in which TMD PDFs arise is provided by the

perturbative Regge or low x limit
ffiffiffi
s

p
≫ M ≫ ΛQCD, whereffiffiffi

s
p

denotes the center of mass energy of the reaction and
x ¼ M2=s. While the resulting high energy factorization
[7–9] does not primarily address the description of transverse
momenta of final states, the ensuing formalism naturally
factorizes cross sections into transverse momentum depen-
dent coefficients, so-called impact factors, and transverse
momentum dependent Green’s function, which summarize
logarithms in the center of mass energy. In particular,
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution [10–15],
as well as its nonlinear extensions, keep track of transverse
momenta along the evolution chain.
Both kinematic limits have a region of overlap, charac-

terized through the hierarchy
ffiffiffi
s

p
≫ M ≫ qT ≫ ΛQCD,

which is of particular interest due its sensitivity to the
emergence of a semihard dynamical scale in the low x limit,
the so-called saturation scale [16]. The relation of both
frameworks has been explored in a series of publications
[17–25] and is currently used for a wide set of phenom-
enological studies; see, e.g., [26–31]. A somehow orthogo-
nal approach has been put forward in [32–34]: instead of
studying the region of overlap of both kinematic regimes, the
goal has been to derive TMD evolution kernels, which are
meant to achieve a simultaneous resummation of both
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and
BFKL logarithms [35,36]. Such an approach seems to be
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of particular interest for Monte Carlo applications such as
[37–41]. While currently only real splitting kernels have
been derived, which reduce in the regarding limits to the
respective real DGLAP and BFKL kernels, the relation to
CSS resummation is at the moment less clear; however, the
gluon-to-gluon splitting kernel could be shown to reduce to
the Ciafaloni-Catani-Fiore-Marchesini kernel [42,43] in the
soft limit.
In the following, we aim at solving various open questions

related to the previously mentioned studies. In particular, we
will give a next-to-leading order (NLO) study with respect to
an expansion in the strong coupling constant αs of the gluon
TMD in the high energy limit. While a related study has been
already presented in [22] within the color-glass-condensate
approach, we will investigate this problem within the context
of Lipatov’s high energy effective action [44,45]. Starting
with [46–50], the systematic determination of perturbative
higher order corrections has been worked out for this
framework, while in [51], equivalence with the color-
glass-condensate formalism has been demonstrated, includ-
ing a rederivation of the Balitsky-JIMWLK evolution, see
also [52,53] for reviews; for further recent studies based on
this framework, see also [54–61]. In [62], a systematic
framework for the determination of next-to-leading order
corrections at the cross section level has been worked out.
For the present study, we will further extend this framework
to include asymmetric factorization scale settings as required
for a matching to collinear factorization, i.e., kT factorization
[8]. While this framework is currently limited to the dilute
regime, i.e., two (reggeized) gluon exchange at the level of
the cross section, it has the great advantage that it allows us
to systematically study different choices of factorization
parameter and schemes, which will be of particular use for
the further exploration of the relation between BFKL and
Collins-Soper (CS) [4,5] evolution initiated in [20]. In
particular, we will determine systematically the NLO coef-
ficients that relate the QCD operator definition of the
unpolarized and linearly polarized gluon TMD PDF with
the unintegrated gluon density of high energy factorization,
which in turn will allow us to recover the complete CSS

resummation scheme in combination with BFKL evolution,
following closely related calculations based on collinear
factorization [63,64]. We expect our result to be useful for a
precise description of final states with small transverse
momenta within high energy factorized cross sections, at
a similar level of accuracy as descriptions based on collinear
factorization.
Another aspect of our result relates to the derivation of

TMD splitting kernels in [32,34]. While the original deri-
vation was based on a combined implementation of the
Curci-Furmanski-Petronzio formalism for the calculation of
the collinear splitting functions [65] and the framework of
high energy factorization provided by [44], we find in the
following that the real contribution to the QCD operator
definition of the unpolarized gluon TMD yields precisely the
previously derived off shell TMD splitting kernel. Our
current study provides therefore a possibility to recover
the so far missing virtual corrections to these off shell
splitting kernels.
The outline of this paper is as follows. In Sec. II, we give

a precise definition of the goal of this paper in more
technical terms, in particular the definition of the gluon
TMD PDFs; Sec. III contains a brief review of Lipatov’s
high energy effective action and presents among other
details an extension of the framework of [62] to kT
factorization. In Sec. IV, we present the results of our
NLO calculation, while Sec. V discusses aspects related to
the interplay of CS and BFKL evolution. In Sec. VI, we
summarize our result and provide an outlook on future
research.

II. THE SETUP OF OUR STUDY

The starting point of our study is the TMD factorization
of a suitable perturbative process. To be specific, we will
refer in the following to the transverse momentum dis-
tribution of a Higgs boson, as discussed, for instance, in
[64]; see also [63]. With pH and mH transverse momentum
and the mass of the Higgs boson, this factorization is valid
for jpHj ≪ mH and reads

dσ
dyHd2pH

¼ σ0ðμÞC2
t ðm2

t ; μÞHðm2
H; μÞ

Z
d2qad2qbð2πÞ2δð2ÞðpH − qa − qbÞ2 · xAΓij

g=AðxA; ζA; qa; μÞ · xBΓij
g=BðxB; ζB; qb; μÞ;

ð1Þ

where yH ¼ 1=2 lnðxA=xBÞ is the rapidity of the Higgs
boson, while xA;B denote the hadron momentum fractions
of gluons stemming from hadron A, B, respectively, and

ζA;B ¼ ðp�
HÞ2e∓2yc ¼ ðM2

H þ p2HÞe�2ðyH−ycÞ; ð2Þ

where yc denotes the rapidity, which divides soft gluons
from hadron A and B; μ is the renormalization point of the
cross section. To be specific, we consider the scattering of

two hadrons with lightlike momenta pA and pB, which
serve to define the light cone directions,

ðn�Þμ ¼ 2ffiffiffi
s

p pμ
A;B; s ¼ 2pA · pB; ð3Þ

which yields the following Sudakov decomposition of a
generic four momentum:
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k ¼ kþ
n−

2
þ k−

nþ

2
þ kT; k� ¼ k · n�; ð4Þ

and n� · kT ¼ 0. Here, kT is the embedding of the Euclid-
ean vector k into Minkowski space, so k2T ¼ −k2. For
Eq. (1), the top quark is considered to be integrated out, and
Ct is the corresponding Wilson coefficient; H is the square
of the on shell gluon form factor at the timelike momentum
transfer q2 ¼ m2

H, with infrared divergences subtracted; see
[66]. To a leading order in perturbation theory, they equal
one, while the precise NLO expression are not of interest
for the following discussion and can be found, for instance,
in [64]. σ0ðμÞ is finally the collinear Born level cross
section for the process gg → H,

σ0 ¼
g2Hπ

8ðN2
c − 1Þ ; gH ¼ −

αsðμÞ
3πv

; ð5Þ

with v ≃ 246 GeV the Higgs vacuum expectation value, and
αsðμÞ denotes finally the strong coupling constant at the
renormalization point μ. For an unpolarized hadron, the TMD
correlator Γij, i, j ¼ 1, 2 can be further decomposed [67]

Γij
g=BðxB; ζB; q; μÞ ¼ −

δij

2
fg=BðxB; ζB; qb; μÞ

þ
�
δij

2
þ qiqj

q2

�
hg=BðxB; ζB; qb; μÞ;

ð6Þ

where fg=BðxB; ζB; qb; μÞ denotes the unpolarized TMD
gluon distriubtion and hg=BðxB; ζB; qb; μÞ the linearly polar-
ized TMD gluon distribution in an unpolarized hadron. In
terms of QCD fields, the TMD PDF is defined as [63,64]

xΓij
g=BðxB; ζB; q; μÞ ¼ lim

σ;yn→∞

Z
dξþd2ξ
2ð2πÞ3p−

B
eiðxBp−

Bξ
þ=2−q·ξÞS̃ð2yc; σ; μ; ξÞ

· hhðpBÞjtr½ðWnðσÞ
ξ G−iðξÞÞ†WnðσÞ

0 G−jð0Þ�jhðpBÞijξ−¼0; ð7Þ

where S̃ð2yc; σ; μ; ξÞ denotes the soft factor and
limσ→∞nðσÞ ¼ n−, with σ → ∞ a suitable regulator whose
precise implementation will be given in Eq. (48) below.
Gauge links are in general given as a combination of a
longitudinal and a transverse gauge link [2], where the
transverse gauge link is placed at light cone infinity.
Working in a covariant gauge, the gauge field at infinity
vanishes, and the transverse gauge link therefore equals
one. We will therefore in the following not consider the
transverse gauge link. The longitudinal gauge link is on
the other hand given by

Wn
ξ ¼ P exp

�
−
g
2

Z
0

−∞
dλn · vðλnþ ξÞ

�
; ð8Þ

where vμðxÞ ¼ −itavaμðxÞ denotes the gluonic field, and

Dμ ¼ ∂μ þ gvμ; Gμν ¼ 1

g
½Dμ; Dν� ¼ −itaGμν

a : ð9Þ

For the soft factor, there exists various prescriptions in the
literature; see, e.g., [2,63,64,68–70]. To keep the discus-
sion as general as possible, we will consider below the
most general soft factor introduced in [2,69],

S̃ð2yc; σ; μ; ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S̃ð2yc; 2yn; ξÞ
S̃ðσ;−2yc; ; ξÞS̃ðσ; 2yn; ξÞ

s
; ð10Þ

with

S̃ðy1; y2; ξÞ ¼
1

N2
c − 1

· h0jðWn1ðy1Þ
ξ Þ†Wn2ðy2Þ

ξ ðWn2ðy2Þ
ξ Þ†Wn1ðy1Þ

ξ j0i;
ð11Þ

where n1;2ðy1;2Þ are tilted Wilson lines, such that n1 is
placed at rapidity[71] y1=2 and n2 at rapidity −y2=2. For a
precise definition of the light cone directions, see Eq. (48)
further below. The goal of the following sections is to
study this gluon TMD in the high energy limit at next-to-
leading order. In particular, we will discuss the factori-
zation of this TMD PDF into a perturbative coefficient, the
BFKL gluon Green’s function, and a hadronic impact
factor. The latter two will then form the so-called unin-
tegrated gluon density within high energy factorization.
Our study is limited to the exchange of two reggeized
gluons. It is known from various studies that the gluon
TMD also receives corrections due to the exchange of
multiple reggeized gluons, which are of importance to
take into account corrections due to high gluon densities
and their possible saturation; see, e.g., [17,24,27,29,72].
While these are very interesting questions—in particular
since they can provide modifications of the region of very
small transverse momenta due to the emergence of a
saturation scale—we do not consider these effects in the
following. Instead, great care will be taken to provide a
complete discussion of various factorization scales and
parameters both due to factorization in the soft limit and
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the high energy limit, as well as UV renormalization. The
study of these effects is somehow more straightforward, if
the observable is restricted to two reggeized gluon
exchange, which is the reason why we focus on this limit
in the following. The obtained results may then be
generalized at a later stage to the case of multiple
reggeized gluon exchange.
Another motivation for this study is to link the above

gluon TMD to the TMD splitting kernels derived in
[32,34]. Below, we will demonstrate that the TMD
gluon-to-gluon splitting of [34] arises directly from the
real contributions to the one-loop coefficient. We believe
that this is a very interesting result, since it allows us to
connect the framework of real TMD splitting kernels to the
above operator definitions of TMD PDFs.

