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In this work we have studied the QCD phase structure and critical dynamics related to the 3-d Oð4Þ and
Zð2Þ symmetry universality classes in the two-flavor quark-meson low energy effective theory within the
functional renormalization group approach. We have employed the expansion of Chebyshev polynomials
to solve the flow equation for the order-parameter potential. The chiral phase transition line of Oð4Þ
symmetry in the chiral limit and the Zð2Þ line of critical end points related to the explicit chiral symmetry
breaking are depicted in the phase diagram. Various critical exponents related to the order parameter, chiral
susceptibilities, and correlation lengths have been calculated for the 3-d Oð4Þ and Zð2Þ universality classes
in the phase diagram, respectively. We find that the critical exponents obtained in the computation, where a
field-dependent mesonic nontrivial dispersion relation is taken into account, are in quantitative agreement
with results from other approaches, e.g., the conformal bootstrap, the Monte Carlo simulations, and the
d ¼ 3 perturbation expansion. Moreover, the size of the critical regime in the QCD phase diagram is found
to be very small.
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I. INTRODUCTION

Significant progress has been made in studies of QCD
phase structure over the past decade, both from the
experimental and theoretical sides; see, e.g., [1–10]. One
of the most prominent features of the QCD phase structure
is the probable presence of a second order critical end point
(CEP) in the phase diagram spanned by the temperature T
and baryon chemical potential μB or densities, which
separates the first order phase transition at high μB from
the continuous crossover at low μB [1]. The existence
and location of CEP are, however, still open questions,
whose answers would definitely help us to unravel the
most mysterious veil related to the properties of strongly
interacting matter under extreme conditions. The Beam
Energy Scan (BES) Program at the Relativistic Heavy Ion
Collider (RHIC) is aimed at searching for and locating the
critical end point, where fluctuation observables sensitive
to the critical dynamics, e.g., high-order cumulants of net-
proton, net-charge, net-kaon multiplicity distributions, have
been measured [11–14]. Notably, a nonmonotonic depend-
ence of the kurtosis of the net-proton multiplicity distri-
bution on the beam energy with 3.1σ significance in central

collisions has been reported by the STAR Collaboration
recently [15].
On the other hand, lattice QCD simulations have pro-

vided us with a plethora of knowledge about the QCD
phase structure, e.g., the crossover nature of the chiral
phase transition at finite T and vanishing μB with physical
current quark mass [16], pseudocritical temperature
[17,18], and curvature of the phase boundary [9,19].
Because of the notorious sign problem at finite chemical
potential, the reliability regime of lattice calculations is
restricted to be μB=T ≲ 2 ∼ 3, where no CEP has been
found. Free from the sign problem, the first-principle
functional approaches, e.g., the functional renormaliza-
tion group (fRG) and Dyson-Schwinger equations (DSE),
could potentially extend the regime of reliability to
μB=T ∼ 4 [5,7]. With benchmark tests of observables at
finite T and low μB in comparison to lattice calculations,
e.g., the quark condensate and curvature of the phase
boundary, functional approaches, both fRG and DSE, have
predicted a CEP located in a region of 450 MeV≲ μB ≲
650 MeV [5,7,20–22] recently.
An alternative method used to circumvent the possible

location of CEP is to determine the critical temperature
Tc of the chiral phase transition in the chiral limit, more
specifically, i.e., massless light up and down quarks and a
physical strange quark mass. This is because it is believed
that the value of Tc sets an upper bound for the temperature
of CEP [23,24]. Very recently, the critical temperature
Tc in the chiral limit has been investigated and its value
is extrapolated from both lattice simulations [25] and
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functional approach [26]. Moreover, further lattice calcu-
lations indicate that the axial anomaly remains manifested
at T ≈ 1.6Tc, which implies that the chiral phase transition
of QCD in the chiral limit is of 3-d Oð4Þ universality class
[27]; see, e.g., [28] for more discussions about the relation
between the axial anomaly and the symmetry universality
classes. However, one should note that the fate of theUAð1Þ
symmetry at high temperature is still an open question. In
contrast to the finding in [27], earlier lattice simulations
with domain-wall fermions found that the axial symmetry
is restored at T ≳ Tc [29], and see also, e.g., [30,31] for
relevant studies in effective models.
In this work, we would like to study the QCD phase

structure in the chiral limit and finite current quark mass,
i.e., with a finite pion mass, in the two-flavor quark-meson
low-energy effective field theory (LEFT) within the fRG
approach. For more discussions about the fRG approach,
see, e.g., QCD related reviews [32–39]. In contrast with the
lattice simulation and the first-principle fRG-QCD calcu-
lation [25,26], the chiral limit could be accessed strictly in
the LEFT. Furthermore, we would also like to study the
critical behaviors of the 3-d Oð4Þ and Zð2Þ universality
classes, including various critical exponents, which belong
to the second-order chiral phase transitions in the chiral
limit and at the critical end point with finite quark mass,
respectively. To that end, we expand the effective potential
of order parameter as a sum of Chebyshev polynomials in
the computation of fRG flow equations; see [40] for more
details. The Chebyshev expansion of solutions to a set
of integro-differential equations is, in fact, a specific
formalism of more generic pseudospectral methods [41],
and see also, e.g., [42–44] for applications of pseudospec-
tral methods in the fRG.
In fact, another two numerical methods are more com-

monly used in solving the flow equation for the effective
potential: one is the Taylor expansion of the effective
potential around some value [45,46], and the other dis-
cretization of the effective potential on a grid [47]. The (dis)
advantages of these two methods are distinct. The former is
liable to implementation of the numerical calculations, but
short of global properties of the effective potential, that is,
however, indispensable to studies of chiral phase transition
in the chiral limit or around CEP; the latter is encoded
with global information on the potential, but it loses
numerical accuracy near the phase transition point which
is necessary especially for the computation of critical
exponents. The Chebyshev expansion used in this work
combines the merits from both approaches, i.e., the global
potential and the numerical accuracy, and thus it is very
suitable for the studies of critical behaviors in theQCDphase
diagram. Remarkably, a discontinuous Galerkin scheme has
been applied in the context of fRG recently [48], which is
well-suited for studies of the first-order phase transition.
In this paper we will employ the global effective

potential and the high numerical accuracy provided by

the Chebyshev expansion to study critical behaviors of the
Oð4Þ and Zð2Þ symmetries in the two-flavor LEFT. In
particular, this computation allows us to determine the Zð2Þ
line, i.e., the trajectory of a critical end point moving in the
phase diagram with the strength of the explicit chiral
symmetry breaking, with a high accuracy. Furthermore,
we will also investigate the size of the critical region related
to the Oð4Þ and Zð2Þ phase transitions. As we will see
below, relevant study is possible only if enough accuracy of
computation is obtained, since the critical region in the
QCD phase diagram is very small. Additionally, in this
work we will take the field dependence for the mesonic
wave function renormalization into account, and investigate
its effects on the phase structure, critical scaling, critical
exponents, etc.
This paper is organized as follows: In Sec. II we briefly

introduce the flow equations in the quark-meson LEFT and
the method of the Chebyshev expansion for the effective
potential. The obtained phase diagram and QCD phase
structure are presented and discussed in Sec. III. In Sec. IV
scaling analyses for the 3-d Oð4Þ and Zð2Þ universality
classes are performed, and various critical exponents are
obtained. We also discuss the size of the critical regime
there. In Sec. V we give a summary and conclusion. Some
threshold functions and anomalous dimensions in the flow
equations and some relations for the Chebyshev polyno-
mials are collected in Appendix A and Appendix B,
respectively.

