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In this work, we self-consistently explore the possibility of charged pion superfluidity and cosmic
trajectories in the early Universe under the framework of Polyakov-Nambu–Jona-Lasinio model. By taking
the badly constrained lepton flavor asymmetries le and lμ as free parameters, the upper boundaries of pion
superfluidity phase are consistently found to be around the pseudocritical temperature at zero chemical
potentials. So the results greatly support the choice of T ¼ 0.16 GeV as the upper boundary of pion
superfluidity in the previous lattice QCD study. Take le þ lμ ¼ −0.2 as an example, where we demonstrate
the features of pion condensation and the associated cosmic trajectories with the evolution of the early
Universe. While the trajectory of electric chemical potential reacts strongly at both the lower and upper
boundaries of reentrant pion superfluidity, the trajectories of other chemical potentials only respond
strongly at the upper boundary.
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I. INTRODUCTION

As we know, the field of high energy nuclear physics
(HENP) initiated with the search of quark-gluon plasma
(QGP) phase [1] for quantum chromodynamics (QCD)
matter, and the QGP phase was expected to be realized
through relativistic heavy ion collisions (HICs) [2,3]. Up to
now, the existence of QGP at high temperature becomes a
consensus in HENP—a direct evidence is the observation
of number-of-constituent quark scaling of the elliptic flows
for mesons and baryons in large center of mass HICs [4]. Of
course, other properties of QGP have also been well
explored and one remarkable discovery is that the QGP
is a nearly perfect liquid [5,6]. Nevertheless, a much more
sophisticated and challenging mission is to depict the first
QCD phase diagram in T − μB plane with the help of HICs.
At an earlier time, people did not find a real phase transition
from QGP to hadron phase at small baryon number density
nB according to either lattice QCD simulations [7,8] or
experimental detections [9,10]. Recently, the STAR group
is carrying out lower energy collisions in their BES II
experiments, with the hope of catching the critical end point
by increasing nB [11].

Besides, the T − μI phase diagram has also been exten-
sively studied and charged pion (π�) superfluidity was
expected theoretically in the region with not too large T and
large isospin chemical potential μIð>mv

πÞ [12–15].
Specifically, the transition between chiral symmetry break-
ing or restoration phase and π� superfluidity was consis-
tently found to be of second order in chiral perturbation
theory [12], lattice QCD [13,14] and effective models such
as the Nambu–Jona-Lasinio (NJL)model [15]. Andwith the
increasing of μI, the Bose-Einstein condensation (BEC) of
π� was found to smoothly cross over to the Bardeen-
Cooper-Schieffer (BCS) phase [16], which then possibly
becomes the quarksonic matter [17]. However, it is a pity
that the systems in naturewith largeμI, neutron stars, are also
large μB matters, and the constraint of electric neutrality
eventually disfavors π� superfluidity in cold neutron
stars [18,19].
The hope of finding π� superfluidity in nature was

rekindled in the explorations of protoneutron stars [20] and
the early Universe [21,22], where the temperature and
lepton flavor densities can be much larger. Especially, large
lepton flavor densities would also help to stabilize π�
mesons against weak decays thanks to the Pauli blocking
effect to the final state [20]. And it is interesting that the
QCD phase would impact the primordial gravitational wave
(GW) and the generation rate of black holes quite well in
the early Universe [22]. According to the big bang theory,
the temperature drops to ∼200 MeV in 10−6 s of the big
bang, and the early Universe enters the QCD epoch where
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strong interaction dominates particle scattering. In the QCD
epoch, the baryon and lepton number Uð1Þ symmetries
were already violated, and the tracing back of the obser-
vations in the present Universe constrains the correspond-
ing number densities as nB=s ¼ 8.6 � 10−11 [23] and
jnl=sj < 0.012 [24] with s the entropy density. Under these
and electric neutrality constraints, the cosmic trajectories of
several chemical potentials were explored by combining
the hadron resonance gas model, lattice QCD, and the free
quark gas model [25]. Later, the possibility of π� super-
fluidity was realized at large lepton flavor asymmetries
[21,22] and the lower phase boundary was reasonably
depicted by utilizing the criteria jμQj > mπ�ðμQ; TÞ [22],
where μQ plays the role of μI for charged pions.
In Ref. [22], the temperature effect on mπ�ðμQ; TÞ, the