III. THE HIGH-ENERGY EFFECTIVE ACTION

Since the current study requires a small but important
generalization in comparison to the framework presented in
[29], we begin our study with a short review of the high
energy effective action and the resulting calculational
framework for NLO calculations. Our treatment of high
energy factorization is based on Lipatov’s high energy
effective action [44]. Within this framework, QCD ampli-
tudes in the high energy limit are decomposed into gauge
invariant subamplitudes, which are localized in rapidity
space and describe the coupling of quarks (ψ), gluon (vμ),
and ghost (ϕ) fields to a new degree of freedom, the
reggeized gluon field A�ðxÞ. The latter is introduced as a
convenient tool to reconstruct the complete QCD ampli-
tudes in the high energy limit out of the subamplitudes
restricted to small rapidity intervals. Lipatov’s effective
action is then obtained by adding an induced term Sind to
the QCD action SQCD,

Seff ¼ SQCD þ Sind; ð12Þ

where the induced term Sind describes the coupling of the
gluonic field vμ ¼ −itavaμðxÞ to the reggeized gluon field
A�ðxÞ ¼ −itaAa

�ðxÞ. High energy factorized amplitudes
reveal strong ordering in plus and minus components of
momenta, which is reflected in the following kinematic
constraint obeyed by the reggeized gluon field:

∂þA−ðxÞ ¼ 0 ¼ ∂−AþðxÞ: ð13Þ

Even though the reggeized gluon field is charged under the
QCD gauge group SUðNcÞ, it is invariant under local gauge
transformation δA� ¼ 0. Its kinetic term and the gauge
invariant coupling to the QCD gluon field are contained in
the induced term,

Sind ¼
Z

d4x tr ½ðW−½vðxÞ� − A−ðxÞÞ∂2⊥AþðxÞ�

þ tr½ðWþ ½vðxÞ� − AþðxÞÞ∂2⊥A−ðxÞ�; ð14Þ

with

W�½vðxÞ� ¼ v�ðxÞ
1

D�
∂�; D� ¼ ∂� þ gv�ðxÞ: ð15Þ

For a more in depth discussion of the effective action, we
refer to the reviews [52,53]. Due to the induced term in
Eq. (12), the Feynman rules of the effective action
comprise, apart from the usual QCD Feynman rules, the
propagator of the reggeized gluon and an infinite number of
so-called induced vertices. Vertices and propagators needed
for the current study are collected in Fig. 1. Determination
of NLO corrections using this effective action approach has
been addressed recently in series of publications [46–50].
For a discussion of the analogous high energy effective for
flavor exchange [73] at NLO, see, e.g., [74–76].

A. Determination of NLO coefficients

The framework for the determination of NLO corrections
has been established in [62] within the determination of the
NLO forward Higgs production coefficient in the infinite
top mass limit. We will therefore frequently refer to the
process,

gluonðpaÞ þ quarkðpbÞ → HiggsðpHÞ þ X; ð16Þ

as an example process in the following, where we further
assume that the particles in the fragmentation region of the
scattering particles are widely separated in rapidity. The
partonic impact factor of the quark with momentum pb will
be later on replaced by the hadronic impact factor, which

(a) (b) (c)

FIG. 1. Feynman rules for the lowest-order effective vertices of the effective action. Wavy lines denote reggeized fields and curly lines
gluons.
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forms together with the BFKL Green’s function, the
unintegrated gluon density. As in [62], we will consider
matrix elements normalized to match corresponding col-
linear matrix elements for vanishing virtuality of the
reggeized gluon state. We therefore have

jA
arþ→XðnÞ

a
j2 ¼ ðk−Þ2

4k2
jM

arþ→XðnÞ
a
j2; ð17Þ

where we average over incoming parton color as well as the
color of the reggeized gluon and sum over the color of

produced particles; XðnÞ
a denotes the n-particle system

produced in the regarding fragmentation region. With

dΓðnÞ ¼ ð2πÞdδd
�
pa þ k −

Xn
j¼1

pj

�
dΦðnÞ;

dΦðnÞ ¼
Yn
j¼1

ddpj

ð2πÞd−1 δþðp
2
j −m2

jÞ; ð18Þ

we arrive at the following definition of an off shell partonic
cross section dσ̂aþ and the corresponding impact factor
ĥkT ðkÞ:

dσ̂aþ ¼
jA

arþ→XðnÞ
a
j2

2pþ
a k−

dΓðnÞ;

ĥkT ðkÞ ¼
Z

dk−

k−
dσ̂aþ: ð19Þ

Note that this impact factor can in principle be arbitrarily
differential, as far as the formulation of high energy
factorization is concerned; for a corresponding definition
of the other impact factor, we refer to [62]. The above
expression is subject to so-called rapidity divergences,
which are understood to be regulated through lower cutoffs

on the rapidity of all particles, ηi > −ρ=2 with ρ → ∞ and
i ¼ 1;…; n for n the number of particles produced in the
fragmentation region of the initial parton a. For virtual
corrections, the regularization is achieved through tilting
light cone directions of the high energy effective action,

nþ → nþ þ e−ρn−; ρ → ∞: ð20Þ

Below wewill also comment on the possibility to regularize
rapidity divergences through tilting light cone direction
also in the case of real corrections; see Sec. III D.
As shown through explicit results [46,48–50,62],

impact factors contain beyond leading order configura-
tions, which reproduce factorized contributions with
internal reggeized gluon exchange. It is therefore neces-
sary to subtract these contributions; see also Fig. 2. To this
end, one defines the bare one-loop two-reggeized-gluon
Green’s function GBðk1; k2Þ as well as the impact factors
through the following perturbative expansion:

GBðk1; k2; ρÞ ¼ δð2þ2ϵÞðk1 þ k2Þ þGð1Þ
B ðk1; k2; ρÞ þ � � �

haðk; ρÞ ¼ hð0Þa ðkÞ þ hð1Þa ðk; ρÞ þ � � � : ð21Þ

Using the following convolution convention:

½f ⊗ g�ðk1; k2Þ≡
Z

d2þ2ϵqfðk1; qÞgðq; k2Þ; ð22Þ

we then define the following subtracted bare NLO
coefficient,

Cð1Þ
a;Bðk; ρÞ ¼ hð0Þa ðkÞ þ hð1Þa ðk; ρÞ

− ½hð0Þa ⊗ Gð1Þ
B ðρÞ�ðkÞ; ð23Þ

and [77]

FIG. 2. NLO correction to forward Higgs production (left) and the factorized matrix element with internal reggeized gluon exchange
(right). The NLO correction contains the factorized contribution, which need to be subtracted from the former.
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dσNLOab ¼ 1

π1þϵ ½CkT
a;BðρÞ ⊗ GBðρÞ ⊗ CðugdÞ

b;B ðρÞ�
þ terms beyond NLO; ð24Þ

where we added the superscripts “kT” and “ugd” to
indicate that the impact factor of the particle with
momentum pa;b refers to the hard event and the unin-
tegrated gluon distribution, respectively. While rapidity
divergences cancel for the above expression, its elements
still depend on the regulator. As a next step, we therefore
define a renormalized Green’s function GR through

GBðk1; k2; ρÞ ¼
�
Zþ
�
ρ

2
− ηa

�
⊗ GRðηa − ηbÞ

⊗ Z−
�
ρ

2
þ ηb

��
ðk1; k2Þ; ð25Þ

which yields

dσNLOab ¼ ½Ca;RðηaÞ ⊗ GRðηa; ηbÞ ⊗ Cb;RðηbÞ�; ð26Þ

where

Ca;Rðηa; k1Þ≡
�
CaðρÞ ⊗ Zþ

�
ρ

2
− ηa

��
ðk1Þ;

Cb;Rðηb; k2Þ≡
�
Zþ
�
ρ

2
þ ηb

�
⊗ CbðρÞ

�
ðk2Þ: ð27Þ

The transition functions Z� have a twofold purpose: they
both serve to cancel ρ-dependent terms between impact
factors and Green’s function and allow us to define the
BFKL kernel. In particular,

d
dρ̂

Zþðρ̂; k; qÞ ¼ ½Zþðρ̂Þ ⊗ KBFKL�ðk; qÞ;
d
dρ̂

Z−ðρ̂; k; qÞ ¼ ½KBFKL ⊗ Z−ðρ̂Þ�ðk; qÞ; ð28Þ

where

KBFKLðk; qÞ ¼ Kð1Þðk; qÞ þ Kð2Þðk; qÞ þ � � � ð29Þ

B. Transition function and finite terms

In the following, we generalize the treatment given in
[62] through including as well the most general finite
contribution into our discussion. The need to include finite
contribution into this transition factors has been first
realized in the determination of the two-loop gluon
Regge trajectory in [48–50], where both divergent and
finite terms could be simply taken to exponentiate, since
one is dealing with one-reggeized gluon exchange con-
tributions only. A suitable generalization, which both
reduces to the exponential ansatz of [50] and obeys
Eq. (28), is then given by

Zþðρ̂;k;qÞ ¼ δð2þ2ϵÞðk− qÞþ ρ̂KBFKLðk;qÞþ
ρ̂2

2
KBFKL ⊗KBFKLðk;qÞþ fþ ⊗ ρ̂KBFKLðk;qÞþ fþðk;qÞþfþ ⊗ fþðk;qÞ

2
…;