II. FUNCTIONAL RENORMALIZATION
GROUP AND THE LOW ENERGY

EFFECTIVE THEORIES

Thanks to Wilson’s idea of the renormalization group
(RG) (see, e.g., [49]), it has been well known that usually
the active degrees of freedom are quite different, when the
energy scale of a system evolves from a hierarchy into
another. The relevant dynamics in different hierarchies are
connected with each other through the evolution of RG
equations. To be more specific, in QCD the partonic
degrees of freedom, i.e., the quarks and gluons, in the
high energy perturbative regime are transformed into the
collective hadronic ones in the nonperturbative region of
low energy, with the RG scale evolving from the ultraviolet
(UV) to infrared (IR) limits [50], and see also, e.g.,
[7,33,51–57] for recent development of the relevant ideas
within the fRG approach. When the momentum or RG
scale is below, say ∼1 GeV, which is related to a narrow
transition region from the perturbative to nonperturbative
QCD, calculated results of Yang-Mills theory and QCD in
Landau gauge indicate that the gluons develop a finite
mass gap and decouple from the system, and see, e.g.,
[7,55,58,59] for more details. As a consequence, contri-
butions to the flow equations of effective action from the
glue sector could be safely neglected, if the initial evolution
scale is set at a UV scale Λ≲ 1 GeV.
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Hence, within the fRG approach, one is left with the flow
equation for the low energy effective theory, which reads

∂tΓk½Φ� ¼ −TrðGqq̄;k∂tRq;kÞ þ
1

2
TrðGϕϕ;k∂tRϕ;kÞ; ð1Þ

with the RG scale k and the RG time defined as
t ¼ lnðk=ΛÞ. Apparently, Eq. (1) is an ordinary differential
equation for the k-dependent effective action, Γk½Φ�, the
arguments Φ ¼ ðq; q̄;ϕÞ of which are the quark and
mesonic fields in the LEFT. The equation in Eq. (1), which
describes the evolution of the effective action with the RG
scale, is also well known as the Wetterich equation [60]; see
also [61,62]. The flow receives contributions from both the
quark and mesonic degrees of freedom, as shown on the
right-hand side (RHS) of Eq. (1), whereGqq̄;k andGϕϕ;k are
the k-dependent full quark and meson propagators, respec-
tively, and are related to the quadratic derivatives of Γk½Φ�
with respect to their respective fields, viz.

Gϕϕ=qq̄½Φ� ¼
 

1
δ2Γk½Φ�
δΦ2 þ RΦ;k

!
ϕϕ=qq̄

; ð2Þ

where Rq;k and Rϕ;k as well as in Eq. (1) are the IR
regulators, which are employed to suppress quantum
fluctuations of momenta q ≲ k, and their explicit expres-
sions used in the work are given in Eqs. (A1) and (A2).
Moreover, interested readers could refer to QCD related
fRG review articles [32–39] for more details about the
formalism of fRG, and also [7,10,26,54–56,58,63–66] for
recent progress on relevant studies.
In this work, we adopt a truncation for the effective

action in Eq. (1) as follows:

Γk½Φ� ¼
Z
x

�
Zq;kq̄ðγμ∂μ − γ0μ̂Þqþ 1

2
Zϕ;kðρÞð∂μϕÞ2

þ hy;kq̄ðT0σ þ iγ5T⃗ · π⃗Þqþ VkðρÞ − cσ

�
; ð3Þ

with the shorthand notation
R
x ¼

R 1=T
0 dx0

R
d3x, where the

quark field q ¼ ðu; dÞT and the meson field ϕ ¼ ðσ; π⃗Þ are
in the fundamental and adjoint representations of SUðNfÞ
in the flavor space with Nf ¼ 2, respectively. They interact
with each other via a Yukawa coupling with a coupling
strength hY;k, where the subscript Y is used to distinguish it
from the reduced external field h in Eq. (15). Here Ti

(i ¼ 1, 2, 3) are the generators of SUð2Þ with TrðTiTjÞ ¼
1
2
δij and T0 ¼ 1ffiffiffiffiffiffi

2Nf

p 1Nf×Nf
. Note that both the effective

potential VkðρÞ and the mesonic wave function renormal-
ization Zϕ;kðρÞ in Eq. (3) depend on the meson field by
means of ρ ¼ ϕ2=2, which are Oð4Þ invariant. Zq;k is the
quark wave function renormalization. Notice that the term
linear in the order parameter field, i.e., −cσ in Eq. (3),

breaks the chiral symmetry explicitly, and thus here c is
essentially an external “magnetic” field in the language of
magnetization. Moreover, μ̂ ¼ diagðμu; μdÞ is the matrix of
quark chemical potentials in the flavor space, and μ ¼
μu ¼ μd is assumed throughout this work, which is related
to the baryon chemical potential via μ ¼ μB=3. For more
discussions about the quark-meson LEFT in Eq. (3) or its
extensions, e.g., Polyakov-loop quark-meson LEFT, QCD
assisted LEFT, and their applications in calculations of
QCD thermodynamics and phase structure, fluctuations
and correlations of conserved charges, etc. (see, e.g.,
[10,46,47,67–85]).

A. Flow equations

Substituting the effective action in Eq. (3) into the
Wetterich equation in Eq. (1), one readily obtains the flow
equation of the effective potential as follows:

∂tVkðρÞ ¼
k4

4π2
½ðN2

f − 1ÞlðB;4Þ0 ðm̄2
π;k; ηϕ;k;TÞ

þ lðB;4Þ0 ðm̄2
σ;k; ηϕ;k;TÞ

− 4NcNfl
ðF;4Þ
0 ðm̄2

q;k; ηq;k;T; μÞ�; ð4Þ

with the threshold functions lðB;4Þ0 and lðF;4Þ0 given in
Eqs. (A5) and (A6), respectively. Here, the scale-dependent
meson and quark masses read

m̄2
π;k ¼

V 0
kðρÞ

k2Zϕ;k
; m̄2

σ;k ¼
V 0
kðρÞ þ 2ρV 00

kðρÞ
k2Zϕ;k

; ð5Þ

m̄2
q;k ¼

h2y;kρ

2k2Z2
q;k

; ð6Þ

which are RG invariant and dimensionless.
The meson and quark anomalous dimensions in the

threshold functions in Eq. (4) are defined as follows:

ηϕ;k ¼ −
∂tZϕ;k

Zϕ;k
; ηq;k ¼ −

∂tZq;k

Zq;k
; ð7Þ

where the meson anomalous dimension is obtained by
projecting the flow equation in Eq. (1) onto the inverse pion
propagator, to wit,

ηϕ;kðρÞ ¼ −
1

3Zϕ;k
δij

∂
∂ðjpj2Þ

δ2∂tΓk

δπið−pÞδπjðpÞ
����p0¼0

p¼0

; ð8Þ

the explicit expression of which is presented in Eq. (A9).
Note that ηϕ;k is dependent on the meson field via ρ.
In comparison to the effects of the meson wave function

renormalization on the chiral phase transition at finite
temperature and density, it has been found that those of
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quark wave function renormalization and the running
Yukawa coupling are relatively milder (see, e.g.,
[45,46,78]). Therefore, in this work we adopt the simpli-
fication as follows:

ηq;k ¼ 0; ∂th̄y;k ¼ 0; ð9Þ

with the renormalized Yukawa coupling given in Eq. (A10),
and use two different truncations: one is the usual local
potential approximation (LPA), where the mesonic anoma-
lous dimension is vanishing as well, and the k-dependent
term in Eq. (3) is just the effective potential; the other is the
truncation with the field-dependent mesonic anomalous
dimension in Eq. (8) taken into account besides the
potential, which is denoted as LPA0 in this work. Note
that the notation LPA0 in literature (e.g., [78,86]) usually
stands for the truncation with a field-independent mesonic
anomalous dimension which is, strictly speaking, different
from the case in this work. Note that it has been recently
found that the flow of the field-dependent Yukawa coupling
increases with the magnitude of Yukawa coupling at the
UV cutoff [87].
As an illustrative example, we show the mesonic wave

function renormalization Zϕ ≡ Zϕ;k¼kIR as a function of the

renormalized sigma field σ̄ ¼ Z1=2
ϕ σ obtained in LPA0 in

Fig. 1, where kIR is the RG scale in the IR limit, and one
would have kIR → 0 in principle, which, however, is
impossible to realize in numerical calculations. This is
due to the convexity-restoring property of the flow for
the effective potential; see, e.g., [88] for more details. In
our calculation the value of kIR is reduced as small as
possible, and we find the convergence is obtained when
kIR ¼ 1 MeV. Note that the mesonic wave function
renormalization at the scale of UV cutoff Λ (see Sec. III

in the following) is assumed to be identical to unity,
i.e., Zϕ;k¼Λ ¼ 1. In Fig. 1, we choose several values of
temperature T ¼ ΔT þ Tc at and above the critical temper-
ature that is Tc ¼ 143.6 MeV in the chiral limit and at
vanishing μB. One observes that with the increase of the
temperature, the peak structure of Zϕ as a function of the
renormalized sigma field σ̄ becomes smoother.