order parameter of their effective mass model, was only
taken into account through the ideal gas part. This might be
the reason why the lattice QCD inspired model could not
predict the upper phase boundary. And, it is also unfortu-
nate that they evaluated the phase boundary without
demonstrating the evolutions of the true order parameter:
charged pion condensates. The advantage of the NJL model
is that chiral symmetry breaking and restoration, pion
superfluidity, and the corresponding pion masses can be
self-consistently studied by solving the gap equations and
the zero points of pion propagators, all of which can be
derived analytically, see Ref. [15]. Therefore, we intend to
recheck the phase boundary of π� superfluidity in the
Polyakov loop extended NJL model (PNJL model) [26] and
show how the order parameters and cosmic trajectories
evolve across the π� superfluidity phases. In principle, the
PNJL model is able to mimic QCD more realistically by
counting the deconfinement effect to quarks and gluon
contributions to the total entropy [26].
The paper is organized as follows. In Sec. II, we develop

the overall formalism for the study of the QCD and
quantum electroweak dynamics (QEWD) matter in the
QCD epoch. For the QCD sector, the two- and three-flavor
PNJL models will be laid out explicitly in Secs. II A and
II B, respectively. The QEWD sector will be approximated
as free gases in Sec. II C. Then, we present numerical
results in Sec. III and finally summarize in Sec. IV.

II. THE OVERALL FORMALISM

In the QCD epoch of the early Universe, both QCD and
QEWD sectors are relevant: the elementary degrees of
freedom are quarks and gluons in the QCD sector and
leptons and photons in the QEWD sector. To study the
QCD sector self-consistently, we adopt the chiral effective
Polyakov-Nambu–Jona-Lasinio model, where quarks con-
tribute through the NJL model part and the contributions of
gluons are given in terms of Polyakov loop (PL) according
to the lattice QCD simulations [26–29]. For the QEWD
sector, the coupling constants are usually small, so we are

satisfied to utilize free gas approximation for the involved
particles. The following sections are devoted to developing
detailed formalisms for both the QCD matter with two or
three flavors and the free QEWD matter.

A. The QCD sector with two flavors

The Lagrangian density of the two-flavor PNJL model
with electric charge chemical potential μQ and baryon
chemical potential μB can be given as [26,30,31]

L ¼ ψ̄

�
i∂ − iγ4

�
igA4 þQqμQ þ μB

3

�
−m0

�
ψ

þ G½ðψ̄ψÞ2 þ ðψ̄ iγ5τψÞ2� − VðL;L�Þ ð1Þ

in Euclidean space. In the NJL model part, ψ ¼ ðu; dÞT
represents the two-flavor quark field and A4 ¼ A4cTc=2 is
the non-Abelian gauge field with Tc the Gell-Mann
matrices in color space; m0 ≡m0l12 is the current mass
matrix, the charge number matrix is

Qq ≡ diagðqu; qdÞ ¼
1

3
diagð2;−1Þ; ð2Þ

and τ are Pauli matrices in flavor space. The pure gluon
potential is given as a function of the Polyakov loop

L ¼ 1

Nc
treig

R
dx4A4

and its complex conjugate L� by fitting to the lattice QCD
data, that is,

VðL;L�Þ
T4

¼ −
1

2

�
3.51 −

2.47

T̃
þ 15.2

T̃2

�
jLj2 − 1.75

T̃3

× ln½1 − 6jLj2 þ 4ðL3 þ L�3Þ − 3jLj4� ð3Þ

with T̃ ≡ T=T0 and T0 ¼ 0.27 GeV [26].
To obtain the analytic form of the basic thermodynamic

potential, we take the Hubbard-Stratonovich transforma-
tion with the help of the auxiliary fields σ ¼ −2Gψ̄ψ and
π ¼ −2Gψ̄iγ5τψ [30] and the Lagrangian becomes

