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Relativistic resistive dissipative magnetohydrodynamics from the relaxation
time approximation
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Here we derive the relativistic resistive dissipative second-order magnetohydrodynamic evolution
equations using the Boltzmann equation, thus extending our work from the previous paper [A. K. Panda
et al., J. High Energy Phys. 03 (2021) 216] where we considered the nonresistive limit. We solve the
Boltzmann equation for a system of particles and antiparticles using the relaxation time approximation and
the Chapman-Enskog-like gradient expansion for the off-equilibrium distribution function, truncating
beyond second order. In the first order, the bulk and shear stress are independent of the electromagnetic field,
however, the diffusion current shows a dependence on the electric field. In the second order, the new transport
coefficients that couple electromagnetic fields with the dissipative quantities appear, which are different from
those obtained in the 14-moment approximation [G. S. Denicol et al., Phys. Rev. D 99, 056017 (2019).] in the
presence of the electromagnetic field. Also, we found the various components of conductivity in this case.
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I. INTRODUCTION

The dynamical evolution of hot and dense nuclear matter
produced in high-energy heavy-ion collisions has been
successfully described by the causal second-order viscous
hydrodynamics numerical solution [1-10]. The discovery
that the quark-gluon-plasma (QGP) produced in such high-
energy heavy-ion collisions is a near-perfect fluid is pri-
marily based on phenomenological studies using relativistic
viscous hydrodynamics [11-14]. However, almost all of
these studies neglected the possible effects of strong transient
electromagnetic fields produced in the initial stage of high-
energy heavy-ion collisions. The finite electrical conduc-
tivity of the QGP and the ambient intense electromagnetic
fields strongly suggest that the most appropriate framework
for this case is relativistic resistive viscous magneto-
hydrodynamics. In our previous work [15], we derived the
second-order causal relativistic ideal viscous magnetohy-
drodynamics (MHD) equations from the relaxation time
approximation (RTA). Here we extend our previous work to
include the finite resistivity of the fluid. Note that in Ref. [16]
the formulation for resistive MHD was derived for the first
time from the moment method. It was shown for the ideal-
MHD case that although the RTA [15] and moment methods
[17] give similar evolution equations for dissipative stresses,
the two formulations give different values of transport

“ankitkumar.panda@niser.ac.in
ashutosh.dash @niser.ac.in
‘rajeshbiswas @niser.ac.in
SVictor@niser.ac.in

2470-0010/2021/104(5)/054004(10)

054004-1

coefficients. Moreover, we also showed that the RTA
formulation gives rise to some new transport coefficients.

It is worthwhile to mention that the ideal-MHD (infinite
electrical conductivity ¢) limit is an approximation works
only in limited systems. As was pointed out in Ref. [16] that
this approximation has a basic flaw in the sense that ¢ is a
transport coefficient, and like other transport coefficients
(e.g., shear and bulk viscosity) is proportional to the mean
free path of the microscopic degrees of freedom. It is
inconsistent to take ¢ — oo while other transport coefficients
remain finite (to be precise the magnetic Reynolds number
governs the ideal/resistive regime). In a resistive fluid the
magnetic field can generally move through the fluid follow-
ing a diffusion law with the resistivity of the plasma serving
as a diffusion constant. This implies that the ideal-MHD
approximation is only good for a given length and time scale
before the diffusion becomes non-negligible.

The resistive-MHD allows finite electric field inside the
plasma while in the ideal MHD the electric field is con-
strained via E = —v x B. Since charged particle motion in
cross electric and magnetic field becomes much more
complicated than only the magnetic field case, the resis-
tive-MHD consequently shows much more complex behav-
ior (e.g., magnetic reconnection) than ideal-MHD. In
addition to the regular applications in solar and cosmological
systems the relativistic magnetohydrodynamics (RMHD)
has recently found applications in condensed matter systems
such as Dirac [18] and Weyl semimetal [19]. In heavy ion
collisions, the importance of RMHD has recently been
realized in Refs. [20-26] and it is an active area of research
specifically for detecting chiral magnetic eect (CME) [27-
29] and other related phenomena.