B. Chebyshev expansion of the effective potential

In this work we solve the flow equation in Eq. (4) by
expanding the effective potential as a sum of Chebyshev
polynomials up to an order Nv, to wit,

V̄kðρ̄Þ ¼
XNv

n¼1

cn;kTnðρ̄Þ þ
1

2
c0;k; ð10Þ

with V̄kðρ̄Þ ¼ VkðρÞ, ρ̄ ¼ Zϕ;kρ, where quantities with a
bar denote renormalized variables. The Chebyshev poly-
nomial Tnðρ̄Þ is given in Eq. (B6), and the superscript
½0; ρ̄max� in Eq. (B6) denoting the interval of ρ̄ is neglected
for brevity here. Differentiating Eq. (10) with respect to the
RG time t with ρ fixed, one is led to

∂tjρV̄kðρ̄Þ ¼
XNv

n¼1

ð∂tcn;k − dn;kηϕ;kðρ̄Þρ̄ÞTnðρ̄Þ

þ 1

2
ð∂tc0;k − d0;kηϕ;kðρ̄Þρ̄Þ; ð11Þ

where we have used the Chebyshev expansion for the
derivative of the effective potential as shown in Eq. (B10)
and coefficients dn;k’s are the respective expanding coef-
ficients. Employing the discrete orthogonality relation in
Eq. (B4) by summing up the N þ 1 zeros of TNþ1ðρ̄Þ in
Eq. (B7), one arrives at

∂tcm;k ¼
2

N þ 1

XN
i¼0

ð∂tjρV̄kðρ̄iÞÞTmðρ̄iÞ

þ 2

N þ 1

XNv

n¼1

XN
i¼0

dn;kTmðρ̄iÞTnðρ̄iÞηϕ;kðρ̄iÞρ̄i

þ 1

N þ 1
d0;k

XN
i¼0

Tmðρ̄iÞηϕ;kðρ̄iÞρ̄i; ð12Þ

which is the flow equation for the expansion coefficients
in Eq. (10).

III. PHASE DIAGRAM

It is left to specify the parameters in the LEFT, prior to
presenting our calculated results. The UV cutoff of flow
equations in the LEFT is chosen to be Λ ¼ 500 MeV. Note
that recent first-principle QCD calculations within the fRG
approach, e.g., [7], show that collective mesonic degrees of

FIG. 1. Dependence of the mesonic wave function renormal-
ization Zϕ on the order-parameter field σ̄ at vanishing baryon
chemical potential μB ¼ 0 and several values of temperature
T ¼ ΔT þ Tc. See text for more details.
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freedom, i.e., the low-energy effective field theory, emerge
naturally from QCD with the evolution of the RG scale
towards the infrared, and the mesonic exchange coupling
dominates over the gluonic coupling when the RG scale is
k≲ ð500 ∼ 600Þ MeV. The effective potential in Eq. (3) at
k ¼ Λ reads

VΛðρÞ ¼
λΛ
2
ρ2 þ νΛρ; ð13Þ

with λΛ ¼ 20 and νΛ ¼ 0. The Yukawa coupling is
k-independent as shown in Eq. (9) and is given by
h̄y ¼ 6.4. Concerning the Chebyshev expansion, we
choose N ¼ 81 for the number of zeros and Nv ¼ 21 for
the maximal order of Chebyshev polynomials. We have
also checked that there is no difference when the value of
Nv is increased. Moreover, the upper bound of ρ̄ is chosen
to be ρ̄max ¼ 9 × 103 MeV2, well above the value of
the minimum of the potential in the IR. In the LPA, these
values of parameters lead to the pion decay constant fπ ¼
87 MeV and the constituent quark mass mq ¼ 278.4 MeV
in the vacuum and in the chiral limit. While if the explicit
breaking strength of the chiral symmetry in Eq. (3) is
increased up to c ¼ 1.85 × 10−3 ðGeVÞ3, one obtains the
physical pion mass mπ ¼ 138 MeV and sigma mass
mσ ¼ 504 MeV, as well as fπ ¼ 93 MeV and mq ¼
297.6 MeV in the vacuum. Note that in order to facilitate
the comparison between the calculation with the truncation
LPA and that with LPA0, we use the same values of
parameters above in the LPA0 computation as in LPA.

In Fig. 2 we show the phase diagrams of LEFT in the
T − μB plane, calculated within the fRG approach with the
truncations LPA and LPA0, in the left and right panels,
respectively. The black dashed lines in both panels denote
the second-order Oð4Þ chiral phase transition of Nf ¼ 2

flavor in the chiral limit. The black circles indicate the
location of the tricritical point, beyond which the second-
order phase transition evolves into a discontinuous first-
order one, which are shown by the solid lines. Note that the
solid lines of different colors in the left panel denote the
first-order phase transitions with different pion masses in
the vacuum, i.e., different values of c in Eq. (3), and in the
right panel, we only give the first-order phase transition line
in the chiral limit, since numerical calculations become
quite difficult in the region of high μB and low T with the
truncation LPA0. The red dashed lines in both panels are
the trajectories of the critical end points with the change of
the strength of explicit chiral symmetry breaking c, which
belong to the 3-d Zð2Þ Ising university class.
The critical temperature at vanishing baryon chemical

potential is found to be Tc ¼ 144 MeV in LPA and
143 MeV in LPA0 in the chiral limit. The tricritical point
is located at ðT tri; μBtriÞLPA ¼ ð50; 764Þ MeV in the LPA
and ðT tri; μBtriÞLPA0 ¼ ð47; 687Þ MeV in the LPA0, which
are shown in the phase diagrams by the black circles. The
location of CEP corresponding to the physical pion mass in
the LPA, shown in the left panel of Fig. 2 by the star, is
ðTCEP; μBCEPÞLPA ¼ ð8; 885Þ MeV. In both phase diagrams
in Fig. 2 we also use red and blue crosses to label the
locations where critical exponents in Sec. IV would be

FIG. 2. Phase diagrams in the plane of T and μB, obtained in the quark-meson low energy effective theory within the fRG approach.
Two truncations for the fRG calculations have been employed: one is the LPA, and the other is that beyond the LPA, in which a field-
dependent mesonic wave function renormalization is taken into account, i.e., the truncation LPA0, and see text for more details. The
relevant results are presented in the left and right panels, respectively. The black dashed lines in both panels denote theOð4Þ chiral phase
transition in the chiral limit, and the black circles indicate the location of the tricritical point. The solid lines of different colors in the left
panel denote the first-order phase transitions with different pion masses in the vacuum, i.e., different values of c in Eq. (3), and the solid
one in the right panel is the first-order phase transition line in the chiral limit. The red dashed lines in both panels stand for line composed
of CEP corresponding to continuously varying pion masses, which belong to the Zð2Þ symmetry class. The star in the left panel indicates
the location of CEP with physical pion mass. In both phase diagrams we use red and blue crosses to label the locations where critical
exponents in Sec. IV are calculated for the Oð4Þ and Zð2Þ universality classes, respectively.