L¼ ψ̄

�
i∂− iγ4

�
igA4þQqμQþ

μB
3

�
− iγ5τ ·π−σ−m0

�
ψ

−
σ2þπ2

4G
−VðL;L�Þ: ð4Þ

For later convenience, we alternatively represent it as

L ¼ ψ̄

�
i∂ − iγ4

�
igA4 þQqμQ þ μB

3

�
− iγ5ðτ3π0 þ τ�π�Þ

− σ −m0

�
ψ −

σ2 þ ðπ0Þ2 þ 2πþπ−

4G
− VðL;L�Þ ð5Þ
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in the forms of physical particles: π0 ¼ π3 and π� ¼
1ffiffi
2

p ðπ1 ∓ iπ2Þ, where τ∓ ¼ 1ffiffi
2

p ðτ1 ∓ iτ2Þ is the lowering/

raising operator in flavor space. To our present interests, it
is enough to assume the expectation values of the auxiliary
fields to be

hσi ¼ m −m0; hπ0i ¼ 0; hπ�i ¼ Π=
ffiffiffi
2

p
:

Then, in mean field approximation, the thermodynamic
potential can be given in energy-momentum space as

Ω2f ¼ −Tr ln
�
=k−m− iγ4

�
igA4 þQqμQ þ μB

3

�
− iγ5τ1Π

�

þ ðm−m0Þ2 þΠ2

4G
þVðL;L�Þ ð6Þ

with the trace Tr over the energy-momentum, spinor, flavor,
and color spaces. To derive the explicit form of the trace
term, we need to solve the quark dispersions from the zero
points of their inverse propagator in Minkowski space, that
is, from

Det

�
=k−mþ γ0

�
igA4þQqμQþ

μB
3

�
− iγ5τ1Π

�
¼ 0: ð7Þ

We get k0 ¼ EtðkÞ � ðμQþ2μB
6

þ ihgA4iÞ with [15]

E�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵðkÞ � μQ

2

�
2

þ Π2

s
; ϵðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
:

Finally, in the saddle point approximation [26] L ¼ L�, the
thermodynamic potential can be given directly as [32]

Ω2f ¼ VðL;LÞ þ ðm −m0Þ2 þ Π2

4G
− 2Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

EtðkÞ − 2T
Z

d3k
ð2πÞ3

X
t;u¼�

Fl
�
L; u; EtðkÞ; μQ þ 2μB

6

�
;

FlðL; u; x; yÞ ¼ log½1þ 3Le−
1
Tðx−u yÞ þ 3Le−

2
Tðx−u yÞ þ e−

3
Tðx−u yÞ�; ð8Þ

where three-momentum cutoff Λ is adopted to regularize the divergent vacuum term.
Armed with the equation of state, the coupled gap equations follow the minimal conditions, ∂mΩ2f ¼ ∂ΠΩ2f ¼∂LΩ2f ¼ 0, as

0 ¼ m −m0

2G
− 2Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

m
ϵðkÞ

ϵðkÞ þ t μQ
2

EtðkÞ þ 6

Z
d3k
ð2πÞ3

X
t;u¼�

m
ϵðkÞ

ϵðkÞ þ t μQ
2

EtðkÞ dV1

�
L; u; EtðkÞ; μQ þ 2μB

6

�
; ð9Þ

0 ¼ Π
2G

− 2Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

Π
EtðkÞ þ 6

Z
d3k
ð2πÞ3

X
t;u¼�

Π
EtðkÞ dV1

�
L; u; EtðkÞ; μQ þ 2μB

6

�
; ð10Þ

0 ¼ T4

�
−
�
3.51 −

2.47

T̃
þ 15.2

T̃2

�
Lþ 1.75

T̃3

12Lð1 − LÞ2
1 − 6L2 þ 8L3 − 3L4

�
− 6T

Z
d3k
ð2πÞ3

X
t;u¼�

dV2

�
L; u; EtðkÞ; μQ þ 2μB

6

�
; ð11Þ

where we have defined these two dimensionless auxiliary functions for future use:

dV1ðL; u; x; yÞ ¼
Le−

1
Tðx−u yÞ þ 2Le−

2
Tðx−u yÞ þ e−

3
Tðx−u yÞ

1þ 3Le−
1
Tðx−u yÞ þ 3Le−

2
Tðx−u yÞ þ e−

3
Tðx−u yÞ

; ð12Þ

dV2ðL; u; x; yÞ ¼
e−

1
Tðx−u yÞ þ e−

2
Tðx−u yÞ

1þ 3Le−
1
Tðx−u yÞ þ 3Le−

2
Tðx−u yÞ þ e−

3
Tðx−u yÞ

: ð13Þ

Furthermore, the entropy, electric charge number, and baryon number densities can also be derived analytically according to
the thermodynamic relations as