Z−ðρ̂;k;qÞ ¼ δð2þ2ϵÞðk− qÞþ ρ̂KBFKLðk;qÞþ
ρ̂2

2
KBFKL ⊗KBFKLðk;qÞþ ρ̂KBFKL ⊗ f−ðk;qÞþ f−ðk;qÞþf− ⊗ f−ðk;qÞ

2
…;

ð30Þ

which is sufficient for a discussion up to NLO accuracy. As we will see in the following, these finite contributions serve a
twofold purpose. At first, they remove a potential finite contribution in the bare Green’s function,

Gð1Þ
B ðk1; k2; ρÞ ¼

αsCAρ

π

�
1

πϵðk1 − k2Þ2
−
1

ϵ

�
k21
μ2

�
ϵ

δð2þ2ϵÞðk1 − k2Þ
�

−
αs
2π

�
k21
μ2

�
ϵ
�
5CA − 2nf

3ϵ
−
31CA

9
þ 10nf

9

�
δð2þ2ϵÞðk1 − k2Þ; ð31Þ

where

πϵ ≡ π1þϵΓð1 − ϵÞμ2ϵ; αs ¼
g2Γð1 − ϵÞμ2ϵ

ð4πÞ1þϵ ; ð32Þ

which then yields directly the one-loop BFKL kernel,

Kð1Þðk1;k2Þ¼
αsCA

π

�
1

πϵðk1−k2Þ2
−
1

ϵ

�
k21
μ2

�
ϵ

δð2þ2ϵÞðk1−k2Þ
�
:

ð33Þ

To keep the treatment as general as possible, the finite
contribution is on the other hand then split up into two
terms,
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f�;ð1Þðk1; k2Þ ¼ f̃�;ð1Þðk1; k2Þ þ f̄�;ð1Þðk1; k2Þ: ð34Þ

The contribution f̃� is used to transfer finite terms
contained in the Green’s function to the impact factors.
We take, in the following, this function to be identical for
both plus and minus direction f̃�;ð1Þðk1; k2Þ ¼ f̃ð1Þðk1; k2Þ.
Indeed, since we are essentially dealing with contributions
due to the gluon polarization tensor in the high energy limit,
such a symmetric treatment appears to be the appropriate
one. One finds

f̃ð1Þðk1; k2Þ ¼
αs
4π

�
−
5CA − 2nf

3ϵ

�
k21
μ2

�
ϵ

þ 31CA − 10nf
9

�
δð2þ2ϵÞðk1 − k2Þ þOðϵÞ:

ð35Þ

The second contribution f̄� was absent in the discussion of
[62]. It needs to satisfy to one-loop the following require-
ment, to ensure absence of finite terms in the Green’s
function:

f̄þ;ð1Þðk1; k2Þ ¼ −f̄−;ð1Þðk1; k2Þ≡ f̄ð1Þðk1; k2Þ: ð36Þ

Note that similar constraints can be imposed on higher
order contributions to the functions f̄� to achieve a Green’s
function without finite contributions at higher orders.
Including all contributions, one finally arrives at following
expression for the NLO coefficient:

CNLO
R;i ðkÞ ¼ hð0Þa ðkÞ þ hð1Þa ðkÞ þ hð0Þa

⊗
��

−
ρ

2
− siηi

�
Kð1Þ þ sif̄ð1Þ − f̃ð1Þ

�
ðkÞ

i ¼ a; b; sa;b ¼ �; ð37Þ

where Kð1Þðk1; k2Þ and f̃ð1Þðk1; k2Þ are given in Eq. (33)
and Eq. (35), respectively. The function f̄ð1Þðk1; k2Þ as well
as the evolution parameters ηa;b are on the other hand still
undetermined. They are in principle arbitrary, but should be
chosen such that both impact factors are free of large
logarithms.

C. Scale setting for kT factorization

The parameters ηa;b as well as the function f̄ are at first
arbitrary; the former define through the combination ηa −
ηb the evolution parameter of the two reggeized gluon
Green’s function GR; see also the related discussion in
[53,62]. Usually, it is necessary to chose these parameters
such that the next-to-leading order corrections to impact
factors are under perturbative control and that large
logarithms in the center of mass energy are resumed
through the two reggeized gluon Green’s function. Within

the kT-factorization setup, one of the impact factors, e.g.,
the coefficient CR;bðηb; k2Þ in our example, is to be
replaced by the hadronic impact factor, which then builds
together with the BFKL Green’s function the unintegrated
gluon density. Even though the hadronic impact factor is
naturally a nonperturbative object, at the very least for
transverse momenta jk2j ≳ 1.5 GeV, it must have an
expansion in terms of collinear parton distribution func-
tions and corresponding collinear coefficients; see e.g.,
[78]. In order to have a complete matching of the resulting
expression for the unintegrated gluon density to the
collinear gluon distribution in the double-logarithmic
limit, it is natural to chose the evolution parameter ηa − ηb
to coincide with the fraction of the hadronic momentum
carried on by the gluon x ≃M2

a=s with Ma the invariant
mass of the system produced in the fragmentation region
[79]. Note that at NLO, an asymmetric scale choice, i.e.,
choosing the reference scale of the center-of-mass energyffiffiffi
s

p
to be of the order of a typical scale of one of the impact

factors, leads to a modification of the NLO BFKL kernel;
see, e.g., [14,80]. To repeat this exercise within the context
of the high energy effective action, we reconsider Eq. (27),
but focus now on the factorization parameters ηa;b and the
finite terms introduced above,

CNLO
R;a ðk1;Ma; ηa; f̄ð1ÞÞ ¼ ĈNLO

R;a ðk1;MaÞ − ½hð0Þa ðMaÞ
⊗ ðηaKð1Þ − f̄ð1ÞÞ�ðk1Þ

CNLO
R;b ðk2;Mb; ηb; f̄ð1ÞÞ ¼ ĈNLO

R;b ðk2;MaÞ þ ½hð0Þb ðMaÞ
⊗ ðηbKð1Þ − f̄ð1ÞÞ�ðk2Þ; ð38Þ

where Ma;b is the invariant mass of the produced final
state corresponding to each of the impact factors and ĈR
collects all terms which are independent of both ηa;b
and f̄. To equal the evolution parameter of the Green’s
function with the hadron momentum fraction carried on
by the reggeized gluon entering the impact factor CR;a,
we set

ηa ¼ ln
M0

k−
; ηb ¼ ln

M
p−
b
;

ηa − ηb ¼ ln
p−
b

k−
þ ln

M0

M
¼ ln

x0
xg

; ð39Þ

whereM;M0 are so far an unspecified reference scale and
x0 ¼ M0=M is a parameter of order one, which allows us
to estimate the scale uncertainty associated with high
energy factorization. In the following, we choseM to be of
the order of Ma, i.e., the hard scale. While this is a natural
choice for the hard impact factor, it introduces the same
scale into the hadronic impact factor, characterized in
general by small transverse momenta. We therefore find in
the perturbative region of the hadronic impact factor a
large collinear logarithm, which at first spoils the
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convergence of the perturbative expansion. This logarithm
can however be absorbed into the f̄ function through
setting,

f̄ð1ÞkT
ðk2; q2Þ≡ ln

M
jk2j

Kð1Þðk2; q2Þ; ð40Þ

which eliminates the logarithm in M from the hadronic
impact factor. Note that the choice of jk2j as the relative
scale is somewhat arbitrary, and other choices are equally
possible; see, e.g., [78]. It is interesting to compare this
situation to the case where the parameters ηa;b are
identified with the rapidities of the system produced in
the regarding fragmentation region, ηa ¼ lnpþ

a =Ma,
ηb ¼ lnMb=p−

b , with f̄ð1Þ ¼ 0. One finds

CNLO
R;b

�
k2;Mb; ln

M
p−
b
; f̄ð1ÞkT

�
¼ CNLO

R;b

�
k2;Mb; ln

Mb

p−
b
; 0
�

− ln
Mb

jk2j
Z

d2þ2ϵq2½Kð1Þðk2; q2Þhð0Þb ðMb; q2Þ�;

CNLO
R;a

�
k1;Ma; ln

M0

k−
; f̄ð1ÞkT

�
¼ CNLO

R;a

�
k1;Ma; ln

pþ
a

Ma
; 0

�

þ
Z

d2þ2ϵq1

�
hð0Þa ðMa; qaÞ · ln

Ma

x0jq1j
· Kð1Þðq1; k1Þ

�
;

ð41Þ

which allows us to verify that the presented treatment
agrees—after setting x0 ¼ 1—with the one derived in
[80], based on a study of ladder diagrams within the quasi-
multi-Regge-kinematics in the context of the definition of
the NLO inclusive jet vertex. For the NLO BFKL kernel,
one finally obtains the following contribution:

Kð2Þ
kT
ðk1; k2Þ ¼ Kð2Þðk1; k2Þ

−
1

2

Z
d2k ln

k2

k21
Kð1Þðk1; kÞKð1Þðk; k2Þ;

ð42Þ

which is independent of the parameter x0, and where Kð2Þ
denotes the NLO BFKL kernel if ηa;b is identified with the
rapidities of the external particles with f̄ð1Þ ¼ 0. The above
expression is in agreement with [80] and [14]. A more
detailed discussion of possible choices of the function f̄ð1Þ
will be presented elsewhere.
Summing up we have the general definition of the

unintegrated gluon density,

G ðΔηab; ηb; k; f̄ð1ÞÞ

¼
Z

d2þ2ϵqGRðΔηab; k; qÞCNLO
R;b ðq; ηb; f̄ð1ÞÞ; ð43Þ

where we suppressed the dependence on the invariant mass
Mb since the latter can in general be expressed in terms of
the transverse momentum. The kT-factorization scheme
fixes then f̄ð1Þ through Eq. (40), while Δηab ¼ ηa − ηb is
set to ΔηkTab ≡ ln 1=xg. The high energy factorized cross
section is then obtained as

dσAB ¼
Z

d2þ2ϵk
π1þϵ dCNLO

R;a ðk;Ma; ηa; f̄ð1ÞÞ

× G ðΔηab; ηb; k; f̄ð1ÞÞ; ð44Þ

where “A”might either denote a parton a, a partonic impact
factor convoluted with a parton distribution function of a
hadron A or a colorless initial state which allows for a
perturbative treatment. Concluding, we remark that in [81]
a definition of the unintegrated gluon density has been
proposed in terms of a operator definition with the high
energy gluonic field in light cone gauge, which requires the
inclusion of both so-called two, three, and four body
contributions. While an interpretation of such contributions
in terms of induced vertices Fig. 1 of the high energy
effective action appears to be possible, the precise relation
remains unclear.

