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We study fully differential quarkonia photoproduction observables in ultraperipheral collisions as
functions of momentum transfer squared. We employ the dipole picture of the QCD part of the scattering
with proton and nucleus targets, with the projectile being a quasireal photon flux emitted by an incoming
hadron. We analyze such observables for ground J=ψ , ϒð1SÞ and excited ψ 0, ϒð2SÞ states whose light-
front wave functions are obtained in the framework of an interquark potential model incorporating the
Melosh spin transformation. Two different low-x saturation models, one obtained by solving the Balitsky-
Kovchegov equation with the collinearly improved kernel and the other with a Gaussian impact-parameter-
dependent profile, are used to estimate the underlined theoretical uncertainties of our calculations. The
results for the proton target and with charmonium in the final state are in agreement with the available
HERA data, while in the case of the nucleus target we make predictions for γA and AA differential cross
sections at different W and at

ffiffiffi
s

p ¼ 5.02 TeV, respectively.

DOI: 10.1103/PhysRevD.104.054008

I. INTRODUCTION

The determination of the structure of protons and nuclei in
terms of their fundamental constituents as well as their
interactions is one of the biggest goals of particle physics [1].
An important milestone for the proton structure measure-
ments was the start of operation of the HERA collider at
DESY. There, a large amount of deep inelastic scattering
(DIS) data (in which simple pointlike leptons are used to
probe the proton substructure) has been collected, making it
possible to extract a detailed knowledge about the parton
distribution functions (PDFs) for the proton with good
precision for as low a longitudinal momentum fraction x
as 10−5 or so [2].
To obtain a more detailed picture of the target, in

particular, to access information about its transverse shape
at a given x, more differential observables are needed. Two
processes that provide such observables, deeply virtual
Compton scattering (DVCS) (where the outgoing photon is

real) and the exclusive production of vector mesons (with
the same quantum numbers JPC ¼ 1−− as those of the
photon), are frequently discussed in the literature. In the
first case, thanks to the high beam energy available at the
HERA collider, the experiments H1 and ZEUS have
measured the pure DVCS cross section for a Bjorken
variable ranging from 10−4 to 10−2. In the second case,
besides exclusive electro- and photoproduction of light
vector mesons (ϕ, ρ) and quarkonia (J=ψ) studied by the
H1 and ZEUS collaborations, there are more recent data on
vector-meson photoproduction in ultraperipheral collisions
(UPCs) available from the LHC. The latter processes are
the main focus of this work.
Particle production processes in proton-nucleus pA and

nucleus-nucleus AA UPCs have attracted a lot of attention
in recent years due to their vast potential in probing the
proton and nucleus structure at very small x (for a recent
review, see, e.g., Ref. [3]). A particularly clean environment
in UPCs is achieved in a fully exclusive process when a
small-mass hadronic system is produced that is separated
from the intact scattered particles by large rapidity gaps on
both sides. A phenomenologically important and well-
known example of such a scattering refers to exclusive
quarkonia [such as charmonia J=ψ ≡ ψð1SÞ, ψ 0 ≡ ψð2SÞ,
and bottomonia ϒð1S; 2SÞ] photoproduction reactions in
UPCs that have recently gained a particular relevance
motivated by a wealth of experimental data coming from
the LHC, such as those from LHCb [4–6], ALICE [7–12],
and CMS [13,14] experiments.
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The process is straightforwardly visualized by consid-
ering it in the target rest frame. While on one side of the
collision a photon flux is emitted from a fast projectile
(hadron or nucleus) and then fluctuates into a color-neutral
QQ̄ (Q ¼ c, b) pair called a color dipole, on another side
such a dipole coherently rescatters off the target by means
of an exchange of a multiple gluonic system in a color-
singlet state—a dominating configuration at low longi-
tudinal momentum transfers, x. In the leading-order per-
turbative quantum chromodynamics (QCD) approximation,
typically validated by having a hard scale associated with
the heavy-quark mass mQ, one considers a colorless gluon-
pair exchange between the dipole and the target. In the limit
of small x ≪ 1 and low four-momentum transfer squared
jtj ¼ −ðp1 − p0

1Þ2 ≪ m2
Q, such an exchange in momentum

space is usually described in terms of the generalized
unintegrated gluon density in the target, which, in turn,
connects to the dipole scattering matrix as a function of
gluon x, dipole separation r⃗, and the impact parameter of
the scattering b⃗. This matrix effectively encodes dynamics
of parton saturation and contains full information about the
relative dipole orientation with respect to the color back-
ground field of the target. As long as r⃗ is integrated out in a
convolution with the quarkonium light-front (LF) wave
function, the impact-parameter dependence provides the
transverse profile of the target gluon density that can be
probed by means of the measured differential in t
distributions.
The impact-parameter dependence of the gluon density