© 2021 American Physical Society
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Throughout the paper we use the natural units, 7 = ¢ =
kg =py =€y =1 and the metric tensor used is
¢ = diag(+1,—1,—-1,—1). That means the current for-
malism is applicable only for the flat-space time. We also use
the following definitions: u - p = u*p,, A" = ¢ — u!'u”,
where u* =y(l,v) is the fluid four-velocity and
y=(1-=v*)""Y2 In the rest frame of the fluid
u' = (1,0). The comoving derivative is given by u*0, =
D (sometimes we use overdot to denote the comoving
derivative), and the partial derivative can be decomposed into
a comoving and a spatial part (in the rest frame) as
9, =u,D+V,, where V, = A/,0,. We also use the fol-
lowing decomposition

1
V(lu[)’ — a)a/i + 6(1/} + g HA{II}, (1)

where w® = (V®uf —VPu®)/2 is the antisymmetric vor-
ticity tensor, % = Viau#) = 1(Vouf + VPy®) — 1oAY is
the symmetric-traceless tensor and 6 = 0,u* is the expan-
sion scalar. The fourth-rank projection tensor is defined
as Al =5 (AGAYL + ARAY) — S AR A,

The manuscript is organized as follows: In Sec. II we
discuss the equation of motion for the relativistic mag-
netohydrodynamics, the corresponding energy-momentum
tensors and the definition of some quantities related to the
kinetic theory description used in the next section. In
Sec. III we derive the first and second-order corrections to
the single particle distribution function and the correspond-
ing dissipative fluxes from the Boltzmann equation. Here
we also discuss the Navier-Stokes limit and the
Wiedemann-Franz law. Finally we conclude and summa-
rize our study in Sec. IV.

II. RELATIVISTIC MAGNETOHYDRODYNAMICS
EQUATIONS

A. Equations of motion

Here we discuss the essential fluid equations briefly. The
magnetohydrodynamics equations consist of energy-
momentum conservation equations for fluid and electro-
magnetic fields, and the Maxwell’s equations. These set of
conservation equations are closed with an equation of state
(EoS) relating fluid pressure, energy, and number density
and a constitutive equation for the four-charge current (see
Ref. [15] for details). In presence of the electromagnetic
field, there exists an external force on charged fluid, and the
energy-momentum conservation takes the following form

0,Tf = FJ,. (2)
Here

F* = FFry? — EVut + e’”’“ﬂuaBﬂ, (3)

and its dual given by
F* = B'u — B'ut — e Py, Ey, (4)

where E* = F*u,, B* = F*u,, J* is the four-charge
current. We note that E*u, = B'u,=0. F" obey
Maxwell’s equations

0, F" = J*, (5)
9, =0, (6)

Later we also need the energy-momentum tensor and
particle current defined in terms of moments in the
following form

Ty = / dpp*p*(f + 1), (7)
N = / dpp(f - 7). (8)

where dp = gd’p/[(27)*p°] with p° = +/p*> +m?, m
being the rest mass, g is the degeneracy factor (spin
degeneracy for this case has been considered to be 1),
and f is the contribution from the antiparticles. The four-
charge current is given as J; = gN" where q is the electric
charge. In Landau frame N* = ngu* + Vif- where the
dissipative part V_’; = A*"N, and the charge density
n= Ntu,.

The single-particle equilibrium distribution function in
Eq. (7) and Eq. (8) is given by

©)

1

fo= Hura g,
where f = T~!, where T is the temperature, u* is the fluid
four-velocity, p* is the four-momentum, o = uf, and p is
the chemical potential, » = +1, 0 for the fermions, bosons,
and for the Boltzmann case respectively (also @ = —a for
anti-particles).

The energy-momentum tensor for the electromagnetic
field is

B? + EZ B? + E?
T’éiﬁ( ; )u"u”—( ; )A"”—sz/‘b”

— E%ete + 200, (10)

where B = Bb*, E* = Ee¥, b'b, = —1, e!e, = =1, Q¥ =
EMPE,B, with &M = ey, and b*u, = eu, = 0. We
also define the second-rank antisymmetric tensor
B" = e””“ﬂuaBﬁ = —Bb", where B"B,, = 2B and the
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corresponding normalized tensor b** = — Bwa with the prop-
erties that b*u, = b*b, = 0 and b*b,, = 2. We can now
write the total 7 as T" = Ty + T';". For the nondissi-
pative fluid T” = eutu’ — PA". Hence the energy-

momentum tensor for the nondissipative fluid in presence
of an electromagnetic field takes the following form,