D. Regularization of rapidity divergences

As pointed out in the above discussion, high energy
factorized matrix elements are subject to so-called rapidity
divergences. While they cancel at the level of observables
after subtraction of factorizing contribution and use of the
transition function, intermediate results beyond leading order
require a regulator in order to arrive at well-defined matrix
elements. While for real production a cutoff on the rapidity
of produced particles provides a natural way to regulate such
divergences, a consistent regularization is more difficult to
achieve in the case of virtual diagrams. As already pointed
out in Sec. III A, a suitable way to regulate these divergences
in the case of virtual corrections is to tilt the light cone
directions of the high energy effective action away from the
light cone; see Eq. (20). Note that from a formal point of
view this a very attractive way of regularizing rapidity
divergences, since gauge invariance of the high energy
effective action does not depend on the property n�2 ¼ 0;
tilting light cone directions provides therefore a gauge
invariant regulator, similar to dimensional regularization.
Nevertheless, the current treatment, see, e.g., [46,48,62], is
somewhat unsatisfactory, since it treats real (cutoff) and
virtual (tilting) corrections on somewhat different grounds.
At the same time, tilting light cone directions is also a
frequently used regulator for the determination of the one-
loop corrections to TMD PDFs within collinear factoriza-
tion; see, e.g., [2,63] and references therein, which is being
use for both real and virtual corrections. It seems therefore
natural to regulate rapidity divergences through tilting light
cone directions also in the case of real corrections.
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From a technical point, this does not imply any major
complications. However, the real part of the one-loop
Green’s function Eq. (31) would receive a finite correction,
which in covariant Feynman gauge is related to the square
of the induced diagrams (last two diagrams in Fig. 3). As
can be seen already at the level of diagrams, such
contributions arise as well for the corresponding impact
factors, which contain an identical diagram once calculat-
ing the correction due to the emission of an additional real
gluon. As a consequence, it is straightforward to show that
the corresponding contributions cancel, once the subtracted
impact factor and central contribution are combined.
Moreover, such a contribution may be easily absorbed into
a generalized version of the function f̃ð1Þ, Eq. (35). While
including such contributions does not provide any sub-
stantial complication, one deals in that case with an entirely
spurious contribution, which merely arises due to our
choice of our regulator and which has no physical meaning.
It seems therefore natural to employ a regulator which
avoids such a contribution altogether, at least at one-loop.
The modified regulator is essentially identical to the
previously used tilted light cone vectors, while the tilted
elements are taken now to be complex; i.e., we will use in
the following:

n� → nb;a ¼ n� þ ie−ρn∓; ρ ∈ R: ð45Þ

As a consequence, one has for virtual corrections,

na;b2 ¼ −4e−ρ; na · nb ¼ 2ð1 − e−2ρÞ; ð46Þ

while real corrections yields

jna;bj2 ¼ 0; na · ðnbÞ� þ c:c: ¼ 4ð1þ e−2ρÞ: ð47Þ

The spurious self-energy like contributions are therefore
absent. The only disadvantage of this method is that terms
of the form lnðna;b2Þ in virtual corrections can give rise to
undesired imaginary parts due to spacelike na;b2. While at
the cross section level such imaginary parts cancel

naturally, if one limits oneself to NLO corrections, a
consistent treatment of such a contribution at the amplitude
level would require to absorb this imaginary part into the
parameter ρ, e.g., through a suitable replacement ρ → ρ̃ ¼
ρ − iπ=2 etc., in the transition functions.
In the following calculation, we will meet rapidity

divergences that originate both from high energy factori-
zation and the QCD operator definition of the TMD gluon
distribution and the corresponding soft factor, which we
will consistently regulate through the tilting as described in
Eq. (45), while we reserve the use of the regulator ρ → ∞
for rapidity divergences due to high energy factorization.
To be specific, we define in the following the tilted Wilson
lines of the TMD definition Eq. (7) and Eq. (11) as

n1;2ðy1;2Þ ¼ n∓ þ ie−y1;2n�;

nðσÞ ¼ n− þ ie−σnþ: ð48Þ
IV. DETERMINATION OF THE GLUON TMD

The goal of the following section is to determine the
gluon TMD Eq. (7) within high energy factorization; i.e.,
we aim at the determination of the following coefficient
Cgg� , implicitly defined through

fgðηa; ηb; yc; ζB; q; μÞ

¼
Z

d2k
π

Cf
gg� ðζB; yc; ηa; q; k; μÞGðΔηab; ηb; kÞ;

hgðηa; ηb; yc; ζB; q; μÞ

¼
Z

d2k
π

Ch
gg� ðζB; yc; ηa; q; k; μÞGðΔηab; ηb; kÞ: ð49Þ

Note that the TMD PDFs at first do not depend on the
proton momentum fraction x, since high energy factoriza-
tion requires to integrate over this longitudinal momentum
fraction. Such a dependence therefore only arises through a
special choice for the parameters ηa;b. To allow for a
separate discussion of the different contributions of the
gluon TMD, we further define

FIG. 3. Real emission contribution to the Lipatov vertex, which yields the one-loop Green’s function (left) and contributing Feynman
diagrams (right). Note current conservation of the Lipatov vertex is given both for tilted and untilted light cone directions.
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Jijðq−; σ; q; μÞ ¼
Z

dξþd2þ2ϵξ

2ð2πÞ3þ2ϵp−
B
eiq·ξhhðpBÞjtr½ðWnðσÞ

ξ G−iðξÞÞ†WnðσÞ
0 G−jð0Þ�jhðpBÞijξ−¼0

Sðyc; σ; q; μÞ ¼
Z

d2þ2ϵξ

ð2πÞ2 eiq2·ξS̃ðyc; σ; ξ; μÞ; ð50Þ

where for the moment, we define the TMD PDF in 2þ 2ϵ dimensions, since individual expressions are divergent and
q− ¼ xp−

B. We therefore obtain

xΓijðq−; yc; q; μÞ ¼
Z

d2þ2ϵq1Jijðq−; σ; q1; μÞ · Sððyc; σ; q − q1; μÞ: ð51Þ

In the following, we evaluate the above gluon TMD for an initial reggeized gluon state with polarization nþ at one-loop. To
be precise, we consider

J̄ijðq−; σ; q; k; μÞ ¼
Z

dξþd2þ2ϵξ

2ð2πÞ3þ2ϵk−
eiq·ξ ·

1

N2
c − 1

X
b;b0

hrb0þðkÞjtr ½ðWnðσÞ
ξ G−iðξÞÞ†WnðσÞ

0 G−jð0Þ�jrbþðkÞijξ−¼0; ð52Þ

where the reggeized gluon state rbðkÞ is defined with the
normalization Eq. (17), appropriate for matching to col-
linear factorization in the limit of vanishing transverse
momentum, i.e.,

vaμðξÞjrbþðkÞi ¼ eik·ξnþμ δab
k−

2jkj
����
kþ¼0

; ð53Þ

while high energy factorization requires to integrate over
the minus momentum,

Ĵijðx; q1; kÞ ¼
Z

dk−

k−
J̄ijðx; q1; kÞ: ð54Þ

Feynman rules for the determination of perturbative cor-
rections are summarized in Fig. 4. With the following
convention to denote the perturbative expansion in αs for a
generic quantity AðαsÞ,

AðαsÞ ¼ Að0Þ þ Að1ÞðαsÞ þ � � � ; ð55Þ

FIG. 4. Feynman rules for the perturbative determination of the gluon TMD at amplitude level, i.e., for the evaluation of

WnðσÞ
0 G−jð0Þ�jrbþðkÞi.
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where AðnÞ ∼ αns , we have finally at leading order,

J̄ij;ð0Þ ¼ qiqj

q2
δð2þ2ϵÞðq − kÞδ

�
1 −

k−

q−

�
;

Ĵij;ð0Þ ¼ qiqj

q2
δð2þ2ϵÞðq − kÞ; ð56Þ

and therefore,

Cf;ð0Þ
gg� ðq; kÞ ¼ Ch;ð0Þ

gg� ðq; kÞ ¼ δð2Þðq − kÞ; ð57Þ

and the TMD gluon distributions are up to an overall factor
[82] of 1=π at leading order identical to the unintegrated
gluon density [17],

fð0Þ ¼ hð0Þ ¼ 1

π
GðΔηab; ηb; q; f̄ð1ÞÞ;

Γð0Þij ¼ qiqj

q2π
GðΔηab; ηb; q; f̄ð1ÞÞ; ð58Þ

where the kT-factorization scheme defined in Sec. III C
yields expression which are closest to conventional collin-

ear factorization results. Note that the unintegrated gluon
density is therefore directly related to the operator defi-
nition of the gluon TMD. Moreover, in the dilute limit, i.e.,
considering only two reggeized gluon exchange, the un-
integrated gluon density is universal [83]. We further stress
that the distribution of linearly polarized gluons in an
unpolarized hadron is nonzero within high energy factori-
zation already at tree level, in contrast to the result found
within collinear factorization [64]. From a technical point
of view, this is of course easily understood, since the initial
gluon carries within high energy factorization already finite
k and therefore gives rise to such a distribution.

