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We employ a nonequilibrium quantum chromodynamics kinetic description to study the
kinetic and chemical equilibration of the quark-gluon plasma at weak coupling. Based on our
numerical framework, which explicitly includes all leading order processes involving light flavor degrees
of freedom, we investigate the thermalization process of homogeneous and isotropic plasmas far-from
equilibrium and determine the relevant timescales for kinetic and chemical equilibration. We further
simulate the longitudinally expanding preequilibrium plasma created in ultrarelativistic heavy-ion
collisions at zero and nonzero density of the conserved charges and study its microscopic and macroscopic
evolution toward equilibrium.
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I. INTRODUCTION

Nonequilibrium systems are ubiquitous in nature and of
relevance to essentially all disciplines of modern physics.
Despite the appearance of nonequilibrium phenomena in a
variety of different contexts, there is a rather limited
number of theoretical methods to study the real-time
evolution of quantum systems, most of which rely on a
set of approximations to study microscopic and macro-
scopic real-time properties of complex many-body systems.
Specifically, for fundamental theories of nature, the

question of understanding and describing nonequilibrium
processes in the strongly interacting quantum chromody-
namics (QCD) sector of the standard model has gained
considerable attention in light of high-energy heavy-ion
collision experiments at the Relativistic Heavy-Ion Collider
(RHIC) and the Large Hadron Collider (LHC). Somewhat
surprisingly, it turns out that the complex spacetime
dynamics of high-energy heavy-ion collisions on space-
and timescales ∼10 fm can be rather well described by
modern formulations of relativistic viscous hydrodynamics
[1], which has become the primary tool of heavy-ion
phenomenology [2,3]. Nevertheless, due to the limited
availability of theoretical approaches, it remains to some
extent an open question how the macroscopic hydrody-
namic behavior emerges from the underlying nonequili-
brium dynamics of QCD, albeit significant progress in this
direction has been achieved in recent years [4–15].

Beyond high-energy heavy-ion collisions similar ques-
tions arise in cosmology, where the nonequilibrium dynam-
ics of QCD and QCD-like theories can certainly be
expected to play a prominent role in producing a thermal
abundance of standard model particles between the end of
inflation and big bang nucleosynthesis. However, at the
relevant energy scales, the field content of the early
universe is not necessarily well constrained, and a
detailed understanding of the thermalization of the early
universe at least requires the knowledge of the coupling of
the standard model degrees of freedom to the inflation
sector, which makes this problem significantly more
difficult. Nevertheless, studies of the thermalization of
the isolated QCD sector still bear relevance to this question,
as some of the basic insights into the thermalization process
of QCD or QCD-like plasmas can be adapted to cosmo-
logical models, as recently discussed e.g., in Refs. [16–18].
Even though QCD exhibits essentially nonperturbative

phenomena such as confinement at low energies, strong
interaction matter becomes weakly coupled at asymptoti-
cally high energies owing to the renowned property of
asymptotic freedom. Specifically, for thermal QCD proper-
ties, it is established from first principles lattice QCD
simulations that above temperatures Tpc ∼ 155 MeV [19–
22] hadronic bound states dissolve into a quark-gluon
plasma (QGP) and the approximate chiral symmetry of
light-flavor QCD is restored. While (resummed) perturba-
tive approaches to QCD are able to describe the most
important static thermal properties of high-temperature
QCD down to approximately ∼2Tpc [23], the perturbative
description appears to be worse for dynamical properties,
where e.g., next-to-leading order calculations of transport
coefficients [24,25] yield large corrections to the leading
order results [26,27], indicating a poor convergence of the
perturbative expansion. Nevertheless, it is conceivable that
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at energy scales corresponding to ≳4Tpc, achieved during
the early stages of high-energy heavy-ion collisions [28],
perturbative descriptions can provide useful insights into
the early-time nonequilibrium dynamics of the system.
Besides the potential relevance to early-universe cosmol-
ogy and heavy-ion phenomenology, it is also of genuine
theoretical interest to understand the unique microscopic
dynamics of thermalization processes in QCD or QCD-like
plasmas.
During the past few year, significant progress in under-

standing thermalization and “hydrodynamization,” i.e.,
the onset of hydrodynamic behavior, in high-energy
heavy-ion collisions has been achieved, within the limiting
cases of weakly coupled QCD [4,6–9] and strongly
coupled holographic descriptions [11,29–31]. Despite clear
microscopic differences, a common finding is that the
evolution of macroscopic quantities, such as the energy
momentum tensor, follows a hydrodynamic behavior well
before the system reaches an approximate state of local
thermal equilibrium.
Specifically, for weakly coupled QCD plasmas, a

detailed microscopic understanding of the thermalization
process has also been established, as described e.g., in the
recent reviews [32,33]. Different weak-coupling thermal-
ization scenarios based on parametric estimates [34–37]
distinguish between two broadly defined classes of non-
equilibrium systems, commonly referred to as overoccu-
pied or underoccupied [32], which undergo qualitatively
different thermalization processes. While the thermaliza-
tion of overoccupied QCD plasmas proceeds via a self-
similar direct energy cascade [38–41], as is the case for
many far-from equilibrium systems [42–44], underoccu-
pied QCD plasmas undergo the so-called “bottom-up”
scenario [34] where thermalization proceeds via an inverse
energy cascade, which is in many ways unique to QCD and
QCD-like systems. Earlier parametric estimates have now
been supplemented with detailed simulations of the non-
equilibrium dynamics based on classical-statistical lattice
gauge theory [38–41,45] and effective kinetic theory [46–
51]. However, with the exception of Refs. [47,50], all of the
aforementioned studies have been performed for SUðNcÞ
Yang-Mills theory, i.e., only taking into account the
bosonic degrees of freedom and neglecting the effect of
dynamical fermions.
The central objective of this paper is to extend the study

of thermalization processes of weakly coupled non-
Abelian plasmas to include all relevant quark and gluon
degrees of freedom. Based on the leading order effective
kinetic theory of QCD [52], we perform numerical
simulations of the nonequilibrium dynamics of the
QGP, to characterize the mechanisms and timescales for
kinetic and chemical equilibration processes. By explic-
itly taking into account all light flavor degrees of freedom,
i.e., gluons (g) as well as u, ū, d, d̄, s, s̄ quarks/antiquarks,
we further investigate the nonequilibrium dynamics of

QCD plasmas at zero and nonzero values of the conserved
u, d, s charges.
We organize the discussion in this paper as follows.

We begin with a brief explanation of the general setup in
Sec. II, where we discuss the characterization of weakly
coupled nonequilibrium QCD plasmas in Sec. II A and
outline their effective kinetic description in Sec. II B.
Based on this framework, we study different thermal-
ization mechanisms of the QGP, starting with the chemical
equilibration of near-equilibrium systems in Sec. III.
Subsequently, in Sec. IV we investigate kinetic and
chemical equilibration processes in far-from equilibrium
systems considering the two stereotypical examples of
overoccupied systems in Sec. IVA and underoccupied
systems in Sec. IV B. In Sec. V we continue with the study
of longitudinally expanding QCD plasmas, which are
relevant to describe the early time dynamics of high-
energy heavy-ion collisions. Here, we mainly focus on
the microscopic aspects underlying the isotropization of
the pressure and evolution of the QGP chemistry at zero
and nonzero net-baryon density, and we refer to our
companion paper [53] for additional discussions
on the implications of our findings in the context of
relativistic heavy-ion collisions. We conclude in Sec. VI
with a brief summary of our most important findings
and a discussion of possible future extensions.
Appendixes A, B, and C contain additional details
regarding the details of our numerical implementation
of the QCD kinetic equations.

II. NONEQUILIBRIUM QCD

Generally the description of nonequilibrium processes
in QCD represents a challenging task, and at present can
only be achieved in limiting cases, such as the weak
coupling limit. We employ a leading order kinetic
description of QCD [52], where the nonequilibrium
evolution of the system is described in terms of the
phase-space density fðx⃗; p⃗; tÞ of on-shell quarks and
gluons. We will focus on homogenous systems, for which
the phase-space density fðx⃗; p⃗; tÞ ¼ fðp⃗; tÞ only depends
on momenta and time, and investigate the nonequilibrium
dynamics of the QGP, based on numerical solutions of the
QCD kinetic equations. Below we provide an overview of
the relevant ingredients, with additional details on the
numerical implementation provided in Appendixes A, B,
and C.

A. Nonequilibrium properties of the
quark-gluon plasma

Before we address the details of the QCD kinetic
description, we briefly introduce a few relevant quantities
that will be used to characterize static properties and
interactions in nonequilibrium systems. We first note that
both equilibrium, as well as nonequilibrium systems can
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be characterized in terms of their conserved
charges, which for the light flavor degrees of freedom
of QCD correspond to the conserved energy density
e, and the conserved net-charge densities Δnu, Δnd,
Δns of up, down, and strange quarks. Evidently in thermal
equilibrium, the maximal entropy principle uniquely
determines the phase-space distribution of gluons and
quarks,

feqg ðp; TÞ ¼ 1

ep=T − 1
;

feqqfðp; T; μfÞ ¼
1

eðp−μfÞ=T þ 1
;

feqq̄fðp; T; μfÞ ¼
1

eðpþμfÞ=T þ 1
; ð1Þ

with well-defined temperature Teq and chemical potential
μf;eq determined by the values of the densities of the
charges according to

e ¼
Z

d3p
ð2πÞ3 p

�
νgfgðp⃗Þ þ νq

X
f

ðfqfðp⃗Þ þ fq̄fðp⃗ÞÞ
�

¼ðeqÞ
�
νg

π2

30
þ νq

π2

120

X
f

�
7þ 30

π2
z2f þ

15

π4
z4f

��
T4
eq;

Δnf ¼ ðnq − nq̄Þf ¼
Z

d3p
ð2πÞ3 ½νqðfqfðp⃗Þ − fq̄fðp⃗ÞÞ�

¼ðeqÞ νq
6

�
zf þ

1

π2
z3f

�
T3
eq: ð2Þ

where we denote zf ¼ μf;eq
Teq

for the three light flavors

f ¼ u, d, s, which we will treat as massless throughout
this work. Even though a nonequilibrium system
can no longer be characterized uniquely in terms of its
conserved charges, it is nevertheless useful to associate
effective temperatures Tldm and chemical potentials μf;ldm
with the system, which can be determined via the so-
called Landau matching procedure of determining Tldm,
μf;ldm from the conserved charges according to the
relations in Eq. (2). Specifically for systems with con-
served energy and charge densities, Tldm and μf;ldm will
ultimately determine the equilibrium temperature Teq ¼
Tldm and chemical potential μf;eq ¼ μf;ldm once the system
has thermalized.
Besides the densities of the conserved quantities,

there is another set of important quantities relevant to
describe the interactions in nonequilibrium QCD
plasmas [52]. Specifically, this includes the in-
medium screening masses of quarks and gluons, which
in the case of the gluon can be expressed as in terms of the
Debye mass

m2
D ¼ 4g2

dA

Z
d3p
ð2πÞ3

1

2p

�
νgCAfgðp⃗Þ

þ νqCF

X
f

ðfqfðp⃗Þ þ fq̄fðp⃗ÞÞ
�

¼ðeqÞ g2

6dA

�
νgCA þ νqCF

X
f

�
1þ 3

π2
z2f

��
T2
eq ð3Þ

with nonequilibrium gluon and quark distributions fgðp⃗Þ,
fqðp⃗Þ, fq̄ðp⃗Þ. Similarly, the thermal quark masses m2

Qf
for

f ¼ u, d, s quarks also enter in the kinetic description and
can be expressed as

m2
Qf

¼ g2CF

Z
d3p
ð2πÞ3

1

2p
½2fgðp⃗Þ þ ðfqfðp⃗Þ þ fq̄fðp⃗ÞÞ�

¼ðeqÞ g
2

8
CF

�
1þ 1

π2
z2f

�
T2
eq: ð4Þ

While the screening masses m2
D and m2

Qf
determine

the elastic scattering matrix elements, the calculation of
the effective rates for inelastic processes also requires the
asymptotic masses of quarks and gluons, m2

∞;a which to
leading order in perturbation theory can be related to the
respective screening masses according to m2

∞;g ¼ m2
D=2

and m2
∞;Qf

¼ 2m2
Qf
. Since inelastic interactions are

induced by elastic collisions, their effective in-medium
rates are also sensitive to the density of elastic interaction
partners

m2
DT

� ¼ g2

dA

Z
d3p
ð2πÞ3

�
νgCAfgðp⃗Þð1þ fgðp⃗ÞÞ

þ νqCF

X
f

½fqfðp⃗Þð1 − fqfðp⃗ÞÞ

þ fq̄fðp⃗Þð1 − fq̄fðp⃗ÞÞ�
�
; ð5Þ

which receives the usual Bose enhancement fgðp⃗Þð1þ
fgðp⃗ÞÞ and Fermi blocking fq=q̄ðp⃗Þð1 − fq=q̄ðp⃗ÞÞ factors.
Since we will frequently characterize the nonequilibrium
evolution of the QGP in terms of the above dynamical
scales, we further note that the quantity g2T� characterizes
the rate of small angle scatterings in the plasma, with T�

defined such that in equilibrium T� ¼ðeqÞTeq corresponds to
the equilibrium temperature.

B. Effective kinetic theory of quark-gluon plasma

We adopt an effective kinetic description of the QGP,
which at leading order includes both “2 ↔ 2” elastic
processes as well as effective “1 ↔ 2” collinear inelastic
processes. Specifically for a spatially homogeneous sys-
tem, the time evolution of the phase-space density of quarks
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and gluons is then described by the Boltzmann equation for
QCD light particles “a ¼ g, u, ū, d, d̄, s, s̄,”

∂
∂t faðp⃗; tÞ ¼ −C2↔2

a ½f�ðp⃗; tÞ − C1↔2
a ½f�ðp⃗; tÞ; ð6Þ

where C2↔2
a ½f�ðp⃗; tÞ is the 2 ↔ 2 elastic collision term and

C1↔2
a ½f�ðp⃗; tÞ is the 1 ↔ 2 inelastic collision term.
With regards to the numerical implementation, we follow

previous works and solve the QCD Boltzmann equation
directly as an integro-differential equation using pseudo-
spectral methods [31,54]. Our numerical implementation of
the nonequilibrium dynamics relies on a discretized form of
the Boltzmann equation

nðip;jθ;kϕ; tÞ¼
Z

d3p
ð2πÞ3Wðip;jθ ;kϕÞðp⃗Þfðp⃗; tÞ

¼
Z

d3p
ð2πÞ3w

ðpÞ
i ðpÞwðθÞ

j ðθÞwðϕÞ
k ðϕÞfðp⃗; tÞ;

ð7Þ

based on a weight function algorithm [55], which is
described in detail in Appendix A. Based on Eq. (7), the
discretized form of the Boltzmann equation for species “a”
can be written as

∂
∂t naðip; jθ; kϕ; tÞ

¼ −C2↔2
a ½n�ðip; jθ; kϕ; tÞ − C1↔2

a ½n�ðip; jθ; kϕ; tÞ; ð8Þ

where in accordance with Eq. (7), C2↔2
a ½n�ðip; jθ; kϕ; tÞ

and C1↔2
a ½n�ðip; jθ; kϕ; tÞ correspond to discretized

moments of the collision integral as described in
Appendix B. Based on a suitable choice of the weight

functions wðpÞ
i ðpÞ, wðθÞ

j ðθÞ, and wðϕÞ
k ðϕÞ, the discretization

of the collision integrals is performed such that it ensures
an exact conservation of the particle number for elastic
collision, as well as an exact conservation of energy for
both elastic and inelastic collisions. The evolution algo-
rithm of the discretized form of the Boltzmann equation is
described in Appendix C.

1. Elastic collisions

Within our effective kinetic description, we include all
leading order elastic scattering processes between quarks
and gluons, where following previous works [4,7,46,50]
the relevant in-medium scattering matrix elements are
determined based on an effective isotropic screening
assumption.

a. Collision integral.—We follow the notation of Arnold,
Moore, and Yaffe (AMY) [52], where the elastic collision
integrals for particle a with momentum p⃗1 participating in

scattering process a; b → c; d with p1; p2 ↔ p3; p4 take
the form

C2↔2
a ½f�ðp⃗1Þ¼

1

2νa

1

2Ep1

×
X
cd

Z
dΠ2↔2jMab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þj2Fab
cdðp⃗1; p⃗2jp⃗3; p⃗4Þ

ð9Þ

with dΠ2↔2 denoting the measure

dΠ2↔2 ¼
d3p2

ð2πÞ3
1

2Ep2

d3p3

ð2πÞ3
1

2Ep3

d3p4

ð2πÞ3
1

2Ep4

× ð2πÞ4δð4Þðp1 þ p2 − p3 − p4Þ ð10Þ

and νG ¼ 2ðN2
c − 1Þ ¼ 16, νQ ¼ 2Nc ¼ 6 denoting the

number of gluon and quark degrees of freedom. By
jMab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þj2 we denote the square matrix
element for the process “a; b ↔ c; d” summed over spin
and color for all particles, while Fab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þ is the
statistical factor for the “a; b ↔ c; d” scattering process

Fab
cdðp⃗1; p⃗2jp⃗3; p⃗4Þ
¼ faðp⃗1Þfbðp⃗2Þð1� fcðp⃗3ÞÞð1� fdðp⃗4ÞÞ
− fcðp⃗3Þfdðp⃗4Þð1� faðp⃗1ÞÞð1� fbðp⃗2ÞÞ ð11Þ

where “�” provides a Bose enhancement (þ) for gluons
and Fermi blocking (−) for quarks, such that the first term
in Eq. (11) represents a loss term, whereas the second term
in Eq. (11) corresponds to a gain term associated with the
inverse process.

b. Scattering matrix elements.—Elastic scattering matrix
elements for the various 2 ↔ 2 processes can be calculated
in perturbative QCD (pQCD) [52], with the corresponding
leading order matrix elements listed in Table I, where g is
the gauge coupling, s ¼ ðp1 þ p2Þ2, t ¼ ðp1 − p3Þ3 and
u ¼ ðp1 − p4Þ2 denote the usual Mandelstam variables,

andCF¼N2
c−1
2Nc

¼4
3
, CA ¼ Nc ¼ 3, dF ¼ Nc ¼ 3, dA ¼ N2

c −
1 ¼ 8 denote the group theoretical factors. However, due to
the enhancement of soft t, u-channel gluon and quark
exchanges, the vacuum matrix elements in Table I give rise
to divergent scattering rates, which inside the medium are
regulated by incorporating screening effects via the inser-
tions of the hard-thermal loop (HTL) self-energies, as
discussed in detail in [52]. Even though it should in
principle be possible to include the full HTL self-energies
in the calculation of the in-medium elastic scattering matrix
elements (at least for homogenous and isotropic systems),
this would represent yet another significant complication as
the corresponding expressions would have to be reeval-
uated numerically at each time step and we did not pursue
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this further. Instead, we follow previous works [4,7,46,50],
and incorporate an effective isotropic screening, where
soft t- and u-channel exchanges are regulated by screening
masses m2

D and m2
Qf

for different species of internal
exchange particles, by replacing t and u in the singly
and doubly underlined expressions in Table I with

t ¼ t

�
1þ ξ2gm2

D

q⃗2t

�
; u ¼ u

�
1þ ξ2gm2

D

q⃗2u

�
;

t ¼ t

�
1þ

ξ2qm2
Qf

q⃗2t

�
; u ¼ u

�
1þ

ξ2qm2
Qf

q⃗2u

�
; ð12Þ

where q⃗t ¼ p⃗1 − p⃗3, q⃗u ¼ p⃗1 − p⃗4 is the spatial momen-

tum of the exchanged particle and the parameters ξg ¼ e
5
6

2
ffiffi
2

p

and ξq ¼ effiffi
2

p have been determined in [50] by matching to

leading order HTL results. Based on the above expressions
for the collision integrals and scattering matrix elements,
the corresponding integrals for the discretized moments
C2↔2
a ½n�ðip; jθ; kϕ; tÞ are then calculated at each time step

by performing a Monte Carlo sampling described in detail
in Appendix B 1.

2. Inelastic collisions

Within our effective kinetic description, we include all
leading order inelastic scattering processes between quarks
and gluons, where following previous works [4,7,46,50]
the relevant in-medium scattering matrix elements are
determined within the formalism of Arnold, Moore, and
Yaffe [52], by solving an integro-differential equation for
the effective collinear emission/absorption rates to take into
account coherence effects associated with the Landau-
Pomeranchuk-Migdal (LPM) effect [56–58].

a. Collision integral.—Generally, the inelastic collision
integral for particle “a” with momentum p⃗1 participating

in the splitting process a→b;c (p1↔p2;p3) and the inverse
joining process a; b → c (p1; p2 ↔ p3) takes the form

C1↔2
a ½f�ðp⃗1Þ

¼ 1

2νa

1

2Ep1

X
bc

Z
dΠa↔bc

1↔2 jMa
bcðp⃗1jp⃗2;p⃗3Þj2Fa

bcðp⃗1jp⃗2;p⃗3Þ

þ 1

νa

1

2Ep1

Z
dΠab↔c

1↔2 jMab
c ðp⃗1;p⃗2jp⃗3Þj2Fab

c ðp⃗1;p⃗2jp⃗3Þ

¼ 1

2νa

1

2Ep1

X
bc

Z
dΠa↔bc

1↔2 jMa
bcðp⃗1jp⃗2;p⃗3Þj2Fa

bcðp⃗1jp⃗2;p⃗3Þ

−
1

νa

1

2Ep1

Z
dΠab↔c

1↔2 jMc
abðp⃗3jp⃗1;p⃗2Þj2Fc

abðp⃗3jp⃗1;p⃗2Þ;

ð13Þ

where dΠa↔bc
1↔2 and dΠab↔c

1↔2 denote the measures

Z
dΠa↔bc

1↔2 ¼
Z

d3p2

ð2πÞ3
1

2Ep2

Z
d3p3

ð2πÞ3
1

2Ep3

× ð2πÞ4δð4Þðp1 − p2 − p3Þ:Z
dΠab↔c

1↔2 ¼
Z

d3p2

ð2πÞ3
1

2Ep2

Z
d3p3

ð2πÞ3
1

2Ep3

× ð2πÞ4δð4Þðp1 þ p2 − p3Þ: ð14Þ

jMa
bcðp⃗1jp⃗2; p⃗3Þj2 and jMab

c ðp⃗1; p⃗2jp⃗3Þj2 are the matrix
element squares for process “a ↔ b; c” and “a; b ↔ c.”
Fa
cdðp⃗1jp⃗3; p⃗4Þ andFab

c ðp⃗1; p⃗2jp⃗3Þ are the statistical factors

Fa
bcðp⃗1jp⃗2; p⃗3Þ¼ faðp⃗1Þð1�fbðp⃗2ÞÞð1�fcðp⃗3ÞÞ

−fbðp⃗2Þfcðp⃗3Þð1�faðp⃗1ÞÞ;
Fab
c ðp⃗1; p⃗2jp⃗3Þ¼ faðp⃗1Þfbðp⃗2Þð1�fcðp⃗3ÞÞ

−fcðp⃗3Þð1�faðp⃗1ÞÞð1�fbðp⃗2ÞÞ; ð15Þ

TABLE I. Summary of 2 ↔ 2 elastic processes and their leading order pQCD scattering amplitudes.