CRITICAL BEHAVIORS OF THE Oð4Þ AND Zð2Þ … PHYS. REV. D 104, 054009 (2021)

054009-5



calculated for the 3-d Oð4Þ and Zð2Þ universality classes,
respectively. The calculated points for the Oð4Þ and
Zð2Þ phase transition in the LPA are given by
ðTOð4Þ;μBOð4ÞÞLPA¼ð144;0ÞMeV and ðTZð2Þ; μBZð2ÞÞLPA ¼
ð38; 795Þ MeV, respectively; and the relevant values
in the LPA0 read ðTOð4Þ; μBOð4ÞÞLPA0 ¼ ð143; 0Þ MeV and
ðTZð2Þ; μBZð2ÞÞLPA0 ¼ ð41; 702Þ MeV. Note that one can
choose any points on the Oð4Þ and Zð2Þ phase transition
lines to calculate their respective critical exponents.
Furthermore, one can see that the first-order phase

transition lines bend back at the large baryon chemical
potential in the left panel of Fig. 2. This property is well
known in the calculation of fRG with a global effective
potential, which was first found in [47] (see also, e.g., [89]).
The backbending is probably due to the feature of dis-
continuity in the regime of first-order phase transition,
which has not yet been fully captured by current compu-
tations in fRG. It is, however, still an open question. Very
recently, a new numerical method that allows for disconti-
nuities in the flows has been set up to study the phase
transition lines at the large baryon chemical potential [90].

IV. CRITICAL BEHAVIOR AND
CRITICAL EXPONENTS

A variety of scaling analysis has been performed for the
Oð4Þ universality class, e.g., in the OðNÞ model [91–96]
and two-flavor quark-meson model [97–100]. The dynam-
ics of a system in the critical regime near a second-order
critical point is governed by long-wavelength fluctuations,
and the correlation length tends to be divergent as the
system moves toward the critical point. Critical exponents
play a pivotal role in studies of the critical dynamics, which
are independent of microinteractions, but rather universal
for the same symmetry class, dimension of the system, etc.
(see [95,100] for more details). In the following, we follow
the standard procedure and give our notations for the
relevant various critical exponents.
To begin with, from the effective action in Eq. (3) one

readily obtains the thermodynamic potential density, which
reads

ΩðT; μB; cÞ ¼ Vk¼0ðρÞ − cσ; ð14Þ

where the order parameter field σ ≡ hσi or ρ ¼ σ2=2 is on
its equation of motion. We then introduce the reduced
temperature and reduced external “magnetic” field as
follows:

t ¼ T − Tc

T0

; h ¼ c
c0

; ð15Þ

where Tc is the critical temperature, and they are nor-
malized by T0 and c0, i.e., some appropriate values of T
and c. In the language of magnetization under an external
magnetic field, the order parameter σ here is just the

corresponding magnetization density, i.e., M≡ σ, and
the explicit chiral symmetry breaking parameter c is
equivalent to the magnetic field strength H ≡ c. We will
not distinguish them in the following any more. In the
critical regime the thermodynamic potential in Eq. (14) is
dominated by its singular part fs, i.e.,

Ωðt; hÞ ¼ fsðt; hÞ þ fregðt; hÞ; ð16Þ
where the second term on the RHS is the regular one
and the notation for the baryon chemical potential is
suppressed. In what follows we adopt the notations in
[101], and the scaling function fsðt; hÞ on the RHS of
Eq. (16) satisfies the scale relation to leading order, viz.

fsðt; hÞ ¼ l−dfsðtlyt ; hlyhÞ; ð17Þ

where l is a dimensionless rescaling factor. The scaling
function in Eq. (17) leads us to a variety of relations for
various critical exponents [95,97,98,102], e.g.,

yt ¼
1

ν
; yh ¼

βδ

ν
; β ¼ ν

2
ðd − 2þ ηÞ; γ ¼ βðδ − 1Þ;

γ ¼ ð2 − ηÞν; δ ¼ dþ 2 − η

d − 2þ η
; νd ¼ βð1þ δÞ;

ð18Þ

with the spatial dimension d. The critical exponents β and δ
describe the critical behavior of the order parameter in the
direction of t or h, respectively, i.e.,

Mðt; h ¼ 0Þ ∼ ð−tÞβ with t < 0; ð19Þ

Mðt ¼ 0; hÞ ∼ h1=δ: ð20Þ

The exponent γ is related to the susceptibility of order
parameter χ and ν to the correlation length ξ, which reads

χ ∼ jtj−γ; and ξ ∼ jtj−ν: ð21Þ

The scaling relation in Eq. (17) allows us to readily
obtain the critical behavior for various observables. For
instance, the order parameter and its susceptibilities read

M ¼ −
∂fs
∂H ; χσ ¼

∂M
∂H ; χπ ¼

M
H

; ð22Þ

where χσ ≡ χl and χπ ≡ χt are also called the longitudinal
and transverse susceptibilities, respectively.
Choosing an appropriate value of the rescaling factor

such that hlyh ¼ 1 in Eq. (17), one is led to

fsðt; hÞ ¼ hd=yhfsðz; 1Þ; ð23Þ

with the scaling variable z ¼ t=h1=ðβδÞ. Inserting Eq. (23)
into the first equation in Eq. (22), one arrives at
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M ¼ h1=δfðzÞ; ð24Þ

where we have introduced

fðzÞ≡ 1

H0

�
z
βδ

∂fsðz; 1Þ
∂z −

dν
βδ

fsðz; 1Þ
�
; ð25Þ

which is a scaling function dependent only on z. With
appropriate values ofH0 and T0 in Eq. (15), it can be shown
that the scaling function in Eq. (25) has the properties
fð0Þ ¼ 1 and fðzÞ ≃ ð−zÞβ with z → −∞ [101].
Consequently, it is straightforward to express the longi-

tudinal and transverse susceptibilities in Eq. (22) in terms
of the scaling function fðzÞ, to wit,

χσ ¼
1

H0

h1=δ−1fχðzÞ; ð26Þ

with

fχðzÞ≡ 1

δ

�
fðzÞ − z

β
f0ðzÞ

�
; ð27Þ

and

χπ ¼
1

H0

h1=δ−1fðzÞ: ð28Þ

Alternative to the choice of hlyh ¼ 1 in Eq. (17), one can
also employ tlyt ¼ 1, which is equivalent to the Widom-
Griffiths parametrization [103,104] of the equation of state
by means of the scaling variables, as follows:

x≡ t

M1=β ; y≡ h
Mδ ; ð29Þ

which are obviously related to the other parametrization by
the relations which read

z ¼ x

y1=ðβδÞ
; fðzÞ ¼ 1

y1=δ
: ð30Þ

Hence the scaling function yðxÞ has the properties yð0Þ ¼ 1
and yð−1Þ ¼ 0. In the same way, one readily obtains the
expressions of susceptibilities in this parametrization,
which read

χσ ¼
1

H0Mδ−1

�
δyðxÞ − 1

β
xy0ðxÞ

�
−1
; ð31Þ

χπ ¼
1

H0Mδ−1
1

y
: ð32Þ

A. Order parameter

The flow equation of effective potential in Eq. (4) is
solved by the use of the Chebyshev expansion as discussed
in Sec. II B, i.e., evolving the flow equations of the
expansion coefficients in Eq. (12) from the UV cutoff Λ
to the infrared limit k → 0, and then the expectation value
of the order parameter σ is determined by minimizing the
thermodynamic potential in Eq. (14). Note that two differ-
ent truncations, i.e., LPA and LPA0 as shown in Sec. II A,
are employed in the calculations.
The critical exponents β and δ are given in Eqs. (19)

and (20), which are related to the scaling behavior of the
order parameter as the phase transition is approached in
the temperature or external field direction, respectively. For
the Zð2Þ phase transition, we define the total effective
potential including the chiral symmetry breaking term as
follows:

V totalðσÞ ¼ Vk¼0ðρÞ − cσ; ð33Þ
where for the moment we let σ be the free variable.
Obviously, when the value of σ satisfies