in the target is an intrinsically nonperturbative property and
is often parametrized in terms of a Gaussian distribution, as
is done, for example, in the case of the so-called bSat model
[15]. To get a more accurate description of interactions
between the color dipole and the target encoded in the
impact-parameter profile of the target, the corresponding
amplitude can be found by solving the Balitsky-Kovchegov
(BK) evolution equation [16,17]. It is known that the BK
equation at next-to-leading order (NLO) is unstable due to
large NLO corrections when one integrates out the gluon
emissions with small transverse momenta. Thus, these
corrections need to be properly resummed to all orders
[18]. An additional phenomenon called Coulomb tails that
corresponds to an unphysical growth of the amplitude at
large impact parameters should be taken into consideration.
The latter phenomenon is found to be connected to the
creation of large daughter dipoles during the evolution, thus
enabling this problem to be cured. The BK solutions
without such Coulomb tails can be found in several recent
studies; e.g., in Refs. [19,20] this problem is absent owing
to the use of a collinearly improved kernel. In the current
analysis, we apply both the bSat model and the BK solution
with a collinearly improved kernel in the study of differ-
ential quarkonia photoproduction cross sections in UPCs
for relevant experimental conditions at HERA and LHC
colliders.

The paper is organized as follows. In Sec. II, we give a
short description of the differential cross section of elastic
vector-meson photoproduction γp → Vp off the proton
target in terms of the dipole S-matrix and quarkonia LF
wave functions in the framework of potential approach. In
Sec. III, we discuss the models for the impact-parameter-
dependent partial dipole amplitude that have been used in
the numerical analysis throughout this work. Section IV
presents the numerical results for the differential cross
section of the γp → Vp process for the ground and excited
quarkonia states, with J=ψ results successfully describing
the existing data. In Sec. V, we review the formalism to
obtain the differential cross section of coherent quarkonia
photoproduction off nuclear targets in UPCs and show our
corresponding numerical predictions for the ground and
first excited ψ and ϒ states presented in Sec. VI. Finally, a
brief summary of our results is given in Sec. VII.

II. ELASTIC PHOTOPRODUCTION OFF A
PROTON

The advantage of studying vector-meson photoproduc-
tion is that, in order to produce a single vector meson and
nothing else in a detector, a color charge cannot be
transferred to the target, requiring that at least two gluons
(in the net color-singlet state) are exchanged. This provides
an exclusive character for the process, with a particularly
clean environment. Another advantage is that only in the
exclusive scattering process is it possible to measure the
total momentum transfer ΔT and interpret it as the Fourier
conjugate of the impact parameter (see, e.g., Refs. [21,22]).
Consequently, these processes probe not only the density of
partons but also their spatial distribution in the trans-
verse plane.
Considering the proton target case first, at high energies

the elastic diffractive differential cross section for the γp →
Vp scattering is found as follows [15]:

dσγp→Vp

dt
¼ 1

16π
jAγpðx;ΔTÞj2; ð2:1Þ

where t ¼ −Δ2
T ≡ ðp1 − p0

1Þ2 is the momentum transfer
squared, ΔT ≡ jΔj is the transverse momentum of the
produced vector meson V recoiled against the target
(assuming the projectile photon momentum to be collinear,
i.e., that it carries no transverse momentum) and the elastic
production amplitude

Aγpðx;ΔTÞ ¼
Z

d2r
Z

1

0

dzðΨ�
VΨγÞAqq̄ðx; r;ΔÞ ð2:2Þ

is given in terms of the overlap between the transversely
polarized real photon γ → QQ̄ (Ψγ) and vector meson V →
QQ̄ LF wave functions (Ψγ andΨV , respectively). Here, the
elementary amplitude for elastic qq̄ dipole scatteringAqq̄ is
related to the dipole S matrix
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Aqq̄ðx; r;ΔÞ ¼
Z

d2be−ib·ΔAqq̄ðx; r; bÞ

¼ i
Z

d2be−ib·Δ2½1 − Sðx; r; bÞ�; ð2:3Þ

and thus contains the most detailed (five-dimensional)
information about the gluon density in the target. It is
directly connected to the so-called gluon Wigner distribu-
tion, as was established previously in Ref. [23]. Even though
direct access of the elliptic gluon density in the Wigner
distribution by a measurement of the exclusive quarkonia
photoproduction is impossible due to an r variable being
integrated into the measured differential cross section, access
to the impact-parameter profile of the target gluon density is
still very relevant for understanding the hadron or nucleus
structure at very low momentum transfers.
Note that, by means of the optical theorem, the imaginary

part of the partial dipole amplitude in the forward limit
(ΔT → 0) is related to the dipole cross section σqq̄ðx; rÞ: a
universal ingredient whose parametrization can be extracted
fromagivenprocess (typically fromDIS)and thenused for the
description of many other processes in ep, pp, and pA
collisions [24,25] (for early analyses of elastic charmonia
photoproduction inthedipolepicture,see,e.g.,Refs. [26–30]).
In the off-forward case, one straightforwardly rewrites

the elastic amplitude in terms of the imaginary part of the
elastic qq̄ amplitude in the impact-parameter representation
in the following way [15]:

Aγpðx;ΔTÞ¼2i
Z

d2r
Z

1

0

dz

×
Z

d2bðΨ�
VΨÞe−i½b−ð1−zÞr�·ΔNðx;r;bÞ; ð2:4Þ

where z is the longitudinal momentum fraction of a heavy
(anti)quark in the QQ̄ dipole and

Nðx; r; bÞ≡ ImAqq̄ðx; r; bÞ ¼ 2½1 − ReSðx; r; bÞ�; ð2:5Þ

such that the dipole cross section is defined as follows:

σqq̄ðx; rÞ ¼ 2

Z
d2bNðx; r; bÞ: ð2:6Þ

To take into account the real part of theAqq̄ amplitude, it
suffices to introduce into Eq. (2.1) a factor that represents
the ratio of the real to imaginary parts of the exclusive
photoproduction amplitude Aγp as follows [31]:

Aγp ⇒ Aγp

�
1 − i

πλ

2

�
; with λ ¼ ∂ lnAγp

∂ lnð1=xÞ : ð2:7Þ

At last, one typically also incorporates the so-called
skewness effect of the off-diagonal gluon distribution,
which takes into account the fact that the gluons exchanged

between the qq̄ pair and the target can carry very different
fractions of the target’s momentum (x and x0), while in
dipole cross section parametrizations fitted to inclusive DIS
data they appear to be the same due to the optical theorem.
Thus, considering the dominant kinematical configuration
with x0 ≪ x ≪ 1, the skewness effect is typically included
via a multiplicative factor R2

g applied to the differential
cross section in Eq. (2.1) (see, e.g., Ref. [32]), with

RgðλÞ ¼
22λþ3ffiffiffi

π
p Γðλþ 5=2Þ

Γðλþ 4Þ ; ð2:8Þ

where λ is taken from Eq. (2.7).
Followingour previouswork [33],wehaveused thevector-

meson wave functions calculated within the potential
approach, which relies on factorization of the wave function
into the spin-dependent and radial components. In the rest
frame of the color dipole, the radial wave function is found to
beanumericalsolutionof theSchrödingerequation,whichcan
be solved for different models for the interquark potential and
thenboosted to theinfinitemomentumframe,where thedipole
formula for the vector-meson production amplitude (2.4) is
defined. In this analysis, we use five different models for the
QQ̄ (Q ¼ c, b) interaction potential: powerlike model (pow)
[34,35], harmonic oscillator (osc), Cornell potential (cor)
[36,37], Buchmüller-Tye parametrization (but) [38], and
logarithmic potential (log) [39]. These models have been
fitted to the hadron spectrum and, when solving the
Schrödinger equation, we have used the same parameters as
in the original fits, including the heavy-quark masses.
However, it is worth mentioning that the quark masses

obtained by fitting the interquark potential are not bare
masses, as they carry nonperturbative effects that are differ-
ent for every potential and they are allowed to vary in order
to produce a better parametrization of the potential. Thus, in
order to maintain the universality of the color dipole model,
we chose to use, in the short-distance amplitudes, fixed
perturbative masses given by mc ¼ 1.4 GeV and mb ¼
4.75 GeV for charm and bottom quarks, respectively.
When performing the Lorentz transformation between the

two frames, not only should the radial part be properly
boosted, but also the spin-dependent part has to be trans-
formed accordingly. Such a transformation is known as the
Melosh spin rotation of the quark spinors [40], which causes
an important impact on the differential photoproduction
cross section, especially for excited quarkonia states [41,42]
(for a detailed analysis of the Melosh spin rotation effect, see
Ref. [31]). Indeed, the spin rotation increases the ground-
state quarkonia cross sections by approximately 30%, while
for the excited states the increase is by a factor of 2 to 3,
thereby playing an important role in the description of the
exclusive vector-meson photoproduction data.
Using such a quarkonium wave function in Eq. (2.4), the

resulting photoproduction amplitude (considering the trans-
versely polarized real photon only) is given by
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Aγp
T;Lðx;ΔTÞ ¼ 2i

Z
d2r

Z
1

0

dz
Z

d2be−i½b−ð1−zÞr�·Δ½Σð1Þðz; rÞNðx; r; bÞ þ Σð2Þðz; rÞN0
rðx; r; bÞ�;

ð2:9Þ
where N0

r ≡ dN=dr,

Σð1Þ ¼ ZQ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ncαem

p

2π
ffiffiffi
2

p 2K0ðmQrÞ
Z

dpTJ0ðpTrÞΨVðz; pTÞpT
mTmL þm2

T − 2zð1 − zÞp2
T

mL þmT
;

and

Σð2Þ ¼ ZQ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ncαem

p

2π
ffiffiffi
2

p 2K0ðmQrÞ
Z

dpTJ1ðpTrÞΨVðz; pTÞ
p2
T

2

mL þmT þ ð1 − 2zÞ2mT

mTðmL þmTÞ
:

Here, αem ¼ 1=137 is the fine structure constant, Nc ¼ 3 is
the number of colors in QCD, ZQ and mQ are the electric
charge and the mass of the heavy quark, respectively, J0;1
(K0) is the Bessel (modified Bessel) function of the first
(second) kind, respectively, pT is the transverse momentum
of the produced quarkonium state, and

mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q þ p2
T

q
; mL ¼ 2mQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ

p
: ð2:10Þ

It is worth mentioning that there are still significant
theoretical uncertainties in the description of the vector-
meson wave functions. In addition to the approach dis-
cussed above, there are other attempts to model the
uncertainties. A very recent one [43] executes the calcu-
lations at the NLO level in γp collisions for longitudinally
polarized photons making use of the color glass condensate
framework and proposing a wave function based upon
nonrelativistic QCD matrix elements [44]. Another study
[45] modifies the dipole cross section to enhance the
suppression of dipoles with large separations beyond the
confinement length scale (a correction important for small
Q2). The analysis of Ref. [46] is very similar to ours except
that the boosted Gaussian has been utilized there to
construct the vector-meson wave functions.

III. PARTIAL DIPOLE AMPLITUDE

For the main purpose of scanning of the impact-param-
eter profile of the target nucleon or nucleus, we need an
impact-parameter-dependent (or b-unintegrated) dipole
cross section that can be found in terms of the dipole S
matrix introduced in Eq. (2.3). We first tested seven
different models available in the literature, and we then
selected the two that best describe the exclusive vector-
meson photoproduction data from the HERA collider,
namely, the impact-parameter dipole saturation model
[15] (dubbed bSat in what follows) and the model based
upon a numerical solution of the BK equation [19].
In the first case of bSat, we employ the following

formula:

Nðx;r;bÞ¼1−exp

�
−

π2

2Nc
r2αsðμ2Þxgðx;μ2ÞTðbÞ

�
; ð3:1Þ

where μ2 ¼ 4=r2 þ μ20 is the momentum scale in the
collinear gluon density xgðx; μ2Þ and no nontrivial infor-
mation about the relative dipole orientation is implemented.
In numerical calculations, we have used the CT14LO
parametrization [47] inspired by our previous analysis of
integrated quarkonia photoproduction cross sections per-
formed in Ref. [33]. This will be different from the original
bSat model, in which the gluon PDF is evolved up to the
scale μ2 with LO Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi gluon evolution neglecting its coupling to quarks,
but the numerical results will be similar enough to neglect
the difference. In addition, we considered a conventional
Gaussian form for the proton shape function TðbÞ,

TðbÞ ¼ 1

2πBG
e−b

2=2BG ; ð3:2Þ

where the slope parameter BG ¼ 4.25 GeV−2 is taken
from Ref. [48].
In the second case, the numerical solution of the BK

equation is provided by Ref. [19], where it is obtained
under the assumption that the dipole partial amplitude
depends only on the absolute values of the transverse
separation of the dipole r and the impact parameter b, not
on the angle between r and b as in the bSat model. In this
case, the BK equation reads

∂N ðr; b; YÞ
∂Y ¼

Z
d2r1Kðr; r1; r2ÞðN ðr1; b1; YÞ

þN ðr2; b2; YÞ −N ðr; b; YÞ
−N ðr1; b1; YÞN ðr2; b2; YÞÞ; ð3:3Þ

whose numerical solution provides us with the partial
dipole amplitude

Nðx; r; bÞ ¼ N ðr; b; lnð0.008=xÞÞ; ð3:4Þ
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which is employed in our numerical analysis below. The
specific main feature of the Ref. [19] solution is that it is
obtained with a collinearly improved kernel Kðr; r1; r2Þ
studied in Ref. [49] that suppresses the larger daughter
dipole sizes during the evolution and thus does not show
the nonphysical Coulomb tails.
Finally, following Refs. [50–52], we also incorporate a

correction relevant at large x multiplying the dipole cross
section by a factor ð1 − xÞ2ns−1, where ns denotes the
number of spectator quarks, which was chosen to
be ns ¼ 4.

IV. RESULTS FOR γp → Vp PROCESS

Now that we have outlined the basic dipole formalism
needed for analysis of the differential photoproduction
observables, let us first present the numerical results for the
γp → Vp process. Note that, in general, the differential
photoproduction cross sections computed for the proton
target are very sensitive to the dipole parametrization used
in the analysis. In this work, we analyzed many different b-
dependent parametrizations for the partial dipole ampli-
tude, and they give very different results. We chose to
present only those results obtained with the BK solution
and the bSat model briefly described above as those that
provide the best description of the available J=ψ data. We
will start with the BK solution model.
Figure 1 shows the differential cross section for J=ψ ≡