2 2
Tﬂl/ uy—(P+B ;E)AMD

B>+ E*\ |
tot()_ €+ 2 u

For the dissipative fluid in the electromagnetic field we have

B% + EZ B% + EZ
T{ﬁz(e—i— ; )u”u”—(P—i—H—i— —; )A””

— BbbY — E2ete + 2QUY). (12)

+

Later on in our calculation, we need the following expres-
sions, which are obtained from the energy-momentum
conservation equation and the thermodynamic integrals

— B0'b* — E?ee” + 20 ut). (11)  given in Ref. [15].
|
&= =10 g(c + P+ T1) = SO (1,0 + O, V") + IO (=, + BV )
Doy 720 30 \ty uVr 20 77 fulls
p | 0)- 0 Y
h= Dy [J(10)+9(€ +P+1) - Jgo) (ns0 + 0,V}) + J<10)+(_”” O+ qE" V)],
, Uy - y 1 v
i = PP (VEa — hVIp) — T + VHIL — AYO, 7 | + Py lgn EF — gBb*V )], (13)
|
where D,y = 7Y 30 *J 50) - Jg%)_fg()))_, h = % and  was related to the magnetic field through the relation
ot = z” Veul. ’ E = —v x B. However, on lifting this assumption of

III. FORMALISM AND BOLTZMANN EQUATION

A. Boltzmann equation

The relativistic Boltzmann equation(RBE) is given by

PrOf + qF””pua _f = CIfl. (14)

where f is the distribution function, ¢ is the electric charge
and C[f] is the collision kernel. Here we take the collision
kernel as C[f] = —“25f, where 7, is the relaxation time
andof = f — fpis the deviation from the local-equilibrium
distribution function f,. For this collision kernel we get

P

T,

Ouf + qF””pya L f = of (15)

B. First-order and second-order derivation

Here we use the techniques similar to Ref. [15] in order
to calculate §f corrections. Equation (15) can be written as
a power series expansion of the following form

=3 () (0,4 aPn ) s (1)

n=0

In the nonresistive case, one had a two-expansion para-
meter, viz. Kn = 7.0, and y = gBz,./T. In that case the
electric field was not an independent degree of freedom but

infinite conductivity and including the effect of the electric
field explicitly in our calculation, we see that there is yet
another expansion parameter, ¢ = gEt,./T, apart from Kn
and y.

Now truncating it up to second order we get

f=rfo+8fW+5f, (17)

where

o) = = (POufo + PaE pufofo). (18)

5f®) = F\+ Fr+ Fs + Fu,
7. (P
-7:1: ;4( paafO)v
u-p u-p
7, T, .~
pﬂaﬂ (q—fOfO:B(E ’ p))’

u-p
qr, 0 .

:FSZ F*“p, paafO >
u.p op* \u-p

2z 0
Fy= Z.—T[;Fﬂyp”a—;ﬂ‘ <—f0foﬂ(E P)) (19)

.7:2:

(5}) are

Similarly the correction for antiparticles
calculated.
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C. First-order evolution equations

1. Bulk stress

We use Eq. (18) to calculate the first-order dissipative
fluxes. The bulk stress for the first order is given by

A, i
gy =- ;/dpp”p”(5f“)+5f(”)- (20)

After some calculation we get
H(l) = —7./nb, (21)
where f; = 270" + 270" - YT with

19 (e +P) =1y ny
Dy ’

X =

and

I e+ ) =Sy

Yy
Dy

2. Diffusion current

The diffusion current for the first order is given by

Vi =8 [apprier® - 570). @
Using Eq. (18) we get
Vi) = weBy(Via + pgE"), (23)
where g, = 17807 — J3)~.

3. Shear stress

The shear stress for the first order is given by

) = AﬁZ/dPP“pﬁ(rSf“) +oFm). (24)
Using Eq. (18) we get
7)) = 2efao™, (25)

where , = ﬁJf‘le.