V 0
totalðσÞ ¼

dV totalðσÞ
dσ

¼ 0; ð34Þ

the total effective potential in Eq. (33) is just the thermo-
dynamic potential density in Eq. (14). The Zð2Þ phase
transition lines, i.e., the red dashed lines in Fig. 2, are
determined by the conditions that the derivatives of the total
effective potential in Eq. (33) with respect to the sigma field
are vanishing up to the third order at some value of σ ¼ σ0,
to wit,

V 0
totalðσ0Þ ¼ Vð2Þ

totalðσ0Þ ¼ Vð3Þ
totalðσ0Þ ¼ 0: ð35Þ

The value of σ0 above is vanishing in the chiral limit, i.e.,
at the tricritical point in Fig. 2, but is finite when the
strength of explicit chiral symmetry breaking c is nonzero.
Therefore, in the case of Zð2Þ phase transition as indicated
by the blue cross in the phase diagram in Fig. 2, the order
parameter should be modified slightly, and we introduce
the reduced order parameter which reads

σ̃ ¼ σ − σ0

fπ
; ð36Þ

where fπ is the pion decay constant in the vacuum and σ0 is
the expectation value of the sigma field at the phase
transition point as shown in Eq. (35), which is nonvanish-
ing on the red dashed lines of Zð2Þ in the phase diagrams
in Fig. 2. Correspondingly, the reduced external field in
Eq. (15) is modified into

h ¼ c − c0

c0
; ð37Þ
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where c0 is the σ0-related external field on the Zð2Þ phase
transition line. Notice that both c0 and σ0 are vanishing on
the Oð4Þ phase transition line, viz., the black dashed lines
in Fig. 2. In our calculations below, the normalized external
field strength c0 in Eq. (37) is chosen to be the value
corresponding to the physical pion mass, and the normal-
ized temperature in Eq. (15) is to be the critical
one T0 ¼ Tc.
In Fig. 3 we show the log-log plots of the reduced order

parameter σ̃ versus the reduced temperature −t or external
field h for the second-order Oð4Þ and Zð2Þ phase tran-
sitions. The calculations are performed in the quark-meson
LEFT with the fRG in both LPA and LPA0. The phase
transition points are chosen to be the locations of the red
and blue crosses in the phase diagrams in Fig. 2 for the
Oð4Þ and Zð2Þ universality classes, respectively. A linear
relation is used to fit the calculated discrete data points in
Fig. 3, and as shown in Eqs. (19) and (20), one could extract
the values of the critical exponents β and δ from the slope of
these linear curves. This leads us to

βOð4Þ
LPA ¼ 0.3989ð41Þ; βOð4Þ

LPA0 ¼ 0.3832ð31Þ; ð38Þ

for the Oð4Þ universality class in LPA and LPA0, respec-
tively. In the case of the Zð2Þ universality class, one arrives
at

βZð2ÞLPA ¼ 0.3352ð12Þ; βZð2ÞLPA0 ¼ 0.3259ð01Þ: ð39Þ

In the same way, the values of δ are obtained as follows:

δOð4Þ
LPA ¼ 4.975ð57Þ; δOð4Þ

LPA0 ¼ 4.859ð37Þ; ð40Þ

δZð2ÞLPA ¼ 4.941ð22Þ; δZð2ÞLPA0 ¼ 4.808ð14Þ: ð41Þ

It is found that the critical exponents β and δ of the Oð4Þ
and Zð2Þ phase transitions in 3-d systems calculated in this
work are consistent with previous results, e.g., Monte Carlo
simulation of spin model [105] and d ¼ 3 expansion for
Zð2Þ [106]. Comparing the relevant results in LPA and
LPA0, one observes that both β and δ obtained in LPA0 are
slightly smaller than those in LPA.

B. Preliminary assessment of the size
of the critical region

It is well known that critical exponents are universal for
the same universality classes. The size of the critical region
is, however, nonuniversal and depends on the interactions
and other details of the system concerned. Furthermore,
there has been a long-standing debate on the size of the
critical region in QCD. Lattice QCD simulations show that
the chiral condensate, i.e., the order parameter in Eq. (24),
for physical quark masses are well described by Eq. (24)
plus a small analytic regular term [25,107,108], which, in
other words, implies that the size of the critical regime of
QCD is large enough, such that QCD with a physical quark
mass is still in the chiral critical regime. On the contrary, it
is found in [95,101,109] that the pion mass required
to observe the scaling behavior is very small, at least 1
order of magnitude smaller than the physical pion mass.
Moreover, it is also found that the critical region around the
CEP in the QCD phase diagram is very small [110]. In
Table I we present the values of the critical exponent β
extracted from different ranges of temperature, which are
also depicted in Fig. 4. In Fig. 4 we also show results from
the conformal bootstrap for the 3-d conformal field theories
(CFTs) [111,112]. One observes that when the temperature
range is away from the critical temperature larger than
0.01 MeV, the value of β deviates from its universal value

FIG. 3. Logarithm of the reduced order parameter σ̃ in Eq. (36) as a function of lnð−tÞ (left panel) or lnðhÞ (right panel) for the second-
orderOð4Þ and Zð2Þ phase transitions with truncations LPA and LPA0, where the phase transition points are chosen to be the locations of
the red and blue crosses in the phase diagrams in Fig. 2 for theOð4Þ and Zð2Þ universality classes, respectively. The solid lines represent
linear fits to the calculated discrete data points, from which values of the critical exponents β and δ are extracted.
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pronouncedly. This applies for both the Oð4Þ and the Zð2Þ
universality classes. Given the systematic errors in the
computation of this work, one could safely conclude that
our calculation indicates that the critical region in the QCD
phase diagram is probably very small, and it is smaller than
1 MeV in the direction of temperature.

C. Chiral susceptibility

According to Eq. (29), the reduced order parameter reads

σ̃ ∼ h1=δyðxÞ−1=δ: ð42Þ

Moreover, it has been shown in [104] that given x > 0 and
M > M0 for some value M0 in Eq. (29), the scaling
function can be expanded as

yðxÞ ¼
X∞
n¼1

cnxγ−2βðn−1Þ

¼ xγðc1 þ c2x−2β þ c3x−4β þ � � �Þ: ð43Þ

Inserting the leading term in Eq. (43) into Eq. (42) and
utilizing the relation γ ¼ βðδ − 1Þ as shown in Eq. (18), one
is led to the reduced order parameter with t > 0 and h → 0,
which reads

σ̃ ∼ t−γh: ð44Þ

Consequently, the longitudinal and transverse susceptibil-
ities of the order parameter as defined in Eq. (22) are readily
obtained as follows:

χσ ¼ χπ ∼ t−γ; ð45Þ

which is in agreement with Eq. (21) in the limit h → 0 and
in the symmetric phase, as it should be. Equation (44) also
allows us to extract the value of the exponent γ, by directly
investigating the scaling relation of σ̃ and t in the chiral
symmetric phase with a fixed, small value of h. In Fig. 5 we
show the logarithm of the longitudinal susceptibility χσ
versus that of the reduced temperature, where h ¼ 3.5 ×
10−10 is chosen in the calculations. We have checked that

TABLE I. Values of the critical exponent β extracted from different ranges of temperature, which are denoted by their distances to the
corresponding critical temperature, i.e., Tc − T. The calculations are performed with the truncation LPA, and the phase transition points
are chosen to be the locations of the red and blue crosses in the phase diagrams in Fig. 2 for the Oð4Þ and Zð2Þ universality classes,
respectively.

