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Using the helicity amplitude technique, we derive differential decay widths and angular distributions for
the decay cascade D → K1ð1270; 1400Þlþνl → ðKππÞlþνlðl ¼ e; μÞ, in which the electron and muon
mass is explicitly included. Using a set of phenomenological results forD → K1 form factors, we calculate
partial decay widths and branching fractions for D0 → K−

1 l
þνl and Dþ → K0

1l
þνl, but find that results

for BðD → K1ð1270ÞeþνeÞ are about a factor 1.5 larger than recent BESIII measurements. We further
demonstrate that the measurement of up-down asymmetry in D → K1eþνe → ðKππÞeþνe and angular
distributions in D → K1lþνl → ðKππÞlþνl can help to determine the hadronic amplitude requested in
B → K1ð→ KππÞγ.
DOI: 10.1103/PhysRevD.104.053003

I. INTRODUCTION

Nowadays searching for new physics (NP) beyond the
standard model (SM) is a most primary objective in particle
physics. This can in principle proceed in two distinct
directions. It is likely that new particles emerge directly
in high energy collisions for instance at large hadron collider
(LHC). On the other side, the NP particles can affect various
low-energy observables by modifying the coupling strength
or introducing new interaction forms and thus a high
precision study of these observables is likely to indirectly
access the NP. In the SM, the charged weak interaction has
the V − A chirality and thereby the photon in b → sγ is
predominantly left-handed. The contribution with right-
handed polarization is suppressed by the ratio of strange
and bottom quark masses. Therefore the measurement of
photon polarization in b → sγ provides a unique probe for
new physics [1–3]. A representative scenario of this type is
the left-right symmetric model [4,5], in which the photon can
acquire a significant right-handed component.
In practice, the chirality of the b → sγ can be

probed using the measurements of inclusive B → Xsγ
decay branching fractions [6–9], the mixing-induced CP

asymmetries of radiative B0 and B0
s decays [10–13] and the

B → K�eþe− with very low dilepton mass squared [14,15].
Interestingly, the photon helicity in radiative D decays was
also explored [16,17].
In addition to the above methods, it is pointed out that the

photon helicity in b → sγ is proportional to an up-down
asymmetry AUD in B → K1ð→ KππÞγ [18–20] and more
generally the angular distribution in B → Kresð→ KππÞγ.
Throughout this work we will use K1 to denote the axial-
vector meson K1ð1270Þ and/or K1ð1400Þ. However the
measurement of up-down asymmetry in B → K1γ [21] was
incapable to reveal the photon helicity due to the require-
ment of the detailed knowledge of K1 decay dynamics.
Many interesting theoretical analyses have adopted non-
perturbative approaches to parametrize the K1 → Kππ
decay amplitude and provided power constraints on the
decay paramters [18–20,22,23]. In a previous work [24] it
is proposed that one can tackle this problem by combining
semileptonic D → K1eþνe decays. In particular, a ratio of
up-down asymmetries in D → K1ð→ KππÞeþνe, A0

UD,
has been proposed to quantify the hadronic effects in
K1 → Kππ decay. More explicitly the photon helicity
can be expressed as a ratio of the two observables
λγ ¼ 3=4 ×AUD=A0

UD [24].
The purpose of this work is multifold. We will first

provide the details in the helicity amplitude approach to
derive the pertinent angular distributions and up-down
asymmetries. Second, we will extend the previous analysis
to the muon mode whose mass can not neglected in D
decays. Using the phenomenological results for D → K1

form factors, we calculate partial decay widths for
D → K1lþνl, and show that the measurement of up-down
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asymmetry in D → K1ð→ KππÞeþνe and the angular
distribution D → K1ð→ KππÞμþνμ can help to determine
the hadronic amplitude requested in B → K1ð→ KππÞγ.
The rest of this paper is organized as follows. In Sec. II,

we will give a detailed derivation of the angular distribu-
tions. In Sec. III, we will use the D → K1 form factors and
calculate the differential decay widths. A comparison of
predicted branching fractions with experimental data from
BESIII measurements is made, and a MC simulation of
angular distributions with the LHCb geometrical accep-
tance is also presented. The last section contains a brief
summary.