From the above discussion we see that the first-order
viscous terms are independent of the electromagnetic field
but the diffusion current has contributions from the E*.

|

VH

Te

D. Second-order evolution equations

Here we evaluate the second-order equations for dis-
sipative stresses.

1. Bulk stress
Similar to the first-order case, the expression for the
second-order bulk stress is given by
A{1(/3
3

Moy = =2 [ dppp (62 +57%). (26)
For this case the total bulk stress is composed of first- and
second-order terms

We obtain the evolution equation for the bulk stress from
Eq. (26) and Eq. (27) [see Appendix (A 1) for details],

I .
—=-II- 5HHH9 + /11'[”7[’“/(7”,, - THVv S0 — AHVV -Va
Te

- lnva -V = ﬂne — quHVBb”ﬂV/jV”
+ TcTHVBi‘anb"ﬁVﬁ - q5HVva(TcBb”ﬁVﬁ)
- qzrc')(HEEEME,w (28)

where the transport coecients appearing in Eq. (28) are
listed in Table I for the massless case and compared with
Ref. [16], whereas Table II contains the result for the
massive case, and the rest of the coecients have the usual
meaning for the ideal MHD case Ref. [15].

2. Diffusion current

The expression for the diffusion current is obtained in a
similar manner with the exception that now the particle and
antiparticle contribution is not additive as per the definition

Vi) = Aa / dpp*(5f@ - 67@), (29)

Vi = V’(‘l) + V’<’2). (30)
The second-order evolution equation for the diffusion
current is obtained from Eq. (29) and Eq. (30) [see
Appendix (A 2) for details],

—V<ﬂ> - VUCUD” + /’lvvvuﬁl; - 5vvv”0 + Avnnvﬂa - ﬂvﬂﬂm/vya - Tvﬂﬂgll.v - qB5VBbWV;,

+ TVHHM-” + lV,,A”l’@},JTZ - lvnvﬂn + ﬁVV”a + 'L'CquV”Bbgﬂakﬂ'mr - ch/lVVBBbnyUU’;
+ 7.qBrynpb" i, — 7.qBlyngb™V,I1 — q.6yyg B*V 0 — gt pyypBb™V 0y
+ xveqE* 4+ qAuyyeD(t.E*) — qr pypE*0 — qryyp Ay D (7 BbVV,). (31)
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TABLE 1. (a) Transport coefficients for the bulk stress for a
massless Boltzmann gas (result for particles only and for zero
chemical potential) calculated using the CE method (this work)
and compared with the results from the moment method Ref. [16]
(b) same as Table I(a) but for diffusion current (c) same as Table I
(a) but for shear stress.

Transport coefficients CE Denicol et al.

v 0 0

XNEE p*P/36

Ay 1/(3p) 0

Iny 0 0

Avp 3/(pP) o

Transport coefficients CE Denicol et al.
Ayy 2/5 3/5

dyy 22/3 1

dvp 2p 5p/12
PVE Pp?/18 o

XVE Pp%/12 PB%/12
Transport coefficients CE Denicol et al.
Tav 12/(5p) 0

Lay 12/(5p) 0

Ay 11/5p 0

Aavp 24/5(pP)~!
XrEE 24*P/15

The coefficients appearing for the resistive case are listed
in Table 11, the rest of the transport coefficients are same as
the ideal MHD case given in Ref. [15].

3. Shear stress

The expression for the second-order shear stress is
obtained from the following definition,

7o) = Doy / dppep’(6f) +6f®)).  (32)

Note that the total shear stress is the combination of first
and second-order terms

" = 1)) + afy. (33)

Evaluating the integral in Eq. (32) [see Appendix (A 3) for
details] and adding it to Eq. (33) we get the evolution
equation for the shear stress

/i

= —7W) 42, 0" + 2V — 1V o — 8,0

+ Allo? — T,,VVO‘L}”> — TCqBT,,VBM”b")"VG

+ Ay VUV a = Ly VUV 4 5 AgBb " P,

- quanBVbeVU) - q5nVBV<” (TcBWVy)

+ quc)(nEEAlézEaEp‘ (34)

The coefficients in Eq. (34) that appear for the resistive
case only are listed in Table IV; the rest of the coefficients
are same as ideal MHD Ref. [15].