ψð1SÞ (upper curves) and ψð2SÞ (lower curves) production
as a function of the momentum transfer squared jtj forW ¼
100 GeV (left panel) andW ¼ 55 GeV (right panel). Here,
the results are obtained using a numerical solution of the
BK equation of the b-dependent partial dipole amplitude
discussed above. The ground-state charmonium results
were compared to the experimental data available from
the H1 Collaboration [53,54], yielding a very good
description. The corresponding observables have been
evaluated with the LF quarkonia wave functions obtained

for several different parametrizations of the interquark QQ̄
potential (for more details, see Refs. [33,42]), which leads
to a rather minor variation in the final results. A bigger
difference is found for the ψð2SÞ cross section computed
with the harmonic oscillator potential, which is noticeably
higher than the results for other potentials. This effect is due
to a specific shape of this wave function, as was briefly
discussed in Ref. [33]. The jtj slope is close to a constant
due to an almost exponential impact-parameter profile of
the partial dipole amplitude, in full consistency with the
J=ψ data. One notices, however, a somewhat larger differ-
ence in the slopes of J=ψ and ψð2SÞ differential cross
sections due to different shapes of the wave functions.
In Fig. 2 we present our predictions for the differential

cross section of ϒð1SÞ (left panel) and ϒð2SÞ (right panel)
photoproduction as a function of jtj, also using the numerical
solution of the BK equation, for W ¼ 120 GeV. The results
for the ground and excited states are separated into two
different plots since the corresponding results for the
oscillator potential are very close. This occurs due to the
fact that these two wave functions in the case of a harmonic
oscillator have a very similar small-r dependence. Since this
domain plays a dominant role in the integration of the ϒ
production amplitudes, one indeed arrives at very similar
numerical results for ϒð1SÞ and ϒð2SÞ photoproduction in
this case.
Figures 3 and 4 represent the quantities shown in Figs. 1

and 2, respectively, except that the former are computed with
the bSat dipole parametrization instead of the BK solution
employed in the latter. As can be seen in Fig. 3, the use of the
bSat dipole model and the LF quarkonia wave functions
calculated within the potential approach also provides a fair
description of the H1 data. The latter is not as good as that
found in the case of the BK solution, though. However, since
bSat dipole parametrization is widely used in the literature,
in this work we chose to show the corresponding numerical
results as well. A comparison between the curves obtained

FIG. 1. Differential cross section for ψð1SÞ (upper curves) and ψð2SÞ (lower curves) photoproduction as a function of jtj obtained
using the numerical solution of the BK equation obtained in Ref. [19], for W ¼ 100 GeV (left panel) and W ¼ 55 GeV (right panel).
The results are presented for five different interquark potential models. The ψð1SÞ results are compared to the corresponding data from
the H1 Collaboration [53,54].
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with these two dipole models and the available H1 data for
ψð1SÞ photoproduction is presented in Fig. 5, where we can
see that both curves found are located mainly within the
experimental error bars for both W ¼ 100 GeV (left panel)
and W ¼ 55 GeV (right panel), except that at small jtj and
large W the bSat model marginally overshoots the data.

Finally, we include Fig. 6, which shows our results on the
photoproduction cross section of ϒ states in pPb collisions
when the photon is emitted from the nucleus. The required
photon flux will be discussed in the next section. These
results are compared with the CMS data points [14]. In the
plot the curve is obtained by summing each ϒðnSÞ state

FIG. 2. Predictions for the differential cross section for ϒð1SÞ (left panel) and ϒð2SÞ (right panel) as a function of jtj obtained using
the numerical solution of the BK equation obtained in Ref. [19] forW ¼ 120 GeV. The results are presented for five different interquark
potential models.

FIG. 3. Differential cross section for ψð1SÞ (upper curves) and ψð2SÞ (lower curves) photoproduction as a function of jtj found with
the bSat dipole model for W ¼ 100 GeV (left panel) and W ¼ 55 GeV (right panel) including the skewness effect. The results are
presented for five different interquark potential models. The ψð1SÞ results are compared to the corresponding data from the H1
Collaboration [53,54].

FIG. 4. Predictions for the differential cross section forϒð1SÞ (left panel) andϒð2SÞ (right panel) photoproduction as a function of jtj
computed with the bSat dipole model for W ¼ 120 GeV. The results are presented for five different interquark potential models.
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contribution multiplied by its branching fraction in the
dimuon decay channel BϒðnSÞ, which is taken from
Ref. [55]. We notice that the models underestimate the ϒ
photoproduction data at small p2

T while getting closer to the
data points at larger p2

T. This shows that a fully satisfactory
description of the data using the dipole model with an
impact-parameter dependence, particularly with large impact
parameters, is still missing from the literature.