Processes a; b ↔ c; d Matrix element jMab
cdðp⃗1; p⃗2jp⃗3; p⃗4Þj2

gg ↔ gg 4g4dAC2
Að9þ ðs−uÞ2

t
2 þ ðs−tÞ2

u
2 þ ðt−uÞ2

s2 Þ
qg ↔ qg, q̄g ↔ q̄g −8g4dFC2

Fðus þ s
uÞ þ 8g4dFCFCAðs2þu2

t
2Þ

qq̄ ↔ gg 8g4dFC2
Fðut þ t

uÞ − 8g4dFCFCAðt2þu2

s2 Þ
qq ↔ qq, q̄ q̄ ↔ q̄ q̄ 8g4 d2FC

2
F

dA
ðt2þs2

u
2 þ u2þs2

t
2Þ þ 16g4dFCFðCF − CA

2
Þðs2t uÞ

qq̄ ↔ qq̄ 8g4 d2FC
2
F

dA
ðs2þu2

t
2 þ t2þu2

s2 Þ þ 16g4dFCFðCF − CA
2
Þðu2stÞ

q1q2 ↔ q1q2 8g4 d2FC
2
F

dA
ðs2þu2

t
2Þ

q1q̄2 ↔ q1q̄2
q̄1q̄2 ↔ q̄1q̄2
q1q̄1 ↔ q2q̄2 8g4 d2FC

2
F

dA
ðt2þu2

s2 Þ
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where again “�” provides a Bose enhancement (þ) for
gluon and Fermi blocking (−) for quarks.
Since for ultrarelativistic particles, the 1 ↔ 2 processes

require collinearity to be kinematically allowed, the colli-
sion integral in Eq. (13) can be recast into an effectively
one-dimensional collinear process

C1↔2
a ½f�ðpÞ ¼ 1

2νa

Z
1

0

dz

�X
bc

dΓa
bc

dz
ðp; zÞνaFa

bcðpjzp; z̄pÞ

−
1

z3
dΓc

ab

dz

�
p
z
; z

�
νcFc

ab

�
p
z
jp; z̄

z
p

�

−
1

z̄3
dΓc

ab

dz

�
p
z̄
; z̄

�
νcFc

ab

�
p
z̄

				p; zz̄ p
��

; ð16Þ

where z and z̄ ¼ 1 − z are the collinear splitting/joining

fractions, and the effective inelastic rate
dΓa

bc
dz in Eq. (16) is

obtainedwithin the framework ofAMY[52], by considering
the overall probability of a single radiative emission/absorp-
tion over the course of multiple successive elastic inter-
actions, reduced to an effective collinear rate by integrating
over the parametrically small transverse momentum accu-
mulated during the emission/absorption process.1

b. Effective inelastic rate.—Based on the formalism of
AMY [52], the effective inelastic rate can be expressed in
the following factorized form:

dΓa
bc

dz
ðp; zÞ ¼ αsPa

bcðzÞ
½2pzð1 − zÞ�2

Z
d2p⃗b

ð2πÞ2 Re½2p⃗b · g⃗ðp;zÞðp⃗bÞ�;

ð17Þ

where the matrix element for the collinear splitting is
expressed in terms of the leading-order QCD splitting
functions Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) [60–62],

Pg
ggðzÞ ¼ 2CAð1 − zð1 − zÞÞ2

zð1 − zÞ ;

Pg
qqðzÞ ¼ z2 þ ð1 − zÞ2

2
;

Pq
gqðzÞ ¼ CFð1þ ð1 − zÞ2Þ

z
;

Pq
qgðzÞ ¼ CFð1þ z2Þ

1 − z
: ð18Þ

Second, the factor
R d2p⃗b

ð2πÞ2 Re½2p⃗b · g⃗ðp;zÞðp⃗bÞ� encodes the
relevant aspects of the current-current correlation function
inside the medium and satisfies the following integral

equation for particles a, b, c carrying momentum fraction
1; z; 1 − z,

2p⃗b¼ iδEðp;zÞðp⃗bÞ× g⃗ðp;zÞðp⃗bÞþ
1

2

Z
d2q⃗
ð2πÞ2

dΓ̄el

d2q⃗

×fðCR
b þCR

c −CR
a Þ½g⃗ðp;zÞðp⃗bÞ− g⃗ðp;zÞðp⃗b− q⃗Þ�

þðCR
c þCR

a −CR
b Þ½g⃗ðz;PÞðp⃗bÞ− g⃗ðp;zÞðp⃗b− zq⃗Þ�

þðCR
a þCR

b −CR
c Þ½g⃗ðp;zÞðp⃗bÞ− g⃗ðp;zÞðp⃗b− ð1− zÞq⃗Þ�g;

ð19Þ

with

δEðp;zÞðp⃗bÞ ¼
p⃗2
b

2pzð1 − zÞ þ
m2

∞;b

2zp
þ m2

∞;c

2ð1 − zÞp −
m2

∞;a

2p
;

ð20Þ

where m2
∞;a; m2

∞;b; m
2
∞;c denote the asymptotic masses of

particles a, b, c, i.e., m2
∞;g ¼ m2

D
2

for gluons and m2
∞;qf ¼

2m2
Qf

for quarks; CR
a ; CR

b ; C
R
c denote the Casimir of the

representation of, i.e., CR
q ¼ CF for quarks and CR

g ¼ CA

for gluons; and dΓ̄el

d2q⃗ denotes the differential elastic scattering

rate stripped by its color factor, which is given by

dΓ̄el

d2q⃗
¼ g2T� m2

D

q⃗2ðq⃗2 þm2
DÞ

ð21Þ

at leading order [52].
Self-consistent solutions to Eq. (19) can be efficiently

constructed in impact parameter space, i.e., by performing a
Fourier transformation with respect to p⃗b (see e.g., [63]),
where the effects of multiple elastic scatterings during a
single emission/absorption can be resummed. Since the
effective inelastic rates depend on the kinematic variables
p, z as well as the time dependent medium parameters
T�ðtÞ; m2

DðtÞ; m2
Qf
ðtÞ, in practice we tabulate the rates as a

function of p, z for different values of T�; m2
D;m

2
Qf

around

their momentary values T�ðtÞ; m2
DðtÞ; m2

Qf
ðtÞ, such that for

small variations T�; m2
D;m

2
Qf

which occur in every time

step we interpolate between neighboring points, whereas
for larger variations of T�; m2

D;m
2
Qf

which occur over the

course of many time steps the entire database gets
updated. Similar to the elastic scattering processes, the
discretized versions C1↔2

a ½n�ðip; jθ; kϕ; tÞ of the inelastic
collision integrals in Eq. (16) are then calculated using a
Monte Carlo sampling, as described in more detail in
Appendix B 2.
Even though we will always employ Eq. (19) to calculate

the effective inelastic rates in our numerical studies, it
proves insightful to briefly consider the two limiting cases

1We note that several different notations for the rate
dΓa

bc
dz exist in

the literature, and we refer to the Appendix of Ref. [59] for a
comparison of different notations.
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where the formation time tform ∼ 1=δEðp;zÞðp⃗bÞ of the
splitting is small or large compared to the inverse of the
(small angle) elastic scattering rate 1=Γel ∼ 1=ðg2T�Þ and
closed analytic expressions for the effective inelastic rates
can be obtained. We first consider the limit of small
formation times, commonly referred to as the Bethe-
Heitler regime [64], where radiative emissions/adsorptions

are induced by a single elastic scattering and Eq. (19) can
be solved perturbatively (see e.g., [32]), yielding

dΓa
bc

dz

				
BH

ðp; zÞ ¼ 2αsPa
bcðzÞg2T�Ia;BH

bc ðzÞ; ð22Þ

where

Ia;BH
bc ðzÞ¼

Z
d2p⃗b

ð2πÞ2
Z

d2q⃗
ð2πÞ2

m2
D

q⃗2ðq⃗2þm2
DÞ

p⃗b

p⃗2
bþμabcðzÞ

×

�
ðCR

b þCR
c −CR

a Þ
�

p⃗b

p⃗2
bþμabcðzÞ

−
p⃗b− q⃗

ðp⃗b− q⃗Þ2þμabcðzÞ
�
þðCR

c þCR
a −CR

b Þ
�

p⃗b

p⃗2
bþμabcðzÞ

−
p⃗b−zq⃗

ðp⃗b− zq⃗Þ2þμabcðzÞ
�

þðCR
a þCR

b −CR
c Þ
�

p⃗b

p⃗2
bþμabcðzÞ

−
p⃗b− z̄ q⃗

ðp⃗b− z̄ q⃗Þ2þμabcðzÞ
��

; ð23Þ

with μabcðzÞ ¼ ð1 − zÞm2
∞;b þ zm2

∞;c − zð1 − zÞm2
∞;a, such

that the effective inelastic rate is essentially determined by
the small angle elastic scattering rate ð∼g2T�Þ.
Since the typical transverse momentum acquired in a

single scattering is p⃗2
b ∼m2

D, the validity of this approxi-

mation requires the formation time tform ∼ 2pzð1−zÞ
m2

D
to be

small compared to the mean free time between small angle
scatterings tmfp ∼ Γ−1

el ∼ 1=g2T�, giving rise to a character-

istic energy scale ωBH ¼ m2
D

g2T� such that for 2pzð1 − zÞ ≲
ωBH radiative emissions/adsorptions typically occur due to
a single elastic scattering. Conversely, for 2pzð1 − zÞ ≳
ωBH the radiative emission/adsorption occurs coherently
over the course of many elastic scatterings, leading to the
famous Landau-Pomeranchuk-Migdal suppression [56–58]
of the effective inelastic interaction rate. Specifically, in the
high-energy limit 2pzð1 − zÞ ≫ ωBH, the effective rate can
be approximated as [32,59,65]

dΓa
bc

dz

				
HO

ðp;zÞ

¼ αs
2π

Pa
bcðzÞ

ffiffiffiffī̂
q
p

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zCR

c þð1− zÞCR
b − zð1− zÞCR

a

zð1− zÞ

s
; ð24Þ

with ˆ̄q ¼ g2T� m2
D

2π , where in contrast to Eq. (22)
the effective rate is determined by the formation time

t−1form ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ˆ̄q
2pzð1−zÞ

q
of the splitting/merging rather than the

elastic scattering rate.

III. CHEMICAL EQUILIBRATION OF
NEAR-EQUILIBRIUM SYSTEMS

Before we address kinetic and chemical equilibration of
non-Abelian plasmaswhich are initially far-fromequilibrium,
wewill address the conceptually simpler case of studying the

chemical equilibrationof systems,where initially there is only
one species of particles present. While it is conceivable that
such a kind of states could be created in a cosmological
environment, whenever the QCD sector is selectively popu-
lated via the coupling to e.g., the standard model Higgs or
other beyond the standard model (BSM) particles, our
primary goal is to understand and characterize the dynamics
underlying chemical equilibration of the QGP, and we do not
claim relevance to any particular physics application.Wewill
for simplicity assume that, e.g., due to the interaction with
other non-QCD particles, the particle species that is present
initially is already in thermal equilibrium at a given temper-
ature T0 and chemical potential μ0, such that over the course
of the chemical equilibration process the energy of the
dominant species needs to be redistributed among all QCD
degrees of freedom, until eventually the final equilibriumstate
with a different temperature Teq and chemical potential μeq is
reached.
Since the leading order kinetic description of massless

QCD degrees of freedom is manifestly scale invariant, we
can express the relevant momentum and timescales in terms
of an arbitrary chosen unit. Naturally, for this kind of
investigation, we will express our results in terms of the
final equilibrium temperature Teq and chemical potential
μeq, such that the corresponding estimates of the physical
timescales can be obtained by evaluating the expressions
for the relevant temperatures and densities. Even though we
employ a leading order weak-coupling description, we will
investigate the behavior for different values of the QCD
coupling strength,2 typically denoted by the ’t Hooft

2While for pure Yang-Mills theory, one can show that the
results do not separately depend on g and Nc, but only on the
combination g2Nc [54]. In non-Abelian gauge theories with
fundamental fermions, the general dependence on the gauge
coupling g, the number of colors Nc and the number of flavors Nf
are more complicated and we only consider the case Nc ¼ 3 and
Nf ¼ 3 relevant to QCD at currently available collider energies.
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coupling λ ¼ g2Nc, and frequently express the dependence
on the coupling strength in terms of macroscopic quantities,
such as the shear-viscosity to entropy density ratio η=s ∼
1=g4 [26,27].

A. Chemical equilibration at zero density

We first consider the case of chemical equilibration at
zero (net-) density of the conserved u, d, s charges, where
the systems feature equivalent numbers of quarks and
antiquarks, resulting in zero chemical potentials for all
quark flavors. We distinguish two cases, where in the first
case the system initially features a thermal distribution of
gluons, without any quarks or antiquarks present at the
initial time, whereas in the second case the system is
initially described by the same distribution of quarks/
antiquarks for all flavors, without gluons present in the
system. Specifically, for the first case with thermal gluons
only, we have

fgðp; t ¼ 0Þ ¼ 1

ep=T0 − 1
;

fqfðp; t ¼ 0Þ ¼ 0;

fq̄fðp; t ¼ 0Þ ¼ 0; ð25Þ

where due to energy conservation, the initial parameter T0

can be related to thermal equilibrium temperature Teq by

νg
π2

30
T4
0 ¼ ð4νg þ 7νqNfÞ π2

120
T4
eq according to Eq. (2).

Similarly, for the second case where only quarks/antiquarks
are initially present in the system, we have

fgðp; t ¼ 0Þ ¼ 0;

fqfðp; t ¼ 0Þ ¼ 1

ep=T0 þ 1
;

fq̄fðp; t ¼ 0Þ ¼ 1

ep=T0 þ 1
; ð26Þ

and the initial parameter T0 has the following relation to
final equilibrium temperature Teq by νqNf

7π2

120
T4
0 ¼

ð4νg þ 7νqNfÞ π2

120
T4
eq according to Eq. (2).

Since the final equilibrium temperature Teq is a constant
scale, it is then natural to express other scales in terms of
Teq, or alternatively in terms of their corresponding
equilibrium values, such as m2

DðTeqÞ; m2
QðTeqÞ;….

Besides providing a reference scale for static equilibrium
quantities, the inverse of the equilibrium temperature ∼ 1

Teq

also provides a natural timescale for the evolution of the
system, and it is convenient to express the time evolution in
units of the near-equilibrium kinetic relaxation time

τR ¼ 4πη=s
Teq

; ð27Þ

where η=s is the constant shear viscosity to entropy
density ratios, with η=s ≃ 1900, 35, 1 for ’t Hooft couplings
λ ¼ g2Nc ¼ 4παsNc ¼ 0.1, 1, 10 [50].3

1. Spectra evolution

We first investigate the evolution of the phase-space
distribution of quarks and gluons over the course of the
chemical equilibration of the QGP. We present our results
in Figs. 1 and 2, where we depict the evolution of the
spectra of quarks and gluons for initially gluon (Fig. 1) and
quark (Fig. 2) dominated systems.
Starting with the evolution of the gluon dominated

system in Fig. 1, one observes that the gluon spectrum
only varies modestly over the course of the chemical
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FIG. 1. Evolution of gluon fgðt; pÞ and quark fqðt; pÞ dis-
tribution for gluon dominated initial conditions (λ ¼ 1) at differ-
ent times 0 ≤ t ≤ 2τR expressed in units of the equilibrium
relaxation time τR in Eq. (27). Spectra of antiquarks fq̄ðt; pÞ
are identical to the spectra of quarks fq̄ðpÞ at zero density and not
depicted in the figure.

3We have performed independent extractions of η=s within our
implementation of QCD kinetic theory, which—as discussed in
Sec. V—agree with the results previously obtained by Kurkela
and Mazeliauskas in [50].
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equilibration of the system, such that throughout the
evolution the spectrum can be rather well described by
an effectively thermal distribution fgðp⃗; tÞ ≃ 1

expðp=TgðtÞÞ−1,
with a time dependent temperature TgðtÞ, decreasing
monotonically from the initial value Tgðt ¼ 0Þ ¼ T0 to
the final equilibrium temperature Tgðt → ∞Þ ¼ Teq. Due to
soft gluon splittings g → qq̄ and elastic quark/gluon con-
version gg → qq̄, the quark/antiquark spectra quickly built
up at soft scales p≲ Teq, as can be seen from the spectra at
early times ðt ≪ τRÞ in the bottom panel of Fig. 1. The
quark/antiquark follows a power-law spectrum fq=q̄ðp⃗; tÞ ∝
1=p2 associated with the Bethe-Heitler spectrum. While the
production of quark/antiquark at low momentum continues
throughout the early stages of the evolution, the momentum
of previously produced quarks/antiquarks increases due to
elastic interactions, primarily qg ↔ qg and q̄g ↔ q̄g scat-
tering, such that by the time t ≃ 0.5τR the spectrum of
produced quarks/antiquarks extends all the way to the
temperature scale p ∼ Teq and eventually approaches

equilibrium on a timescale on the order one to two times
the kinetic relaxation time τR.
Similar behavior can be observed for the quark/antiquark

dominated scenario, which is depicted in Fig. 2. While
quarks/antiquarks feature approximately thermal spectra
fq=q̄ðp⃗; tÞ ≃ 1

expðp=TqðtÞÞþ1
, gluons are initially produced at

low momentum mainly due to the emission of soft gluon
radiation q → gq, which at early times (t ≪ τR) gives rise
to a power-law spectrum fgðp⃗; tÞ ∝ 1=p3 associated with
the Bethe-Heitler spectrum. Subsequently, elastic and
inelastic processes lead to a production of gluons with
momenta p ∼ Teq until the system approaches equilibrium
on a timescale on the order of the kinetic relaxation time τR.

2. Collision rates

While the evolution of the spectra in Figs. 1 and 2
provides an overview over the chemical equilibration
process, we will now investigate how the individual
QCD processes contribute to the evolution of the gluon
and quark/antiquark spectra in Figs. 1 and 2. We provide a
compact summary of our findings in Figs. 3 and 4, where
we present the result for the collision rates

rg ¼
νg

λ2T3
eq
p2Cg½f�; rq=q̄ ¼

Nfνq
λ2T3

eq
p2Cq=q̄½f� ð28Þ

for initially gluon dominated (Fig. 3) and initially quark
dominated scenarios (Fig. 4). Different columns in Figs. 3
and 4 show the collision rates of individual processes at the
initial time t ¼ 0, at an intermediate time t ¼ 0.1τR and
near equilibrium at time t ¼ 0.5τR. We note that due to the
zero net-density of u, d, s quarks, the quark and antiquark
collision rates in Figs. 3 and 4 are identical and briefly
remind the reader that according to our convention in
Eq. (6), positive contributions to the collision rate represent
a number loss and negative collision rates exhibit a number
gain for the specific particle.

a. Gluon dominated scenario.—Starting with the collision
rates for the gluon dominated scenario in Fig. 3, one
observes that at initial time t ¼ 0, the gluon splitting
process g → qq̄ shown by the dark blue curve is dominat-
ing the production of quarks/antiquarks. By comparing the
collision rates for quarks and gluons, one finds that gluons
with momenta p ≃ 1–2Teq copiously produce soft quarks/
antiquarks at low momenta p ≪ Teq. Since the individual
splittings are typically asymmetric with zð1 − zÞ ≪ 1, the
energy of thermal gluons is redistributed to soft quarks/
antiquarks, and the splittings fall into the Bethe-Heitler
regime as typically pzð1 − zÞ ≲ ωBH ∼ Teq. In addition to
the inelastic splitting, elastic conversion processes gg → qq̄
shown as a lime curve evenly redistribute the energy of
gluons with momenta p ≃ Teq into quarks/antiquarks at an
intermediate scale p ≃ Teq. Due to the absence of quarks
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FIG. 2. Evolution of gluon fgðt; pÞ and quark fqðt; pÞ dis-
tribution for quark/antiquark dominated initial conditions
(λ ¼ 1) at different times 0 ≤ t ≤ 2τR expressed in units of the
equilibrium relaxation time τR in Eq. (27). Spectra of antiquarks
fq̄ðt; pÞ are identical to the spectra of quarks fq̄ðpÞ at zero
density and not depicted in the figure.
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and antiquarks at initial time, the contributions of all other
processes involving quarks/antiquarks in the initial state
vanish identically at initial time, as do the collision rates for
processes involving only gluons due to the detailed balance
in the gluon sector.
Subsequently, as quarks/antiquarks are produced at low

momenta, additional scattering processes involving quarks/
antiquarks in the initial state become increasingly impor-
tant, as can be seen from the second column of Fig. 3,
where we present the collision rates at t ¼ 0.1τR. While the
rate of the initial quark/antiquark production processes
g → qq̄, gg → qq̄ decrease, as the corresponding inverse
processes qq̄ → g, qq̄ → gg start to become important,
elastic scattering of quarks and gluons qg → qg (orange
curve) and gluon absorption gq → q (light blue curve)
become of comparable importance. Specifically, in each of
these processes, the previously produced quarks/antiquarks
at low momentum p ≪ Teq gain energy via elastic scatter-
ing or absorption of gluons, resulting in an increase of the
spectrum for p≳ 1.5Teq. By inspecting the collision rates
for gluons in the top panel of Fig. 3, one observes that the
depletion of soft gluons ðp ≪ TeqÞ due to gluon absorption

by quarks gq → q is primarily compensated by the emis-
sion of soft gluon radiation due to the g → gg process
(black curve). Beside the aforementioned process, the
elastic scattering of gluons gg → gg (red curve) also plays
an equally important role in redistributing energy among
gluons, clearly indicating that over the course of the
chemical equilibration process the gluon distribution also
falls out of kinetic equilibrium.
Eventually, the chemical equilibration process proceeds in

essentially the same way, until close to equilibrium the
collision rates of all processes decrease as the corresponding
inverse processes start to become of equal importance, as seen
in the right column of Fig. 3 where we present the collision
rates at t ¼ 0.5τR. By the time t ≃ 2τR, which is no longer
shown in Fig. 3, all the collision rates decrease by at least 1
order of magnitude as the system gradually approaches the
detailed, balanced chemical and kinetic equilibrium state.

b. Quark/antiquark dominated scenario.—Next we will
analyze the collision rates in the quark/antiquark dominated
scenario shown in Fig. 4 and compare the underlying
dynamics to the gluon dominated scenario in Fig. 3.