E. Navier-Stokes equations

Here we keep the terms which are only first order in
gradient in Eq. (28), Eq. (31), and Eq. (34) and get the
Navier-Stokes limit

I1
- = _ﬂl_le’ (35)

Te

V¥ + qBt Sypb"'V, — qr ppvE" = . pyVFa,  (36)

g7q” p
( - 5,,BA,7ﬁqumgﬁﬂ> 7, =2B,0".  (37)

In the power-counting scheme, the electric field E* is
considered O(9) as given in Ref. [30]. Using the same
projection operators as used in Ref. [15] we get the
coefficients for the shear, bulk, and diffusion. It turns
out that the first-order transport coefficients for the shear
and the bulk viscosity is the same as the ideal MHD case
[15], however, for diffusion, we get new transport coef-
ficients. The decomposition of the diffusion four current in
terms of the projector expressed as

vV, = (K”P!b + K'J_P(JSL + KXP§D)050¢
1
+- (0| P), + 0, PL + 0 PL)ES.  (38)

Here, we have used the Ohmic law for current in a
conducting fluid

Jh =05 E,, (39)

where o% is the electrical-conductivity tensor.

Putting the above equation in Eq. (36), using the
properties of the projection operators and comparing both
sides for the d°a we get
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K| = 7Py,
K| = TPy ’
1 + (gBt.6yg)?
Ky = K1qBt.byp. (40)

Similarly comparing the coefficients of E° we get

UE =dq Tcﬁﬂ\/,
1 q Tcﬁﬁ\/
OF =1 3
1 + (¢Bt.dyp)
3Bt BB, 6
0% = q’ Bt ppvoys (41)

I+ (qBTcévB)z .

The above relations are the kinetic version of the
Wiedemann-Franz law which is ¢ = ¢?fk. Moreover, if
we set all the dissipative quantities as zero, then we will get

Via = —qfE*. As expected, alll,: is 1ndependent of the
magnetic field and proportional to T2 ot %, and oy decreases
for increasing magnetic fields [31-33]. It may be helpful for
application in the Cooper-Frye prescription if we express the
of correction in terms of the dissipative quantities. In that

case, the of 1 (Eq. (18) can be written as
sf) = fOfO LoJ0% (AT + BV, 4 C'7x, ),
P
where
L [(u-p) 0 0)+
A=- [7 J e+P)—Jy 'n
t.fu Do ( 20 ( ) 30 f)
_ A p*pP
Wp) GOy py— Oy 4 PR P ]
wo_ Pl p)p’ <1 (u- p)> qBp"5y5b,
Py tPv(e+P) h Pv 7

o _BPP" (9149‘/?

2ﬂ7[ 57!3 A}i;r qumngg/}ngu> .

T,
Here we tried to follow the custom to express df in powers of
p*. It is interesting to note that we cannot do that for B# and
C", where the correction due to the magnetic fields appears
in the first order.

IV. CONCLUSION

In this work, we derive the second-order relativistic
resistive dissipative magnetohydrodynamics equations using
the relaxation time approximation of the collision kernel in
the relativistic Boltzmann equation. The resistive MHD
implies a nonzero electric field inside the fluid; we found
novel transport coefficients originating due to the coupling
of the electromagnetic field to the usual dissipative forces.
We also calculate the values of these new transport

coefficients for a Boltzmann gas in the massless limit and
compare it to the fourteen-moment method [16]. We derive
the Navier-Stokes limit of the second-order equations using
power counting, and subsequently, we show the relationship
between particle diffusion and electrical conductivity, also
known as the Wiedemann-Franz law.

We wish to further extend the current formulation to
curved space-time, which is relevant for cosmological
problems [34]. In the future, one can study the evolution
of QGP by numerically solving the equations obtained here
for the resistive case and estimate possible uncertainties due
to the magnetic field in the extracted values of QGP
transport coefficients. Finally, it will be interesting to work
in the quantum regime and study the effect of spin degrees
of freedom of the quasiparticles. The study of spin-
magnetohydrodynamics [35-37] may enable us to under-
stand the phenomena of polarization of vector mesons
produced in high-energy heavy-ion collisions.
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APPENDIX A: SECOND-ORDER RELAXATION
EQUATIONS

Here we give the detailed calculations of the second
order dissipative quantities. The explicit dependence of the
anti-particles is not shown in the calculation, but they
appear in our final results.