Tc − T [MeV] (10−4, 5 × 10−3) (10−2, 0.1) (0.1, 0.5) (0.5, 1) (1, 5)

βOð4Þ
LPA

0.3989(41) 0.5164(65) 0.4374(36) 0.4077(44) 0.3921(43)

βZð2ÞLPA
0.3352(12) 0.2830(26) 0.2724(18) 0.2689(17) 0.247(17)

FIG. 4. Values of the critical exponent β extracted from
different ranges of temperature, which are denoted by their
distances to the corresponding critical temperature, i.e.,
Tc − T. The calculations are performed with the truncation
LPA, and the phase transition points are chosen to be the
locations of the red and blue crosses in the phase diagrams in
Fig. 2 for the Oð4Þ and Zð2Þ universality classes, respectively.
Results from the conformal bootstrap for the 3-d conformal field
theories (CFTs) [111,112], denoted by gray dashed lines, are also
presented for comparison.

FIG. 5. Logarithm of the longitudinal susceptibility χσ as a
function of lnðtÞ in the chiral symmetric phase. The calculation is
done in the quark-meson LEFT within the fRG approach with
truncations LPA and LPA0, where the phase transition points are
chosen to be at the locations of the red and blue crosses in the
phase diagrams in Fig. 2 for the Oð4Þ and Zð2Þ universality
classes, respectively. The solid lines represent linear fits to the
calculated discrete data points, from which the value of the
critical exponent γ is extracted.
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this value of h is small enough to make sure that the
value of γ obtained from the linear fit of lnðχσÞ- lnðtÞ is
convergent. In the same way, the flow equations of fRG are
resolved with two truncations LPA and LPA0, and the phase
transition points are chosen to be at the locations of the red
and blue crosses in the phase diagrams in Fig. 2 for the
Oð4Þ and Zð2Þ universality classes, respectively. The values
of the exponent γ are obtained as follows:

γOð4Þ
LPA ¼ 1.5458ð68Þ; γOð4Þ

LPA0 ¼ 1.4765ð76Þ; ð46Þ

γZð2ÞLPA ¼ 1.3313ð96Þ; γZð2ÞLPA0 ¼ 1.2362ð77Þ: ð47Þ

Once more, one observes that these values, in particular
those obtained in the LPA0, are in good agreement with the
values of γ for the Oð4Þ and Zð2Þ symmetry universality
classes, respectively; see, e.g., [105,106].
In Fig. 6 the longitudinal susceptibility of the order

parameter χσ, as shown in Eq. (22), is depicted versus the
reduced temperature with several different values of the
reduced external field. Here we only focus on the case of
Oð4Þ symmetry, and thus choose the phase transition to be
near the location of the red cross in the phase diagrams in
Fig. 2, i.e., the phase transition with vanishing baryon
chemical potential. When the external field h that breaks
the chiral symmetry explicitly is nonzero, the second-order
phase transition becomes a continuous crossover, as shown
in Fig. 6. One can define a pseudocritical temperature Tpc,
which is the peak position of the curve χσ versus T, and
thus the reduced pseudocritical temperature reads

tpc ¼
Tpc − Tc

Tc
: ð48Þ

One observes from Fig. 6 that with the increasing h,
the peak height of the susceptibility decreases and the

pseudocritical temperature tpc increases. The rescaling
relation between tpc and h as well as that between the
peak height of χσ and tpc reads

tpc ∼ h1=ðγþβÞ; χσjtpc ∼ t−γpc; ð49Þ

and see, e.g., [113] for more details.
In Fig. 7 we show the logarithm of the reduced

pseudocritical temperature versus the logarithm of the
reduced external field strength, and the logarithm of the
peak height of the susceptibility versus the logarithm
of the reduced pseudocritical temperature in the left and
right panels, respectively. The phase transition is also
chosen to be near the location of the red cross in the
phase diagrams in Fig. 2 for the Oð4Þ symmetry univer-
sality class, where the baryon chemical potential is vanish-
ing. Linear fitting to the calculated discrete data in Fig. 7
yields β ¼ 0.403ð19Þ and γ ¼ 1.543ð15Þ for the LPA, and
β ¼ 0.405ð22Þ and γ ¼ 1.454ð17Þ for the LPA0, which are
in agreement with the relevant values in Eqs. (38) and (46)
within errors for the Oð4Þ second-order phase transition in
3-d space. In turn, the agreement of critical exponents
obtained from different scaling relations also provides us
with the necessary check for the inner consistency of
computations. Note, however, that the critical exponents
β and γ determined from the scaling relations in Eq. (49)
are significantly less accurate than those in Eqs. (38)
and (46).
As another check for the consistency, we consider the

susceptibilities in the chiral broken phase near the coex-
istence line, i.e., x ¼ −1, with t < 0 and h → 0. Inserting
Eq. (42) into Eqs. (31) and (32), one is led to

χσ ∼ h1=δ−1
βyðxÞ1−1=δ

βδyðxÞ − xy0ðxÞ ; ð50Þ

FIG. 6. Longitudinal susceptibility of the order parameter χσ as a function of the reduced temperature twith several different values of
the reduced external field h, calculated in the LPA (left panel) and LPA0 (right panel). The phase transition is chosen to be near the
location of the red cross in the phase diagrams in Fig. 2 for the Oð4Þ symmetry universality class.
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χπ ∼ h1=δ−1yðxÞ−1=δ: ð51Þ

when the system is near the coexistence line, one has
x → −1 and y ∼ h=ð−tÞβδ. Hence, the transverse suscep-
tibility is readily obtained as follows:

χπ ∼ h−1ð−tÞβ: ð52Þ

In order to obtain a similar expression for the longitudinal
susceptibility, one needs further information on the equa-
tion of state yðxÞ. As the system is located in the broken
phase near the coexistence line, the dynamics is dominated
by Goldstone modes, which are massless in the chiral limit.

The relevant critical behavior in this regime is governed by
a Gaussian fixed point, and thus the corresponding expo-
nents are the same as the values of mean fields [114,115],
which leaves us with

yðxÞ ∼ ð1þ xÞ2; for x → −1 ð53Þ

(see, e.g., [95,100] for more relevant discussions).
Substituting the equation above into Eq. (50), one arrives
at

χσ ∼ h−1=2ð−tÞβ−ðβδ=2Þ: ð54Þ

FIG. 7. Left panel: logarithm of the reduced pseudocritical temperature tpc, defined by the peak of the susceptibility χσ as shown in
Fig. 6, as a function of the logarithm of the reduced external field strength h. Right panel: logarithm of the peak height of the
susceptibility, χσ jtpc , versus the logarithm of the reduced pseudocritical temperature. Calculations are done within the fRG approach with
the truncations LPA and LPA0. The phase transition is chosen to be near the location of the red cross in the phase diagrams in Fig. 2 for
the Oð4Þ symmetry universality class.

FIG. 8. Logarithms of the transverse (left panel) and longitudinal (right panel) susceptibilities as functions of the logarithm of −t with
a fixed value of the reduced external field h ¼ 8.4 × 10−9 in the chiral broken phase near the coexistence line. Calculations are
performed within the fRG approach with the truncations LPA and LPA0. The phase transition is chosen to be near the location of the red
cross in the phase diagrams in Fig. 2 for the Oð4Þ symmetry universality class, where the baryon chemical potential is vanishing.
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As Eqs. (52)–(54) show, the transverse and longitudinal
susceptibilities are proportional to the external field with
different powers in the broken phase, i.e., −1 and −1=2 for
the former and latter, respectively.
In Fig. 8 we show lnðχπÞ and lnðχσÞ versus lnð−tÞ with a

fixed value of the reduced external field h ¼ 8.4 × 10−9 in
the chiral broken phase near the coexistence line. Similarly,
here we only consider the phase transition of Oð4Þ
symmetry with μB ¼ 0 in the phase diagrams in Fig. 2.
As shown in Eqs. (52)–(54), the ratios of the linear fitting to
lnðχπÞ- lnð−tÞ and lnðχσÞ- lnð−tÞ are just the values of β and
β − ðβδ=2Þ, respectively. Consequently, one arrives at β ¼
0.3979ð41Þ and δ ¼ 4.984ð74Þ in LPA and β ¼ 0.3832ð54Þ
and δ ¼ 4.86ð10Þ in LPA0, which agree very well with the
relevant values in Eqs. (38) and (40).