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

r(
g)

g-gg
g-qq-
q-gq

gg-gg
qg-qg
qq--gg
qq-qq+qq--qq-
q1q2-q1q2+q1q-1-q2q-2

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

r(
q)

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 1  10

r(
q- )

p/Teq(t=0)
 1  10

p/Teq(t=0.1τR)
 1  10

p/Teq(t=0.5τR)

FIG. 3. Collision rates r for gluons (upper), quarks (middle), and antiquarks (lower) defined in Eq. (28) for gluon dominated initial
conditions at initial time t ¼ 0 (left), at intermediate time t ¼ 0.1τR (middle), and during the approach toward equilibrium t ¼ 0.5τR
(right).
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Starting from the collision rates at the initial time shown
again in the left panel, one finds that in addition to quark/
antiquark annihilation via elastic qq̄ → gg (lime) and
inelastic qq̄ → g (dark blue) processes, soft gluons are
copiously produced by q → gq Bremsstrahlungs processes
initiated by hard quarks/antiquarks with momenta
p≳ 3Teq. Notably the q → gq process also leads to the
redistribution of the energy of quarks/antiquarks from
momenta p≳ 3Teq, to lower momenta p≲ 3Teq; however,
the negative collision rate for the q → gq process partially
cancels against the positive contribution from qq̄ → g
processes, such that there is effectively no increase/
decrease of the quark/antiquark distributions at very low
momenta p ≪ Teq. Similar to the processes involving only
gluons at t ¼ 0 in Fig. 3, processes involving only quarks
and antiquarks (green, pink) in Fig. 4 vanish identically at
t ¼ 0 due to cancellations of gain and loss terms in the
statistical factor, while other processes gg → gg, qg → qg,
g → gg are exactly zero due to the absence of gluons in the
initial state. By comparing the collision integrals for
quarks and gluons in Figs. 3 and 4, one also observes that
inelastic processes are initially much more dominant for the

quark/antiquark dominated scenario in Fig. 3 as compared
to the gluon dominated scenario in Fig. 4.
Similar to the evolution in the gluon dominated scenario,

the energy of the soft gluons produced in the previous stage
increases through successive elastic and inelastic inter-
actions, as can be seen from the middle column of Fig. 4,
where we present the collision rates at the intermediate time
t ¼ 0.1τR for the quark dominated case. By inspecting the
collision rates for gluon in more detail, one finds that quark-
gluon scattering qg → qg (orange) as well as gg → g
(black) are the dominant processes that increase the number
of hard p≳ Teq gluons. Elastic scattering between gluons
gg → gg (red) plays a less prominent role for the evolution
of the gluons, as do elastic (green) qq̄ → gg and inelastic
(dark-blue) qq̄ → g conversions. With regards to the
collision rates for quarks and antiquarks, one finds that
elastic qq̄ → gg (lime) and inelastic qq̄ → g (dark blue)
annihilation processes as well as q → gq Bremsstrahlung
processes continue to deplete the number of hard quarks/
antiquarks. However at this stage of the evolution, qg → qg
scattering processes (orange) also lead to an efficient
energy transfer from quarks to gluons, depleting the
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number of hard quarks p≳ 2Teq in the system. While the
nonvanishing quark/antiquark scattering rates (green, pink)
reveal slight deviations of quark/antiquark spectra from
kinetic equilibrium, these processes clearly have a sub-
leading effect.
Subsequently, the evolution continues along the same

lines as illustrated in the right column for t ¼ 0.5τR, with
the collision rates of all processes decreasing as the system
approaches kinetic and chemical equilibrium.

3. Scale evolution

Beyond the characterization of the microscopic proc-
esses in terms of spectra and collision rates, it is instructive
to investigate the evolution of the characteristic scales m2

D,
m2

Q, and T� defined in Sec. II A, which further provides a
compact way to compare the timescales of the chemical
equilibration process at different coupling strengths.
Corresponding results are presented in Fig. 5, where we
compare the evolution of the various scales for quark and
gluon dominated initial conditions at two different coupling
strengths λ ¼ 1, 10. By taking into account the correspond-
ing change in the equilibrium relaxation rate τR
[cf. Eq. (27)], one finds that the time evolution of the
various scales are quite similar, and rather insensitive to the
coupling strength, such that by the time t ¼ 1 ∼ 2τR all

relevant dynamical scales are within a few percent of their
equilibrium values.
During the earlier stages, t≲ τR, some interesting

patterns emerge in the evolution of m2
D, m

2
Q, and T

�, which
can be readily understood from considering the evolution of
the spectra in Figs. 1 and 2, along with different effects that
quarks and gluons have on each of these quantities. Since
the occupancy of soft quarks is always limited to below
unity, soft gluons contribute more significantly to in-
medium screening, such that in the gluon dominated case
the screening masses m2

D and m2
Q in Fig. 5 decrease

monotonically, whereas in the quark dominated case one
observes a monotonic increase of the same quantities. The
effective temperature T� which characterizes the strength of
elastic interactions inside the medium, drops throughout the
chemical equilibration process for the gluon dominated
case, whereas for quark dominated initial conditions, the
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evolution of T� shows a nonmonotonic behavior featuring a
rapid initial drop followed by a gradual increase of T�
toward its equilibrium value. By careful inspection of the
spectra in Fig. 2, one finds that this rather subtle effect
should be attributed to the effects of Bose enhancement and
Fermi suppression in the determination of T�.
Besides the evolution of the characteristic scales m2

D,
m2

Q, and T�, it is also important to understand how the
overall energy is shared and transferred between quark and
gluon degrees of freedom over the course of the evolution.
A compact overview of the energy transfer during the
chemical equilibration process is provided in Fig. 6, where
we show the evolution of the energy density of gluons as
well as quarks and antiquarks for the two scenarios.
Starting from a rapid energy transfer at early times, the
flattening of the individual energy densities toward later
times eventually indicates the approach toward chemical
equilibrium. Even though the evaluation of an exact
chemical equilibration time depends on the quantitative
criterion for how close the energy densities (or other scales)
are compared with what their equilibrium values are, the
figures still speak for themselves indicating the occurrence
of chemical equilibration roughly at the same timescale as
kinetic equilibration, with

teqchem ≃ teqkin ≃ 1 − 2 ×
4πη=s
Teq

; ð29Þ

subject to mild variations for the two different coupling
strengths.

B. Chemical equilibration of finite density systems

So far we have investigated the chemical equilibration of
charge neutral QCD plasmas, and we will now proceed to
study the chemical equilibration process of QCD plasmas at
finite density of the conserved u, d, s charges, featuring an
excess of quarks to antiquarks (or vice versa). Since a finite
net charge density of the system can only be realized in the
presence of quarks/antiquarks, we will focus on quark
dominated initial conditions and modify the corresponding
initial conditions as

fgðp; t ¼ 0Þ ¼ 0;

fqfðp; t ¼ 0Þ ¼ 1

eðp−μfÞ=T0 þ 1
;

fq̄fðp; t ¼ 0Þ ¼ 1

eðpþμfÞ=T0 þ 1
; ð30Þ

where for simplicity, we consider equal densities of u, d,
and s quarks. Similar to Eqs. (25) and (26), the initial
parameters T0 and μ0 can be related to corresponding
equilibrium temperature Teq, and equilibrium chemical
potential μeq via the Landau matching procedure in
Eq. (2). Due to energy and charge conservation, Teq and

μeq, then determine the final equilibrium state of the system,
and we will characterize the different amounts of net charge
in the system in terms of the ratio μeq=Teq, with μeq=Teq ¼
0 corresponding to the charge neutral plasma considered in
the previous section.
When comparing the evolution at different coupling

strengths, we follow the same procedure as discussed above
and express the evolution time in units of the kinetic
relaxation time

τRðT; μÞ ¼
4π

Teff

�
ηðT; μÞTeff

eþ p

�
!μ¼0 4πη=s

Teq

η

s
; ð31Þ

which in accordance with the last equality reduces
to the same expression for a charge neutral system
(μ ¼ 0) in Eq. (27). The effective temperature is evaluated
as Teff ¼ ð 30e

π2νeff
Þ14 with effective degree of freedom

νeff ¼ νG þ 7
4
νQNf, such that Teff !μ¼0

Teq. Since we did
not explicitly determine the dependence of the shear-
viscosity ηðT; μÞ on the chemical potential μ for all

coupling strengths λ, we will approximate ηðT;μÞT
eþp ≈

ηðT;μÞT
eþp j

μ¼0
by the corresponding value of ηðT;μÞT

eþp j
μ¼0

¼ η
s

at vanishing density of the conserved charges, which are
quoted below Eq. (27).

1. Spectra evolution

We follow the same logic as in the charge neutral case
and first investigate the evolution of the spectra of quarks,
antiquarks, and gluons, which is presented in Fig. 7 for the
chemical equilibration of a system with quark chemical
potentials μeq=Teq ¼ 2.5. Similar to the quark dominated
scenario at zero density, we find that the spectra for quarks
and antiquarks are always close to a thermal distribution
with the expected moderate deviation at intermediate times.
Specifically, the antiquark spectra in the low momentum
sector p≲ 0.3Teq are depleted at intermediate times
t≲ 0.5τR, due to elastic qq̄ → gg and inelastic qq̄ → g
conversions. Besides quark/antiquark annihilations, the
radiative emission of gluons due to q → qg and q̄ → q̄g
processes leads to a rapid population of the soft gluon
sector seen in the top panel of Fig. 7. By comparing the
results in Figs. 2 and 7, one finds that the soft gluon sector
builds up even more rapidly at finite density as compared to
zero density, such that already by the time t ¼ 10−3τR, the
gluon distribution at low momentum p≲ 0.1Teq features a
quasithermal spectrum fðp ≪ TeqÞ ≃ Teq=p, whereas the
high momentum tail is yet to be populated. Eventually on a
timescale of t ≃ 1.5τR, a sufficiently large number of hard
gluons has been produced and the spectra of all particle
species relax toward equilibrium, such that significant
deviations from the thermal distributions are no longer
visible for t ¼ 1.5τR in Fig. 7.
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2. Collision rates

Beyond the evolution of the spectra, it again proves
insightful to investigate the collision rates in Fig. 8 in order
to identify the microscopic processes that drive chemical
and kinetic equilibration of gluons, quarks, and antiquarks
at different stages.
Similar to the results for the charge neutral case in Fig. 4,

the initial gluon production in Fig. 8 is still dominated by
soft radiation q → gqþ q̄ → q̄g (light blue), with even
more substantial contributions due to the larger abundan-
cies of quarks. Conversely, the gluon production from
elastic qq̄ → gg (lime) and inelastic qq̄ → g (dark blue)
quark/antiquark annihilation processes is markedly sup-
pressed due to the shortage of antiquarks. Similar
differences between the evolution at zero and finite density
can also be observed in the collision rates for quarks and
antiquarks, where in the case of the quark the emission of
gluon radiation leads to a depletion of the hard sector
p≳ 3Teq, along with an increase of the population of
softer quarks with typical momenta p ∼ Teq. While elastic

qq̄ → gg (lime) and inelastic qq̄ → g (dark blue) processes
initially contribute at a much smaller rate, such that
the inelastic q → qg process dominates the evolution of
the quarks, a manifestly different picture emerges for the
collision rates of antiquarks. Due to the large abundancies
of quarks, elastic qq̄ → gg (lime) and inelastic qq̄ → g
(dark blue) quark/antiquark annihilations initially occur at
essentially the same rate as gluon radiation off antiquarks
q̄ → q̄g (light blue), resulting in a net-depletion of the
antiquark sector across the entire range of momenta.
Besides the aforementioned processes, the collision rates
of all other processes vanish identically at the initial time
for all particle species due to cancellations of the statistical
factors.
Subsequently, for t ¼ 0.1τR depicted in the central

column of Fig. 8 a variety of different processes become
relevant as soft gluons have been copiously produced
during the previous evolution. Besides the processes
involving quark-gluon interactions q → gq (light blue),
qg → qg (orange), inelastic absorptions of soft gluons
gg → g (black) also have an important effect for the
thermalization of the gluon sector, whereas elastic scatter-
ing of gluons gg → gg (red) as well as elastic qq̄ → gg
(lime) and inelastic qq̄ → g (dark blue) quark/antiquark
annihilation processes are clearly subleading. By compar-
ing the results at zero and finite density in Figs. 4 and 8, one
further notices an increment of the gg → g collision rates,
indicating a more rapid gluon production from quarks at
finite density, consistent with the observations of the
spectra in Figs. 2 and 7. Due to the fact that at finite
density there are more quarks present in the system, the
collision rates for quarks are generally larger compared to
the zero density case. Nevertheless, the underlying dynam-
ics remains essentially the same as compared to the zero
density case, with gluon radiation q → gq (light blue) and
quark-gluon scattering qg → gq providing the dominant
mechanisms to transfer energy from hard quarks to softer
gluons. Due to the larger abundance of quarks at finite
density, elastic scattering processes qq → qq involving
quarks of the same (green) and different flavors (pink),
also play a more prominent role in restoring kinetic
equilibrium in the quark sector, while they were more or
less negligible at zero density. Surprisingly small changes
appear in the collision rates for antiquarks between the
initial time t ¼ 0 and t ¼ 0.1τR, where at later times
the inelastic q̄ → q̄g process becomes suppressed due to
the fact the inverse process of absorbing a soft gluon q̄g →
q̄ becomes increasingly likely. Similarly, elastic scattering
processes q̄g → q̄ (orange) between antiquarks and gluons
also contribute to the energy transfer from the antiquark to
the gluon sector.
Eventually for t ¼ 0.5τR, the energy transfer from quarks

to gluons due to elastic qg → qg (orange) and inelastic q →
gg (light blue) becomes smaller and smaller, and so do the
collision rates for inelastic gluon absorptions g → gg
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(black) and elastic scatterings between quarks/antiquarks
(pink and green), which are primarily responsible for
restoring kinetic equilibrium in the gluon and quark sectors.
Beyond the timescales shown in Fig. 8, the evolution of the
system continues in essentially the same way, with con-
tinuously collision rates decreasing until eventually gluons,
quarks and antiquarks all approach their respective equi-
librium distribution.

3. Scale evolution

Now that we have established the microscopic processes
underlying the chemical equilibration of finite density, we
again turn to the evolution of the dynamical scalesm2

D,m
2
Q,

and T�, which serve as a reference to determine the
progress of kinetic and chemical equilibration. We present
our results in Fig. 9, where we compare the evolution of the
dynamical scales in systems with a different amount of net-
charge density, as characterized by the ratio μeq=Teq ¼ 0,
0.14, 1.34, 2.5 of the equilibrium chemical potential over
the equilibrium temperature. By comparing the evolution of
the various quantities in Fig. 9, one observes that for larger
chemical potentials m2

D, m
2
Q as well as T� are generally

closer to their final equilibrium values over the course of
the entire evolution. While the smaller deviations of m2

D,
m2

Q, and T� can partly be attributed to the fact that in the
finite density system the initial values for these quantities
are already closer to the final equilibrium value, it also
appears that the ultimate approach toward equilibrium
occurs on a slightly shorter timescale.
Similar phenomena can also be observed in Fig. 10,

where we present the evolution of the energy and number
density of gluons, quarks, and antiquarks over the course of
the chemical equilibration process at different densities
μeq=Teq ¼ 0, 0.14, 1.34, 2.5. While initially there is always
a rapid production and energy transfer to the gluon sector,
the flattening of the curve at later times shows the
relaxation toward chemical equilibrium, which occurs
roughly on the same timescale as the kinetic equilibration
of the dynamical scalesm2

D,m
2
Q, and T

�. By comparing the
results for different μeq=Teq, one again observes that the
chemical equilibration happens slightly earlier for larger
chemical potential, consistent with the observations from
spectra in Figs. 2 and 7, from collision rates in Figs. 4
and 8, and from the scale evolution in Fig. 9. Nevertheless,
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we believe that at least for the range of μeq=Teq considered
in Fig. 9, our estimate of the kinetic and chemical
equilibration timescales in Eq. (29), remains valid also at
finite density.

IV. EQUILIBRATION OF FAR-FROM
EQUILIBRIUM SYSTEMS

We will now analyze the equilibration process of QCD
systems which are initially far-from equilibrium. By
focusing on systems which are spatially homogeneous
and isotropic in momentum space, we can distinguish two
broad classes of far-from equilibrium initial states which
following [32,36] can be conveniently characterized by
considering the initial average energy per particle hpi0 in
relation to the equilibrium temperature Teq of the system.
Specifically, for far-from equilibrium initial states, we can
consider a situation where the average energy per particle
is initially much smaller than the equilibrium temperature,
i.e., hpi0 ≪ Teq, such that the energy is initially carried by
a large number f0 ≫ 1 of low momentum gluons. Such
overoccupied initial states typically appear as a conse-
quence of plasma instabilities [36,41,66], and they also
bear some resemblance with the saturated “glasma” initial
state created in high-energy collisions of heavy nuclei
[40,67–72], although the detailed properties of this state
are quite different as the system is highly anisotropic and
rapidly expanding in the longitudinal direction as

discussed in more detail in Sec. V. While for
hpi0 ∼ Teq, the system is in some sense close to equilib-
rium and one would naturally expect kinetic and chemical
equilibration to occur on the timescales of the equilibrium
relaxation time ∼τR, there is a second important class of
far-from equilibrium initial states corresponding to under-
occupied states. In underoccupied systems the average
energy per particle is initially much larger than the
equilibrium temperature hpi0 ≫ Teq, such that the energy
is initially carried by a small number f0 ≪ 1 of highly
energetic particles, as is for instance the case for an
ensemble of high-energy jets. While earlier works [40,46]
have established the equilibration patterns of such systems
for pure glue QCD, we provide an extension of these
studies to full QCD with three light flavors, as previously
done for overoccupied systems in [50].
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A. Equilibration of overoccupied systems

We first consider overoccupied systems characterized
by a large occupation number f0 ≫ 1 of low-energy
hpi0 ≪ Teq gluons,4 and we may estimate the energy
density of the overoccupied system as e0 ∼ f0hpi40.
Since the total energy density is conserved, we have
eeq ¼ e0, such that with eeq ∼ T4

eq the final equilibrium

temperature Teq ∼ f
1
4

0hpi0 ≫ hpi0 is much larger than the
average initial momentum hpi0. Due to this separation of
scales, energy needs to be re-distributed from low momen-
tum to high momentum degrees of freedom, which as will
be discussed shortly is achieved via a direct energy cascade
from the infrared to ultraviolet in momentum space.

1. Theoretical aspects

Due to the large population of low momentum gluons,
interaction rates for elastic and inelastic processes are
initially strongly enhanced, such that the large angle elastic

scattering rate Γel ∼ g2T� m2
D

hpi2 is initially much larger than in

equilibrium Γ0
el ∼ g4f20hpi ≫ Γeq

el ∼ g4Teq. Even though the
timescale for the actual equilibration process is eventually
controlled by the equilibrium rate ∼1=Γeq

el , the system will
therefore encounter a rapid memory loss of the details of
the initial conditions on a timescale ∼1=Γ0

el, and sub-
sequently spend a significant amount of time in a transient
nonequilibrium state, where the energy transfer from the
infrared toward the ultraviolet is accomplished.
Since the dynamics remains gluon dominated with fg ≫

1 ≥ fq;q̄ all the way until the system eventually approaches
equilibrium, one should expect that the evolution of the
overoccupied quark-gluon plasma follows that of pure-glue
QCD, where it has been established [38,39,41,45,54] that
for intermediate times 1=Γ0

el ≪ t ≪ 1=Γeq
el , the evolution of

the gluon spectrum follows a self-similar scaling behavior
of the form

fgðp; tÞ ¼ ðt=t0Þαf0fS
�
ðt=t0Þβ

p
hpi0

�
; ð32Þ

where t0 ≃ 1=Γ0
el, hpi0 are the characteristic time and

momentum scales, f0 is the initial occupancy, and fSðxÞ
is a universal scaling function up to amplitude normaliza-
tion, and we adopt the normalization conditions
fSðx ¼ 1Þ ¼ f0Sðx ¼ 1Þ ¼ 1. We note that the emergence
of self-similar behavior as in Eq. (32) is by no means unique
to QCD, and in fact it constitutes a rather generic pattern in
the equilibration of far-from equilibrium quantum systems,
with similar observations reported in the context of relativ-
istic and nonrelativistic scalar field theories [42,73].

Specifically, the scaling exponents α¼−4=7, β ¼ −1=7
follow directly from a dimensional analysis of the under-
lying kinetic equations [36–38,41], and describe the energy
transport from the infrared toward the ultraviolet due to a
direct energy cascade [74].
Based on Eq. (32), we can further estimate the evolution

of some physical quantities knowing that gluons are
dominant fg ≫ 1 ≥ fq;q̄ in the self-similar scaling regime.
In particular, the average momentum hpi increases as a
function of time according to

hpiðtÞ ≃
R d3p

ð2πÞ3 pfgðp; tÞR d3p
ð2πÞ3 fgðp; tÞ

∼ hpi0
�
t
t0

�1
7

; ð33Þ

while the typical occupancies of hard gluons decrease as

fðt; hpiðtÞÞ ≃ f0

�
t
t0

�
α

∼ f0

�
t
t0

�
−4
7

: ð34Þ

Similarly, one finds that the screening mass

m2
DðtÞ ≃ g2

Z
d3p
ð2πÞ3

1

2p
fgðp; tÞ ∼ g2f0hpi20

�
t
t0

�
−2
7 ð35Þ

decreases, such that the system dynamically establishes a
separation between the soft (∼mD) and hard (∼hpi) scales
over the course of the self-similar evolution [36,45]. Since
the effective temperature also decreases according to
[fgðp; tÞ ≫ 1]

T�ðtÞ ≃ νgCA

dAm2
D

Z
d3p
ð2πÞ3 f

2
gðp; tÞ ∼ g2f0hpi0

�
t
t0

�
−3
7

; ð36Þ

the large-angle elastic scattering rate ΓelðtÞ ∼ g2T� m2
D

hpi2 ∼
g4f20hpi0ðt=t0Þ−1 decreases over the course of the self-
similar evolution and eventually becomes on the order of
the equilibrium rate ΓelðtÞ ∼ g4Teq at the same time t=t0 ∼
f7=40 when the occupancies of hard gluons fðt; hpiðtÞÞ
become of order unity, and the average momentum hpiðtÞ
becomes on the order of the equilibrium temperature
Teq ∼ hpi0f1=40 , indicating that the energy transfer toward
the ultraviolet has been accomplished and gluons are no
longer dominant for t≳ t0f

7=4
0 ∼ g−4f−1=40 hpi−10 ∼ g−4T−1

eq .
Beyond this timescale, the system can be considered as

close to equilibrium, and should be expected to relax
toward equilibrium on a timescale on the order of the
kinetic relaxation time τR ∼ g−4T−1

eq , which is parametri-
cally of the same order as the time it takes to accomplish the
energy transfer toward the ultraviolet.