A. One-loop calculation without soft factor

To regularize infrared and ultraviolet divergences, we use
dimensional regularization in d ¼ 4þ 2ϵ. The virtual one-
loop correction is provided by the set of diagrams Fig. 5.
The last diagram in the second line vanish within dimen-
sional regularization, since it is scaleless. Including the
contribution from the complex conjugate amplitude, we
obtain the following result:

J̄ij;ð1Þvirt ðq−; q; k−; kÞ ¼ δ

�
1 −

k−

q−

�
Ĵij;ð1Þvirt ðq−; q; kÞ; Ĵij;ð1Þvirt ðq−; q; kÞ

¼ qiqj

q2
δð2þ2ϵÞðq − kÞ

�
q2

μ2

�
ϵ

·
αsCA

2π

�
1

ϵ2
þ 1

ϵ

�
−ρþ ln

q−2

q2
−
8

3
þ 2nf
3CA

�
þ 49

9
−
10nf
9CA

−
π2

3

�
þOðϵÞ;

ð59Þ

To obtain the projections on the distribution for the
unpolarized TMD PDF fg and the linearly polarized gluons
hg in an unpolarized hadron, we use

fg=Bðx; qÞ ¼ −g⊥;ijΓ
ij
g=Bðx; qÞ;

hg=Bðx; qÞ ¼
2þ 2ϵ

1þ 2ϵ

�
gij

2þ 2ϵ
þ qiqj

q2

�
Γij
g=Bðx; qÞ; ð60Þ

which amounts to replace the overall tensor structure
qiqj=q2 by one for both the unpolarized and the linearly
polarized TMD. In particular, due to the presence of
nonzero initial transverse momentum, the virtual correction

for both TMD distributions are nonzero and agree with
each other. Diagrams for real corrections are depicted in
Fig. 6. Parametrizing k− ¼ q−=z and correspondingly,
l− ¼ q−ð1 − zÞ=z, a straightforward calculation yields

J̄ij;ð1Þreal ðq−; q; k−; kÞ ¼ 1

π1þϵ

Z
1

0

dzδ

�
1 −

zk−

q−

�

×
1

ðq − kÞ2 P̃
ð0Þ;ij
gg;r ðz; q; kÞ; ð61Þ

where

FIG. 5. Virtual corrections.
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1

ðq − kÞ2 P
ð0Þij
gg;r ðz; q; kÞ ¼ αsCA

2πμ2ϵΓð1 − ϵÞ
�
−gij⊥
2

zð1 − zÞððq − kÞ2 − q2Þ2
ðzðq − kÞ2 þ ð1 − zÞq2Þk2 þ

qiqj

q2

�
2

z½ðq − kÞ2 þ e−ρ ð1−zÞ2
z2 q−2�

−
2

zðq − kÞ2 þ ð1 − zÞq2
�
þ kikj

k2ðq − kÞ2
�

2

½ð1 − zÞ þ e−σ ðq−kÞ2z2
ð1−zÞ2q−2�

−
2q2

½zðq − kÞ2 þ ð1 − zÞq2�
�

þ kiqj þ qikj

ðq − kÞ2
1

½zðq − kÞ2 þ ð1 − zÞq2�
�
þOðe−ρ; e−σÞ; ð62Þ

where we kept only track of those contributions of order e−ρ and e−σ, which are needed to regulate integrals over the
momentum fraction z and/or transverse momenta, which are not convergent within dimensional regularization. Real

splitting functions for the unpolarized (P̃ðfÞ
gg ) and linearly polarized (P̃ðhÞ

gg ) gluon read

1

l2
P̃ð0Þf
gg;r ðz; q; kÞ ¼ αsCA

2πμ2ϵΓð1 − ϵÞ
�
zð1 − zÞð1þ ϵÞðl2 − q2Þ2

½zl2 þ ð1 − zÞq2�2k2 þ 2

l2

"
1

z · ½1þ e−ρ ð1−zÞ2q−2

z2l2 �
þ 1

ð1 − zÞ · ½1þ e−σ l2z2

ð1−zÞ2q−2�

#

þ 1

l2
k2 − 3ðq − kÞ2 − q2

½zðq − kÞ2 þ ð1 − zÞq2�
	
; ð63Þ

1

l2
P̃ð0Þh
gg;r ðz; q; kÞ ¼ αsCA

2πμ2ϵΓð1 − ϵÞ
�

2

zl2 · ½1þ e−ρ ð1−zÞ2q−2

z2l2 �
þ 2

ð1 − zÞl2 · ½1þ e−σ l2z2

ð1−zÞ2q−2�

 
1þ 4ð1þ ϵÞððl · qÞ2 − l2q2Þ

ð1þ 2ϵÞl2q2k2
!

þ 1

½zl2 þ ð1 − zÞq2�
�ð1þ 2ϵÞ2k · qþ 2q2

l2ð1þ 2ϵÞ −
2ð1þ ϵÞðk · qÞ2
k2l2ð1þ 2ϵÞ − 2

�	
; ð64Þ

where we used l ¼ k − q. Note that the splitting function
corresponding to fg coincides with the real transverse
momentum splitting function derived in [34] if we set
ρ ¼ ∞ ¼ σ. As demonstrated in [34], this splitting function
coincides with the DGLAP splitting function in the limit
k → 0, reduces to the real part of the leading order BFKL
kernel in the limit z → 0, and yields the real leading order
kernel of the CCFM equation in the limit q → k. The
present calculation provides on the other hand an oppor-
tunity to determine the still missing virtual contribution to
this splitting function. We further note—in agreement with
the result presented in [64]—that the coefficient of the
singularity z → 1 vanishes for the polarized splitting,

Eq. (64) in the collinear limit k → 0, after averaging
additionally over the azimuthal angle of the incoming
gluon. For finite k, this singularity is on the other hand
present and requires a treatment similar to the case of the
unpolarized gluon TMD PDF. With the integrated real
corrections—relevant for the current discussion which is
based on high energy factorization—we finally have

Ĵij;ð1Þreal ðq−; q; kÞ ¼
Z

1

0

dz
1

ðq − kÞ2
P̃ð0Þ;ij
gg;r ðz; q; kÞ

π1þϵ ; ð65Þ

with

Ĵð1Þfreal ðq−; q; kÞ ¼
αsCA

2ππϵ

�
σ þ ρ

l2
þ
Z

1

0

dz

�
zð1 − zÞð1þ ϵÞðl2 − q2Þ2

½zl2 þ ð1 − zÞq2�2k2 þ 1

l2
k2 − 3ðq − kÞ2 − q2

½zðq − kÞ2 þ ð1 − zÞq2�
�	

; ð66Þ

FIG. 6. Real corrections. Left: The reggeized gluon (k) is taken as incoming, the real gluon (l) and the momentum of the TMD PDF
(q) as outgoing, k ¼ qþ l. Right: Contributing Feynman diagrams.
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Ĵð1Þhreal ðq−; q; kÞ ¼
αsCA

2ππϵ

�
σ þ ρ

l2
þ
�
σ þ ln

q−2

l2

�
2ð1þ ϵÞððl · qÞ2 − l2q2Þ

ð1þ 2ϵÞl2q2k2

þ
Z

1

0

dz
1

½zl2 þ ð1 − zÞq2�
�ð1þ 2ϵÞ2k · qþ 2q2

l2ð1þ 2ϵÞ −
4ð1þ ϵÞðk · qÞ2
k2l2ð1þ 2ϵÞ − 2

�	
; ð67Þ

where the remaining integrals over z are finite and πϵ is
defined in Eq. (32). If inserted into Eq. (49), the con-
volution integral over the reggeized gluon momentum k
gives still rise to an infrared singularity. A possibility to
extract these singularities is the use of a phase space slicing
parameter; see, e.g., [84–86] for an example within the high
energy effective action. While this is sufficient to demon-
strate finiteness at a formal level, the use of such phase
space slicing parameters is in general complicated for

numerical studies at NLO accuracy. For the case of
collinear NLO calculation, the by now conventional tool
to overcome this difficulty are subtraction methods, in
particular dipole subtraction [87]. In [62], this has been
slightly generalized and applied to the case of divergences,
which arise due to convolution integrals of transverse
momenta. In particular, the following decomposition has
been proposed:

Z
d2þ2ϵl
π1þϵ

κðlÞ
l2

Gððqþ lÞ2Þ ¼
Z

d2l
π

�
κðlÞ
l2

�
þ
Gððqþ lÞ2Þ

þ
Z

d2þ2εl
π1þε

κðlÞ
l2

q2Gðq2Þ
l2 þ ðqþ lÞ2 þOðϵÞ; ð68Þ

with

Z
d2l
π

�
κðlÞ
l2

�
þ
Gððqþ lÞ2Þ≡

Z
d2l
π

κðlÞ
l2

�
Gððqþ lÞ2Þ − q2Gðq2Þ

l2 þ ðqþ lÞ2
�
: ð69Þ

The expression in the squared brackets on the right-hand side vanish in the limit jlj → 0, and GðkÞ is a function which
parametrizes the transverse momentum dependence of the reggeized gluon state. The function κðlÞ is such that the integral
on the right-hand side of (69) is well-defined, which in practice means that it does not behave worse than ln jlj for jlj → 0
and jlj → ∞. Furthermore, it should be such that the integral in the second line of (68) can be calculated analytically. Note
that the factor q2=½l2 þ ðqþ lÞ2� is needed to achieve convergence in the ultraviolet. In the current setup, we merely require
the case κðlÞ ¼ 1 with

Z
d2þ2ϵl
π1þϵ

1

l2½l2 þ ðqþ lÞ2� ¼
Γð1 − ϵÞ
ϵðq2Þ1−ϵ þOðϵÞ; ð70Þ

and

Ĵð1Þfreal ðq−; q; kÞ ¼
αsCA

2π

�
ðρþ σÞ

�
δð2ÞðlÞ 1

ϵ

�
q2

μ2

�
ϵ

þ 1

π1þϵ

�
1

l2

�
þ

�

þ 1

π1þϵ

Z
1

0

dz

�
zð1 − zÞðl2 − q2Þ2
½zl2 þ ð1 − zÞq2�2k2 þ

1

l2
k2 − 3ðq − kÞ2 − q2

½zðq − kÞ2 þ ð1 − zÞq2�
�	

þOðϵÞ; ð71Þ

Ĵð1Þhreal ðq−; q; kÞ ¼
αsCA

2π

�
ðρþ σÞ

�
δð2ÞðlÞ 1

ϵ

�
q2

μ2

�
ϵ

þ 1

π1þϵ

�
1

l2

�
þ

�

þ
�
σ þ ln

q−2

l2

�
2ððl · qÞ2 − l2q2Þ

π1þϵl2q2k2
þ 1

π1þϵ

Z
1

0

dz
ðq2 − l2Þ2k · l

½zl2 þ ð1 − zÞq2�l2k2
	
þOðϵÞ; ð72Þ

where the corresponding convolution integral can now be defined in d ¼ 2 dimensions.
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B. Soft factor, counterterms, and renormalization