s2f ¼ −
∂Ω2f

∂T ¼ 2

Z
d3k
ð2πÞ3

X
t;u¼�

�
Fl

�
L; u; EtðkÞ; μQ þ 2μB

6

�
þ 3ðEtðkÞ − u μQþ2μB

6
Þ

T
dV1

�
L; u; EtðkÞ; μQ þ 2μB

6

��

þ T3

�
1

2

�
4 × 3.51 − 3 ×

2.47

T̃
þ 2 ×

15.2

T̃2

�
L2 þ 1.75

T̃3
ln ½1 − 6L2 þ 8L3 − 3L4�

�
; ð14Þ
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n2fQ ¼ −
∂Ω2f

∂μQ ¼ Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

t
ϵðkÞ þ t μQ

2

EtðkÞ − 3

Z
d3k
ð2πÞ3

X
t;u¼�

t
ϵðkÞ þ t μQ

2

EtðkÞ dV1

�
L; u; EtðkÞ; μQ þ 2μB

6

�

þ
Z

d3k
ð2πÞ3

X
t;u¼�

udV1

�
L; u; EtðkÞ; μQ þ 2μB

6

�
; ð15Þ

n2fB ¼ −
∂Ω2f

∂μB ¼ 2

Z
d3k
ð2πÞ3

X
t;u¼�

u dV1

�
L; u; EtðkÞ; μQ þ 2μB

6

�
: ð16Þ

B. The QCD sector with three flavors

In order to explore the properties of QCD matter more
realistically, we adopt the three-flavor PNJL model where
more low-lying mesons are involved and the QCD UAð1Þ
anomaly has been properly taken into account through the
’t Hooft term. In saddle point approximation, the corre-
sponding Lagrangian density can be given by [26,30,31]

LNJL ¼ −VðL; LÞ

þ ψ̄

�
i∂ − iγ4

�
igA4 þQqμQ þ μB

3

�
−m0

�
ψ

þ G
X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� þ LtH; ð17Þ

where ψ ¼ ðu; d; sÞT is now the three-flavor quark field.
Similar to the two-flavor case, the current mass and electric
charge number matrices of quarks are respectively

m0 ≡ diagðm0u; m0d; m0sÞ;

Qq ≡ diagðqu; qd; qsÞ ¼
1

3
diagð2;−1;−1Þ; ð18Þ

the interaction index λ0 ¼ ffiffiffiffiffiffiffiffi
2=3

p
13 and λi ði ¼ 1;…; 8Þ are

Gell-Mann matrices in flavor space. For later use, the
’t Hooft term LtH ≡ −K

P
t¼�Detψ̄Γtψ can be repre-

sented as

LtH ¼ −
K
2

X
t¼�

ϵijkϵimnðψ̄ iΓtψ iÞðψ̄ jΓtψmÞðψ̄kΓtψnÞ ð19Þ

with the interactionverticesΓ� ¼ 14 � γ5 for right- and left-
handed channels, respectively. Here, one should note the
Einstein summation convention for the flavor indices i, j, k,
m, n and the correspondences between 1,2,3 and u, d, s.
To our main concerns, we choose the following scalar

and charged pseudoscalar condensates to be nonzero:

σf ¼ hψ̄ fψ fi; Δπ ¼ hūiγ5di; Δ�
π ¼ hd̄iγ5ui:

For brevity, we set Δπ ¼ Δ�
π without loss of generality in

the following. To facilitate the study, we would like to first
reduce LtH to an effective form with four-fermion

interactions at most. By applying the Hartree approxima-
tion to contract a pair of quark and antiquark in each six-
fermion interaction term [30], we immediately find

L4
tH ¼ −Kfϵijkϵimnσiðψ̄ jψmψ̄kψn − ψ̄ jiγ5ψmψ̄kiγ5ψnÞ

þ 2Δπ½s̄sðūiγ5dþ d̄iγ5u−ΔπÞ þ s̄iγ5sðūdþ d̄uÞ�g;
ð20Þ

where the second term in the brace is induced by
π� condensations. Armed with the reduced Lagrangian
density,