4Due to the fact that the phase-space occupancies of quark/
antiquarks are limited to fq=q̄ ≤ 1 due to Fermi statistics, such
overoccupied systems are inevitably gluon dominated.

EQUILIBRATION OF WEAKLY COUPLED QCD PLASMAS PHYS. REV. D 104, 054011 (2021)

054011-17



2. Numerical results

We now turn to the results of effective kinetic theory
simulation of the equilibration process in overoccupied
QCD plasmas, extending earlier results in [50]. We
initialize the phase-space distributions as

fgðp; t ¼ 0Þ ¼ e0
π2

4Q4
e
−p2

Q2 ;

fqðp; t ¼ 0Þ ¼ 0;

fq̄ðp; t ¼ 0Þ ¼ 0; ð37Þ

such that for Q4 ≪ e0 the system features a large occu-
pancy f0 ≃ e0

π2

4Q4 of low-momentum gluons, with average

momentum hpi0 ¼ 2Qffiffi
π

p . Since the system in Eq. (37) is

charge neutral, all species of quarks/antiquarks will be
produced democratically over the course of the evolution.
We first consider an overoccupied system with a rela-

tively large scale separation hpi0=Teq ¼ 0.2 at weak
coupling λ ¼ 0.1, and investigate the evolution of the
spectra of quarks and gluons depicted in the top
panel of Fig. 11. Starting from a large phase-space
occupancy of soft gluons, the initial spectra undergo a
quick memory loss at very early times and then gradually
evolve into harder spectra through a direct energy cascade,
pushing the low momentum gluons toward higher
momenta. In order to illustrate the self-similarity of this
process, we follow previous works [32,38] and show
rescaled versions of the gluon spectra in the bottom panel
of Fig. 11. By rescaling the phase-space distribution as
fSðxÞ≃ ðt=t0Þ−αfgðhpi0ðt=t0Þ−βx;tÞ, and plotting it against
the rescaled momentum variable x ¼ ðt=t0Þβp=hpi0, one
indeed finds that in the relevant scaling window, which
corresponds approximately to times 10−6 ≤ tλ2Teq ≤ 101

for this particular set of parameters, the spectra at different
times overlap with each other to rather good accuracy,
clearly indicating the self-similarity of the underlying
process. Beside the gluons, all species of quarks/antiquarks
are produced democratically over the course of the evolu-
tion from elastic gg → qq̄ conversions and inelastic split-
ting g → qq̄ processes. Generally, one finds that the quark/
antiquark spectra follow the evolution of the gluon spectra,
albeit due to their Fermi statistics the number of quarks/
antiquarks in the system remains negligibly small com-
pared to the overall abundance of gluons during the self-
similar stage of the equilibration process.
Eventually for times t≳ 102=λ2Teq the self-similar

cascade in Fig. 11 stops as the occupancies of hard gluons
fall below unity and the system subsequently approaches
thermal equilibrium on timescales ∼103=λ2Teq for the
parameters chosen in Fig. 11. It is interesting to point
out that due to the negligible abundance of quarks and
antiquarks in the system, the evolution of the gluon spectra
slightly overshoots the equilibrium temperature at times

t≳ 102=λ2Teq, and subsequently relaxes back toward
equilibrium as the correct equilibrium abundance of quarks
and antiquarks is produced along the lines of our previous
discussion of gluon dominated systems in Sec. III.
Next we will discuss the evolution of the average

momentum hpiðtÞ, the screening mass square m2
DðtÞ,

and the effective temperature T�ðtÞ summarized in
Fig. 12, where the upper panel shows the results for
hpi0=Teq ¼ 0.2, λ ¼ 0.1, i.e., the same parameters as in
Fig. 11, while the middle and bottom panels show the
results for a smaller scale separation hpi0=Teq ¼ 1, at
larger values of coupling λ ¼ 1, 10. By comparing the
evolution of the various scales with the theoretical pre-
dicted power-law scaling (dashed line) in the turbulent
regime [cf. Eqs. (33), (35), (36)], one finds that the scaling
behavior hpi ∝ t1=7, T� ∝ t−3=7, and m2

D ∝ t−2=7 associated
with the turbulent energy transport toward the ultraviolet is
indeed realized during intermediate times. Due to the large
separation of scales for hpi0=Teq ¼ 0.2, λ ¼ 0.1, the

10-2

10-1

100

101

102

103

104

105

10-1 100 101

λ=0.1

D
is

tr
ib

ut
io

n:
 f g

/q
(p

)

p/Teq

tλ2Teq=0
tλ2Teq=10-9

tλ2Teq=10-8

tλ2Teq=10-7

tλ2Teq=10-6

tλ2Teq=10-5

tλ2Teq=10-4

tλ2Teq=10-3

tλ2Teq=10-2

tλ2Teq=10-1

tλ2Teq=100

tλ2Teq=101

tλ2Teq=102

tλ2Teq=103

Gluon
Quark

10-2

10-1

100

101

102

100 101

λ=0.1

S
ca

lin
g 

fu
nc

tio
n:

 f S
=

(t
/t 0

)-α
f g

(p
,t)

/f 0

(t/t0)βp/<p>0

tλ2Teq=10-6

tλ2Teq=10-5

tλ2Teq=10-4

tλ2Teq=10-3

tλ2Teq=10-2

tλ2Teq=10-1

tλ2Teq=100

tλ2Teq=101
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scaling window in the top panel of Fig. 12 extends over a
significant period of time 10−6 ≤ tλ2Teq ≤ 101, consistent
with the scaling of the gluon distribution observed in
Fig. 11. Even though the scaling window shrinks

significantly for the smaller scale separations hpi0=Teq ¼
1 shown in the middle and bottom panels of Fig. 12, it is
remarkable that the same turbulent mechanism appears to
be responsible for the energy transfer even for such
moderately strongly coupled systems.
Even though a significant amount of time is spent to

accomplish the turbulent energy transfer, the logarithmic
representation in Fig. 12 spoils the fact that it is the ultimate
approach toward equilibrium which requires the largest
amount of time. Beyond the investigation of the dynamical
evolution of various scales, it is therefore useful to consider
the evolution of the ratios of different scales compared to
their equilibrium values, as indicators of the equilibration
progress. We present our results in Fig. 13, where the upper
panel shows the evolution of the energy densities of gluons
and quarks, approaching their equilibrium limits around
t ≃ 1.5–2τR, similar to near-equilibrium systems shown in
Fig. 6. The next two panels of Fig. 13 show the screening
mass square evolution of m2

DðtÞ and m2
QðtÞ, which rapidly

decrease at early times, and eventually approach their
equilibrium values at t ≃ 1–1.5τR. Similar observations
also hold for the effective temperature T�ðtÞ shown in
the fourth panel of Fig. 13. Due to the delayed chemical
equilibration of the system, the average momentum hpiðtÞ
shown in the bottom panel has a nonmonotonic behavior,
where the rapid increase at early times due to the direct
energy cascade overshoots the equilibrium value, before
hpiðtÞ’s gradual decrease at later times as energy is
redistributed between quarks and gluons, eventually
approaching the equilibrium limit around t ≃ 1.5–2τR.
Since in Fig. 13 the ultimate approach toward equilib-

rium is mostly insensitive to the initial scale separations
hpi0=Teq and coupling strength λ in Fig. 12 when
expressed in units of the kinetic relaxation time τR, we
can estimate the equilibration time of an overoccupied
system as

teq ≃ 1 − 2τR; ð38Þ

where, as usual, the exact numerical value depends on the
detailed criteria chosen to define the equilibration time.

B. Equilibration of underoccupied systems

Next we consider the opposite limit of an underoccupied
system, where the energy density is initially carried by a
small number f0 ≪ 1 of high energetic particles, with
average momentum hpi0 ≫ Teq. While there can be a
large separation of scales, one finds that in contrast to
overoccupied systems the final equilibrium temperate

Teq ∼ f
1
4

0hpi0 ≪ hpi0 is much smaller than the average
initial momentum for underoccupied systems. Since the
scale hierarchy is reversed, the thermalization process for
an underoccupied system requires an energy transport from
the ultraviolet to the infrared, which as we will discuss
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FIG. 12. Evolution of the average momentum per particle hpi
(blue/circle), effective temperatureT� (black/inverted triangle), and
screeningmassm2

D (red/diamond) in an overoccupiedQCDplasma
at weak coupling hpi0=Teq ¼ 0.2, λ ¼ 0.1 (top), intermediate
coupling hpi0=Teq ¼ 1, λ ¼ 1 (middle), and at strong coupling
hpi0=Teq ¼ 1, λ ¼ 10 (bottom). Dashed lines show the character-
istic power-law behavior in the self-similar turbulent regime.
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shortly will be accomplished via an inverse turbulent
cascade of successive radiative emissions. While the quali-
tative features of this bottom-up thermalization mechanism
have been established a long time ago [34], recent works in
the context of thermalization and jet quenching studies [75–
77] have provided a more quantitative description of the
different stages and clarified the relation to turbulence.
Based on our effective kinetic description of QCD, we will
extend previous findings in pure glue QCD [46] to full QCD
at zero and nonzero densities.

1. Theoretical aspects

Before we turn to our numerical results, we briefly recall
the basic features of the bottom-up thermalization in QCD
plasmas following the discussion in [32]. Starting from a
dilute population of f0 ≪ 1 highly energetic particles with
hpi0 ≫ Teq, elastic interactions between primary hard
particles induce the emission of soft gluon radiation, which
accumulates at low momenta. Due to the fact that elastic
and inelastic interactions are more efficient at low momen-
tum, the initially overpopulated soft sector eventually
thermalizes on a timescale t ∼ g−4f−1=30 hpi−10 , before the
highly energetic primary particles have had sufficient time
to decay. Even though at this time most of the energy is still
carried by the hard primaries, the soft thermal bath begins
to dominate screening and scattering, such that in the final
stages of bottom-up equilibration, the few remaining hard
particles lose their energy to the soft thermal bath, much as
a jet losing energy to a thermal medium [32,34,46,77].
Based on recent studies [75–77], the energy loss of hard

primaries is accomplished by a turbulent inverse energy
cascade, where the hard primary quarks/gluons, undergo
successive splittings until the momenta of the radiated
quanta becomes on the order of the temperature TsoftðtÞ of
the soft thermal bath. Specifically, at intermediate scales
TsoftðtÞ ≪ p ≪ hpi0, the distributions of quarks/antiquarks
and gluons can be expected to feature the Kolmogorov-
Zakharov spectra of weak-wave turbulence [76,77]

fKZðp⃗; tÞ ∝
�hpi0

p

�7
2

; ð39Þ

which describe a scale-invariant energy flux from the
ultraviolet ∼hpi0 to the infrared ∼TsoftðtÞ, ensuring that
the energy of the hard particles is deposited in the thermal
medium without an accumulation of energy at intermediate
scales.
Due to the energy loss of the hard primary particles, the

temperature of the soft thermal bath increases until even-
tually the hard primaries have lost most of their energy to
the thermal bath and the system approaches equilibrium.
We note that due to the parametric suppression of inelastic

rates for high-energy particles5 Γeq
inelðhpi0Þ ∼ g4Teq

ffiffiffiffiffiffiffi
Teq

hpi0

q
,

the energy loss of the hard primaries is slow compared to
the equilibration of the soft sector, such that for sufficiently

large scale separations hpi0
Teq

≫ 1 the thermalization of the

system occurs on timescales t ∼ g−4T−1
eq

ffiffiffiffiffiffiffi
hpi0
Teq

q
, which can

be significantly larger than the kinetic relaxation
time τR ∼ g−4T−1

eq .
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FIG. 13. Evolution of the energy densities of quarks and gluons
(top), the characteristic scales (bottom)m2

DðtÞ (red),m2
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T�ðtÞ (green), and hpi (pink) in an overoccupied QCD plasma at
two different coupling strengths λ ¼ 1 (lighter color/square) and
λ ¼ 10 (darker color/circle). Scales are normalized to their
respective equilibrium values, while the evolution time t is
normalized to the equilibrium relaxation time τR in Eq. (27) in
order to take into account the leading coupling dependence.

5Since quasidemocratic z ∼ 1=2 splittings dominate the turbu-
lent energy transfer [32,76], this can be seen by evaluating
Eq. (24) for z ∼ 1=2.
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2. Bottom-up thermalization of quark-gluon plasma

When considering the dynamics of underoccupied QCD
plasmas, we need to specify the initial conditions for the
momentum distribution, and we can further distinguish
different chemical compositions of the plasma. We will
limit our investigation to the following three cases, corre-
sponding to (1) an initially underoccupied plasma of
gluons, (2) an initially underoccupied plasma of quarks/
antiquarks, and (3) an initially underoccupied plasma of
quarks.
We will employ the following initial conditions for an

underoccupied plasma of gluons:

fgðp; t ¼ 0Þ ¼
�
2νqNf

νg

�
f0e

−ðp−p0Þ2
Q2 ;

fqðp; t ¼ 0Þ ¼ 0;

fq̄ðp; t ¼ 0Þ ¼ 0; ð40Þ

while for an underoccupied plasma of quarks/antiquarks

fgðp; t ¼ 0Þ ¼ 0;

fqðp; t ¼ 0Þ ¼ f0e
−ðp−p0Þ2

Q2 ;

fq̄ðp; t ¼ 0Þ ¼ f0e
−ðp−p0Þ2

Q2 ; ð41Þ

and for an underoccupied plasma of quarks, the system is
initialized as

fgðp; t ¼ 0Þ ¼ 0;

fqðp; t ¼ 0Þ ¼ 2f0e
−ðp−p0Þ2

Q2 ;

fq̄ðp; t ¼ 0Þ ¼ 0; ð42Þ

where in all of the above relations the normalization

f0 ¼
2π2eeqðTeq; μeqÞ

9Q½2ðp2
0
þQ2ÞQ

e
p2
0
=Q2 þ p0

ffiffiffi
π

p ð2p2
0 þ 3Q2Þð1þ erfðp0

QÞÞ�
ð43Þ

is chosen, such that all the systems have exactly the same
energy density eeqðTeq; μeqÞ. By varying the parameter
p0 ≃ hpi0, we can then adjust the separation of scales
between the initial energy of the hard particles and the final
equilibrium temperature. Since for Q ≪ p0, we do not
expect a significant sensitivity of our results to the
parameter Q that controls the initial width of the momen-
tum distribution, we will employQ ¼ Teff in the following.
We note that the underoccupied QCD plasmas of gluons

in Eq. (40) and quarks/antiquarks in Eq. (41) are charge
neutral such that quarks and antiquarks of all light flavors
“u, d, s” will be produced with equal abundancies. Notably

this is not the case for the initial conditions in Eq. (42),
where the imbalance of quarks and antiquarks describes a
system with a finite net-charge density, and we will for
simplicity assume a degeneracy among “u, d, s” flavors.

a. Underoccupied gluons.—We start by analyzing the
evolution of underoccupied gluon systems in order to
provide a direct and intuitive understanding of the bot-
tom-up thermalization scenario. The evolution of the
momentum spectra of quarks and gluons during the
thermalization process is presented in Figs. 14, 15, 16,
and 17 for weakly coupled plasmas λ ¼ 1 with different
average initial momenta hpi0=Teq ¼ 3 in Fig. 14,
hpi0=Teq ¼ 10 in Fig. 15, hpi0=Teq ¼ 30 in Fig. 16, and
hpi0=Teq ¼ 100 in Fig. 17. Different panels show the
evolution of the gluon distributions fgðpÞ and quark/
antiquark distributions fqðpÞ, while different curves in
each panel correspond to different evolution times tλTeq

with vertical arrows marking the characteristic Bethe-
Heitler frequency at each stage of the evolution.
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FIG. 14. Evolution of the phase-space distributions of gluons
(top) and quarks/antiquarks (bottom) in an underoccupied gluon
system with hpi0=Teq ¼ 3 at coupling λ ¼ 1. Dotted lines show
the thermal equilibrium distributions. Vertical arrows mark the
Bethe-Heitler frequencies ωBH.
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By investigating the results for the larger scale separa-
tions hpi0=Teq ¼ 10 in Fig. 15, hpi0=Teq ¼ 30 in Fig. 16,
and hpi0=Teq ¼ 100 in Fig. 17, one clearly observes that
soft radiation processes g → gg and g → qq̄ rapidly build
up a large population of soft quarks and gluons with typical
momenta p≲ ωBH. Even though at early times, such as
e.g., tλ2Teq ≪ 1 in Fig. 17, the soft sector is overoccupied
and thus highly gluon dominated, one finds that for
sufficiently large scale separations, the overoccupation is
depleted and the soft sector thermalizes before the hard
primaries lose most of their energy to the soft thermal bath.
Since at intermediate scales ωBH ≪ p ≪ hpi0 the emission
is in the LPM regime, the spectra of gluons and quarks
initially feature a characteristic power-law behavior
fg ∼ p−7=2, fq ∼ p−5=2 for momenta ωBH ≪ p ≪ hpi0,
associated with the single emission spectra of the g →
gg and g → qq̄ processes. Subsequently, the energy of the
hard primaries is transferred to the soft thermal bath, via an
inverse turbulent cascade due to multiple successive

g → gg, g → qq̄, and q → qg branchings, giving rise to
the characteristic Kolmogorov-Zakharov spectrum fg=q ∼
p−7=2 in both the gluon and quark sectors. Since the energy
injected into this cascade by the hard primaries at the scale
∼hpi0 is transmitted all the way to the soft bath ∼ωBH the
temperature of the soft bath increases monotonically, as
seen e.g., in Fig. 17, until eventually the hard primaries
have lost nearly all of their energy and the system thermal-
izes. During the final stages of the approach toward
equilibrium, a small number of hard primaries continues
to lose energy giving rise to high momentum tails of the
quark and gluon spectra seen for tλ2Teq ¼ 103 in Figs. 15,
16, 17. Notably, the underoccupied system initially main-
tains a memory of the momentum distribution of hard
primaries until the final stages of the thermalization
process, which then closely resembles the mechanism of
jet energy loss in a thermal medium [77].
Even for the smallest separation of scales hpi0=Teq ¼ 3

shown in Fig. 14, some of the characteristic patterns of
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FIG. 16. Evolution of the phase-space distributions of gluons
(top) and quarks/antiquarks (bottom) in an underoccupied gluon
system with hpi0=Teq ¼ 30 at coupling λ ¼ 1. Dashed lines show
the characteristic power-law dependence of the single emission
LPM spectra (orange) and the Kolmogorov Zakharov spectra
(green). Dotted lines show the thermal equilibrium distributions.
Vertical arrows mark the Bethe-Heitler frequencies ωBH.
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FIG. 15. Evolution of the phase-space distributions of gluons
(top) and quarks/antiquarks (bottom) in an underoccupied gluon
system with hpi0=Teq ¼ 10 at coupling λ ¼ 1. Dashed lines show
the characteristic power-law dependence of the single emission
LPM spectra (orange) and the Kolmogorov Zakharov spectra
(green). Dotted lines show the thermal equilibrium distributions.
Vertical arrows mark the Bethe-Heitler frequencies ωBH.
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bottom-up thermalization are still clearly visible, although
in this case radiative emissions occur in the Bethe-Heitler
regime. Nevertheless, hard gluons with momenta p ∼ hpi0
still radiate soft gluons via g → gg, leading to the formation
of a soft thermal spectrum of gluons at low momenta. Even
though quarks/antiquarks are also produced via g → qq̄
branching, one observes that the evolution in the quark
sector is slightly slower than in the gluon sector, indicating
once again that the energy transfer from gluons to quarks
associated with the chemical equilibration of the system
can cause a delay in the equilibration of the system.
Now in order to compare the evolution of the different

systems, we again consider the evolution of the character-
istic dynamical scales m2

D;m
2
Q; T

�, and hpi. Since in
accordance with the discussion in Sec. III we anticipate
that, for sufficiently large scale separations, the equilibra-
tion time of the system will be delayed by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihpi0=Teq

p
, relative to the equilibrium relaxation time

τR, we will consider normalizing the evolution time to
τR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihpi0=Teq

p
when comparing the results for different

average initial momenta hpi0=Teq in Figs. 18 and 19. Since
the different scales m2

D;m
2
Q; T

�, and hpi exhibit different
sensitivities to the hard and soft components of the plasma,
their time evolutions are actually quite different. While for
scale separations hpi0 ≳ 10Teq, screening masses m2

D and
m2

Q are very quickly dominated by the soft thermal bath and
subsequently experience a strong rise as the soft bath heats
up, the scale T� characterizing the strength of elastic
interactions receives significant contributions from the hard
primaries at early times, before it is eventually dominated
by the soft bath. Since the hard primaries carry most of
the energy of the systemuntil they eventually equilibrate, the
average energy per particle hpi is always dominated by the
hard sector, and decreases monotonically over the course of
the evolution. Besides the equilibration of the various scales,
it is also interesting to consider the chemical equilibration of
the system in Fig. 19, where we present the energy fractions
and average momenta separately for quarks and gluons.
While for large scale separations chemical equilibration in
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q
in order to take into account the

leading dependence on the initial energy hpi0.
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FIG. 17. Evolution of the phase-space distributions of gluons
(top) and quarks/antiquarks (bottom) in an underoccupied gluon
system with hpi0=Teq ¼ 100 at coupling λ ¼ 1. Dashed lines
show the characteristic power-law dependence of the single
emission LPM spectra (orange) and the Kolmogorov Zakharov
spectra (green). Dotted lines show the thermal equilibrium
distributions. Vertical arrows mark the Bethe-Heitler frequencies
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Fig. 19 occurs on the same timescales as kinetic equilibra-
tion in Fig. 18, one finds that for smaller scale separations the
energy transfer from gluons to quarks requires additional
time, delaying the equilibration of the system.
Generally, for scale separations hpi0=Teq ≳ 10, one finds

that the scaling of the evolution time with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihpi0=Teq

p
leads

to comparable results for the equilibration time

teq ≃ 0.5 − 1.0τR

ffiffiffiffiffiffiffiffiffi
hpi0
Teq

s
; ð44Þ

albeit the curves for different hpi0=Teq in Figs. 18 and 19
do not overlap completely, indicating that subleading
corrections to this estimate still seem to be important for
the scale separations considered in our study.