The above result contains both rapidity divergences due
to high energy factorization ðρ → ∞Þ and the TMD
definition (σ → ∞) as well as single and double poles in
1=ϵ. Rapidity divergences due to high energy factorization
require the subtraction of high energy factorized contribu-
tions to the above correlator as well as the application of the
transition function, as given by Eq. (37). Rapidity diver-
gences due to soft radiation require the soft factor Eq. (10),
which we did not include so far. With the one-loop
expansion,

Sðy1; y2; q2Þ ¼ δð2þ2ϵÞðq2Þ

þ αsCA

2ππϵ
ðy1 þ y2Þ

1þ e−y1−y2

1 − e−y1−y2
1

q22
þOðα2sÞ;

ð73Þ

and taking the limit [88] σ; yn → ∞, we obtain finally for
the soft function in momentum space at one loop,

Sð2yc; σ; q2Þ ¼ δð2þ2ϵÞðq2Þ −
αsCAðσ − 2ycÞ

2ππϵq22
þOðα2sÞ;

ð74Þ

where yc is a finite rapidity and takes a role related to a
factorization scale, similar to the parameter ηa in the case of

high energy factorization; in particular, it enters directly the
definition of the scales ζA;B defined in Eq. (2). The one-
loop contribution to the TMD gluon densities due to the
soft function is finally given by

Γ̂ijð1Þ
soft ðx; q; kÞ ¼ −

αsCAðσ − 2ycÞ
2ππϵðq − kÞ2

kikj

k2
þOðα2sÞ: ð75Þ

Note that the one-loop soft function, which consists of its
real part only within dimensional regularization, agrees
with the real part of the one-loop BFKL kernel. We believe
that this coincidence is limited to the one-loop case and
does not hint at a general universality of the rapidity
dependence of the soft function. In particular, at the
diagrammatic level the soft function does not give rise
to the complete Lipatov vertex, but only to terms related to
the induced contributions; see also the discussion in [89] in
the context of soft-collinear effective theory for high energy
scattering.
As a last step, we need to combine virtual [Eq. (59) and

real (Eqs. (66) (67)] corrections, with the soft factor,
making use of the appropriate projections. Note that the
contribution of the soft factor merely amounts to a
replacement of the regulator σ by the factorization param-
eter yc. We obtain for the one-loop high energy subtracted
and renormalized one-loop coefficients C̃ð1Þf;h the follow-
ing result:

C̃ð1Þfðq−; q; kÞ ¼ αsCA

2π

�
δð2ÞðlÞ

�
1

ϵ2
þ 1

ϵ

�
ln
ðq−Þ2e2yc

μ2
−

β0
2CA

�
þ 67

18
−
5

9
−
π2

3
þ ln

q2

μ2

�
ln
ðq−Þ2e2yc

μ2
−

β0
2CA

�

−
1

2
ln2

q2

μ2

�
þ 2ðyc − ηaÞ

1

π1þϵ

�
1

l2

�
þ
þ 1

π1þϵ

Z
1

0

dz

�
zð1 − zÞðl2 − q2Þ2
½zl2 þ ð1 − zÞq2�2k2

þ 1

l2
k2 − 3ðq − kÞ2 − q2

½zðq − kÞ2 þ ð1 − zÞq2�
�	

þ f̄ð1Þðq; kÞ þOðϵÞ; ð76Þ

C̃ð1Þhðq−; q; kÞ ¼ αsCA

2π

�
δð2ÞðlÞ

�
1

ϵ2
þ 1

ϵ

�
ln
ðq−Þ2e2yc

μ2
−

β0
2CA

�
þ 67

18
−
5

9
−
π2

3
þ ln

q2

μ2

�
ln
ðq−Þ2e2yc

μ2
−

β0
2CA

�

−
1

2
ln2

q2

μ2

�
þ 2ðyc − ηaÞ

1

π1þϵ

�
1

l2

�
þ
þ 2

�
yc þ ln

q−

jlj
�
2ððl · qÞ2 − l2q2Þ

π1þϵl2q2k2

þ 1

π1þϵ

Z
1

0

dz
ðq2 − l2Þ2k · l

½zl2 þ ð1 − zÞq2�l2k2
	
þ f̄ð1Þðq; kÞ þOðϵÞ; ð77Þ

where

β0 ¼
11CA

3
−
2nf
3

: ð78Þ

While the above expression no longer carries rapidity
divergences, it still comes with several poles in 1=ϵ, which
are of ultraviolet origin and which require renormalization.

The corresponding renormalization constant is identical for
both unpolarized and linearly polarized gluons and is
obtained as

ZG ¼ 1 −
αsCA

2π

�
1

ϵ2
þ 1

ϵ

�
ln

ζ

μ2
−

β0
2CA

��
; ð79Þ

which gives rise to the following anomalous dimension:
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γG

�
αsðμÞ; ln

ζ

μ2

�
¼ d ln ZG

d ln μ

¼ αs
2π

�
β0 − 2CA ln

ζ

μ2

�
; ð80Þ

where we used dαs=d ln μ ¼ 2ϵαs and ζ ¼ ðq−Þ2e2yc . Note
that the above anomalous dimension agrees with the
corresponding result obtained within a treatment based
on collinear factorization [64]. This is indeed to be
expected since it arises due to the renormalization of

ultraviolet divergences, which are naturally independent
of the nonzero transverse momentum of the initial state
gluon. We however stress that the linearly polarized TMD
gluon distribution does not give rise to the above anoma-
lous dimension within collinear factorization, since the
corresponding distribution vanishes within collinear fac-
torization at tree level; the one-loop result is therefore not
renormalized. We finally obtained for the renormalized
coefficients,

Ĉð1Þf
gg� ðζB; yc; ηa; q; k; μ; f̄ð1ÞÞ ¼

αsCA

2π

�
δð2ÞðlÞ

�
ln
q2

μ2

�
ln
ζB
μ2

−
β0
2CA

�
−
1

2
ln2

q2

μ2
þ 67

18
−
5nf
9CA

−
π2

3

�
þ 2ðyc − ηaÞ

1

π

�
1

l2

�
þ

þ 1

π

Z
1

0

dz
�
zð1 − zÞðl2 − q2Þ2
½zl2 þ ð1 − zÞq2�2k2 þ

1

l2
k2 − 3ðq − kÞ2 − q2

½zðq − kÞ2 þ ð1 − zÞq2�
�	

þ f̄ð1Þðq; kÞ ð81Þ

Ĉð1Þh
gg� ðζB; yc; ηa; q; k; μ; f̄ð1ÞÞ ¼

αsCA

2π

�
δð2ÞðlÞ

�
ln
q2

μ2

�
ln
ζB
μ2

−
β0
2CA

�
−
1

2
ln2

q2

μ2
þ 67

18
−
5nf
9CA

−
π2

3

�
þ 2ðyc − ηaÞ

1

π

�
1

l2

�
þ

þ
�
yc þ ln

q−

jlj
�
4ððl · qÞ2 − l2q2Þ

πl2q2k2
þ 1

π

Z
1

0

dz
ðq2 − l2Þ2k · l

½zl2 þ ð1 − zÞq2�l2k2
	
þ f̄ð1Þðq; kÞ; ð82Þ

where we made now the dependence on various parameters
yc and ηa explicit. The above expressions for the one-loop
coefficients of unpolarized and linearly polarized gluon
TMD are one of the main results of this work.

V. EVOLUTION

The coefficients Eqs. (81), (82) depend on three factori-
zation scales and/or parameters: μ (renormalization scale),
yc (evolution parameter of the soft function), and ηa
(evolution parameter of the unintegrated gluon density).
In addition, we still have the dependence on the function
f̄ð1Þ, which is also related to the unintegrated gluon density.
The dependence on the renormalization scale and the
factorization parameter yc gives rise to CSS resummation
framework, [4–6]. In the treatment established for collinear
initial states, see, e.g., [2,64,90], it is customary to consider
to this end the Fourier-transform of the TMD coefficient to
transverse coordinate space,

C̃ð1Þi
gg� ðζB; yc; ηa; b; k; μ; f̄ð1ÞÞ

¼
Z

d2qeiq·bĈð1Þi
gg� ðζB; yc; ηa; q; k; μ; f̄ð1ÞÞ; ð83Þ

where i ¼ f, h and then to evolve the coefficient in
coordinate space,

C̃ð1Þi
gg�

�
ζB;f; ln

ffiffiffiffiffiffiffiffi
ζB;f

p
q−

; ηa; b; k; μf; f̄ð1Þ
�

¼ R̃ðb; ζB;f; μf; ζB;i; μiÞC̃ð1Þi
gg�

×

�
ζB; ln

ffiffiffiffiffiffiffi
ζB;i

p
q−

; ηa; b; k; μi; f̄ð1Þ
�
; ð84Þ

with the evolution operator,

R̃ðb; ζB;f; μf; ζB;i; μiÞ ¼ exp

�Z
μf

μi

dμ̄
μ̄
γG

�
αsðμ̄Þ; ln

ζB;f
μ̄2

�	

×

�
ζB;f
ζB;i

�
−K̃CSðb;μiÞ

2

: ð85Þ

In the above expression, the CS kernel K̃CSðb; μiÞ is in
general assumed to have both perturbative and nonpertur-
bative contributions; for a detailed discussion, see
[2,64,90]. The nonperturbative contribution arises due to
the inverse Fourier transform, which requires to integrate
over large values of b, well into the nonperturbative region.
Note that a similar statement applies in principle for the
convolution integral of Eq. (97), if the unintegrated gluon
distribution does not dropoff sufficiently fast for small
values of transverse momentum k. The actual evolution
takes place in two steps: first, one evolves the coefficient at
a certain initial renormalization scale μi from an initial
rapidity yc;i—parametrized through ζB;k ¼ ðq−Þ2e2yc;k ,
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k ¼ i, f—to a final rapidity yc;f. The second step evolves
then the TMD PDF from the initial to the final renorm-
alization scale. While the value of the final renormalization
scale is of the order of the hard scale, i.e., the Higgs mass
for the current example, the initial renormalization scale μi
must be chosen such that it minimizes the perturbative
correction to the TMD coefficients. In collinear calcula-
tions, it is naturally taken to be of the order of the transverse
momentum q or its inverse conjugate coordinate μb ¼
2e−2γE=jbj with γE ≃ 0.577216 the Euler constant. In the
current setup, the optimal choice is far from apparent, since
the coefficients depend on multiple scales due to nonzero
initial transverse momenta. In particular, the transverse
momenta k and q are at least at first not necessarily of the
same order of magnitude.