LNJL ¼ −VðL; LÞ

þ ψ̄

�
i∂ − iγ4

�
igA4 þQqμQ þ μB

3

�
−m0

�
ψ

þ G
X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� þ L4
tH; ð21Þ

the left calculations can just follow the two-flavor case in
principle.
By contracting quark and antiquark pairs once more in

the interaction terms of Eq. (21), we find the quark bilinear
form as

L2
NJL ¼ ψ̄

�
i∂ − iγ4

�
igA4þQqμQþ

μB
3

�
−mi− iγ5λ1Π

�
ψ ;

ð22Þ

where the scalar and pseudoscalar masses are respectively

mi ¼ m0i − 4Gσi þ 2Kðσjσk þ Δ2
πδi3Þ;

Π ¼ ð−4Gþ 2Kσ3ÞΔπ ð23Þ

with i ≠ j ≠ k. The G and K dependent terms in Eq. (23)
are from the UAð1Þ symmetric and anomalous interactions,
respectively. According to Eq. (22), s quark decouples from
u, d quarks, so the gap equation for σs can be simply given
by [30]
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σs ¼ hs̄si

¼ tr

�
i∂ − iγ4

�
igA4 þQqμQ þ μB

3

�
−ms

�
−1
: ð24Þ

However, the u and d light quarks couple with each other
through the nondiagonal pseudoscalar mass Π. Since μB is
usually small in the early Universe, we can simply set

m0u ¼ m0d ≡m0l; σu ¼ σd ≡ σl

in order to further carry out analytic derivations. Then, by
following a similar procedure as the previous section, the
explicit thermodynamic potential can be worked out for the
bilinear terms as

Ωbl ¼ −2Nc

Z
Λ d3k
ð2πÞ3

�X
t¼�

Et
lðkÞ þ ϵsðkÞ

�

− 2T
Z

d3k
ð2πÞ3

X
u¼�

�X
t¼�

Fl

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�

þ Fl

�
L; u; ϵsðkÞ;

−μQ þ μB
3

��
ð25Þ

with the energy functions defined by

ϵiðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
;

Et
lðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵlðkÞ þ t

μQ
2

�
2

þ Π2

s
: ð26Þ

Eventually, the coupled gap equations follow directly from
the definitions of condensates:

σs ≡ hs̄si ¼ ∂Ωbl

∂ms
; 2σl ≡ hūui þ hd̄di ¼ ∂Ωbl

∂ml
;

2Δπ ≡ hūiγ5di þ hd̄iγ5ui ¼ ∂Ωbl

∂Π ð27Þ

and the minimal condition ∂L½VðL;LÞ þΩbl� ¼ 0 as [33]

σs ¼ −2Nc

Z
Λ d3k
ð2πÞ3

ms

ϵsðkÞ
þ 2Nc

Z
d3k
ð2πÞ3

ms

ϵsðkÞ
X
u¼�

dV1

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�
; ð28Þ

2σl ¼ −2Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

ml

ϵlðkÞ
ϵlðkÞ þ t μQ

2

Et
lðkÞ

þ 2Nc

Z
d3k
ð2πÞ3

X
t;u¼�

ml

ϵlðkÞ
ϵlðkÞ þ t μQ

2

Et
lðkÞ

dV1

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�
; ð29Þ

2Δπ ¼ −2Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

Π
Et
lðkÞ

þ 2Nc

Z
d3k
ð2πÞ3

X
t;u¼�

Π
Et
lðkÞ

dV1

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�
; ð30Þ

T4

�
−
�
3.51 −

2.47

T̃
þ 15.2

T̃2

�
Lþ 1.75

T̃3

12Lð1 − LÞ2
1 − 6L2 þ 8L3 − 3L4

�
¼ 6T

Z
d3k
ð2πÞ3

X
u¼�

�X
t¼�

dV2

�
L; u; EtðkÞ; μQ þ 2μB

6

�

þdV2

�
L; u; ϵsðkÞ;

−μQ þ μB
3

��
: ð31Þ

Note thatΔπ ¼ 0 is a trivial solution of Eq. (30), soΔπ orΠ is still a true order parameter for I3 isospin symmetry [12] in the
three-flavor case. The total self-consistent thermodynamic potential can be found to be