b. Underoccupied quarks and antiquarks.—Similar to the
underoccupied gluon systems, we will now consider charge
neutral systems of underoccupied quarks/antiquarks. We
proceed along the same lines and first investigate the
evolution of the spectra for hpi0=Teq ¼ 3, 10, 30 which
are depicted in Figs. 20, 21, and 22. Generally, one finds
that the thermalization processes follow essentially the
same patterns as for the underoccupied gluon systems,
with the inelastic production of soft quarks and gluons
q → gq leading to the rapid buildup of the soft sector,
before the hard primary quarks and antiquarks lose their
energy via multiple successive branchings giving rise to
the familiar Kolmogorov-Zakharov spectra fg=q ∼ p−7=2 at
intermediate momentum scales ωBH ≪ p ≪ hpi0. Due to
the radiative breakup of the hard primaries, the soft sector
heats up, until the system eventually equilibrates when all
of the hard primaries have had sufficient time to decay.
While at early times the hard components of the spectra
(p ∼ hpi0) closely reflect the initial conditions, it is
interesting to observe that during the final approach
toward equilibrium, e.g., for tλ2Teq ¼ 103 in Figs. 16
and 22, the momentum distribution and chemistry of the
remaining hard particles are significantly modified, and
there is no longer a significant difference between under-
occupied gluon systems and underoccupied quark/anti-
quark systems.
By comparing the results for the evolution of the

dynamical scales m2
D;m

2
Q; T

�, and hpi in Fig. 23 for the
underoccupied quark/antiquark systems to the correspond-
ing results for underoccupied gluons, one again observes
essentially the same qualitative patterns. However, it is
interesting to see that for underoccupied systems
of quarks and antiquarks, the approach toward equilibrium
appears to occur on a somewhat larger timescale
≳0.5τR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihpi0=Teq

p
as compared to underoccupied gluon

systems, where by 0.5τR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihpi0=Teq

p
all the scales

m2
D;m

2
Q; T

�, and hpi are already close to their
respective equilibrium values. Based on our discussion
in Sec. II B 2 b, we believe that this discrepancy at
intermediate times can be attributed to the different color
factors in the inelastic interaction rates for the hard
primary quarks/antiquarks and gluons, as discussed in
detail in the context of jet quenching in [77]. However, if
one is concerned with the ultimate approach toward
equilibrium, one should take into account the fact that
at late times asymmetric g → qq̄ and q → qg splittings can
significantly modify the quark/gluon composition of hard
fragments [76], such that underoccupied systems of
quarks and gluons can ultimately be expected to equili-
brate at the same rate.
Next, in order to investigate the chemical equilibration

of the underoccupied quark/antiquark systems, we
present our simulation results for the evolution of the
energy fraction of quarks and gluons, and their average
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FIG. 19. Evolution of the energy densities (top) and average
momenta (bottom) of quarks (dashed line/open symbol) and
gluons (solid line/closed symbol) in an underoccupied gluon
system at coupling strengths λ ¼ 1 for different scale separation
hpi0=Teq ¼ 3, 10, 30, 100 (circle, triangle, inverted triangle,
diamond). Energy densities and average momenta are normalized
to their respective equilibrium values, while the evolution time t

is normalized to τR
ffiffiffiffiffi
p0

Teq

q
in order to take into account the leading

dependence on the initial energy hpi0.

XIAOJIAN DU and SÖREN SCHLICHTING PHYS. REV. D 104, 054011 (2021)

054011-24



momenta in Fig. 24. Interestingly, one finds that in
contrast to the behavior for underoccupied gluon systems
in Fig. 19, the energy fractions of quarks and gluons in
the system exhibit a nonmonotonic behavior. Even
though initially all the energy is carried by the hard
primary quarks and antiquarks, it turns out that for larger
scale separations hpi0=Teq ¼ 10, 30, gluons dominate the
energy budget before the chemical equilibration of the
system. By inspecting also the behaviors of the average
momenta in the lower panel of Fig. 24, one finds
that these gluons are typically soft, with the average
momenta hpi close to the equilibrium value. We believe
that this behavior can be attributed to the fact that gluon
radiation dominates the energy transfer from the hard to
the soft sector, such that the soft thermal bath absorbs the
energy predominantly in the form of gluons, before the
energy is eventually redistributed among quarks and
gluons.

c. Underoccupied quarks.—So far we have investigated
the equilibration of charge neutral systems of

underoccupied gluons, quarks/antiquarks. Next we con-
sider the equilibration of underoccupied systems of
quarks, which in accordance with Eq. (42) carry nonzero
densities of the conserved u, d, s charges. Since in the
presence of finite charge densities, the evolution of quarks
and antiquarks will be different, we first study the
evolution of spectra of gluons, quarks, and antiquarks,
which are depicted in Fig. 25 for hpi0=Teff ¼ 3 and in
Fig. 26 for hpi0=Teff ¼ 10. Evidently, the evolution
of the quark and gluon spectra in Figs. 25 and 26 are
very similar to the quark/antiquark spectra in Figs. 20 and
21 obtained in the zero density cases. However, significant
differences can be observed for the evolution of the
antiquarks, as for the underoccupied systems of quarks
there are no antiquarks present in the initial conditions.
Instead, the population of antiquarks observed at later
times is produced via gluon splittings g → qq̄ and
elastic gg → qq̄ conversions. Hence, the evolution of
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FIG. 20. Evolution of the phase-space distributions of gluons
(top) and quarks/antiquarks (bottom) in an underoccupied quark/
antiquark system with hpi0=Teq ¼ 3 at coupling λ ¼ 1. Dotted
lines show the thermal equilibrium distributions. Vertical arrows
mark the Bethe-Heitler frequencies ωBH.

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

10-1 100 101

ωBH ωBH

κ=7/2

κ=7/2

D
is

tr
ib

ut
io

n:
 f g

(p
)

p/Teq

tλ2Teq=0
tλ2Teq=100

tλ2Teq=101

tλ2Teq=102

tλ2Teq=103

thermal

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

10-1 100 101

ωBH ωBH

κ=5/2

κ=7/2

D
is

tr
ib

ut
io

n:
 f q

(p
)

p/Teq

tλ2Teq=0
tλ2Teq=100

tλ2Teq=101

tλ2Teq=102

tλ2Teq=103

thermal

FIG. 21. Evolution of the phase-space distributions of gluons
(top) and quarks/antiquarks (bottom) in an underoccupied quark/
antiquark system with hpi0=Teq ¼ 10 at coupling λ ¼ 1. Dashed
lines show the characteristic power-law dependence of the single
emission LPM spectra (κ ¼ 5=2; 7=2) and the Kolmogorov
Zakharov spectra (κ ¼ 7=2). Dotted lines show the thermal
equilibrium distributions. Vertical arrows mark the Bethe-Heitler
frequencies ωBH.
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the antiquark spectra closely follow the gluon spectra, as
can be seen by comparing the upper and lower panels in
Figs. 25 and 26.
By comparing the evolution of the characteristic scales

for the zero and finite density systems in Figs. 23 and 27,
one finds that the presence of the additional conserved
charges does not significantly affect the kinetic equilibra-
tion of the system, in accordance with the finding that the
evolution of quark and gluon spectra is essentially
unchanged. However, when considering the evolution of
the individual contributions of gluons, quarks, and anti-
quarks to the energy densities in Figs. 24 and 28, one
clearly observes that the chemical equilibration associated
with the production of antiquarks requires a significant
amount of time, with energy densities of gluons and
antiquarks only approaching their equilibrium ratios for
times ≳τR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihpi0=Teq

p
.

V. EQUILIBRATION OF LONGITUDINALLY
EXPANDING PLASMAS

So far we have discussed kinetic and chemical equili-
bration for homogeneous and isotropic systems. Now in
order to address the early time dynamics of high-energy
heavy-ion collisions, we will focus on systems which are
transversely homogeneous and longitudinally invariant
under a Lorentz boost, but can feature an anisotropy
between longitudinal and transverse momenta. Denoting

xμ ¼ τðcoshðηÞ; u1T; u2T; sinhðηÞÞ ¼ ðt; x1T; x2T; zÞ;
pμ ¼ pTðcoshðyÞ; v1T; v2T; sinhðyÞÞ ¼ ðE; p1

T; p
2
T; pzÞ;

where

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; η ¼ 1

2
ln

�
tþ z
t − z

�
;

pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − p2

z

q
; y ¼ 1

2
ln

�
Eþ pz

E − pz

�
; ð45Þ

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

10-1 100 101

ωBH ωBH

κ=7/2

κ=7/2
D

is
tr

ib
ut

io
n:

 f g
(p

)

p/Teq

tλ2Teq=0
tλ2Teq=100

tλ2Teq=101

tλ2Teq=102

tλ2Teq=103

tλ2Teq=3x103

thermal

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

10-1 100 101

ωBH ωBH

κ=5/2

κ=7/2

D
is

tr
ib

ut
io

n:
 f q

(p
)

p/Teq

tλ2Teq=0
tλ2Teq=100

tλ2Teq=101

tλ2Teq=102

tλ2Teq=103

tλ2Teq=3x103

thermal

FIG. 22. Evolution of the phase-space distributions of gluons
(top) and quarks/antiquarks (bottom) in an underoccupied quark/
antiquark system with hpi0=Teq ¼ 30 at coupling λ ¼ 1. Dashed
lines show the characteristic power-law dependence of the single
emission LPM spectra (κ ¼ 5=2; 7=2) and the Kolmogorov
Zakharov spectra (κ ¼ 7=2). Dotted lines show the thermal
equilibrium distributions. Vertical arrows mark the Bethe-Heitler
frequencies ωBH.
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the phase-space distribution fðx; pÞ for a longitudinally
boost invariant and transversely homogeneous system
can be conveniently expressed in the form fðx; pÞ ¼
fðτ; pT; pkÞ, where the variable pk denotes the longi-
tudinal momentum pk ¼ pT sinhðy − ηÞ in the local rest
frame uμ ¼ ðcoshðηÞ; 0; 0; sinhðηÞÞ of the nonequilibrium
plasma.
Since the system is homogeneous in transverse coor-

dinates xT and the longitudinal rapidity η, the resulting
Boltzmann equation [78]

� ∂
∂τ −

pk
τ

∂
∂pk

�
faðτ; pT; pkÞ

¼ −C2↔2
a ½f�ðτ; pT; pkÞ − C1↔2

a ½f�ðτ; pT; pkÞ ð46Þ

takes essentially the same form as in Eq. (6) with
one additional term that can be reexpressed in the form

of an additional collision integral −Cexp
a ½f� ¼ pk

τ
∂faðτ;pT ;pkÞ

∂pk
which characterizes the redshift of the longitudinal
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FIG. 24. Evolution of the energy densities (top) and average
momenta (bottom) of quarks (dashed line/open symbol) and
gluons (solid line/closed symbol) in an underoccupied quark/
antiquark system at coupling strengths λ ¼ 1 for different scale
separations hpi0=Teq ¼ 3, 10, 30 (circle, triangle, inverted
triangle). Energy densities and average momenta are normalized
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FIG. 25. Evolution of the phase-space distributions of gluons
(top), quarks (middle), and antiquarks (bottom) in an under-
occupied quark system with hpi0=Teq ¼ 3 at coupling λ ¼ 1.
Different flavors of quarks/antiquarks are assumed to be identical
and the equilibrium temperature is Teq ≃ 0.70Teff . Dotted lines
show the thermal equilibrium distributions. Vertical arrows mark
the Bethe-Heitler frequencies ωBH.
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momentum pk due to the longitudinal expansion, and the
discretized form of the expansion term can be found in
Sec. B 3.
We note that in comparison to the previous discussion

of homogenous and isotropic systems, there are two
important physical differences when considering
plasmas which are subject to a rapid longitudinal expan-
sion. Due to the expansion, the system will, on the one
hand, become more and more dilute over the course of the
evolution; on the other hand, the longitudinal expansion
tends to reduce the longitudinal momenta in the local rest
frame, thereby introducing an anisotropy which can
persist on large timescales. We further note that momen-
tum space anisotropic QCD plasmas are generally
expected to be unstable [79–82] due to the non-Abelian
analog of the Weibel instability in electrodynamics [83].
While perturbative calculations of the one-loop self-
energies in momentum space anisotropic plasmas suggest
the presence of instabilities, and modifications to the
thermalization scenario have been worked out [35,36],
sophisticated classical field simulations [40,41] point to
the fact that plasma instabilities do not appear to play a
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FIG. 26. Evolution of the phase-space distributions of gluons
(top), quarks (middle), and antiquarks (bottom) in an under-
occupied quark system with hpi0=Teq ¼ 10 at coupling λ ¼ 1.
Different flavors of quarks/antiquarks are assumed to be identical
and the equilibrium temperature is Teq ≃ 0.98Teff . Dashed lines
show the characteristic power-law dependence of the single
emission LPM spectra (κ ¼ 5=2; 7=2) and the Kolmogorov
Zakharov spectra (κ ¼ 7=2). Dotted lines show the thermal
equilibrium distributions. Vertical arrows mark the Bethe-Heitler
frequencies ωBH.
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dominant role in the nonequilibrium evolution of the
system beyond very early times. Despite some recent
progress [84], it is currently not established how to
properly include these effects into an effective kinetic
description, and we will therefore follow previous works
[6,50,85] and neglect the effects of plasma instabilities, by
resorting to the isotropic description of screening dis-
cussed in Sec. II B 1.
While the kinetic evolution of homogeneous and

isotropic systems is governed by the collision rates
∼g4T� of elastic and inelastic collisions, the longitudinal
expansion rate ∼1=τ provides an additional timescale
which dominates the kinetic evolution at early times.
Even though the expansion rate is naively divergent in the
limit τ → 0, it is important to point out that the effective
kinetic description only becomes applicable on a time-
scale τ0 ∼ 1=Qs corresponding to the formation time of

hard particles in the system, where Qs is the typical
momentum of quarks and gluons in the initial state.
When describing the nonequilibrium evolution of long.
expanding systems, we will therefore initialize the QCD
kinetic simulations at a finite proper time τ0 ∼ 1=Qs and
consider the subsequent nonequilibrium evolution toward
equilibrium.
With regards to the initial conditions for the phase-space

distributions of quarks and gluons at initial time τ0, we
follow previous works [50] and consider the following
initial conditions:

fgðτ0;pT;pkÞ¼ f0g
Q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þξ20p

2
k

q e
−
2ðp2

T
þξ2

0
p2kÞ

3Q2
0 ;

fqf=q̄fðτ0;pT;pkÞ¼ f0qf=q̄f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þp2

k
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ξ20p

2
k

q e
−
2ðp2

T
þξ2

0
p2kÞ

3Q2
0 ; ð47Þ

inspired by color-glass condensate calculations of the
gluon spectra, whereQ0 ¼ 1.8Qs denotes the initial energy
scale, ξ0 ¼ 10 characterizes the initial momentum space
anisotropy and f0i denotes the typical phase-space occu-
pancy for the different particle species i ¼ g; u; ū; d; d̄; s; s̄.
Since parton distributions at small x are highly gluon
dominated, gluons are copiously produced in high-energy
collisions, and we will typically consider f0g ∼ 1=αs. Since
initial quarks can be produced either from the stopping of
valence quarks or via the production of quark-antiquark
pairs, we consider

f0u ¼
7

15
f0val þ

1

6
f0split; f0ū ¼

1

6
f0split;

f0d ¼
8

15
f0val þ

1

6
f0split; f0

d̄
¼ 1

6
f0split;

f0s ¼
1

6
f0split; f0s̄ ¼

1

6
f0split; ð48Þ

where f0val and f0split represent the contributions from
valence stopping and quark-antiquark pair production,
and we have implemented ðfu − fūÞ=ðfd − fd̄Þ ¼ 7=8 in
Eq. (48) to represent the different valence quark fractions
taking into account a proton to neutron fraction np=ðnp þ
nnÞ ≈ 0.4 in a heavy nuclei. We present a compact
summary of all the simulations performed in Table II,
where we list the corresponding initial conditions, and
coupling strength λ, along with extracted values of the ratio
ðμB=TÞeq at late times and the shear-viscosity ηTeff=ðeþ
pÞ as discussed below.

A. Early and late time behavior of e and Δnf
Before we present the results of our QCD kinetic

theory simulations, it is insightful to analyze the evolution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

E
ne

rg
y 

de
ns

ity
: e

a/
e a

,e
q

t/(τR(<p>0/Teq)1/2)

Gluon(λ=1,<p>0/Teff=3)
Quark(λ=1,<p>0/Teff=3)
Antiquark(λ=1,<p>0/Teff=3)
Gluon(λ=1,<p>0/Teff=10)
Quark(λ=1,<p>0/Teff=10)
Antiquark(λ=1,<p>0/Teff=10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

A
ve

ra
ge

 m
om

en
tu

m
: <

p>
a/

<
p>

a,
eq

t/(τR(<p>0/Teq)1/2)

Gluon(λ=1,<p>0/Teff=3)
Quark(λ=1,<p>0/Teff=3)
Antiquark(λ=1,<p>0/Teff=3)
Gluon(λ=1,<p>0/Teff=10)
Quark(λ=1,<p>0/Teff=10)
Antiquark(λ=1,<p>0/Teff=10)
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evolution time t is normalized to τR
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Teq

q
in order to take into

account the leading dependence on the initial energy hpi0.
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of the energy-momentum tensor and conserved currents at
early and late times. Due to the longitudinal expansion,
the net-charge Δnf densities of all flavors are diluted
according to

∂τΔnf ¼ −
Δnf
τ

; ð49Þ

indicating that throughout the evolution the net-charge
density per unit rapidity τΔnfðτÞ ¼ ðτΔnfÞ0 remains
constant. Similarly, the energy density of a homogenous
system undergoing a boost-invariant longitudinal expan-
sion decreases according to

∂τe ¼ −
eþ pL

τ
; ð50Þ

where in addition to the trivial dilution, the second term on
the right-hand side characterizes the work performed
against the longitudinal expansion [86,87], which is
proportional to the longitudinal pressure pL ¼ τ2Tηη

given by

pL ¼
Z

d2pT

ð2πÞ2
dpk
ð2πÞ

p2
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þ p2

k
q X

i

νifiðτ; pT; pkÞ; ð51Þ

in QCD kinetic theory. Since at early times the system is
rapidly expanding in the longitudinal direction, it is
unable to maintain a sizable longitudinal pressure.
Early on, one therefore has pL ≪ e, such that initially
the energy per unit rapidity τeðτÞ ¼ ðτeÞ0 remains approx-
imately constant. Since initially τΔnfðτÞ ¼ ðτΔnfÞ0 and
τeðτÞ ¼ ðτeÞ0 are both constant, this further implies that,

for finite density systems, the energy per baryon remains
approximately constant at early times.
Evidently, this is sharp contrast to the behavior at

asymptotically late times, where for an equilibrated
QCD plasma the longitudinal pressure becomes pL ¼
e=3 such that τ4=3eðτÞ ¼ ðτ4=3eðτÞÞ∞ approaches a con-
stant and the energy per baryon decreases ∝ τ−1=3.
By considering the evolution of eðτÞ along with the
ratios of ΔnfðτÞ=ðeðτÞÞ3=4 one then finds that the quantity
τ1=3TeffðτÞ ¼ ðτ1=3TeffÞ∞ and the ratios of the various
chemical potentials to the temperature μf;ldmðτÞ=TldmðτÞ ¼
ðμf=TÞ∞ become constant at asymptotically late times.

B. Pressure isotropization and kinetic equilibration

We now turn to the presentation of our QCD kinetic
theory results and first analyze the evolution of the bulk
anisotropy, characterized by the ratio of the longitudinal
pressure pL to the energy density e shown in Fig. 29.
Different curves in Fig. 29 show the results for pL=e at
zero and finite net-baryon density6 as a function of the
scaling variable ω̃ ¼ ðeþ pÞτ=ð4πηÞ, which at zero net-
baryon density (μB=T ¼ 0) corresponds to the familiar
expression ω̃ ¼ Tτ=ð4πη=sÞ employed in previous
works [12,28].
Starting from early times, where the system is

dominated by the rapid longitudinal expansion and
highly anisotropic ðpL ≪ eÞ, the longitudinal pressure

TABLE II. Summary of the parametrization τ0, f0g , f0val, f
0
split, ξ0, coupling λ, extracted dimensionless coefficients ηTeff=ðeþ pÞ, and

baryon chemical potentials ðμB=TÞeq.