V. COHERENT PHOTOPRODUCTION OFF
NUCLEAR TARGETS

In photon-nucleus scattering, the differential cross sec-
tion for coherent quarkonia V photoproduction γA → VA
off a nuclear target with atomic mass A can be found as
follows,

dσγA→VA

dt
¼ 1

16π
jhAγAðx;ΔTÞiN j2; ð5:1Þ

in terms of the averaged amplitude [56]

hAγAiN ¼ 2i
Z

d2r
Z

1

0

dz

×
Z

d2be−i½b−ð1−zÞr�·ΔΣThNAðx; r; bÞiN; ð5:2Þ

where ΣT ¼ Σð1Þ þ Σð2Þ∂=∂r, with the coefficients given in
Eq. (2.9). Following Ref. [48], the dipole-nucleus scatter-
ing amplitude averaged over all possible configurations of
the nucleons in the target nucleus reads

hNAðx; r; bÞiN ¼ 1 −
�
1 −

TAðbÞσqq̄ðx; rÞ
2A

�
A

: ð5:3Þ

This equation was obtained using a b-dependent dipole
amplitude parametrization in the same way as above. It
differs from another approach found in Ref. [57], where a
Gaussian shape was assumed to describe such b depend-
ence. The functions that appear in Eq. (5.3) are the usual
(integrated) dipole cross section off the proton target,
σqq̄ðx; rÞ, found in Eq. (2.6) and

TAðbÞ¼
Z þ∞

−∞
dzρAðb;zÞ;

1

A

Z
d2bTAðbÞ¼1; ð5:4Þ

i.e., the thickness function of the nucleus, given in terms of
the normalized Woods-Saxon distribution [58],

ρAðb;zÞ¼
N

1þexp½rðb;zÞ−cδ �
; rðb;zÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þz2

p
: ð5:5Þ

Here, rðb; zÞ is the distance from the center of the nucleus
and N is an appropriate normalization factor. In this work,
we consider UPCs of lead nuclei, where A ¼ 208 and the
parameters c ¼ 6.62 fm and δ ¼ 0.546 fm are used [59].
The amplitude in Eq. (5.2) takes into account the

imaginary part of the amplitude only. To incorporate the
real part, one performs the following substitution,

FIG. 5. Differential cross section for ψð1SÞ photoproduction as a function of jtj found using the Buchmüller-Tye potential as well as
the BK and bSat models for W ¼ 100 GeV (left panel) and W ¼ 55 GeV (right panel). The ψð1SÞ results are compared to the
corresponding data from the H1 Collaboration [53,54].

FIG. 6. Differential cross section for the pPb → ϒðnSÞpPb
process via γp → ϒðnSÞp as a function of p2

T calculated with the
Buchmüller-Tye potential. The results using the BK and bSat
dipole amplitudes are compared to the CMS data [14].
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σqq̄ðx; rÞ ⇒ σqq̄ðx; rÞ
�
1 − i

πλ

2

�
; with

λ ¼ ∂ ln σqq̄ðx; rÞ
∂ lnð1=xÞ ; ð5:6Þ

which is analogous to the one made for the proton target
case in Eq. (2.7). Furthermore, in order to introduce a
skewness correction to the associated nuclear gluon den-
sity, one can multiply the dipole cross section by the
corresponding skewness factor found in Eq. (2.8) as

σqq̄ðr; xÞ → σqq̄ðr; xÞRgðλÞ: ð5:7Þ

To study the rapidity distribution of the vector mesons
produced in AA UPCs, one needs to incorporate the
incoming photon flux nðωÞ into one of the incident nuclei
such that

dσAA→VAA

dydt
¼ nðωÞ dσ

γA→VA

dt
ðyÞ þ fy → −yg; ð5:8Þ

where ω ¼ ðMV=2Þey is the projectile photon energy in the
center of mass (c.m.) of the colliding particles given in
terms of the mass of the vector mesonMV and its rapidity y.
The photon flux can be written as [60,61]

nðωÞ¼2Z2
Aαem
π

�
ξK1ðξÞK0ðξÞ−

ξ2

2
½K2

1ðξÞ−K2
0ðξÞ�

�
;

ð5:9Þ

where K0;1 are the modified Bessel functions of the second
kind, ZA is the charge of the projectile nucleus sourcing the
photon flux, ξ ¼ 2ωRA=γ, RA is the radius of the nucleus
(in the numerical analysis below we use the RA value from
Ref. [62]), γ ¼ ffiffiffi

s
p

=2mp is the Lorentz factor, andmp is the
proton mass.
This photon flux is also used in calculations of the cross

section as a function of transverse momenta in pA UPCs.
The latter is computed in a similar way as Eq. (5.8), except
that we multiply the γp differential cross section by the
photon flux (5.9) in the first term, whereas the γA differential
cross section is multiplied by the proton flux in the second
term. At very small t the γA (photon from proton) con-
tribution is relevant; however, for not so small t, it falls much
quicker than the γp (photon from nucleus) contribution, and
therefore this second term can be disregarded safely.
The gluon density inside a nucleus at small x is expected

to be suppressed relative to the one inside a free nucleon
caused by a relative reduction of the dipole cross section
due to interference between incoming dipoles in the
presence of the higher Fock states of the photon (see,
e.g., Refs. [26,56,63] for more details). This phenomenon,
also known as nuclear (or gluon) shadowing, effectively
reduces the quarkonia photoproduction σγA→VA cross

section off a heavy nuclear target in comparison to that
off the proton, Aσγp→Vp. Such a shadowing effect plays the
most important role at central rapidities of the meson, and it
can be phenomenologically incorporated by “renormaliz-
ing” the dipole cross section as