Ω3f ¼ VðL;LÞ þΩbl þ 2Gðσ2s þ 2σ2l þ 2Δ2
πÞ − 4Kðσ2l þ Δ2

πÞσs ð32Þ

by utilizing the definitions of condensates and their relations to scalar and pseudoscalar masses; refer to Eqs. (27) and (23).
And, the entropy, electric charge number, and baryon number densities can be given according to the thermodynamic
relations as
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s3f ¼ 2

Z
d3k
ð2πÞ3

X
t;u¼�

�
Fl

�
L; u; EtðkÞ; μQ þ 2μB

6

�
þ 3ðEtðkÞ − u μQþ2μB

6
Þ

T
dV1

�
L; u; EtðkÞ; μQ þ 2μB

6

��

þ 2

Z
d3k
ð2πÞ3

X
u¼�

�
Fl

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�
þ 3ðEtðkÞ − u −μQþμB

3
Þ

T
dV1

�
L; u; ϵsðkÞ;

−μQ þ μB
3

��

þ T3

�
1

2

�
4 × 3.51 − 3 ×

2.47

T̃
þ 2 ×

15.2

T̃2

�
L2 þ 1.75

T̃3
ln ½1 − 6L2 þ 8L3 − 3L4�

�
; ð33Þ

n3fQ ¼ Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

t
ϵðkÞ þ t μQ

2

EtðkÞ − 3

Z
d3k
ð2πÞ3

X
t;u¼�

t
ϵðkÞ þ t μQ

2

EtðkÞ dV1

�
L; u; EtðkÞ; μQ þ 2μB

6

�

þ
Z

d3k
ð2πÞ3

X
t;u¼�

udV1

�
L; u; EtðkÞ; μQ þ 2μB

6

�
− 2

Z
d3k
ð2πÞ3

X
t;u¼�

udV1

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�
; ð34Þ

n3fB ¼ 2

Z
d3k
ð2πÞ3

X
t;u¼�

u dV1

�
L; u; EtðkÞ; μQ þ 2μB

6

�
þ 2

Z
d3k
ð2πÞ3

X
t;u¼�

u dV1

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�
: ð35Þ

C. The QEWD sector: Free gases

In free gas approximation, the thermodynamic potentials
for the QEWD sector can be easily given by [34]

Ωγ ¼ 2T
Z

d3k
ð2πÞ3 log ð1 − e−k=TÞ; ð36Þ

Ωl ¼ −T
Xi¼e;μ;τ

u¼�

Z
d3k
ð2πÞ3 f2 log½1þ e−ðϵiðkÞ−uð−μQþμiÞÞ=T �

þ log½1þ e−ðk−uμiÞ=T �g; ð37Þ

where the degeneracy is one for neutrinos and antineutrinos
due to their definite chiralities. Then, the corresponding
entropy, electric charge number, and lepton flavor number
densities can be derived directly as

sγ ¼ 2

Z
d3k
ð2πÞ3

�
− logð1 − e−k=TÞ þ k=T

ek=T − 1

�
; ð38Þ

sl ¼
Xi¼e;μ;τ

u¼�

Z
d3k
ð2πÞ3

�
2 log ½1þ e−ðϵiðkÞ−uð−μQþμiÞÞ=T �

þ log½1þ e−ðk−u μiÞ=T � þ 2ðϵiðkÞ − uð−μQ þ μiÞÞ=T
1þ eðϵiðkÞ−uð−μQþμiÞÞ=T

þ ðk − u μiÞ=T
1þ eðk−u μiÞ=T

�
; ð39Þ

nlQ ¼ 2T
Xi¼e;μ;τ

u¼�

Z
d3k
ð2πÞ3

−u
1þ eðϵiðkÞ−uð−μQþμiÞÞ=T ; ð40Þ

ni ¼ −
∂Ωl

∂μi ¼ T
X
u¼�

Z
d3k
ð2πÞ3

�
2u

1þ eðϵiðkÞ−uð−μQþμiÞÞ=T

þ u

1þ eðk−uμiÞ=T

�
; i ¼ e; μ; τ: ð41Þ

Now, collecting contributions from both QEWD and
QCD sectors, the total entropy, electric charge number, and
lepton number densities are respectively