Qsτ0 f0g f0val f0split ξ0 λ ðηTeff
eþpÞ ðμBT Þeq Figures

5.5 1.068 0 0 10 10 1.00 0 29, 30, 31, 32
5.5 0.598 1.068 0 10 10 1.03 1.31 29, 30, 31, 32
12.5 0.363 1.602 0 10 10 1.08 2.38 29, 30, 31, 32
15.0 1.068 0 0 10 5 2.73 0 29, 32
15.0 0.598 1.068 0 10 5 2.80 1.31 29, 32
34.5 0.363 1.602 0 10 5 2.96 2.38 29, 32
2.0 1.068 0 0 10 20 0.39 0 29, 32
2.0 0.598 1.068 0 10 20 0.40 1.31 29, 32
4.5 0.363 1.602 0 10 20 0.42 2.38 29, 32
5.5 0.950 0 0.269 10 10 1.00 0 31
5.5 0.833 0 0.534 10 10 1.00 0 31
5.5 0.598 0 1.068 10 10 1.00 0 31
5.5 0.363 0 1.602 10 10 1.00 0 31
5.5 0 0 2.427 10 10 1.00 0 31
5.5 0.598 1.068 0.359 10 10 1.03 1.19 31
5.5 0.598 1.068 1.077 10 10 1.02 1.01 31

6Note that instead of characterizing the amount of net-baryon
density in terms of the initial energy per baryon ðeτÞ0=ðΔnBτÞ0,
the curves at different densities are labeled in terms of the
asymptotic ratio of ðμB=TÞeq extracted from our simulations,
and we refer to Table II for the corresponding initial state
parameters.
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continuously rises as kinetic interactions become increas-
ingly important. Despite the rapid increase of pL=e at
early times, the system remains significantly anisotropic
throughout the entire evolution shown in Fig. 29 and only
approaches an isotropic equilibrium state on much larger
timescales.
Nevertheless, starting around ω̃≳ 1 the approach toward

equilibrium is described by viscous hydrodynamics, where
to leading order in the gradient expansion, the longitudinal
pressure is given by

pL

e
¼ 1

3
−
16

9

η

ðeþ pÞτ : ð52Þ

Expressing the nonequilibrium correction in terms of the
dimensionless ratio ηTeff=ðeþ pÞ which at zero density
reduces to the familiar η=s, the pressure evolution in
hydrodynamics is determined by

pL

e
¼ 1

3
−

4

9π

�
ηTeff

eþ p

�
4π

τTeff
: ð53Þ

By analyzing the late time behavior of the different
curves, we can then extract the transport coefficient
ηTeff=ðeþ pÞ, whose values are indicated in Table II.
We note that although in principle ηTeff=ðeþ pÞ can
exhibit a dependence on the chemical potentials μf=T,
we find that in the relevant range of μB=T for our
simulations, the extracted values only differ by about
ten percent, which a posteriori justifies its treatment
as a constant when defining the scaling variable ω̃ and
extracting the values of ηTeff=ðeþ pÞ based on the late

time behavior in Eq. (53).7 When expressed in
terms of the macroscopic scaling variable w̃, one
also observes that the evolution of pL=e is rather insensi-
tive to the microscopic coupling strength λ ¼ 5, 10, 20
in Fig. 29, as discussed in detail in [50] for charge
neutral plasmas.
By taking into account the (small) μB

T dependence of the
transport coefficient ηTeff=ðeþ pÞ, the results for pL=e in
Fig. 29 are presented such that they all exhibit the same
hydrodynamic behavior in Eq. (53) at late times ω̃≳ 1
which is indicated by a black dashed line. However, by
comparing the results for different net-baryon densities
ðμB=TÞeq, one clearly observes that at early times ω̃≲ 1 the
isotropization of the pressure proceeds more slowly for
systems with a larger net-baryon density. We will show
shortly that this feature can be understood by considering
the fact that more baryon rich systems necessarily feature a
larger abundance of quarks as compared to the initially
gluon dominated zero density systems, which along with
the less efficient isotropization of quark and antiquark
distributions leads to a slower buildup of the longitudinal
pressure in the system.

C. Kinetic and chemical equilibration of light flavors

Beyond the evolution of the pressure anisotropy, which
provides an estimate of the range of applicability of a
hydrodynamic description of the QGP, it is also insightful
to consider the evolution of the phase-space densities of
gluons, quarks, and antiquarks to scrutinize the underlying
microscopic dynamics. Our results are compactly summa-
rized in Fig. 30, where we present the evolution of the
various distributions for three different values of the net-
baryon density ðμB=TÞeq ¼ 0 (upper panel), ðμB=TÞeq ¼
1.31 (middle panel), and ðμB=TÞeq ¼ 2.38 (lower panel).
Different rows in each panel correspond to the distributions
for different particle species, while different columns show
the distributions at four different times, corresponding to
the initial conditions in the first column, and ω̃ ¼ 0.5, 1.0,
and 1.5 in the second, third, and fourth columns. We focus
on the evolution of the phase-space distributions of gluons
(g), up-quarks (u), up-antiquarks (ū), and strange quarks
(s), noting that the distributions of strange and antistrange
quarks are identical fs ¼ fs̄, and that up- and down-quark
distributions exhibit essentially the same features.
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FIG. 29. Nonequilibrium evolution of longitudinal pressure pL
over energy density e for different chemical potentials
ðμB=TÞeq ≈ 0, 1.31, 2.38 (red/circle, blue/triangle, pink/diamond)
and coupling strength λ ¼ 5, 10, 20 (dotted, solid, dashed lines)
as a function of the scaled time variable w̃ ¼ ðeþ pÞτ=ð4πηÞ.
The dash-dotted curve shows the asymptotic behavior of pL=e in
viscous hydrodynamic.

7We employ the values of ηT=ðeþ pÞ extracted at the final
equilibrium ratio of ðμB=TÞeq. Since e and n exhibit a different
time dependence, the value of μB=T, defined by the Landau
matching conditions, changes during the evolution of the system,
such that in principle one assesses slightly different values of
ηT=ðeþ pÞ as a function of μB=T at different times. Evidently,
this is a much smaller effect and is also significantly more
complicated to take into account in the analysis, which is the
reason that we opted for the simpler choice of considering
ηT=ðeþ pÞ as a function of ðμB=TÞeq.
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Starting from the behavior at zero net-baryon density
ðμB=TÞeq ¼ 0 depicted in the top panel, where we assume
that there are initially no quarks present in the system, one
finds that quark/antiquarks of all flavors are democratically
produced and naturally inherit the anisotropy of the gluon
distribution. However, the quark/antiquark distributions at
intermediate stages of the evolution ω̃ ¼ 0.5, 1.0 exhibit a
larger degree of anisotropy as compared to the gluon
distribution, indicating the slower isotropization of
quarks/antiquarks. By considering the underlying micro-
scopic processes in the bottom-up scenario [34], one
expects the isotropization of the gluon distribution to be
driven by the radiative decay of hard gluons due to collinear
g → gg and g → qq̄ processes, followed by gg → gg,
gq → gq, and gq̄ → gq̄ elastic scatterings which isotropize
the momentum distribution of soft gluons, whereas quarks/
antiquarks are predominantly produced via collinear g →
qq̄ splittings and to a lesser extent by gg → qq̄ elastic
conversions, with the subsequent isotropization of soft
quarks/antiquarks due to qg → qg, q̄g → q̄g, qq → qq,
q̄ q̄ → q̄ q̄, and qq̄ → qq̄ elastic scattering processes. Based
on the different color factors for the elastic scattering
processes involving quarks and gluons, e.g., jMgg

ggj2 ∝ C2
A

and jMgq
gqj2 ∝ CFCA (see Table I), it is then natural to expect

a faster isotropization of the gluon distribution. Since Bose
enhancement and Fermi blocking also play a role for the
population of the soft sector, one also notices clear
differences between quark/antiquark and gluon distribu-
tions at very low momenta.
When considering the evolution of the phase-space

distributions at finite net-baryon density, shown in the
central and bottom panels of Fig. 30 for ðμB=TÞeq ¼ 1.31
and 2.38, one finds that the overall behavior of the phase-
space distributions at different times is rather similar to the
zero density case. However, at finite density, the nonzero
values of the conserved u and d charges lead to an
overabundance of up- and down-quarks as compared to
antiquarks of the same flavor. Since at larger net-baryon
density, u and d quarks carry a significant fraction of the
initial energy, the larger degree of anisotropy of the quark
distribution then manifests itself at the level of the bulk
anisotropy pL=e, seen in Fig. 29.
Besides the dynamics of the up and down flavors, it is

also interesting to compare the evolution of the strange
quark distribution ðfsÞ at zero and finite density. While at
zero density strange quarks can be efficiently produced via
inelastic g → qq̄ and elastic gg → qq̄ conversions, the
direct production of ss̄-pairs from u and d quarks is only
possible through quark/antiquark annihilation qq̄ → qq̄,
which at finite density is suppressed due to the lack of
antiquarks. By comparing the results for fs in the upper and
lower panels of Fig. 30, one therefore finds that the
strangeness production at finite density is delayed until
ω̃ ∼ 1, when strangeness is efficiently produced from
inelastic g → qq̄ and elastic gg → qq̄ conversions.

FIG. 30. Evolution of the two-dimensional phase-space dis-
tributions fðτ; pT; pkÞ of gluons (g), up quarks (u), antiup quarks
(ū) at times τ ¼ τ0, ω̃ ¼ 0.5, ω̃ ¼ 1.0, ω̃ ¼ 1.5 for different
chemical potentials ðμB=TÞeq ¼ 0 (top), 1.31 (middle), 2.38
(bottom) at coupling strength λ ¼ 10.
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Next in order to further analyze the chemical composi-
tion of the QGP, we follow [6] and investigate the fraction
of energy eaðτÞ=eðτÞ carried by each individual species a
during the nonequilibrium evolution. Our results for this

quantity, eaðτÞ=etotalðτÞ, are presented in Fig. 31 as a
function of the scaling variable ω̃. Different panels in
Fig. 31 show the results for different net-baryon densities,
with ðμB=TÞeq ¼ 0 in the top panel, ðμB=TÞeq ¼ 1.31, 1.19,
1.01 in the central panel, and ðμB=TÞeq ¼ 2.38 in the
bottom panel, while different solid, dashed, and dotted
curves in each panel correspond to the result obtained by
varying the chemical composition of the initial state (see
Table II). Starting with the evolution at zero net-baryon
density, we find that for gluon dominated initial conditions
ðeg;0=e0 ¼ 1Þ a large part of the initial energy of gluons is
rapidly transferred to quarks and antiquarks of all flavors.
Similarly for quark/antiquark dominated initial conditions
at zero density ðeg;0=e0 ¼ 0Þ, a rapid energy transfer from
the quark to the gluon sector occurs, effectively resulting in
a memory loss of the initial QGP chemistry on timescales
w̃ ∼ 1. Eventually, for w̃≳ 0.5 the zero density plasma
becomes gluon dominated, before relaxing toward chemi-
cal equilibrium on timescales ω̃ ∼ 1–2. Clearly, the sit-
uation is different at moderate or large net-baryon density
shown in the bottom panel of Fig. 31, where u and d quarks
carry the dominant fraction of the energy density through-
out the evolution. Due to the fact that multiple quark/
antiquark species contribute different amounts, one
observes that the evolution of the chemistry of the QGP
at moderate and large net-baryon density is significantly
more complicated, and the approach toward equilibrium
occurs on somewhat larger timescales ω̃ ∼ 1.5–2.5, due to
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ðμB=TÞeq ¼ 0 systems with initially different gluon fractions.
The middle panel shows evolution of ðμB=TÞeq ≠ 0 systems with
different splitting contributions fsplit. The bottom panel shows
evolution of the energy fraction of each species for large density
system ðμB=TÞeq ¼ 2.38 (cf. Table II).
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FIG. 32. Evolution of the characteristic scales τ2=3m2
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their asymptotic equilibrium values, as a function of the scaled

time variable w̃ ¼ ðeþpÞτ
4πη for different chemical potentials

ðμB=TÞeq ¼ 0, 1.31, 2.38 (red circle, blue triangle, pink diamond)
for λ ¼ 5, 10, 20 (dotted, solid, dashed curves).
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the less efficient production of antiquarks (ū; d̄) and
strangeness (s; s̄).
We conclude our discussion of equilibration in

longitudinally expanding QCD plasmas by considering
once again the evolution of the characteristic scales m2

D,
m2

Q;u, and T� that govern the rates of elastic and inelastic
interactions in the plasma. The time evolution of these
quantities is presented in Fig. 32, where in order to account
for the continuous expansion of the system we have
normalized the respective quantities as τ

2
3m2

D=ðτ
2
3m2

DÞeq,
τ
2
3m2

Q=ðτ
2
3m2

QÞeq, and τ
1
3T�=ðτ13T�Þeq such that for ω̃ ≫ 1 all

ratios approach unity. By comparing the evolution of the
different curves, we find that simulation results at different
coupling strengths λ ¼ 5, 10, 20 are in good overall
agreement when expressing the evolution in terms of the
scaling variable w̃. While the effective temperature T�
relaxes toward its equilibrium value on timescales w̃ ∼ 1,
the screening masses m2

D and m2
u for gluons and (up-)

quarks only approach their equilibrium values at asymp-
totically late times, indicating residual deviations from
local thermal equilibrium on the order of 10%.

VI. CONCLUSIONS

We provided a numerical implementation of the QCD
kinetic description of the light flavor QCD degrees of
freedom [52] to study near and far-from equilibrium
dynamics of the QGP at zero and finite density of the
conserved baryon number, electric charge, and strangeness.
Based on the numerical solution of the kinetic equations,
including all leading order elastic and inelastic interactions
between gluons, quarks, and antiquarks, we exposed the
general features of kinetic and chemical equilibration of
nonequilibrium QCD plasmas in the perturbative regime at
(asymptotically) high energies.
Generally, we find that, albeit the energy transfer

between quark and gluon degrees of freedom can take a
significant time, kinetic and chemical equilibration of QCD
plasmas occur roughly on the same timescale. By perform-
ing detailed investigations of the evolution of the spectra
and collision rates in Sec. III, we further established a
microscopic understanding of different equilibration proc-
esses in QCD plasmas, which generalizes earlier results
obtained in pure glue QCD [4,7,46] and QCD at zero
density [8,50,85].
Specifically, for overoccupied systems, which initially

feature a large number of low-energy gluons, we showed in
Sec. IVA that the thermalization process proceeds via a
self-similar turbulent cascade, before eventually reaching
equilibrium on a timescale ∼4πη=s=Teq. Conversely, for
underoccupied systems, which initially feature a small
number of high-energy quarks or gluons, thermalization
is achieved via the bottom-up scenario [34], with a number
of interesting features regarding the role of quark and gluon
degrees of freedom as discussed in Sec. IV B.

Studies of the equilibration of the QGP in a longitudi-
nally expanding system provide the basis for a realistic
matching of the initial state in heavy-ion collisions to initial
conditions for the subsequent hydrodynamic evolution
[32,33]. By analyzing the macroscopic evolution of the
energy momentum tensor and the microscopic evolution of
the phase-space distributions of quarks and gluons in
Sec. V, we found that in accordance with earlier studies
[6,7] viscous hydrodynamics typically becomes applicable
on timescales where ðeþ pÞτ=ð4πηÞ ∼ 1; however, iso-
tropization and strangeness production proceed more
slowly for finite density systems, and we refer to [8] and
our companion paper [53] for further discussions of
phenomenological consequences.
We finally note that the numerical framework to solve

the QCD kinetic equations presented in this paper could be
extended in several regards, e.g., by including heavy flavor
degrees of freedom or electroweak interactions, to study a
variety of aspects regarding the early time dynamics of
high-energy heavy-ion collisions and the thermalization of
the early universe. Since in many applications, the relevant
coupling strength can be sizable, it would also be important
to extend the kinetic approach beyond leading order
accuracy, as recently discussed in [88,89] for jet-medium
interactions and [24,25] for transport coefficients.
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APPENDIX A: WEIGHT FUNCTION
DISCRETIZATION

1. Weighted integral: Discretization

We discretize the Boltzmann equation Eq. (6) with the
weighted integral of a function F ðp⃗Þ [particle phase-
space distributionF ðp⃗Þ¼fðp⃗Þ or collision integralF ðp⃗Þ¼
C½f�ðp⃗Þ] transforming from the continuous domain
Ωp;θ;ϕ ¼ fðp; θ;ϕÞjp ∈ Rþ; θ ∈ ½0; π�;ϕ ∈ ½0; 2πÞg to a
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discretized domain N3
p;θ;ϕ¼fðip;jθ;kϕÞjip¼0;…;Np−1;

jθ¼0;…;Nθ−1;kϕ¼0;…;Nϕ−1g.
The weighted integral of distribution function fðp⃗Þ reads

nðip; jθ; kϕÞ ¼
Z

d3p
ð2πÞ3 w

ðpÞ
i ðpÞwðθÞ

j ðθÞwðϕÞ
k ðϕÞfðp⃗Þ;

ðA1Þ

where wðpÞ
i ðpÞ, wðθÞ

j ðθÞ, and wðϕÞ
k ðϕÞ are weight functions

satisfying a completeness relation

X
i∈Nx

wðxÞ
i ðxÞ ¼ χΩx

ðxÞ ¼
�
1; x ∈ Ωx

0; x ∉ Ωx
ðA2Þ

with χΩx
ðxÞ∶Ωx → Z2 the indicator function on domain

Ωx. The completeness relation ensures the summation of
weighted integral nðip; jθ; kϕÞ to be the total number of
specific particle

X
ðip;jθ ;kϕÞ

nðip; jθ; kϕÞ ¼
Z

d3p
ð2πÞ3 fðp⃗Þ: ðA3Þ

The weight functions satisfying completeness relation
Eq. (A2) can be achieved by decomposing into two parts

wðpÞ
i ðpÞ ¼ wL

i ðpÞ þ wR
i ðpÞ ðA4Þ

with left- and right-side weights

wL
i ðpÞ¼

�
SðpÞðpÞjpiþ1

pi χ½pi;piþ1�ðpÞ; 0≤ i≤Np−2

0; i¼Np−1
;

wR
i ðpÞ¼

�ð1−SðpÞðpÞjpi
pi−1Þχ½pi−1;pi�ðpÞ; 1≤ i≤Np−1

0; i¼ 0
:

ðA5Þ

The spectral weight SðpÞðpÞjpiþ1
pi needs to be constructed

in a form

SðpÞðpÞjpiþ1
pi ¼ yðpiþ1Þ − yðpÞ

yðpiþ1Þ − yðpiÞ
; ðA6Þ

with yðpÞ an arbitrary function of p so that SðpÞðpiÞjpiþ1
pi ¼

1, SðpÞðpiþ1Þjpiþ1
pi ¼ 0, and Eq. (A2) are satisfied.

2. Sum rules

Indeed, the above function yðp ∈ ½pi; piþ1�Þ can be
reversely expressed with the left and right weights

yðp ∈ ½pi; piþ1�Þ ¼ wL
i ðpÞyðpiÞ þ wR

iþ1ðpÞyðpiþ1Þ; ðA7Þ

which yields a sum rule

XNp−1

i¼0

wðpÞ
i ðpÞyðpiÞ ¼ yðpÞ ðA8Þ

for p ∈ ½pmin; pmax�.
Specifically, we work with a proper choice of the

functions for p, cosðθÞ, and ϕ,

ypðpÞ ¼ p; yθðθÞ ¼ cosðθÞ; yϕðϕÞ ¼ 1 ðA9Þ

that provides the way to evaluate energy and longitudinal
momentum of the particle in discretized form, following the
definition of weighted integral Eq. (A1), completeness
relation Eq. (A2), and sum rule Eq. (A8),

X
ðip;jθ ;kϕÞ

pinðip;jθ;kϕÞ¼
Z

d3p
ð2πÞ3pfðp⃗Þ;

X
ðip;jθ ;kϕÞ

pi cosðθjÞnðip;jθ;kϕÞ¼
Z

d3p
ð2πÞ3pcosðθÞfðp⃗Þ

ðA10Þ

with ðp; θ;ϕÞ ∈ Ωp;θ;ϕ. Their weighted functions are

wðpÞ
i ðpÞ¼

�
piþ1−p
piþ1−pi

χ½pi;piþ1�ðpÞþ
p−pi−1

pi−pi−1
χ½pi−1;pi�ðpÞ

�
;

wðθÞ
j ðθÞ¼

�
cosðθjþ1Þ− cosðθÞ
cosðθjþ1Þ− cosðθjÞ

χ½θj;θjþ1�ðθÞ

þ cosðθÞ−cosðθj−1Þ
cosðθjÞ− cosðθj−1Þ

χ½θj−1;θj�ðθÞ
�
;

wðϕÞ
k ðϕÞ¼ χ½ϕk;ϕkþ1�ðϕÞ: ðA11Þ

3. Weighted sum: Continuation

We Taylor expand fðp⃗Þ around the points ðpi; θj;ϕkÞ
and use the nearest grid points to reconstruct the phase-
space distribution at any specific coordinates ðp; θ;ϕÞ from
its discretized form. Assuming

plfðp⃗Þ ≈ const ¼ hplfðp⃗Þiðip;jθ ;kϕÞ ðA12Þ

holds for a neighborhood p⃗ ∈ Uðip;jθ ;kϕÞ around ðpi; θj;ϕkÞ,
the weighted integral Eq. (A1) reads

nðip; jθ; kϕÞ ≈ hplfðp⃗Þiðip;jθ ;kϕÞ
Z

d3p
ð2πÞ3

1

pl Wðip;jθ ;kϕÞðp⃗Þ

ðA13Þ

with Wðip;jθ ;kϕÞðp⃗Þ ¼ wðpÞ
i ðpÞwðθÞ

j ðθÞwðϕÞ
k ðϕÞ. Defining the

modified weighted volume (MWV)
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Að2−lÞ
ðip;jθ ;kϕÞ ¼

Z
d3p
pl Wðip;jθ ;kϕÞðp⃗Þ ðA14Þ

we may evaluate the constant for p⃗ ∈ Uðip;jθ ;kϕÞ via

hplfðp⃗Þiðip;jθ ;kϕÞ ≈
ð2πÞ3nðip; jθ; kϕÞ

Að2−lÞ
ðip;jθ ;kϕÞ

: ðA15Þ

The azimuthal symmetric weight functions in Eq. (A11)

gives Að2−lÞ
ðip;jθ ;kϕÞ ¼ 2πAð2−lÞ

ðipÞ AðjθÞ, and the modified weighted

volumes are listed in Table III.
In order to evaluate the distribution between points in the

grids, we perform an interpolation similar to Eq. (A7) for an
azimuthal symmetric case so that

fðp⃗ ∈ ΩpÞ ¼
X

ðα;βÞ∈N2
p⃗

wðpÞ
α ðpÞwðθÞ

β ðθÞ ð2πÞ
2nðα; βÞ

plAð2−lÞ
ðαÞ AðβÞ

; ðA16Þ

where the subdomain cubic Ωp⃗ ¼ ½pL; pR� × ½θL; θR� ×
½ϕL;ϕR� ⊂ Ω and the corresponding nearest grids in dis-
cretized subdomain N2

p⃗¼fðiP;jΘÞjP¼pL;pR;Θ¼ θL;θR;
ipR

− ipL
¼ jθR − jθL ¼ 1g.