A. A comparison of the kernels of CS and BFKL
evolution

Both CS and BFKL evolution describe evolution in
rapidity. It is therefore natural to expect that both evolution
and their respective kernels have a certain overlap. For the
derivation of the CS kernel, we follow closely [2,90], where
the kernel of the Collins-Soper evolution equation is
defined through the yc dependence of the renormalized
soft factor,

K̃CSðξ; μÞ ¼
∂
∂yc ln ½S̃ðξ; yc; μÞZGðycÞ� ð86Þ

and is itself subject to the following renormalization group
equation:

dK̃CS

d ln μ2
¼ −ΓA

cuspðαsðμÞÞ; ΓA
cusp¼

P∞
n¼1

�
αs
4π

�
n
ΓA
n−1;

ΓA
0 ¼ 4CA; ΓA

1 ¼ ΓA
0

��
67

9
−
π2

3

�
CA −

10nf
9

�
;

ð87Þ

where ΓA
cusp is the cusp anomalous dimension in the adjoint

representation, see [64,91,92] for higher order terms. At
one loop, one finds

K̃ð1Þ
CSðξ; μÞ ¼

αsCA

π
ln

�
4e−2γE

ξ2μ2

�
: ð88Þ

While the representation in transverse coordinate space is
very useful for a direct solution of the CS equation through
exponentiation of the CS kernel as in Eq. (85), it is also
instructive to formulate the CS equation in momentum
space, which allows for a direct comparison with the BFKL
equation. In particular, defining in complete analogy to the
BFKL treatment a CS Green’s function GiðΔy; k1; k2Þ,
i ¼ BFKL, CS, such that

Gið0; k1; k2Þ ¼ δð2Þðk1 − k2Þ; i ¼ BFKL;CS

dGiðΔy; k1; k2Þ
dΔy

¼
Z

d2k
π

Kiðk1; kÞGiðΔy; k; k2Þ; ð89Þ

one finds at one loop the following simple relation between
both kernels:

Kð1Þ
CSðk1; k2; μÞ ¼ Kð1Þ

BFKLðk1; k2Þ

−
αsCA

π
δð2Þðk1 − k2Þ ln

μ2

k21
: ð90Þ

The presence of this factor can be explained as follows. As
it is well-known, the virtual correction to the one-loop
BFKL kernel is directly related to the gluon Regge
trajectory ωðϵ; kÞ, which in transverse momentum space
can be written as

ωðϵ; k2Þ ¼ −
αsCA

4πμ2ϵΓð1 − ϵÞ
Z

d2þ2ϵl
π1þϵ

k2

l2ðk − lÞ2

¼ −
αsCA

2π

1

ϵ

�
k2

μ2

�
ϵ

: ð91Þ

The CS equation is on the other hand limited to soft
radiation, which implies restriction to transverse momenta
jlj ≪ jkj and jl − kj ≪ jkj. The integrand in the above
expression therefore reduces to

k2

l2ðk − lÞ2 ≃
1

l2
þ 1

ðl − kÞ2 ; ð92Þ

and the integral vanishes within dimensional regularization
through a cancellation of the infrared and ultraviolet 1=ϵ
poles. Removing on the other hand, the UV pole through
renormalization, one finally ends up with the virtual
contribution to the CS kernel. The CS evolution can be
therefore understood as the soft approximation to the
complete BFKL kernel. Indeed, such an identification is
natural, since the CS kernel arises from the rapidity
divergence of the soft function, while the BFKL kernel
from the rapidity divergence of partonic cross sections in
the high energy limit

ffiffiffi
s

p
→ ∞.

The above discussion clearly suggests that the CS and
BFKL evolution are closely related to each other, with the
CS kernel as the soft limit of the complete BFKL kernel.
When considering CS and BFKL evolution for the same
quantity, it is therefore necessary to remove the overlap of
both evolution equations or alternatively, to restrict them to
distinct regions in phase space, which are then covered by
the regarding evolution equation. In particular, the various
evolution parameters must obey the following ordering:

yfc > yic ¼ ηa > ηb; ð93Þ
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it is needed to separate the phase space covered by BFKL
evolution (rapidity evolution of the entire cross section) and
CS evolution (rapidity evolution of soft gluons only).
Clearly, soft gluons form a subset of the complete cross
section and cannot be evolved separately from the latter in
rapidity.

B. kT factorization and alternative schemes

In the following, we investigate our result for a specific
choice of the evolution parameter of the unintegrated gluon
density, which we fix to coincide with the proton momen-
tum fraction x; i.e., we consider now the equivalent of

Eq. (49), but with the following choices for the parameters
of the high energy evolution, following the results of
Sec. III C:

Δηab ¼ ln
x0
x
; ηa ¼ ln

x0M
q−

; ηb ¼ ln
M
p−
b
;

f̄ð1Þðq; kÞ ¼ ln

�
x0M
jqj
�
1

π

�
1

ðq − kÞ2
�
þ
; ð94Þ

where M is a still unspecified reference scale. The
coefficients take the following form:

Ĉð1Þf;kT
gg� ðx0; ζB; q; k; μÞ ¼

αsCA

2π

�
δð2ÞðlÞ

�
ln
q2

μ2

�
ln
ζB
μ2

−
β0
2CA

�
−
1

2
ln2

q2

μ2
þ 67

18
−
5nf
9CA

−
π2

3

�
þ ln

�
ζB
x0q2

�
1

π

�
1

l2

�
þ

þ 1

π

Z
1

0

dz
�
zð1 − zÞðl2 − q2Þ2
½zl2 þ ð1 − zÞq2�2k2 þ

1

l2
k2 − 3ðq − kÞ2 − q2

½zðq − kÞ2 þ ð1 − zÞq2�
�	

; ð95Þ

Ĉð1Þh;kT
gg� ðx0; ζB; q; k; μÞ ¼

αsCA

2π

�
δð2ÞðlÞ

�
ln
q2

μ2

�
ln
ζB
μ2

−
β0
2CA

�
−
1

2
ln2

q2

μ2
þ 67

18
−
5nf
9CA

−
π2

3

�
þ ln

�
ζB
x0q2

�
1

π

�
1

l2

�
þ

þ ln

�
ζB
l2

�
2ððl · qÞ2 − l2q2Þ

πl2q2k2
þ 1

π

Z
1

0

dz
ðq2 − l2Þ2k · l

½zl2 þ ð1 − zÞq2�l2k2
	
; ð96Þ

with l ¼ k − q. Even though both ηa and the function f̄ð1Þ depend within this scheme on a certain reference scale M, the
dependence on this scale cancels between both contributions, and we remain only with the parameter x0 which is of order one.
The scaleM remains therefore unspecified and can be used to satisfy the ordering condition Eq. (93). A possible and suitable
choice is then ζiB ¼ C · q2, with C another constant of order one, which eliminates a potential large logarithm in the
coefficients and which specifies eventuallyM ¼ jqj. The complete resummed gluon TMDs take then the following final form:

fkTg ðx; ζB;f; q; μfÞ ¼ exp

�Z
μf

μi

dμ̄
μ̄
γG

�
αsðμ̄Þ; ln

ζB;f
μ̄2

�	
·
Z

d2q0GCS

�
1

2
ln
ζB;f
M2

; q; q0; μi

�

·
Z

d2k
π

Cf;kT
gg� ðx0;M2; q0; k; μiÞ · GkT

�
ln
x0
x
; ln

M
p−
B
; k; f̄ð1ÞkT

�
;

hkTg ðx; ζB; q; μfÞ ¼ exp

�Z
μf

μi

dμ̄
μ̄
γG

�
αsðμ̄Þ; ln

ζB;f
μ̄2

�	
·
Z

d2q0GCS

�
1

2
ln

ζfB
M2

; q; q0; μi

�

×
Z

d2k
π

Ch;kT
gg� ðx0;M2; q0; k; μÞGkT

�
ln
x0
x
; ln

M
p−
B
; k; f̄ð1ÞkT

�
; ð97Þ

where ζiB ¼ M2 and μi are yet unspecified scales. Reading
the above expressions from the right to the left, one first
evolves the unintegrated gluon density through BFKL
evolution up to the hadron momentum fraction x, with a
corresponding factorization uncertainty parametrized
through x0. The unintegrated gluon distribution is then
convoluted with the NLO TMD coefficient in transverse
momentum k. The resulting expression defines then the
gluon TMD with transverse momentum q0 at a scale ζiB ¼
M2 and renormalization point μi. While M is an arbitrary
scale, introduced to define the kT-factorization scheme, it

is naturally chosen to be of the order of the transverse
momentum q0; the same is true for the choice of the
renormalization point μi. In a next step, it is therefore
needed to evolve this gluon TMD both in ζ (rapidity
evolution of soft gluons) and finally, in the renormaliza-
tion scale to its final values, where rapidity evolution of
solution gives rise to a convolution in transverse momen-
tum q0. The above expressions for CSS evolution (com-
bined evolution in ζ and μ) are the conventional expresses
found in the literature, while they are expressed in trans-
verse momentum instead of transverse coordinate space.
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In particular, the CS Green’s function in transverse
momentum space is obtained from the frequently used
transverse coordinate expression through

GCSðΔy; q; q0; μÞ ¼
Z

d2b
ð2πÞ2 e

−ib·ðqt−q0ÞeΔy·K̃CSðb;μÞ: ð98Þ

At one loop, K̃CS is given by Eq. (86). For perturbative
higher orders, see, e.g., Sec. III of [64], where it is needed
to include a relative factor of 2 with respect to the
convention employed in this paper. Apart from perturba-
tive higher order corrections, one might also consider RG
evolution from the scale μi to a suitable renormalization
point of the CS Green’s function; finally, it is also possible
to include a model for nonperturbative effects. If one
restricts oneself on the other hand to the leading order
kernel Eq. (86), the above integral can be easily evaluated,
and one finds