s¼sγþslþs2f=3f ; nQ¼nlQþn2f=3fQ ; nl¼
X
i¼e;μ;τ

ni ð42Þ

in the QCD epoch. To better catch the expansion nature of
the early Universe, we define several reduced quantities:

b ¼ n2f=3fB =s; l ¼ nl=s; li ¼ ni=s ð43Þ

by following the conventions. According to the Introduction,
l is not sowell constrained asb from the observations, but the
standard picture well predicts that l ¼ −51=28b [35].
Furthermore, due to neutrino oscillations at the late stage
of the Universe, the lepton flavor densities li are not well
constrained at the QCD epoch, thus we will take le and lμ as
free variables in the following.

III. NUMERICAL RESULTS

To carry out numerical calculations, we get the muon
mass from the Particle Data Group as mμ ¼ 113 MeV,
simply set the electron mass me ¼ 0, and suppress the
contribution of heavy τ leptons for the QEWD sector.
The model parameters are fixed for the QCD sector as the
following [36,37]:
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PNJL2f∶m0l ¼ 5MeV; Λ¼ 653MeV; GΛ2 ¼ 2.10;

PNJL3f∶m0l ¼ 5.5MeV; m0s ¼ 140.7MeV; ð44Þ

Λ¼ 602.3MeV; GΛ2 ¼ 1.835; KΛ5 ¼ 12.36: ð45Þ

The T − ðle þ lμÞ phase diagrams of two- and three-
flavor PNJL models are illuminated in Fig. 1. As we can
see, the ratio le=lμ and the effect of strange quarks are not so
important for determining the phase boundaries of pion
superfluidity, especially the upper ones. And the calcula-
tions with the standard lepton asymmetry in the upper panel
indicate that the uncertainty of l plays a negligible role in
the exploration of the phase boundary. Compared to the
threshold lepton flavor asymmetry jle þ lμj ∼ 0.1 in the
extrapolated lattice QCD calculations [22], the values are
consistently jle þ lμj ∼ 0.09 at their top temperature
Tpc ¼ 0.16 GeV in our evaluations. So recalling the
effectiveness of the PNJL model and its criterion for the
phase boundary, the agreement is remarkable. In advance,
we obtain the upper boundaries of pion superfluidity to be

consistently T ∼ 0.21 GeV, which is much larger than
Tpc, a well-known drawback of the PNJL model [32].
Nevertheless, the upper boundaries are almost the corre-
sponding pseudocritical temperatures at zero chemical
potentials, which then supports the setting of the upper
boundary around Tpc in Ref. [22]. By the way, here the
threshold lepton flavor asymmetries are 0.08 and 0.075 in
the two- and three-flavor cases, respectively.
Now, we take the more realistic three-flavor PNJL model

for example to show the features of cosmic trajectories at
le þ lμ ¼ −0.2, where the early Universe could evolve
through the pion superfluidity phase. We compare two
cases: le ¼ 0 and le ¼ lμ, and demonstrate the order
parameters and chemical potentials in Figs. 2 and 3,
respectively. As we can see, the effect of the ratio le=lμ
is only important on the cosmic trajectories of the directly
related quantities, μe and μμ, and the results almost overlap
with each other for other quantities. According to the lower
panel of Fig. 2, the pion condensate Π shows a reentrant
feature with T: although the decreasing at higher temper-
ature can be easily understood as isospin symmetry

FIG. 1. The T − ðle þ lμÞ phase diagrams in two- (upper panel)
and three-flavor (lower panel) PNJL models. The heavy and light
shadows correspond to the pion superfluidity phase for le ¼ 0
and le ¼ lμ respectively with the total lepton asymmetry
l ¼ −0.012. The dashed line in the upper panel is the boundary
for the total lepton asymmetry l ¼ −51=28b and le ¼ lμ.