APPENDIX B: DISCRETIZATION OF COLLISION
INTEGRALS

1. Elastic collision integrals

a. Discretization and efficient samplings

The elastic collision integral for particle “a”withmomen-
tum p⃗1 in process a; b → c; d (p1; p2 ↔ p3; p4) reads

C2↔2
a ½f�ðp⃗1Þ¼

1

2νa

1

2Ep1

X
cd

Z
dΠ2↔2

× jMab
cdðp⃗1; p⃗2jp⃗3; p⃗4Þj2Fab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þ;
ðB1Þ

with measure

dΠ2↔2 ¼
d3p2

ð2πÞ3
1

2Ep2

d3p3

ð2πÞ3
1

2Ep3

d3p4

ð2πÞ3
1

2Ep4

× ð2πÞ4δð4Þðp1 þ p2 − p3 − p4Þ; ðB2Þ
jMab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þj2 is the matrix element square for
process “a; b ↔ c; d” summed over spin and color for all
particles, and Fab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þ describes the statistical
factor for a; b ↔ c; d.
The discretized form of collision integral Eq. (B1)

follows the transformation according to Eq. (A1),

C2↔2
a ½n�ðip;jθ;kϕÞ

¼
Z

d2p1

ð2πÞ3Wðip;jθ ;kϕÞðp⃗1ÞC2↔2
a ½f�ðp⃗1Þ

¼ 1

2νa

X
cd

Z
dΩ2↔2Wðip;jθ ;kϕÞðp⃗1ÞQab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þ

ðB3Þ

with measure

dΩ2↔2 ¼
d3p1

ð2πÞ3
1

2Ep1

d3p2

ð2πÞ3
1

2Ep2

d3p3

ð2πÞ3
1

2Ep3

d3p4

ð2πÞ3
1

2Ep4

× ð2πÞ4δð4Þðp1 þ p2 − p3 − p4Þ: ðB4Þ

and a Q-factor

Qab
cdðp⃗1; p⃗2jp⃗3; p⃗4Þ
¼ jMab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þj2Fab
cdðp⃗1; p⃗2jp⃗3; p⃗4Þ; ðB5Þ

which has the following symmetries:

Qba
dcðp⃗2; p⃗1jp⃗4; p⃗3Þ ¼ Qba

cdðp⃗2; p⃗1jp⃗3; p⃗4Þ
¼ Qab

cdðp⃗1; p⃗2jp⃗3; p⃗4Þ
¼ −Qcd

abðp⃗3; p⃗4jp⃗1; p⃗2Þ: ðB6Þ

TABLE III. Modified weighted volume (MWV) with choice of weight functions from Eq. (A11).

MWV Formula Index range

Að2Þ
ðipÞ

ðpiþ1 − piÞð3p2
i þ 2pipiþ1 þ p2

iþ1Þ=12 i ¼ 0

ðpi − pi−1Þð3p2
i þ 2pipi−1 þ p2

i−1Þ=12 i ¼ Np − 1

½ðpiþ1 − piÞð3p2
i þ 2pipiþ1 þ p2

iþ1Þ þ ðpi − pi−1Þð3p2
i þ 2pipi−1 þ p2

i−1Þ�=12 i ∈ ½1; Np − 2�
Að1Þ
ðipÞ

ðpiþ1 − piÞð2pi þ piþ1Þ=6 i ¼ 0
ðpi − pi−1Þð2pi þ pi−1Þ=6 i ¼ Np − 1

ðpiþ1 − pi−1Þðpiþ1 þ pi þ pi−1Þ=6 i ∈ ½1; Np − 2�
Að0Þ
ðipÞ

ðpiþ1 − piÞ=2 i ¼ 0
ðpi − pi−1Þ=2 i ¼ Np − 1

ðpiþ1 − pi−1Þ=2 i ∈ ½1; Np − 2�
AðjθÞ ½cosðθjþ1Þ − cosðθjÞ�=2 i ¼ 0

½cosðθjÞ − cosðθj−1Þ�=2 i ¼ Np − 1

½cosðθjþ1Þ − cosðθj−1Þ�=2 i ∈ ½1; Np − 2�
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One good feature of utilizing the weight function
algorithm is that the phase-space measure dΩ2↔2 in
Eq. (B4) is invariant under arbitrary exchanges between
p⃗1; p⃗2; p⃗3; p⃗4, meaning we can maximize Monte Carlo
samplings expanding the terms with those exchanges. One
sampling of p⃗1; p⃗2; p⃗3; p⃗4 can be freely used by all

combinations, increasing the efficiency of numerical cal-
culation and statistical accuracy. Indeed, denoting W1 ¼
Wðip;jθ ;kϕÞðp⃗1Þ, Qab

cdð12j34Þ ¼ Qba
dcðp⃗2; p⃗1jp⃗4; p⃗3Þ, the

discretized form of collision integral Eq. (B3) can be
expanded according to the symmetry as

C2↔2
a ½n�ðip; jθ; kϕÞ ¼

1

2νa

X
cd

Z
dΩ2↔2W1Qab

cdð12j34Þ

¼ 1

2νa

X
cd

Z
dΩ2↔2

1

8
½W1ðQab

cdð12j34Þ þQab
cdð12j43ÞÞ þW2ðQab

cdð21j43Þ þQab
cdð21j34ÞÞ

þW3ðQab
cdð34j12Þ þQab

cdð34j21ÞÞ þW4ðQab
cdð43j21Þ þQab

cdð43j12ÞÞ�:

ðB7Þ

As the energy density and longitudinal momentum flux can be directly evaluated from the discretized form in Eq. (A10),
energy and longitudinal momentum conservation can be exactly fulfilled by the discretized form of the collision integral, as
a derivative of distributions.
We take the most complicated process q1q̄1 ↔ q2q̄2 as an example, with other processes to follow. According to

Eq. (B7), the discretization forms read:
(1) For quark q1, note that Qq1q̄1

q̄2q2ð12j34Þ ¼ Qq1q̄1
q2q̄2ð12j43Þ,

C2↔2
q1 ½n�ðip; jθ; kϕÞ ¼

1

2νq

Z
dΩ2↔2W1ðQq1q̄1

q2q̄2ð12j34Þ þQq1q̄1
q̄2q2ð12j34ÞÞ

¼ 1

νq

Z
dΩ2↔2

1

8
½W1ðQq1q̄1

q2q̄2ð12j34Þ þQq1q̄1
q2q̄2ð12j43ÞÞ þW2ðQq1q̄1

q2q̄2ð21j43Þ þQq1q̄1
q2q̄2ð21j34ÞÞ

þW3ðQq1q̄1
q2q̄2ð34j12Þ þQq1q̄1

q2q̄2ð34j21ÞÞ þW4ðQq1q̄1
q2q̄2ð43j21Þ þQq1q̄1

q2q̄2ð43j12ÞÞ�: ðB8Þ

(2) For antiquark q̄1, note that Qq̄1q1
q̄2q2ð12j34Þ ¼ Qq1q̄1

q2q̄2ð21j43Þ, Q
q̄1q1
q2q̄2ð12j34Þ ¼ Qq1q̄1

q2q̄2ð21j34Þ,

C2↔2
q̄1 ½n�ðip; jθ; kϕÞ ¼

1

2νq

Z
dΩ2↔2W1ðQq̄1q1

q̄2q2ð12j34Þ þQq̄1q1
q2q̄2ð12j34ÞÞ

¼ 1

νq

Z
dΩ2↔2

1

8
½W1ðQq1q̄1

q2q̄2ð21j43Þ þQq1q̄1
q2q̄2ð21j34ÞÞ þW2ðQq1q̄1

q2q̄2ð12j34Þ þQq1q̄1
q2q̄2ð12j43ÞÞ

þW3ðQq1q̄1
q2q̄2ð43j21Þ þQq1q̄1

q2q̄2ð43j12ÞÞ þW4ðQq1q̄1
q2q̄2ð34j12Þ þQq1q̄1

q2q̄2ð34j21ÞÞ�: ðB9Þ

(3) For quark q2, note that Qq2q̄2
q1q̄1ð12j34Þ ¼ −Qq1q̄1

q2q̄2ð34j12Þ, Q
q2q̄2
q̄1q1ð12j34Þ ¼ −Qq1q̄1

q2q̄2ð43j12Þ,

C2↔2
q2 ½n�ðip; jθ; kϕÞ ¼

1

2νq

Z
dΩ2↔2W1ðQq2q̄2

q1q̄1ð12j34Þ þQq2q̄2
q̄1q1ð12j34ÞÞ

¼ 1

νq

Z
dΩ2↔2

1

8
½−W1ðQq1q̄1

q2q̄2ð34j12Þ þQq1q̄1
q2q̄2ð43j12ÞÞ −W2ðQq1q̄1

q2q̄2ð43j21Þ þQq1q̄1
q2q̄2ð34j21ÞÞ

−W3ðQq1q̄1
q2q̄2ð12j34Þ þQq1q̄1

q2q̄2ð21j34ÞÞ −W4ðQq1q̄1
q2q̄2ð21j43Þ þQq1q̄1

q2q̄2ð12j43ÞÞ�: ðB10Þ
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(4) For antiquark q̄2, note that Qq̄2q2
q̄1q1ð12j34Þ ¼ −Qq1q̄1

q2q̄2ð43j21Þ, Q
q̄2q2
q1q̄1ð12j34Þ ¼ −Qq1q̄1

q2q̄2ð34j21Þ,

C2↔2
q̄2 ½n�ðip; jθ; kϕÞ ¼

1

2νq

Z
dΩ2↔2W1ðQq̄2q2

q̄1q1ð12j34Þ þQq̄2q2
q1q̄1ð12j34ÞÞ

¼ 1

νq

Z
dΩ2↔2

1

8
½−W1ðQq1q̄1

q2q̄2ð43j21Þ þQq1q̄1
q2q̄2ð34j21ÞÞ −W2ðQq1q̄1

q2q̄2ð34j12Þ þQq1q̄1
q2q̄2ð43j12ÞÞ

−W3ðQq1q̄1
q2q̄2ð21j43Þ þQq1q̄1

q2q̄2ð12j43ÞÞ −W4ðQq1q̄1
q2q̄2ð12j34Þ þQq1q̄1

q2q̄2ð21j34ÞÞ�: ðB11Þ

We have the following conservation laws automatically proved by the discretized collision integral from the
completeness relation Eq. (A2) and sum rule Eq. (A8):
(1) Charge conservation from completeness relation:

X
ðip;jθ ;kϕÞ

½νqC2↔2
q1 ½n�ðip; jθ; kϕÞ − νqC2↔2

q̄1 ½n�ðip; jθ; kϕÞ�

¼
X

ðip;jθ ;kϕÞ

Z
dΩ2↔2

1

8
½ðW1 −W2ÞðQq1q̄1

q2q̄2ð12j34Þ þQq1q̄1
q2q̄2ð12j43Þ −Qq1q̄1

q2q̄2ð21j34Þ −Qq1q̄1
q2q̄2ð21j43ÞÞ

þ ðW3 −W4ÞðQq1q̄1
q2q̄2ð34j12Þ þQq1q̄1

q2q̄2ð34j21Þ −Qq1q̄1
q2q̄2ð43j12Þ −Qq1q̄1

q2q̄2ð43j21ÞÞ�

¼
Z

dΩ2↔2

1

8
½ð1 − 1ÞðQq1q̄1

q2q̄2ð12j34Þ þQq1q̄1
q2q̄2ð12j43Þ −Qq1q̄1

q2q̄2ð21j34Þ −Qq1q̄1
q2q̄2ð21j43ÞÞ

þ ð1 − 1ÞðQq1q̄1
q2q̄2ð34j12Þ þQq1q̄1

q2q̄2ð34j21Þ −Qq1q̄1
q2q̄2ð43j12Þ −Qq1q̄1

q2q̄2ð43j21ÞÞ� ¼ 0: ðB12Þ

(2) Total number conservation from completeness relation:

X
ðip;jθ ;kϕÞ

½νqC2↔2
q1 ½n�ðip; jθ; kϕÞ þ νqC2↔2

q̄1 ½n�ðip; jθ; kϕÞ þ νqC2↔2
q2 ½n�ðip; jθ; kϕÞ þ νqC2↔2

q̄2 ½n�ðip; jθ; kϕÞ�

¼
X

ðip;jθ ;kϕÞ

Z
dΩ2↔2

1

8
ðW1 þW2 −W3 −W4ÞðQq1q̄1

q2q̄2ð12j34Þ þQq1q̄1
q2q̄2ð12j43Þ þQq1q̄1

q2q̄2ð21j43Þ þQq1q̄1
q2q̄2ð21j34Þ

−Qq1q̄1
q2q̄2ð34j12Þ −Qq1q̄1

q2q̄2ð43j12Þ −Qq1q̄1
q2q̄2ð43j21Þ −Qq1q̄1

q2q̄2ð34j21ÞÞ

¼
Z

dΩ2↔2

1

8
ð1þ 1 − 1 − 1ÞðQq1q̄1

q2q̄2ð12j34Þ þQq1q̄1
q2q̄2ð12j43Þ þQq1q̄1

q2q̄2ð21j43Þ þQq1q̄1
q2q̄2ð21j34Þ −Qq1q̄1

q2q̄2ð34j12Þ

−Qq1q̄1
q2q̄2ð43j12Þ −Qq1q̄1

q2q̄2ð43j21Þ −Qq1q̄1
q2q̄2ð34j21ÞÞ ¼ 0: ðB13Þ

(3) Energy momentum conservation from sum rule, denoting Pij ¼ ðpi; pi cosðθjÞÞ with ði; jÞ ∈ N2
p;θ, Ps ¼

ðps; ps cosðθsÞÞ with s ¼ 1, 2, 3, 4, and notice that Ws ¼ Wðip;jθ ;kϕÞðp⃗sÞ:
X

ðip;jθ ;kϕÞ
Pij½νqC2↔2

q1 ½n�ðip;jθ;kϕÞþνqC2↔2
q̄1 ½n�ðip;jθ;kϕÞþνqC2↔2

q2 ½n�ðip;jθ;kϕÞþνqC2↔2
q̄2 ½n�ðip;jθ;kϕÞ�

¼
X

ðip;jθ ;kϕÞ
Pij

Z
dΩ2↔2

1

8
ðW1þW2−W3−W4ÞðQq1q̄1

q2q̄2ð12j34ÞþQq1q̄1
q2q̄2ð12j43ÞþQq1q̄1

q2q̄2ð21j43ÞþQq1q̄1
q2q̄2ð21j34Þ

−Qq1q̄1
q2q̄2ð34j12Þ−Qq1q̄1

q2q̄2ð43j12Þ−Qq1q̄1
q2q̄2ð43j21Þ−Qq1q̄1

q2q̄2ð34j21ÞÞ

¼
Z

dΩ2↔2

1

8
ðP1þP2−P3−P4ÞðQq1q̄1

q2q̄2ð12j34ÞþQq1q̄1
q2q̄2ð12j43ÞþQq1q̄1

q2q̄2ð21j43ÞþQq1q̄1
q2q̄2ð21j34Þ−Qq1q̄1

q2q̄2ð34j12Þ

−Qq1q̄1
q2q̄2ð43j12Þ−Qq1q̄1

q2q̄2ð43j21Þ−Qq1q̄1
q2q̄2ð34j21ÞÞ¼ 0: ðB14Þ
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b. Phase-space integration

Evaluation of the phase-space integrals can be achieved
by expressing p3 ¼ p1 þ q and p4 ¼ p2 − q to eliminate
the momentum conservation constraint

Z
dΩ2↔2 ¼

Z
d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3
Z

d3q
ð2πÞ3

1

16Ep1
Ep2

Ep3
Ep4

× ð2πÞδðEp1
þ Ep2

− Ep3
− Ep4

Þ ðB15Þ

with

Ep1
¼p1; Ep3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þq2þ2p1qcosðθ1qÞ

q
;

Ep2
¼p2; Ep4

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2þq2−2p2qcosðθ2qÞ

q
: ðB16Þ

Similarly, to eliminate the energy conservation constraint
we follow the standard trick to parametrize the integral in
terms of the energy transfer ω,

ð2πÞδðEp1
þEp2

−Ep3
−Ep4

Þ

¼ ð2πÞ
Z

dωδðEp1
þω−Ep3

ÞδðEp2
−ω−Ep4

Þ: ðB17Þ

By expressing the arguments of the δ functions as

p1 þ ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ q2 þ 2p1q cosðθ1qÞ

q
;

p2 − ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ q2 − 2p2q cosðθ2qÞ

q
; ðB18Þ

this can be recast into a constraint for the angles

cosðθ1qÞ¼
w
q
þw2−q2

2p1q
; cosðθ2qÞ¼

w
q
−
w2−q2

2p2q
; ðB19Þ

which has a valid solution for

jωj < q; p1 >
q − ω

2
; p2 >

qþ ω

2
: ðB20Þ

Evaluating the Jacobian of this transformation as

∂
∂cosðθ1qÞ

�
p1þω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þq2þ2p1qcosðθ1qÞ

q �
¼−p1q

Ep3

;

∂
∂ cosðθ2qÞ

�
p2−ω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2þq2−2p2qcosðθ2qÞ

q �
¼þp2q

Ep4

;

ðB21Þ

the phase-space integral can then be recast into the form

Z
dΩ2↔2¼ð2πÞ

Z
d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3
Z

d3q
ð2πÞ3

×
Z

dω
1

16p2
1p

2
2q

2
θðq− jωjÞθ

�
p1−

q−ω

2

�

×θ

�
p2−

qþω

2

�
δ

�
w
q
þw2−q2

2p1q
− cosðθ1qÞ

�

×δ

�
w
q
−
w2−q2

2p2q
− cosðθ2qÞ

�
: ðB22Þ

Clearly the most straightforward way to implement the
constraints is to perform the q andω integrations prior to the
p1 andp2 integrations, such that thevectorsp1 andp2 can be
parametrized in terms of spherical coordinates in a right-
handed orthonormal system spanned by the unit vectors

e⃗1 ¼ e⃗q ¼
q⃗
jq⃗j ; e⃗2 ¼

e⃗n − cosðθqÞe⃗q
je⃗n − cosðθqÞe⃗qj

;

e⃗3 ¼
e⃗q × ðe⃗n − cosðθqÞe⃗qÞ
je⃗q × ðe⃗n − cosðθqÞe⃗qÞj

; ðB23Þ

where e⃗n denotes the preferred axis of the coordinate system,
such that

p⃗1 ¼ p1

�
cosðθ1qÞe⃗q þ sinðθ1qÞ cosðϕ1Þ

e⃗n − cosðθqÞe⃗q
je⃗n − cosðθqÞe⃗qj

þ sinðθ1qÞ sinðϕ1Þ
e⃗q × ðe⃗n − cosðθqÞe⃗qÞ
je⃗q × ðe⃗n − cosðθqÞe⃗qÞj

�
;

p⃗2 ¼ p2

�
cosðθ2qÞe⃗q þ sinðθ2qÞ cosðϕ2Þ

e⃗n − cosðθqÞe⃗q
je⃗n − cosðθqÞe⃗qj

þ sinðθ2qÞ sinðϕ2Þ
e⃗q × ðe⃗n − cosðθqÞe⃗qÞ
je⃗q × ðe⃗n − cosðθqÞe⃗qÞj

�
; ðB24Þ

which allows for a straightforward evaluation of the con-
straints on cosðθ1qÞ and cosðθ2qÞ yieldingZ

dΩ2↔2¼
1

16ð2πÞ8
Z

∞

0

dq
Z

1

−1
dcosðθqÞ

Z
2π

0

dϕq

Z
q

−q
dω

×
Z

∞

maxðq−ω
2
;0Þ
dp1

Z
∞

maxðqþω
2
;0Þ
dp2

Z
2π

0

dϕ1

Z
2π

0

dϕ2:

ðB25Þ
Specifically in terms of these coordinates the angles of p1

and p2 with respect to the anisotropy direction are given by

cosðθ1Þ ¼ cosðθ1qÞ cosðθqÞ þ sinðθ1qÞ sinðθqÞ cosðϕ1Þ;
cosðθ2Þ ¼ cosðθ2qÞ cosðθqÞ þ sinðθ2qÞ sinðθqÞ cosðϕ2Þ:

ðB26Þ
Note that if wewish to impose constraints on themagnitudes
of pmin

1 < p1 < pmax
1 and pmin

2 < p2 < pmax
2 , then the cor-

responding phase-space constraints take the form
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max

�
q − ω

2
; pmin

1

�
< p1 < pmax

1 ;

max

�
qþ ω

2
; pmin

2

�
< p2 < pmax

2 : ðB27Þ

2. Inelastic collision integrals

a. Collinear radiation

The inelastic collision integral for particle “a” with
momentum p⃗1 in splitting process a→b;c (p1 ↔ p2; p3)
and joining process a; b → c (p1; p2 ↔ p3) reads

C1↔2
a ½f�ðp⃗1Þ ¼

1

2νa

1

2Ep1

X
bc

Z
dΠa↔bc

1↔2 jMa
bcðp⃗1jp⃗2; p⃗3Þj2Fa

bcðp⃗1jp⃗2; p⃗3Þ

þ 1

νa

1

2Ep1

Z
dΠab↔c

1↔2 jMab
c ðp⃗1; p⃗2jp⃗3Þj2Fab

c ðp⃗1; p⃗2jp⃗3Þ

¼ 1

2νa

1

2Ep1

X
bc

Z
dΠa↔bc

1↔2 jMa
bcðp⃗1jp⃗2; p⃗3Þj2Fa

bcðp⃗1jp⃗2; p⃗3Þ

−
1

νa

1

2Ep1

Z
dΠab↔c

1↔2 jMc
abðp⃗3jp⃗1; p⃗2Þj2Fc

abðp⃗3jp⃗1; p⃗2Þ ðB28Þ

with measure

Z
dΠa↔bc

1↔2 ¼
Z

d3p2

ð2πÞ3
1

2Ep2

Z
d3p3

ð2πÞ3
1

2Ep3

× ð2πÞ4δð4Þðp1 − p2 − p3Þ:Z
dΠab↔c

1↔2 ¼
Z

d3p2

ð2πÞ3
1

2Ep2

Z
d3p3

ð2πÞ3
1

2Ep3

× ð2πÞ4δð4Þðp1 þ p2 − p3Þ: ðB29Þ

jMa
bcðp⃗1jp⃗2; p⃗3Þj2 and jMab

c ðp⃗1; p⃗2jp⃗3Þj2 are the matrix element squares for process “a ↔ b; c” and “a; b ↔ c.”
Fa
cdðp⃗1jp⃗3; p⃗4Þ and Fab

c ðp⃗1; p⃗2jp⃗3Þ are the statistical factors. Similarly, we define Q-factors

Qa
bcð1j23Þ ¼ Qa

bcðp⃗1jp⃗2; p⃗3Þ ¼ jMa
bcðp⃗1jp⃗2; p⃗3Þj2Fa

bcðp⃗1jp⃗2; p⃗3Þ;
Qab

c ð12j3Þ ¼ Qab
c ðp⃗1; p⃗2jp⃗3Þ ¼ jMab

c ðp⃗1; p⃗2jp⃗3Þj2Fab
c ðp⃗1; p⃗2jp⃗3Þ; ðB30Þ

which have the following symmetries:

Qa
bcðp⃗1jp⃗2; p⃗3Þ ¼ Qa

cbðp⃗1jp⃗3; p⃗2Þ ¼ −Qbc
a ðp⃗2; p⃗3jp⃗1Þ: ðB31Þ

As was suggested by AMY [52], in a nearly collinear inelastic scattering, after integration all soft kick particles from the
medium, and assuming massless kinematics, the collision integral in Eq. (B28) can be recast into 1D collinear process (we
denote p ¼ jp⃗j ≈ pk)

C1↔2
a ½f�ðp1Þ ¼

ð2πÞ3
2νap2

1

X
bc

Z
∞

0

dp2dp3δðp1 − p2 − p3Þγabcðp1jp2; p3ÞFa
bcðp1jp2; p3Þ

−
ð2πÞ3
νap2

1

Z
∞

0

dp2dp3δðp1 þ p2 − p3Þγcabðp3jp1; p2ÞFc
abðp3jp1; p2Þ; ðB32Þ

where in the statistical distribution, we only put the momentum components of p2 ¼ p⃗2 · p⃗1=jp⃗1j and p3 ¼ p⃗3 · p⃗1=jp⃗1j
which is in parallel to the p1, while p1 ¼ jp⃗1j is its full momentum.
We parametrize the phase-space for inelastic rates by setting p1 ¼ p, p2 ¼ zp, p3 ¼ z̄p in the first termZ

∞

0

dp2dp3δðp1 − p2 − p3Þγabcðp1jp2; p3Þ ¼ p
Z

1

0

dzdz̄δð1 − z − z̄Þγabcðpjzp; z̄pÞ; ðB33Þ

and similarly by setting p1 ¼ p, p3 ¼ p1=z, p2 ¼ z̄p3 in the second term
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Z
∞

0

dp2dp3δðp1 þ p2 − p3Þγcabðp3jp1; p2Þ ¼ p
Z

1

0

dzdz̄
1

z2
δð1 − z − z̄Þγcab

�
p
z
jp; z̄

z
p

�
; ðB34Þ

such that upon defining the effective rate

dΓa
bc

dz
ðp; zÞ ¼ ð2πÞ3

νap
γabcðpjzp; z̄pÞ ðB35Þ

we arrive at

C1↔2
a ½f�ðpÞ ¼ ð2πÞ3

2νap

X
bc

Z
1

0

dzdz̄δð1 − z − z̄Þγabcðpjzp; z̄pÞFa
bcðpjzp; z̄pÞ −

ð2πÞ3
νap

Z
1

0

dzdz̄
1

z2
δð1 − z − z̄Þ

× γcab

�
p
z

				p; z̄z p
�
Fc
ab

�
p
z

				p; z̄z p
�

¼ 1

2νa

Z
1

0

dz
X
bc

�
dΓa

bc

dz
ðp1; zÞνaFa

bcðpjzp; z̄pÞ−
2

z3
dΓc

ab

dz

�
p
z
; z

�
νcFc

ab

�
p
z

				p; z̄z p
��

; ðB36Þ

where z̄ ¼ 1 − z. We may further symmetrize this expression by splitting the second term into two terms integrating over z
and 1 − z such that

C1↔2
a ½f�ðpÞ ¼ 1

2νa

Z
1

0

dz

�X
bc

dΓa
bc

dz
ðp; zÞνaFa

bcðpjzp; z̄pÞ

−
1

z3
dΓc

ab

dz

�
p
z
; z

�
νcFc

ab

�
p
z

				p; z̄z p
�
−

1

z̄3
dΓc

ab

dz

�
p
z̄
; z̄

�
νcFc

ab

�
p
z̄

				p; zz̄ p
��

: ðB37Þ

b. Discretization of collinear form

The discretized form of collinear collision integral in Eq. (B37) follows the transformation in Eq. (A1):

C1↔2
a ½n�ðip; jθ; kϕÞ ¼

Z
d3p
ð2πÞ3Wðip;jθ ;kϕÞðp⃗ÞC1↔2

a ½f�ðpÞ

¼ 1

4π2

Z
∞

0

p2dp
Z þ1

−1
d cosðθÞWðip;jθ ;kϕÞðp⃗ÞC1↔2

a ½f�ðpÞ

¼ 1

8π2νa

Z
∞

0

p2dp
Z þ1

−1
d cosðθÞ

Z
1

0

dzWðip;jθ ;kϕÞðp⃗Þ ×
�X

bc

dΓa
bc

dz
ðp; zÞνaFa

bcðpjzp; z̄pÞ

−
1

z3
dΓc

ab

dz

�
p
z
; z

�
νcFc

ab

�
p
z

				p; z̄z p
�
−

1

z̄3
dΓc

ab

dz

�
p
z̄
; z̄

�
νcFc

ab

�
p
z̄

				p; zz̄ p
��

¼ 1

8π2νa

Z
∞

0

p2dp
Z þ1

−1
d cosðθÞ

Z
1

0

dz

�X
bc

dΓa
bc

dz
ðp; zÞνaFa

bcðpjzp; z̄pÞWðip;jθ ;kϕÞðpÞ

−
dΓc

ab

dz
ðp; zÞνcFc

abðpjzp; z̄pÞWðip;jθ ;kϕÞðzpÞ −
dΓc

ab

dz
ðp; z̄ÞνcFc

abðpjz̄p; zpÞWðip;jθ ;kϕÞðz̄pÞ
�
; ðB38Þ

where we used a redefinition of the integrals
R d3p

ð2πÞ3
1
z3 ¼

R d3p0
ð2πÞ3 (and similarly for z̄) to bring all terms into the same form.
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Note that

dΓc
ab

dz
ðp; z̄Þ ¼ dΓc

ba

dz
ðp; zÞ;

Fc
abðpjz̄p; zpÞ ¼ Fc

baðpjzp; z̄pÞ: ðB39Þ
Define a Δ-factor for inelastic collision

Δc
abðp; zÞ ¼

dΓc
ab

dz
ðp; zÞνcFc

abðpjzp; z̄pÞ; ðB40Þ

which has the following symmetry:

Δc
abðp; zÞ ¼ Δc

baðp; z̄Þ: ðB41Þ

With a refinement of the measure and weight in the
integral dΠ ¼ 1

8π2

R
∞
0 p2dp

Rþ1
−1 d cosðθÞ R 1

0 dz andWðpÞ ¼
Wðip;jθ ;kϕÞðpÞ, we can rewrite the form into

C1↔2
a ½n�ðip; jθ; kϕÞ ¼

1

νa

Z
dΠ

�X
bc

Δa
bcðp; zÞWðpÞ − Δc

abðp; zÞWðzpÞ − Δc
baðp; zÞWðz̄pÞ

�
: ðB42Þ

For b ≠ c, we have the following useful equivalent form of Eq. (B42) for convenience:

C1↔2
a ½n�ðip; jθ; kϕÞ ¼

1

νa

Z
dΠ½ðΔa

bcðp; zÞ þ Δa
cbðp; zÞÞWðpÞ−Δc

abðp; zÞWðzpÞ − Δc
baðp; zÞWðz̄pÞ�

¼ 1

νa

Z
dΠ½ðΔa

bcðp; zÞ þ Δa
bcðp; z̄ÞÞWðpÞ−Δc

abðp; zÞWðzpÞ − Δc
abðp; z̄ÞWðz̄pÞ�: ðB43Þ

For b ¼ c, we have

C1↔2
a ½n�ðip; jθ; kϕÞ ¼

1

νa

Z
dΠ½Δa

ccðp; zÞWðpÞ−Δc
acðp; zÞWðzpÞ − Δc

caðp; zÞWðz̄pÞ�

¼ 1

νa

Z
dΠ½Δa

ccðp; zÞWðpÞ−Δc
acðp; zÞWðzpÞ − Δc

acðp; z̄ÞWðz̄pÞ�; ðB44Þ

where we use the fact that for any function fðp; zÞ, we haveZ
1

0

dzfðp; zÞ ¼
Z

1

0

dzfðp; 1 − zÞ: ðB45Þ

Now we list the discretized collision integrals for all inelastic processes and prove the exact conservation taking the most
complicated process g ↔ qq̄ for example.
a. Process g ↔ qq̄ The available collision integrals are listed below:
(1) For gluon g ðqq̄ ¼ uū; dd̄; ss̄Þ

C1↔2
g ½n�ðip;jθ;kϕÞ¼

1

νg

Z
dΠ½ðΔg

qq̄ðp;zÞþΔg
q̄qðp;zÞÞWðpÞ�: ðB46Þ

(2) For quark q (q ¼ u, d, s)

C1↔2
q ½n�ðip;jθ;kϕÞ¼

1

νq

Z
dΠ½−Δg

qq̄ðp;zÞWðzpÞ−Δg
q̄qðp;zÞWðz̄pÞ�: ðB47Þ

(3) For antiquark q̄ ðq̄ ¼ ū; d̄; s̄Þ

C1↔2
q̄ ½n�ðip;jθ;kϕÞ¼

1

νq̄

Z
dΠ½−Δg

q̄qðp;zÞWðzpÞ−Δg
qq̄ðp;zÞWðz̄pÞ�: ðB48Þ

Again, we denote Pij ¼ ðpi; pi cosðθjÞÞ ¼ piΘj with ði; jÞ ∈ N2
p;θ. Since collinear collision has the same scattering angle

for in and out particles, the particles a, b, c have energy and longitudinal momentum P ¼ ðp; p cosðθÞÞ,
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zP ¼ ðzp; zp cosðθÞÞ, z̄P ¼ ðz̄p; z̄p cosðθÞÞ. The collision integral has the following conservation laws automatically
proved by the discretized collision integral from the completeness relation Eq. (A2) and sum rule Eq. (A8):
(1) Charge conservation for g → qq̄ ðqq̄ ¼ uū; dd̄; ss̄Þ

X
ðip;jθ ;kϕÞ

½νqC1↔2
q ½n� − νq̄C1↔2

q̄ ½n�� ¼
X

ðip;jθ ;kϕÞ

Z
dΠ½ðΔg

q̄qðp; zÞ − Δg
qq̄ðp; zÞÞðWðzpÞ −Wðz̄pÞÞ�

¼
Z

dΠ½ðΔg
q̄qðp; zÞ − Δg

qq̄ðp; zÞÞð1 − 1Þ� ¼ 0: ðB49Þ

(2) Energy momentum conservation for g → qq̄ ðqq̄ ¼ uū; dd̄; ss̄Þ
X

ðip;jθ ;kϕÞ
Pij½νgC1↔2

g ½n�þνqC1↔2
q ½n�þνq̄C1↔2

q̄ ½n��
X

ðip;jθ ;kϕÞ
Pij

Z
dΠ½ðΔg

qq̄ðp;zÞþΔg
q̄qðp;zÞÞðWðpÞ−WðzpÞ−Wðz̄pÞÞ�

¼
Z

dΠ½ðΔg
qq̄ðp;zÞþΔg

q̄qðp;zÞÞðP− zP− z̄PÞ� ¼ 0: ðB50Þ

b. Process g ↔ gg The gluon collision integral is

C1↔2
g ½n�ðip; jθ; kϕÞ ¼

1

νg

Z
dΠ½Δg

ggðp; zÞðWðpÞ −WðzpÞ −Wðz̄pÞÞ�: ðB51Þ

c. Process q ↔ gq The available collision integrals for partons are listed below
(1) For gluon g ðq ¼ u; d; s; ū; d̄; s̄Þ

C1↔2
g ½n�ðip; jθ; kϕÞ ¼

1

νg

Z
dΠ½−Δq

gqðp; zÞWðzpÞ − Δq
qgðp; zÞWðz̄pÞ�: ðB52Þ

(2) For quark/antiquark q ðq ¼ u; d; s; ū; d̄; s̄Þ

C1↔2
q ½n�ðip; jθ; kϕÞ ¼

1

νq

Z
dΠ½ðΔq

qgðp; zÞ þ Δq
gqðp; zÞÞWðpÞ−Δq

qgðp; zÞWðzpÞ − Δq
gqðp; zÞWðz̄pÞ�: ðB53Þ

3. Longitudinal expansion integrals

In a longitudinally expanding system, there is an additional contribution to the collision integral which can be expressed
in the form of a collision integral [see Eq. (46)]

Cz-exp
a ½f�ðp⃗; tÞ ¼ −

pk
t
∂faðp⃗; tÞ

∂pk
¼ −

p cosðθÞ
t

�
cosðθÞ ∂faðp⃗; tÞ∂p þ sin2ðθÞ

p
∂faðp⃗; tÞ
∂ cosðθÞ

�
: ðB54Þ

Thus the discretized form of the collision integral for the azimuthal-isotropic medium can be evaluated as

Cz-exp
a ½n�ðip; jθÞ ¼ −

1

ð2πÞ2
Z

∞

0

dpp2

Z
1

−1
d cosðθÞwðpÞ

i ðpÞwðθÞ
j ðθÞ

×
p cosðθÞ

t

�
cosðθÞ ∂faðp⃗; tÞ∂p þ sin2ðθÞ

p
∂faðp⃗; tÞ
∂ cosðθÞ

�
: ðB55Þ

Note from Eq. (A16), we can reexpress the distribution fðp⃗; tÞ in the continuous domain in terms of a summation of its
neighboring discretized forms
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fðp⃗; tÞ ¼ 1

pl

X
α;β

wðpÞ
α ðpÞwðθÞ

β ðθÞ ð2πÞ2
Að2−lÞ
ðαÞ AðβÞ

nðα; βÞ; ððα; βÞ ∈ N2
p;θÞ: ðB56Þ

We approximate the fðp⃗ ∈ Uðip;jθÞÞ with fðp⃗ ∈ UpÞ where Uðip;jθÞ ¼ ðpi−1; piþ1Þ × ðθj−1; θjþ1Þ and Up ¼ ðpi; piþ1Þ×
ðθj; θjþ1Þ. Then we can construct the collision term in discretized grids with a derivative of weight functions

Cz-exp½n�ðip;jθÞ¼Mz-expðα;βip;jθ
Þnðα;βÞ

¼−
X

ðα;βÞ∈N2
p;θ

Z
d3p
ð2πÞ3

�ð2πÞ2pcosðθÞ
tAð2−lÞ

ðαÞ AðβÞ

�
wðpÞ
i ðpÞwðθÞ

j ðθÞ
�
cosðθÞ ∂

∂p
�
wðpÞ
α

pl

�
wðθÞ
β ðθÞþ sin2ðθÞ

p

�
wðpÞ
α

pl

�∂wðθÞ
β ðθÞ

∂ cosðθÞ
�
nðα;βÞ

with derivatives

∂
∂p

�
wðpÞ
α ðpÞ
pl

�
¼ 1

plþ1

�ðl−1Þp− lpαþ1

pαþ1−pα
χ½pα;pαþ1�ðpÞþ

lpα−1− ðl−1Þp
pα−pα−1

χ½pα−1;pα�ðpÞ
�

∂wðθÞ
β ðθÞ

∂ cosðθÞ ¼
�

−1
cosðθβþ1Þ− cosðθβÞ

χ½θβ ;θβþ1�ðθÞþ
1

cosðθβÞ− cosðθβ−1Þ
χ½θβ−1;θβ�ðθÞ

�
:

ðB57Þ

The integrated out expression is analytic but lengthy, and
we do not list it here.

APPENDIX C: EVOLUTION ALGORITHM

1. Grid setup

We discussed the discretized algorithm in Appendixes A
and B without specifying the choice of grids distribution in
the phase-space since the algorithm is generally indepen-
dent of the choice. However, since the particle distributions
are generally accumulated at low momentum and elimi-
nated at high momentum near equilibrium, an exponential
distribution of grid points along momentum p is preferred.
Similarly, the system is close to isotropic near equilibrium;
thus a linear distribution of grid points along angle θ is
preferred. With those considerations, we set up the grids as

pi ¼pmin

�
pmax

pmin

� i
Np−1

; i¼ 0;…;Np−1;

cosθj ¼
j

Nθ−1
ðcosθmax−cosθminÞ; j¼ 0;…;Nθ−1;

ðC1Þ
with pmin chosen as a nonzero small value to avoid
singularity at the initial point and θmin ¼ 0, θmax ¼ π.
The choice of pmax and the maximal number of intervals
depend on the specific systems we want to inspect. For
underoccupied systems with high momentum jets, their
values should increase.
We take Np ¼ 64, Nθ ¼ 64 for isotropic systems and

Np ¼ 256, Nθ ¼ 64 for anisotropic systems where higher
accuracy is needed.

2. Inelastic rate interpolation

The effective inelastic rates
dΓa

bc
dz ðp; zÞ are also depend-

ing on screening masses mD, mQf which are evaluated
every time step during the evolution; hence we need to
evaluate the effective inelastic rates dynamically. The
calculation of the effective inelastic rate is numerically
intensive; thus we do not calculate the rate for every time
step. Instead, we first calculate the rates as functions of

ωBH ¼ m2
D

g2T�, xDQf ¼ m2
D

m2
Qf

for each inelastic process and

each quark flavor. Then we set up 2D local rate grids on
scales ωBH, xDQf with the grid boundary varied by �20%

of their central values. Since the scales m2
D, m

2
Qf, T

� are
changing modestly (see Sec. C 4), the rates in the
upcoming steps can be interpolated from the grids as
long as the upcoming scales ωBH, xDQf are within the
grid squares. Once either ωBH, xDQf evolves outside
of the grid squares, we recalculate the inelastic rates
based on the current scales.

3. Monte Carlo sampling

We perform Monte Carlo integration of collision inte-
grals for both elastic and inelastic processes.
For the elastic samplings, we first sample q, then

−q ≤ ω ≤ q, and finally q−ω
2

≤ p1,
qþω
2

≤ p2 according
to the discussions in Sec. B 1 b. The samplings of angles
cosðθqÞ, ϕq together with ϕ1, ϕ2 help us determine the
values for p3, p4. With each of set of samplings for
momenta p1, p2, p3, p4, we calculate the discretized
collision integral according to Eq. (B7) which simulta-
neously updates the gain and loss terms of all the
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processes, which by virtue of the sum rules ensures exact
energy and particle number conservation as was discussed
in Sec. B 1 a. Similarly, the evaluation of inelastic colli-
sion integrals are performed by sampling p, z and the
angle with respect to the longitudinal direction cosðθÞ
according to Eq. (B42) which also simultaneously updates
the gain and loss terms.
The summation of all relevant processes and all

samplings for collision integrals provides the total colli-
sion integral in the Boltzmann equation for the specific
particle.
The sampling numbers are chosen to be Nsample;elastic ¼

512 for each specific elastic process and Nsample;inelastic ¼
256 for each specific inelastic process.

4. Adaptive time step

Evolving the particle distributions in the discretized
domain, we need an adaptive time step size Δt to perform
a stable increment for each distinct step

Δnaðip; jθ; kϕ; tÞ ¼ −½C2↔2
a ½n�ðip; jθ; kϕ; tÞ

þ C1↔2
a ½n�ðip; jθ; kϕ; tÞ

þ Cz-exp
a ½n�ðip; jθ; kϕ; tÞ�Δt: ðC2Þ

In order to do that, we need to make sure
essential physics scales are not changing rapidly in
each step. Common scales into considerations are total
number density n, total energy density e and total
longitudinal pressure pL, Debye screening mass square
m2

D, quark screening mass square m2
Qf, and effective

temperature T�. Some other scales may also be consid-
ered. However, more scales will not only increase the
stability, but also slow down the evolution with a shorter
resulting time step Δt. According to their expressions
listed in Sec. II A, their relative changing rate can be
approximated by

∂tn
n

¼
R
d3p½νgCA∂tfg þ νqCF

P
fð∂tfq þ ∂tfq̄Þ�R

d3p½νgCAfg þ νqCF
P

fðfq þ fq̄Þ�
;

∂te
e

¼
R
pd3p½νgCA∂tfg þ νqCF

P
fð∂tfq þ ∂tfq̄Þ�R

pd3p½νgCAfg þ νqCF
P

fðfq þ fq̄Þ�
;

∂tpL

pL
¼

R
p cos2ðθÞd3p½νgCA∂tfg þ νqCF

P
fð∂tfq þ ∂tfq̄Þ�R

p cos2ðθÞd3p½νgCAfg þ νqCF
P

fðfq þ fq̄Þ�
;

∂tm2
D

m2
D

¼
R d3p

2p ½νgCA∂tfg þ νqCF
P

fð∂tfq þ ∂tfq̄Þ�R d3p
2p ½νgCAfg þ νqCF

P
fðfq þ fq̄Þ�

;

∂tm2
Qf

m2
Qf

¼
R d3p

2p ½2∂tfG þ ð∂tfQf þ ∂tfQ̄fÞ�R d3p
2p ½2fG þ ðfQf þ fQ̄fÞ�

;

∂tm2
DT

�

m2
DT

� ¼
R
d3p½νgCAð∂tfg þ 2fgdfgÞ þ νqCF

P
fð∂tfq − 2fq∂tfq þ ∂tfq̄ − 2fq̄∂tfq̄Þ�R

d3p½νgCAfgð1þ fgÞ þ νqCF
P

fððfqð1 − fqÞ þ fq̄ð1 − fq̄ÞÞ�
: ðC3Þ

In those preceding formulas the time derivative of distribution ∂t can be evaluated according to Eq. (A16),

∂tfðp⃗; tÞ ¼
1

pl

X
α;β

wðpÞ
α ðpÞwðθÞ

β ðθÞ ð2πÞ2
Að2−lÞ
ðαÞ AðβÞ

Δnðα; βÞ
Δt

¼ −
1

pl

X
α;β

wðpÞ
α ðpÞwðθÞ

β ðθÞ ð2πÞ2
Að2−lÞ
ðαÞ AðβÞ

X
Cprocess
a ðα; βÞ; ððα; βÞ ∈ N2

p;θÞ: ðC4Þ

We control the change of those scales for each time step less than 5% via a primary time step size goal
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Δtgoal ¼
0.05

maxfj ∂tnn j; j ∂tee j; j ∂tpL
pL

j; j ∂tm2
D

m2
D
j; j ∂tm2

Qf

m2
Qf

j; j ∂tm2
DT

�

m2
DT

� jg
: ðC5Þ

In order to have a smooth change of the time step size, we ultimately choose time step size for step i as

Δti ¼ ðΔt3i−1ΔtgoalÞ
1
4: ðC6Þ
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