II. FRAMEWORK AND ANGULAR
DISTRIBUTIONS

In this section we will make use of the helicity amplitude
technique and derive the angular distributions for the
decay cascade D → K1lþνl → ðKππÞlþνl. Here the D
and K1 could be charged or neutral. Since a neutral π0 is
difficult to reconstruct especially at hadron colliders, it is
more plausible to explore the πþπ−. Thus in the following,
we will consider the decay chain D0 → K−

1l
þνl →

ðK−πþπ−Þlþνl and Dþ → K̄0
1l

þνl → ðK̄0πþπ−Þlþνl,
though the results are also applicable to other decay
channels with neutral pions. The kinematics of this decay
cascade is shown in Fig. 1. In the lepton pair lþνl rest
frame, θl is defined by the lþ flight direction and the
opposite of the D meson flight direction. In K1 rest frame,
n⃗ is defined as the normal direction of the decay plane, and
θK is the relative angle between n⃗ and the opposite of the
D meson flight direction.
A few remarks on the kinematics are given in order.
(i) The normal direction is not unambiguous. For

instance, in K−
1 decay plane, it is likely to construct

the normal direction with the momentum of πþ
and π−, while the LHCb measurement of up-down
asymmetry and angular distributions in B → K1γ
makes use of the slow and fast pion momenta
[21], n⃗ ∼ p⃗π;slow × p⃗π;fast.

(ii) Second, since the n⃗ is a cross product of two
momenta, its direction will not be altered under
parity transformation, but the flight direction of the
Dmeson will be reversed. So the θK will be changed
to π − θK under parity transformation, implying that
the cos θK is parity odd. The left-handed and right-
handed polarization of K1 gives opposite contribu-
tions to the cos θK term.

(iii) Third, weak interaction in W� → lþνl violates
parity conservation. Thus even though cos θl is
parity-even, the left-handed and right-handed con-
tributions to the cos θl term also differ in sign.

(iv) Furthermore the definition of θK depends on charge
or flavor of K1, namely the angle θK defined in K−

1

decay may differ with the one defined in Kþ
1 system.

It is important to stick with the same convention on
the kinematics in analyzing B and D decays.

Semileptonic decays of D into K1 are induced by
effective electro-weak Hamiltonian:

H ¼ GFffiffiffi
2

p Vcss̄γμð1 − γ5Þc × ν̄lγμð1 − γ5Þl; ð1Þ

where GF is Fermi constant, and Vcs is CKM matrix
element. With the above Hamiltonian, the partial decay
width for semileptonic D decays can be generically
written as

dΓ ¼ ð2πÞ4
2mD

× dΦn ×
X
spin

jMj2: ð2Þ

Here dΦn denotes the n-body phase space. The pertinent
decay amplitude M can be decomposed into three indi-
viduals: D → K1W�, K1 → Kππ and W� → lþνl. Using
the relation of gμν and polarization vector,

gμν ¼ −
X

λ¼0;�1

ϵ�μðλÞϵνðλÞ þ
qμqν
q2

; ð3Þ

one can disassemble decay amplitudes into a hadronic part
and leptonic part

FIG. 1. The kinematics forD → K1lþνl → ðKππÞlþνl. In the
lepton pair lþνl rest frame, the angle θl is defined by the lþ
flight direction and the opposite of the D meson flight direction.
In the K1 rest frame the n⃗ is defined as the normal direction of the
K1 decay plane, and θK is the relative angle between n⃗ and the
opposite of the D flight direction. Since n⃗ is made of the cross
product of two momenta, its direction will not be altered under
parity transformation. But since the D flight direction will be
reversed, the θK will be changed to π − θK under parity trans-
formation, implying that the cos θK is parity odd.
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M ¼ GFffiffiffi
2

p VcsHμLνgμν ¼
GFffiffiffi
2

p Vcs

�
−
X
λ

H · ϵ�ðλÞ × L · ϵðλÞ þH · ϵ�ðtÞ × L · ϵðtÞ
�
; ð4Þ

with ϵμðtÞ≡ qμ=
ffiffiffiffiffi
q2

p
. After this decomposition, both hadronic and leptonic parts are Lorentz invariant and thus can be

calculated in convenient reference frames. Actually the hadronic part could be further resolved into two individuals, namely
D → K1W� and K1 → Kππ. Each individuals will be calculated in rest frame of the decaying particle.