D. Correlation length

It is well known that the correlation length ξ plays a
pivotal role in the critical dynamics, since fluctuations of
wavelength ∼ξ are inevitably involved in the dynamics.
As a system is approaching a second-order phase transi-
tion, the most relevant degrees of freedom are the long-
wavelength modes of low energy, and the correlation length
is divergent at the phase transition [116].
The critical behavior of correlation length is described by

the critical exponent ν, as shown in Eq. (21). In the
symmetric phase t > 0, it reads

ξ ∼ t−ν; with h ¼ 0; ð55Þ

which illustrates the scaling relation between the correla-
tion length and the reduced temperature. Moreover, one can

also define another critical exponent νc related to the
scaling relation between the correlation length and the
reduced external field, to wit,

ξ ∼ h−νc ; with t ¼ 0: ð56Þ

In our setup in the quark-meson LEFT (cf. Sec. II), the
correlation length is proportional to the inverse of the
renormalized σ-meson mass, viz.,

ξ ∼
1

mσ
; ð57Þ

where mσ is related to the dimensionless k-dependent
sigma mass m̄σ;k in Eq. (5) via the relation as follows:

mσ ¼ m̄σ;kðσ ¼ σEoMÞk; with k → 0; ð58Þ

where the scale k is chosen to be in the IR limit k → 0, and
the mass is calculated on the equation of motion of the
order parameter field. In Fig. 9 we show the scale relation
between the correlation length and the reduced external
field strength, and that between the correlation length and
the reduced temperature, respectively. In the same way, we
adopt the two different truncations: LPA and LPA0. The
phase transition points are also chosen to be at the locations
of the red and blue crosses in the phase diagrams in Fig. 2
for the Oð4Þ and Zð2Þ universality classes, respectively. By
the use of the linear fitting to the calculated data, one
obtains values of the critical exponent ν as follows:

νOð4Þ
LPA ¼ 0.7878ð25Þ; νOð4Þ

LPA0 ¼ 0.7475ð27Þ; ð59Þ

FIG. 9. Left panel: logarithm of the correlation length as a function of the logarithm of the reduced external field strength with t ¼ 0.
Right panel: logarithm of the correlation length as a function of the logarithm of the reduced temperature with h ¼ 0. Both calculations
are performed in the quark-meson LEFTwithin the fRG approach with truncations LPA and LPA0, where the phase transition points are
chosen to be at the locations of the red and blue crosses in the phase diagrams in Fig. 2 for the Oð4Þ and Zð2Þ universality classes,
respectively. The solid lines represent linear fits to the calculated discrete data points, from which values of the critical exponent νc and ν
are yielded.
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νZð2ÞLPA ¼ 0.6635ð17Þ; νZð2ÞLPA0 ¼ 0.6305ð23Þ; ð60Þ

as well as those of the critical exponent νc, i.e.,

νc
Oð4Þ
LPA ¼ 0.3982ð17Þ; νc

Oð4Þ
LPA0 ¼ 0.4056ð19Þ; ð61Þ

νc
Zð2Þ
LPA ¼ 0.4007ð45Þ; νc

Zð2Þ
LPA0 ¼ 0.4021ð43Þ: ð62Þ

Finally, we close Sec. IV with a summary of various
critical exponents calculated in this work in Table II.
Respective results for the Oð4Þ and Zð2Þ symmetry
universality classes with truncation LPA or LPA0 are
presented in the first several rows in Table II. As we have
discussed in Sec. II, the effective potential is expanded as a
sum of Chebyshev polynomials in our calculations, which
captures global properties of the order-parameter potential
very well. In Table II we also present values of critical
exponents obtained from other computations, e.g., scalar
theories calculated within the fRG with the effective
potential expanded in a Taylor series [95,117–119], or
discretized on a grid [99], quark-meson LEFT within the
fRG in LPA [100], derivative expansion of the fRG up to
orders of Oð∂4Þ and Oð∂6Þ [120,121], the conformal
bootstrap for the 3-d conformal field theories [111,112],
Monte Carlo simulation [105], and the d ¼ 3 perturbation
expansion [106]. One observes that our calculated results

are in good agreement with the relevant results from
previous fRG calculations as well as those from the con-
formal bootstrap, Monte Carlo simulation, and the d ¼ 3
perturbation expansion. Remarkably, the calculation with
the truncation LPA0 is superior to that with LPA, and the
former has already provided us with quantitative reliability
for the prediction of the critical exponents in comparison to
other approaches.

V. SUMMARY

QCD phase structure and related critical behaviors have
been studied in the two-flavor quark-meson low energy
effective theory within the fRG approach in this work.
More specifically, we have expanded the effective potential
as a sum of Chebyshev polynomials to solve its flow equa-
tion. Consequently, both the global properties of the effec-
tive potential and the numerical accuracy necessary for the
computation of critical exponents are retained in our calcu-
lations. Moreover, we have employed two different trun-
cations for the effective action: one is the usually used local
potential approximation and the other is that beyond the
local potential approximation, in which a field-dependent
mesonic wave function renormalization is encoded.
With the numerical setup within the fRG approach

described above, we have obtained the phase diagram in
the plane of T and μB for the two-flavor quark-meson LEFT
in the chiral limit, including the second-order phase

TABLE II. Critical exponents for the Oð4Þ and Zð2Þ symmetry universality classes in 3-d space, obtained in the quark-meson LEFT
within the fRG approach with truncations LPA and LPA0, where the effective potential is expanded as a sum of Chebyshev polynomials.
Our calculated results are also in comparison to relevant results from previous fRG calculations, e.g., scalar theories with the effective
potential expanded in a Taylor series [95,117–119], or discretized on a grid [99], the quark-meson (QM) low energy effective theory
with LPA [100], derivative expansions (DE) up to orders ofOð∂4Þ andOð∂6Þ [120,121]. Moreover, results from other approaches, such
as the conformal bootstrap for the 3-d CFTs [111,112], Monte Carlo simulation [105], and d ¼ 3 perturbation expansion [106], as well
as the mean-field values of exponents are also presented. Note that values with an asterisk are obtained with scaling laws in Eq. (18).

Method β δ γ ν νc η

Oð4Þ QM LPA (this work) fRG Chebyshev 0.3989(41) 4.975(57) 1.5458(68) 0.7878(25) 0.3982(17) 0
Oð4Þ QM LPA0 (this work) fRG Chebyshev 0.3832(31) 4.859(37) 1.4765(76) 0.7475(27) 0.4056(19) 0.0252(91)*
Zð2Þ QM LPA (this work) fRG Chebyshev 0.3352(12) 4.941(22) 1.3313(96) 0.6635(17) 0.4007(45) 0
Zð2Þ QM LPA0 (this work) fRG Chebyshev 0.3259(01) 4.808(14) 1.2362(77) 0.6305(23) 0.4021(43) 0.0337(38)*
Oð4Þ scalar theories [117] fRG Taylor 0.409 4.80* 1.556 0.791 0.034
Oð4Þ KT phase transition [118] fRG Taylor 0.387* 4.73* 0.739 0.047
Zð2Þ KT phase transition [118] fRG Taylor 0.6307 0.0467
Oð4Þ scalar theories [119] fRG Taylor 0.4022* 5.00* 0.8043
Oð4Þ scalar theories LPA[95] fRG Taylor 0.4030(30) 4.973(30) 0.8053(60)
Oð4Þ QM LPA [100] fRG Taylor 0.402 4.818 1.575 0.787 0.396
Oð4Þ scalar theories [99] fRG Grid 0.40 4.79 0.78 0.037
Zð2Þ scalar theories [99] fRG Grid 0.32 4.75 0.64 0.044
Oð4Þ scalar theories [120] fRG DE Oð∂4Þ 0.7478(9) 0.0360(12)
Zð2Þ scalar theories [120,121] fRG DE Oð∂6Þ 0.63012(5) 0.0361(3)
Oð4Þ CFTs [112] Conformal bootstrap 0.7472(87) 0.0378(32)
Zð2Þ CFTs [111] Conformal bootstrap 0.629971(4) 0.0362978(20)
Oð4Þ spin model [105] Monte Carlo 0.3836(46) 4.851(22) 1.477(18) 0.7479(90) 0.4019(71)* 0.025(24)*
Zð2Þ d ¼ 3 expansion [106] Summed perturbation 0.3258(14) 4.805(17)* 1.2396(13) 0.6304(13) 0.4027(23) 0.0335(25)
Mean Field 1=2 3 1 1=2 1=3 0
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transition line of Oð4Þ, the tricritical point, and the first-
order phase transition line. Furthermore, we also show the
Zð2Þ line in the phase diagram, which is the trajectory of
the critical end point moving with the successive variance
of the strength of explicit chiral symmetry breaking, or the
varying pion mass.
In the phase diagram, we have performed detailed