GLL
CSðΔy; q1; q2; μÞ ¼

Γð1 − ᾱsΔyÞ
ðq1 − q2Þ2ΓðᾱsΔyÞ

×

�ðq1 − q2Þ2e−2γE
μ2

�
ᾱsΔy

; ð99Þ

with ᾱs ¼ αsCA=π. Note that convergence of the Fourier
integral requires ᾱsΔy < 1 for the above expression.
While the kernels of CSS and BFKL evolution in
Eq. (97) are well-known, our result provides as a new
element the perturbative coefficient, which connects both
evolution equations up to NLO accuracy. In particular, a
complete next-to-leading logaritmic resummation of both
BFKL and CSS logarithms requires to combine the NLO

coefficient Eqs. (95), (96) with the unintegrated gluon
distribution evolved with the NLO BFKL kernel [14] as
well as CSS evolution with NLO anomalous dimension
Eq. (80), and the corresponding expression for the CS
kernel; see [64] for a compact summary up to NNLO
accuracy of these elements in the gluonic channel. It
would be very interesting to compare this result to the low
x expansion of exact N3LO results for the gluon TMD
PDFs [93]. From a technical point of view, this would
require to construct a partonic unintegrated gluon distrib-
tion, following Eq. (43), but using NLO quark and gluon
impact factors.
While the identification of the evolution parameter

according to the kT scheme, as used above, provides a
direct generalization of the collinear result and is been often
employed in fits of the unintegrated gluon density, see e.g.,
[94–97], it is not necessarily the most adequate to describe
rapidity evolution of the system. An alternative form would
be to identify ηa with the maximal rapidity of the soft
gluonic system, ηa ¼ yc or with the rapidity of the hard
final state, i.e., the Higgs boson ηa ¼ yH. While ηa ¼ yc
eliminates entirely the need for CS evolution, it also ignores
the rapidity of the hard event (Higgs boson) in the energy
evolution of the TMD PDF. The choice appears therefore to
be possible, but inadequate. The choice ηa ¼ yH evolves
the unintegrated gluon density through BFKL evolution up
to the rapidity of the hard even, while CS evolution
addresses the possible differences yc − yH, where both
yc > yH and yc < yH is possible. Introducing furthermore
the parameter δy, which allows us to address the scale
uncertainty associated with high energy factorization; i.e.,
high energy evolution describes dependence on ȳH ¼ yH þ
δy and e�δy is taken to be of order one, one finds

frapg ðȳH; yc; q; μÞ ¼ exp

�Z
μf

μi

dμ̄
μ̄
γG

�
αsðμ̄Þ; ln

ζB;f
μ̄2

�	
·
Z

d2q0GCSðyc − ȳH; q; q0; μiÞ

·
Z

d2k
π

Cf
gg� ðζiB; yc; ȳH; q; k; μ; 0Þ · GðȳH − y0; y0; k; 0Þ;

hrap:g ðȳH; yc; q; μÞ ¼ exp

�Z
μf

μi

dμ̄
μ̄
γG

�
αsðμ̄Þ; ln

ζB;f
μ̄2

�	
·
Z

d2q0GCSðyc − ȳH; q; q0; μiÞ

·
Z

d2k
π

Ch
gg� ðζiB; yc; ȳH; q; k; μ; 0Þ · GðȳH − y0; y0; k; 0Þ; ð100Þ

where ζiB ¼ ðM2
H þ q2Þe−2δy, ζfB ¼ ðM2

H þ q2Þe2ðȳH−ycÞ and
y0 is a parameter of the order of the hadron rapidity. Note that
within this frame, the TMD PDFs no longer depend on the
hadron momentum fraction, but rather on rapidity. While this
might appear strange at first sight, it is natural from the point
of view of high energy factorization where the momentum
fraction is—in the case of the kT-factorization scheme—
merely an evolution parameter fixed through the kinematics

of the final state, while the above rapidity scheme uses a
different choice for this evolution parameter.

C. Relation to previous results in the literature

Before we conclude, we briefly discuss the relation of the
above results to results in the literature. In principle, the
TMD gluon distribution has been already study within high
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energy factorization at NLO in [22], previous studies with a
similar scope are [20] and [98,99]. At the level of real
corrections, the contributions seem to be identical at the level
of Feynman diagrams, leaving aside the absence of the
multiple reggeized gluon exchange in the current discussion.
The set of virtual diagrams of [22] is on the other hand
clearly reduced with respect to the ones considered in this
work, Fig. 5. Indeed, the authors of [22] seem to consider
only self-energy corrections to the Wilson line in their
approach. This difference is directly related to the fact that
[22] makes use of the so-called “shock wave picture” for the
calculation of next-to-leading order corrections. While this is
a frequently used frame for the calculations within the CGC-
framework at both LO and NLO, it does not allow us to
recover the term proportional to β0 in the anomalous
dimension Eq. (80), as already noted by the authors of
[22]. We believe that this constitutes an important advantage
of the framework of the high energy effective action, since it
does not only allow us to recover the double-logarithmic
contribution to CSS resummation, (i.e., the Sudakov form
factor of [22]) but also its single logarithmic terms.
Another point in which we somehow differ with [22], see

also the discussion in [20], is the statement that BFKL and
CS evolution cover by default distinct regions of phase
space. As outlined above, this problem does strictly speaking
not occur, if the evolution variable of the gluon density is
identified with the hadron momentum fraction. To clarify
this point further and to put this into context with the
discussion in [22], we consider in the following the
combined z → 0 and z → 1 singularities of the real correc-
tions of our one-loop result. Since the treatment is slightly
more involved for the linearly polarized gluon TMD,
Eq. (64), we focus in the following on the unpolarized
case, Eq. (63). Removing regulators through taken the limits
ρ; σ → ∞, and keeping only singular terms, we find that the
TMD splitting function reduces to

Z1
0

dz
1

ðq − kÞ2 P̃
ð0Þf
gg;r ðz; qkÞ

≃
αsCA

πμ2ϵΓð1 − ϵÞ
1

ðq − kÞ2
Z1
0

dz
�
1

z
þ 1

1 − z

�
: ð101Þ

At first sight, the poles at z ¼ 0 and z ¼ 1 are therefore
indeed well separated. With the rapidity of the produced
gluon equal to ηl ¼ ln jq−kjz

ð1−zÞq−, the above integral can be

however rewritten asZ1
0

dz
1

ðq − kÞ2 P̃
ð0Þf
gg;r ðz; qkÞ

≃
αsCA

πμ2ϵΓð1 − ϵÞ
1

ðq − kÞ2 lim
σ;ρ→∞

Zσ=2
−ρ=2

dηl; ð102Þ

where we re-inserted the previously removed regulators ρ, σ
as cut-offs on the rapidity integral. As for the real part of the
one-loop BFKL kernel within the high energy effective
action, see [46,48,53] for an explicit construction, the above
expression is proportional to an integral which extends over
the entire range of rapidity. In contrast to the derivation of the
BFKL kernel, the above integral is however split up into a
“soft” and a “hard” part,

Zσ=2
−ρ=2

dηl ¼
Zηa
−ρ=2

dηl þ
Zσ=2
ηa

dηl

¼
�
σ

2
− ηa

�
þ
�
ηa þ

ρ

2

�
; ð103Þ

where the distinction into “soft” and “hard” is essentially
achieved through the virtual corrections. As a consequence
—while we somehow agree with [22] that both pieces are
well separated—care is needed to avoid overlap between
both contributions. In particular, a gluon with a certain fixed
rapidity may be either counted as soft or hard but never as
both. At the same time, “gaps” in rapidity should be avoided
for a consistent and correct description.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we extended the framework established in
[62] for next-to-leading order corrections within Lipatov’s
high energy effective action to the case where the transition
function contains an additional finite contributions. Using
this extension, we were able to address the special, but
important case of impact factors that possess a strong
hierarchy with respect to their transverse scales, as it is
the case within the kT-factorization setup. The latter is
characterized by a impact factor with a hard scale, i.e., the off
shell partonic coefficient, and a hadronic impact factor,
characterized by transverse momenta in the nonperturbative
domain. The resulting expression have been found to agree
with existing results in the literature, which have been
established through a study of multiparticle production
amplitudes in the (quasi-)multi-Regge kinematics [80].
Establishing this formalism at NLO within the high energy
effective action is the first key result of this paper.
Another key result is the determination of the next-to-

leading order corrections to the gluon TMD PDFs in high
energy factorization, making use of the established formal-
ism for the renormalization of matrix elements of reggeized
gluon fields. While unsubtracted NLO result is subject to
both rapidity divergences due to high energy factorization
and rapidity divergences due to definition of the TMD PDF,
the subtracted and renormalized coefficient is completely
free of such divergencies. In particular, we stress that rapidity
divergences related to the definition of the TMD PDF can be
treated using the soft factor, established within a setup based
on collinear factorization. The same observation applies to
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the treatment of ultraviolet divergences and their renormal-
ization. While this behavior was to be expected and indeed
constitutes a necessary requirement, it provides a nontrivial
check on the correctness of our result. While we confirm
earlier results in the literature, which state that unpolarized
and linearly polarized gluon TMD agree with each other in
the dilute, i.e., BFKL limit, we find that both distributions
differ at NLO, which is directly related to the nontrivial
tensor structure of the real NLO corrections.
As a next step, we clarified further the relation between

BFKL and CS evolution and clarified that they describe
both evolution of the system in rapidity, i.e., BFKL of the
cross section and therefore, directly related to the hard final
state, while CS evolution rapidity evolution of the soft
system. Both evolution equation are therefore not inde-
pendent, and care is needed to avoid overcounting. Unlike
previous calculations based on the CGC framework, our
study further enabled us to recover the finite term propor-
tional to β0 in the anomalous dimension of the TMD PDFs.
As an important side result of our study, we find that the

real NLO contribution of the unpolarized gluon TMD
yield precisely the off shell TMD gluon-to-gluon splitting
function, determined in [34]. While [34] determined this
splitting function from a diagrammatic approach—essen-
tially requiring simultaneous fulfillment of collinear and
high energy limit while imposing gauge invariant pro-
duction vertices—the current study obtains the same result

from the QCD operator definition of gluon TMDs. It
therefore establishes an important link between both
frameworks, which will be of importance to continue
with these efforts. In particular, the current study provides
a possibility to finally determine the still missing virtual
corrections to these splitting kernels and to formulate
corresponding evolution equations.
Apart from these efforts, future studies should inves-

tigate phenomenological consequences of the derived
results, which now allow us to use the complete CSS
resummation formulation to resum double and single
logarithmic contributions with the methods of the renorm-
alization group, extending previous results in the literature,
such as [22,27,98,99]. Another direction of research should
address the inclusion of high density effects, along the lines
of [22], but including the complete treatment of factoriza-
tion scheme dependence established in this paper, and well
as contributions due to quarks.
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