σqq̄ðx; rÞ → σqq̄ðx; rÞRGðx; μ2Þ; ð5:10Þ

where RG is given in terms of a ratio of the gluon density
function inside the heavy nucleus xgAðx; μ2Þ over the one
inside the proton xgpðx; μ2Þ as

RGðx; μ2Þ ¼
xgAðx; μ2Þ
Axgpðx; μ2Þ

: ð5:11Þ

There is still a large uncertainty in the determination of the
RG factor, and we highlight the past work of Refs. [64,65]
for a thorough discussion of this issue. In our calculations,
we employ the EPPS16 parametrization for the nuclear
gluon distribution fitted to the LHC data [66], adopting
μ ¼ MV=2 as the factorization scale [67]. As discussed in
our previous paper [33], the EPPS16 parametrization was
one that has provided a more satisfactory description of the
data using the standard factorization scale; this fact
motivates us to repeat this choice.
Besides the nuclear shadowing effect, there is another

important correction to the coherent photoproduction cross
section off a nucleus that is worth mentioning. To obtain the
above equations, we used the Glauber-Gribov approach,
which takes into account the fact that the inelastic inter-
actions with the nucleons in the target nucleus can produce
particles that shortly thereafter can be absorbed by another
bound nucleon, thereby effectively making the nucleus more
transparent. These inelastic corrections are calculated con-
sidering that at high energies the dipole is an eigenstate of
interaction, with its transverse separation being “frozen” in
the course of its propagation through the target nucleus
[68,69]. This is called the frozen approximation and guar-
antees that there will be no fluctuations of the qq̄ dipole
inside the nucleus. This approximation is only valid if the
lifetime of the qq̄ state, or the so-called coherence length,

lc ¼
2ν

M2
V
; ð5:12Þ

is much larger than the nuclear radius, i.e., lc ≫ RA. Here, ν
is the energy of the photon in the nucleus rest frame.
In the case where the coherence length is finite [i.e.,

when it is not much larger than the nuclear radius
(lc ≲ RA)], one needs to incorporate additional corrections
into the differential cross section dσγA→VA=dt which
depend on the c.m. energy W. This effect occurs because
the photon can propagate through the nucleus without
experiencing any attenuation until the QQ̄ fluctuation is
produced. This propagation through the nucleus can be
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described mathematically by a light-cone Green’s function
that satisfies a two-dimensional equation of motion (for
more details, see Ref. [70]), whose solution is known only
for the quadratic dependence of the dipole cross section
approximation σqq̄ ∝ r2 and for the oscillator form of the
interquark potential. In our previous work [33], we used a
simplified way to take this effect into account by multi-
plying the nuclear cross sections in the infinite coherence
length limit by a form factor that can be found in Ref. [56].
It was shown in a recent work [71] that such an estimate is
valid with a reasonable accuracy only for photoproduction
of ρ mesons. Thus, Kopeliovich et al. compared the vector
dominance model to the approach based on the light-cone
Green’s function and showed that there is a substa
ntial difference between the form factors computed within
each approach for small values of energy, mainly for the
incoherent case.
The effect of the finite coherence length is known to be

sizable only at large values of rapidity, where there have not
been many measured data points. In this work we are
focused on making the predictions for differential quarko-
nia photoproduction cross sections at the LHC energies,
and we choose to evaluate all the results for y ¼ 0. At this
value, the finite coherence length effect does not affect the
cross section, so it can be safely disregarded.

VI. RESULTS FOR γA AND AA COLLISIONS

We would now like to present the numerical results for
the differential cross sections of coherent vector-meson
production in γA collisions as well as in AA UPCs. As was
described above, in our numerical calculations we employ
the potential approach for 1S and 2S charmonia and
bottomonia LF wave functions incorporating the Melosh
spin rotation. We choose to show the results obtained with
the Buchmüller-Tye potential since the difference from
other potentials does not appear to be significant for this
analysis. The nuclear target dipole cross section will be
built on top of three dipole-proton cross sections: the

numerical solution of the BK equation, the phenomeno-
logical Golec-Biernat-Wüstoff (GBW) model, and the bSat
model. Furthermore, the effects of the nuclear shadowing
have been accounted for by using a phenomenological
approach fitted to the data [66].
In an attempt to improve the color dipole models

available in the literature, Kopeliovich et al. [72] included
a correlation between the impact parameter and the dipole
separation in the elastic dipole-proton amplitude by adding
a dependence on the angle between r⃗ and b⃗ to the color
dipole cross section. It is indeed known that the interaction
is amplified when r⃗ is parallel to b⃗ and vanishes when r⃗⊥b⃗.
However, since there is an integration over all possible
angles in the transverse plane, the inclusion of this
correlation is not expected to have a significant impact
on the final results presented in this paper.
In Fig. 7 we compare the results for the differential cross