1. Bulk stress

Let us consider the bulk viscous case first. From Eq. (26)
we get

A, _
= —Tﬂ/dpp“p”(éf(z’ +68f@), (Al

N=7,+7,+7Z;+1. (A2)
For convenience we split 7, into three terms as follows:
I, =A+B+C, (A3)

where

_By
3

a/}/
a/} s _te cpp
/dpp p p"V u'pv/)fo :

p*plz. D[—p” fo}

dp
dpp®p p"V (zefo),
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We carry out these integrals one by one and we get

ngﬂ

277 27? 0)- . cﬂ 0)+ -
A=z I+ Ejgl) g Ve — Tlgl) g Ve — 3 ]31 ltagBb*V 5 + m]@ﬁ*uaan,
57? (4 2y 0 T2 g O (iya (D= 2=
B= V, (B i) + 3 Ol(J3) " + Ty )P—(J3 + T )al,
STC:B 23 c 1 1 cﬂ 1 v
C= 9 <7‘163 += 3 Jz(tz) ) V {V (E‘lglz) Jz(u )] +—(7J63 +J£2>+)6ﬂ O
|5z Vi DT BgBLY, T pgEr
TV, [ i - i cv w paE) A4
{ 0 Pu et P h (A4)

|
For the rest of the three terms (after some algebra) we get ~ Like the previous case we split Z; into three terms as
) 5 follows:
1)-- 2)-
Ty = =5 @By it =5V, pIE B,
1)- 3 2)+
T, = —qr? [3h (575 +278)" =51 =203 BV e I, —A+B+C (A7)

qﬁ
3

where
Jrq—ﬂ(5142 +2J5)7)E*B,, VY|
ny

(5J42 + 2J§11)_)E”Eu

(P15 + 2pI) ) E, B (AS5)

A= A’é/dpp“TcD {;—L))Ppﬁpfo],

. .
2. Diffusion B = Aq / dpp”— Pl Vo(zefo),
The second-order diffusion current V’(‘z) is given by T o p
Eq. (29) C= Al / dpp*—=p°V, ( foo>
u-p u-
Ry P
V;(l2> :Il +:Z-2 +I3 +I4 (A6)

After integrating we have
|

n Bb™V, )
"fi} _ ALDgpRER ),

A=—7, V¥ —‘L'CA”D|:

Lﬁu 0

B:—Tg (21 ﬂ le ) (4J21 +5J42 ) ﬂjzl C’)W_TZ/}“ Uyﬂ(-]g;) +2J£122)_>»

41’ 1 0)+ 4 1 0)+
C:_3e(hj<21) -2 >V/‘ +TJ21 P — 7 <h1§1> —J5 >°~nya+72J21 pir'oy

1 _ Bb™V, 1
—Tg(—J” i )a)”V7a+12J21 it + 1.0 ’;{/%]—273&153 — 75 )d’vya

. 5c2 (1 5% e - 572 -
+ 20203 pirel - (Zfﬁé) -7y )Vﬂ I pir 22NN, (B o) = ZEVH(BI6)

422 - [BaBO™V, BqBb™V, BqBLPV,] 52 o [BgBbWV
¢ JO-g|PABY V) | 2 0= \PABOYT Yy | | o0y @ | PABDT Vu | | DT 42— | PABDT Yy
3 21 € + P 21 Y + P + 42 14 €+ P + 3 42 € + P
4 e S qpn 2 qpnE” qpnsE”
=S 38 Jo(T) 2o () v o (A8)
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The rest of the terms give

A
T, = gD (I ) + s Ewi, + qi2p D (E (“’W*"W* 3 9) *Eﬂg)

AHP
+q2pIY)" (E/‘Q +2E, <o"/’ + Ta) ) :

1 .
15 = qr; <ﬁJ31 B "”( e [ ﬂf (Vya) =i, + V1= A, 0,7 + qnE, — qugiﬂ:|>)+6]Tg(ﬁ.]<32])+E”9+]§}))+ Erp)