FIG. 2. The order parameters ml, ms (upper panel) and Π, L
(lower panel) as functions of temperature T for l ¼ −0.012 and
le þ lμ ¼ −0.2 in the three-flavor PNJL model. The dashed and
dotted lines correspond to the cases with le ¼ 0 and le ¼ lμ,
respectively.
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restoration, the increasing at lower temperature is not
trivial. Actually, the latter is due to the enhancement of
jμQj with T under the constraint of electric neutrality; see
the upper panel in Fig. 3. In Fig. 2, it is also interesting to
notice the consistency between the critical temperatures of
I3 isospin symmetry restoration and the deconfinement
transition at finite charge chemical potential [32].
Following the monotonous feature of jμQj in the upper

panel of Fig. 3, we find the criterion jμQj ¼ mv
π to be well

satisfied at the lower critical temperature T l; but that is no
longer useful for the exploration of upper critical temperature
Tu, since the effective π� mass increases with T. Since the
jμQj varies from mv

π to ∼3mv
π within the pion superfluidity

phase, we can well recognize the BCS and BEC crossover
therein [16] as the early Universe cooled down. As expected,
the baryon chemical potential is small except for very low
temperature, which justifies our assumptions in the QCD
sector: mu ¼ md and L ¼ L�. Furthermore, both the oppo-
site signs between μB andμQ and the abrupt jumpofμB at low
temperature qualitatively fit the findings in the extrapolated
lattice QCD study [25]. We note that the existence of pion

superfluidity at T l only leaves a visible sign in the behavior
ofμQ, but the entrance atTu gives rise to important signs in all
the chemical potentials. Compared to the signs SðμeÞ ¼
SðμμÞ ¼ SðμτÞ for the choice le ¼ lμ ¼ lτ in Ref. [25],
we find SðμeÞ ¼ SðμμÞ ¼ −SðμτÞ due to the choice
jle þ lμj ≫ jlj.

IV. SUMMARY

In this work, the possibility of pion superfluidity and the
corresponding cosmic trajectories are self-consistently
explored by varying the lepton flavor asymmetries within
the PNJL model. The effects of strange quarks, total
lepton asymmetry, and the ratio le=lμ are all found to be
mild on the phase boundary of pion superfluidity.
Following the previous study in Ref. [22], the phase
boundary is constrained from both lower and upper sides
in our study. At Tcp, the lepton flavor asymmetry jle þ lμj is
0.09 in our work, quite consistent with the threshold
value 0.1 obtained in Ref. [22]. However, with the
pseudocritical temperature in the PNJL model being much
larger than that from lattice QCD, we find that the threshold
values shift to 0.08 and 0.075 for two- and three-flavor
cases, respectively.
According to the three-flavor example, the pion con-

densation shows a nonmonotonous or reentrant feature, as
it should be for the existences of both upper and lower
second-order phase boundaries. While the sign of lower
critical temperature is only visible in μQ, the signs of the
upper one show up in all the chemical potentials. So in
principle, the phase transitions to and from pion super-
fluidity during the evolution of the early Universe can be
identified through the nonanalytic features in the cosmic
trajectories. Moreover, the critical jμQj at Tu is found to be
around 3mv

π , which is so large that it explains why the
extrapolated lattice QCD study was unable to fix Tu at
all [22].
In Ref. [22], the equation of state of QCDþ QEWD

matter with different jle þ lμj was adopted to study the relic
density of the primordial gravitational wave. So, inversely,
the observations of GW would help to constrain jle þ lμj
and thus indirectly indicate whether pion superfluidity had
happened or not in the QCD epoch. For a second-order
phase transition, we do not expect it to leave direct relics
on GW, such as in the pion superfluidity in this work.
But, for a first order one, the transition itself will give rise to
a specific GW spectrum [38–40]. Actually, with the strong
magnetic field presented in the early Universe [41–43], the
transitions relevant to pion superfluid, which is also a
superconductor, could be shifted from second order to first
order. We will explore such interesting situations in more
detail in our coming work. Hopefully, the advanced GW
detectors, such as LIGO, SKA, LISA, and Tianqin, could
help to capture the signals in future.

FIG. 3. The cosmic trajectories of baryon and electric charge
chemical potentials μB, μQ (upper panel) and lepton flavor
chemical potentials μe, μμ, μτ (lower panel) as functions of
temperature T for l ¼ −0.012 and le þ lμ ¼ −0.2 in the three-
flavor PNJL model. The dashed and dotted lines correspond to
the cases with le ¼ 0 and le ¼ lμ, respectively. In the lower panel,
the red dotted line denotes the overlapping of μe and μμ.
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