section of the ψð1SÞ state to the recent ALICE data [12] atffiffiffi
s

p ¼ 5.02 TeV. The models underestimate the ψð1SÞ data
for photoproduction at small jtj, while they get closer to the
available data at larger jtj. We also provide predictions for
the differential cross section of ψð2SÞ at the same energy.
Predictions are presented in Fig. 8 for the differential

cross section of the γPb → VPb coherent photoproduction
of ψ states (left panel) and ϒ states (right panel) at

ffiffiffi
s

p ¼
5.02 TeV for a large range of jtj. We notice in the figure
that the positions of the dips are almost the same for both
ψð1S; 2SÞ and ϒð1S; 2SÞ, which is due to the destructive
interference of individual scattering amplitudes of the
nucleons of the target nucleus.
In Fig. 9 we present a similar plot but for the AA → VAA

process in AA UPCs for the LHC conditions (with lead
nuclei), namely, at

ffiffiffi
s

p ¼ 5.02 TeV. We also choose central
(y ¼ 0) rapidity in order to maximize the corresponding
differential cross sections, and hence to increase the
possibility of detection at the LHC. One obvious thing
to mention is that these results have exactly the same shape
as the ones in Fig. 8, except that they are 3 orders of

FIG. 7. Differential cross sections for the γPb → ψðnSÞPb process as functions of jtj, with wave functions calculated using the
Buchmüller-Tye potential. The results using the BK and bSat dipole amplitudes and the purely phenomenological GBW dipole cross
section [73] are compared to the recent ALICE data [12] for ψð1SÞ.
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magnitude larger due to the photon flux. We have checked
the validity of using the BK equation for a single nucleon
plus the Glauber-Gribov approach together with some
gluon shadowing by comparing our results to those given
by Bendova et al. [74], who used the BK equation for the
entire nucleus and found good agreement.

VII. CONCLUSIONS

In this work, the impact-parameter b-dependent dipole
model has been employed for studies of differential (in
momentum transfer squared t) observables of elastic (coher-
ent) quarkonia photoproduction off proton and nuclear
targets. In the treatment of quarkonia light-front wave
functions, our work has relied on the potential approach.
Here, a radial-wave solution of the Schrödinger equation for
a given interquark potential has first been obtained in theQQ̄
rest frame and then boosted to the infinite momentum frame
while the spin-dependent part of the wave function has been
computed by means of the Melosh transformation. We have
also incorporated the skewness effect into the partial dipole
amplitude at the γp level, while in the nuclear case the dipole

cross section for an elementary dipole scattering off a single
nucleon has been multiplied by such a correction factor—not
the entire γA amplitude. In addition, the gluon shadowing
effect in photoproduction off a heavy nucleus target has been
accounted for fully phenomenologically.
The use of the Buchmüller-Tye potential together with

the b-dependent solution of the BK equation for the dipole-
target amplitude has enabled us to reproduce the H1 data
available from the HERA collider for the differential J=ψ
photoproduction cross section with the proton target well.
The same setup has been used to make predictions for the t-
dependent photoproduction γp → Vp cross section of
ψð2SÞ, ϒð1SÞ, and ϒð2SÞ vector mesons. A comparison
with the corresponding results obtained by using the bSat
model has revealed that the latter model gives a slightly
larger cross section. This is the first calculation using a
realistic potential model for the excited-state wave func-
tions and based on the latest developments in the b-
dependent BK equation described above.
Furthermore, new predictions for the differential γPb →

VPb and PbPb → VPbPb cross sections at central rapidity
have been reported for both ground and excited ψ and ϒ

FIG. 8. Predictions for the differential cross sections for the γPb → VPb processes as functions of jtj, calculated with three dipole
cross section models: the numerical solution of the BK equation for the dipole amplitude, the bSat model, and the GBW parametrization.
The results for the production of ψ states (left panel) and ϒ states (right panel) are shown. Both panels present the results at y ¼ 0 and
with

ffiffiffi
s

p ¼ 5.02 TeV.

FIG. 9. Predictions for the differential cross sections for PbPb → VPbPb processes as a function of jtj. We show the production of ψ
states (left panel) and ϒ states (right panel) at

ffiffiffi
s

p ¼ 5.02 TeV and y ¼ 0.
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states. Our calculations are based upon the Glauber-Gribov
picture of high energy scattering and have included the
gluon shadowing from a recent parametrization of nuclear
PDFs. A single framework consistently combining these
important elements has not yet been developed in the
literature. The new data on the J=ψ meson photoproduction
recently published by the ALICE Collaboration made it
possible to test our approach. In this case, the bSat model
provides a better description of the data than the other
models, showing that there are still significant uncertainties
in the modeling of the b-dependent color dipole cross
section.
Finally, the results on the differential cross section for

ϒðnSÞ photoproduction via γp interaction in pPb colli-
sions have been compared with the existing CMS data, and,
again, the bSat model predictions appear to be closer to the
data points than those of the BK model. Ultimately, these
calculations are expected to be of great importance for
further deeper investigations of the quarkonia coherent

photoproduction mechanisms in ultraperipheral collisions
in the future measurements at the LHC and at the electron-
ion collider [75].
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