3 )
(=05 B I B + 2 (PEIY" (20 15 80) + BB - a2 (B0 ),

T, = —pq’cil5 EBL. (A9)
|
where
3. Shear stress
The second-order shear stress ﬂ” is given by Eq. (32) .
A=Ay / dpp®p’z.D [ufpp”agfo}
7o) = Ao / dpp*p’(6f*) + 6f%)
B - A”y /d B [)v T : )
T, 4T, + Ty + T (A10) w | 4PP°P pp leefo
Again the first term can be divided into three parts and is C= Aﬁ; / dpp*p” fe_ j2aY% P [T—C p°V, fo] .
given by w-p w-p
=A+B+C, (A1)
|
" ny , y 0+ 5 [PaBb™
A= i) —273< _’_PJgR —J5) > Y a"‘TzAgﬂJn /)[ el P Ve
- /4
2 a0+ 2o [PABD 2pm g O=p [9PET) s pw 010 [PE )
Boplzl { TP Vol = Aa}‘]3l e+P Aopla el P
B==222[(J3)" + 18 )B = (U5 + I3 )de — 222V (i) Iy,
1
c= 2V<ﬂ(av>ﬁT§J§f§+) + 2V {V”arg <sz> th2 >] 42 (275 + 1Y Yl et
28 v
- ﬂ e L A A L
BgBb*)TV _ (BgE"'n;
22V | SO (B2} | 22w | ] L. Al2
+ 27 { 42 c i1 P 42 e P (A12)

The rest of the terms give

I, = qr%ﬂjgll)_A””(E"zk/’ + By + Vi (g2pEN TS,

Ty = Nigr2(J5) " (B(BY + BY) + EPVep + EVPp)
+ AT (IS (EPVB + EXVPB) + I TE“il) + Nqr2 (15 (0BY + BIVAu¥ + BEV uP))
+ AR RIS B+ pIE)T (08P + BIVew + BV u®)) — A gl (aBY + E*VPa + aBP + EPVea)
+ a/iqTCﬂJ52 (EPi* + E*il) — aﬂchJ4z (E*VPa+ EPV°a),

T, = 20 PRpEEPIY " +I5)).
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APPENDIX B: GENERAL EXPRESSIONS OF TRANSPORT COEFFICIENTS

Here we give the expression for the transport coecients that appear in Egs. (28), (31), and (34) of Sec. III.

TABLE II. Transport coefficients appearing in the bulk-stress equation
[Eq. (28)].
2 n 1
v —ﬂa%[y%v (qu) 5+ij< " )l
79" )
[3§V ( ng ) ﬂd/} (3;,/1‘, J42) 34, Jz(tz) )]
2)— n
Ay (ot I )l (U™ = 0]
2 2 1)-
3/3/3 (SJz(tz -3 <) Jr2-’(31)+ _%ng> )
_ 1 2)—
(8a+h )[3hﬂ 14(12> gﬁ—vl() ]
2)—
v st Ul = i) = gl B - 1008
A - p
L@+ 9)[ I h) L el (592 4 2040
- 2)+ 2 1)+
ATEE /j(5142 +2J<) %thzH_%ng) )
TABLEIII. Transport coefficients appearing in Diffusion evolution equation [Eq. (31)].
3 2 3)+ 1
Avy ~(1+2 (JIPJ S B R (AR S B TeX) AR ) )
13 1)+ 2)+
v %+3/3v(n/g+4§9 -1 >+/3ﬁ [ ng> ‘|’5]() )]
2)+ 3)+ 1)+ 2
i PGS + D)~ U+ A+ S
8 J 2)- a0 2
" e sy - 08
XVE PPy
PVE (Dnio [(J;(())>+ Ive + J(0)+ a}(vb)h _ (Jg(())>+ Ive + J( )+ Hﬂf)])

TABLE IV. Transport coefficients appearing in shear-stress evolution equation

[Eq. (34)].

T 2)— n 1

O T U >1—2 — B - L [—pI ) + 205 (0))
- _ - 1 1

Ay R | PO s “ >]+WV <J§3 +IR ) =2 T+ I

~(Geth” la/a);“[ BIG 420
Lav B 2 (g g+P‘]42 )+xv5[ I
e+ P+ gty
e 2ﬁ<“%%’4”—<f&£ + 754

have L2 hT Q)BT
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