scaling analyses for the 3-d Oð4Þ and Zð2Þ symmetry
universality classes, and investigated the critical behaviors
in the vicinity of phase transition in both the chiral
symmetric and the broken phases. Moreover, the transverse
and longitudinal susceptibilities of the order parameter
have been calculated in the chiral broken phase near the
coexistence line.
A variety of critical exponents related to the order

parameter, chiral susceptibilities, and correlation lengths
have been calculated for the 3-d Oð4Þ and Zð2Þ symmetry
universality classes in the phase diagram, respectively.
The calculated results are also compared with those from
previous fRG calculations, either employing the Taylor
expansion for the order-parameter potential or discretizing
it on a grid, derivative expansion of the effective action,
the conformal bootstrap, Monte Carlo simulations, and the
d ¼ 3 perturbation expansion. We find that the critical
exponents obtained in the quark-meson LEFT within the
fRG approach, where the order-parameter potential is
expanded in terms of Chebyshev polynomials and a
field-dependent mesonic wave function renormalization
is taken into account, are in quantitative agreement with
results from approaches aforementioned. Furthermore, we
have also investigated the size of the critical regime, and it
is found that the critical region in the QCD phase diagram is
probably very small, and it is smaller than 1 MeV in the
direction of temperature.
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APPENDIX A: THRESHOLD FUNCTIONS AND
ANOMALOUS DIMENSIONS

We employ the 3-d flat regulators [123,124] for quarks
and mesons in this paper,

Rϕ;kðq0; qÞ ¼ Zϕ;kq2rBðq2=k2Þ; ðA1Þ

Rq;kðq0; qÞ ¼ Zq;kiγ · qrFðq2=k2Þ; ðA2Þ

with

rBðxÞ ¼
�
1

x
− 1

	
Θð1 − xÞ; ðA3Þ

rFðxÞ ¼
�

1ffiffiffi
x

p − 1

	
Θð1 − xÞ: ðA4Þ

The threshold functions in Eq. (4) are given by

lðB;dÞ0 ðm̄2
ϕ;k; ηϕ;k;TÞ

¼ 2

d − 1

�
1 −

ηϕ;k
dþ 1

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m̄2
ϕ;k

q
×
�
1

2
þ nBðm̄2

ϕ;k;TÞ
	

ðA5Þ

and

lðF;dÞ0 ðm̄2
q;k; ηq;k;T; μÞ

¼ 2

d − 1

�
1 −

ηq;k
d

	
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

q;k

q
× ð1 − nFðm̄2

q;k;T; μÞ − nFðm̄2
q;k;T;−μÞÞ; ðA6Þ

with the bosonic and fermionic distribution functions
reading

nBðm̄2
ϕ;k;TÞ ¼

1

expfkT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

ϕ;k

q
g − 1

ðA7Þ

and

nFðm̄2
q;k;T; μÞ ¼

1

expf1T ½k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

q;k

q
− μ�g þ 1

; ðA8Þ

respectively.
The meson anomalous dimension in Eq. (8) is given by

ηϕ;kðρÞ ¼
1

6π2

�
4

k2
ρ̄ðV̄ 00

kðρ̄ÞÞ2BBð2;2Þðm̄2
π;k; m̄

2
σ;k;TÞ

þ Nch̄2y;k½F ð2Þðm̄2
q;k;T; μÞð2ηq;k − 3Þ

− 4ðηq;k − 2ÞF ð3Þðm̄2
q;k;T; μÞ�

�
; ðA9Þ

with

h̄y;k ¼
hy;k

Zq;kðZϕ;kÞ1=2
: ðA10Þ

Note that threshold functions BBð2;2Þ, F ð2Þ, and F ð3Þ in
Eq. (A9) can be found in, e.g., [46,78].
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APPENDIX B: SOME RELATIONS FOR THE
CHEBYSHEV POLYNOMIALS

In this Appendix we collect some relations for the
Chebyshev polynomials, which are used in solving
the flow equation for the effective potential in Eq. (10).
The Chebyshev polynomial of order n reads

TnðxÞ ¼ cosðn arccosðxÞÞ; ðB1Þ

with non-negative integers n’s and x ∈ ½−1; 1�. The explicit
expressions for the Chebyshev polynomials could be
obtained by the recursion relation as follows:

Tnþ2ðxÞ ¼ 2xTnþ1ðxÞ − TnðxÞ; n ≥ 0; ðB2Þ

with T0ðxÞ ¼ 1 and T1ðxÞ ¼ x.
The N þ 1 zeros of TNþ1ðxÞ in the region −1 ≤ x ≤ 1

are given by

xk ¼ cos

�
πðkþ 1

2
Þ

N þ 1

	
; k ¼ 0; 1;…; N: ðB3Þ

A discrete orthogonality relation is fulfilled by the
Chebyshev polynomials, to wit,

XN
k¼0

TiðxkÞTjðxkÞ ¼
8<
:

0 i ≠ j

ðN þ 1Þ=2 i ¼ j ≠ 0

N þ 1 i ¼ j ¼ 0

; ðB4Þ

where xk’s are the N þ 1 zeros of TNþ1ðxÞ in Eq. (B3), and
i; j ≤ N. The interval ½−1; 1� for x could be extended to an
arbitrary one ½ymin; ymax� for y via the linear relation as
follows:

x ¼ 2y − ðymax þ yminÞ
ymax − ymin

; ðB5Þ

and the generalized Chebyshev polynomials are defined by

T ½ymin;ymax�
n ðyÞ≡ TnðxðyÞÞ: ðB6Þ

Therefore, the zeros in y corresponding to Eq. (B3) read

yk ¼
ymax − ymin

2
cos

�
πðkþ 1

2
Þ

N þ 1

	
þ ymax þ ymin

2
; ðB7Þ

with k ¼ 0; 1;…; N. Then, a function fðyÞ with y ∈
½ymin; ymax� can be approximated as

fðyÞ ≈
�XN
i¼1

ciT
½ymin;ymax�
i ðyÞ

�
þ 1

2
c0; ðB8Þ

where the coefficients could be readily obtained by the use
of the orthogonality relation in Eq. (B4), which yields

ci ¼
2

N þ 1

XN
k¼0

fðykÞT ½ymin;ymax�
i ðykÞ; ðB9Þ

with i ¼ 0; 1;…; N.
With the Chebyshev approximation of the function fðyÞ

in Eq. (B8), it is straightforward to obtain its derivative, viz.

f0ðyÞ ≈
XN
i¼1

ci
d
dy

T ½ymin;ymax�
i ðyÞ

¼
�XN
i¼1

diT
½ymin;ymax�
i ðyÞ

�
þ 1

2
d0; ðB10Þ

where the coefficient di’s can be deduced by the recursion
relation that reads

dN ¼ 0; dN−1 ¼
2

ymax − ymin
2NcN;

di−1 ¼ diþ1 þ
2

ymax − ymin
2ici ði ¼ N − 1;…; 1Þ:

ðB11Þ
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