A. The leptonic amplitude for W� → l+ νl
For simplicity, we introduce the abbreviation,

Lðλe; λν; λW ¼ 0;�1Þ ¼ LμϵμðλÞ ¼ ūνγμð1 − γ5ÞvlϵμðλÞ;
Lðλe; λν; λW ¼ tÞ ¼ Lμ

qμffiffiffiffiffi
q2

p ¼ ūνγμð1 − γ5Þvl
qμffiffiffiffiffi
q2

p ; ð5Þ

where all spin/helicity indices are explicitly shown. Introducing fl ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðq2 −m2

lÞ
q

and using m̂l ¼ ml=
ffiffiffiffiffi
q2

p
, one can

obtain the nonvanishing leptonic decay amplitude:

L
�
λe ¼ −

1

2
; λν ¼ −

1

2
; λW ¼ −1

�
¼ flm̂l sin θl; L

�
λe ¼ −

1

2
; λν ¼ −

1

2
; λW ¼ 0

�
¼ −fl

ffiffiffi
2

p
m̂l cos θl;

L

�
λe ¼ −

1

2
; λν ¼ −

1

2
; λW ¼ 1

�
¼ −flm̂l sin θl; L

�
λe ¼ −

1

2
; λν ¼ −

1

2
; t

�
¼ fl

ffiffiffi
2

p
m̂l

L

�
λe ¼

1

2
; λν ¼ −

1

2
; λW ¼ −1

�
¼ −flð1þ cos θlÞ; L

�
λe ¼

1

2
; λν ¼ −

1

2
; λW ¼ 0

�
¼ −fl

ffiffiffi
2

p
sin θl;

L

�
λe ¼

1

2
; λν ¼ −

1

2
; λW ¼ 1

�
¼ −flð1 − cos θlÞ: ð6Þ

In the massless limit ml → 0, only the last three terms are nonzero due to the helicity conservation.

B. D → K1W�

The D → K1 transition matrix element can be parametrized by a set of form factors:

hK1js̄γμγ5cjDi ¼ −
2iAðq2Þ
mD −mK1

ϵμνρσðϵ�K1
ÞνðpDÞρðpK1

Þσ; ð7Þ

hK1js̄γμcjDi ¼ −2mK1
V0ðq2Þ

ϵ�K1
· q

q2
qμ − ðmD −mK1

ÞV1ðq2Þ
�
ϵ�K1

−
ϵ�μK1

· q

q2
qμ
�

þ V2ðq2Þ
ϵ�K1

· q

mD −mK1

�
ðpD þ pK1

Þμ −m2
D −m2

K1

q2
qμ
�
; ð8Þ

where qμ ¼ pμ
D − pμ

K1
is the momentum transfer and ϵμνρσ is the antisymmetric tensor. So the matrix element

cλW ≡ hK1js̄γμð1 − γ5ÞcjDiϵ�μðλWÞ is evaluated as

c� ¼ ðmD −mK1
ÞV1 ∓

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
mD −mK1

; ð9Þ

c0 ¼
−1

2mK1

ffiffiffiffiffi
q2

p
�
ðm2

D −m2
K1

− q2ÞðmD −mK1
ÞV1 −

λðm2
D;m

2
K1
; q2Þ

mD −mK1

V2

�
; ð10Þ
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ct ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
ffiffiffiffiffi
q2

p V0: ð11Þ

In the above, λðm2
D;m

2
K1
; q2Þ ¼ ðm2

D þm2
K1

− q2Þ2 − 4m2
Dm

2
K1
.

C. Differential decay width for D → K1l+ νl
In this subsection, we will derive the differential decay width for D → K1lþνl. In the narrow width limit for K1, this

decay width gives a normalization for the angular distributions for D → K1ð→ KππÞlþνl.
Combining the three-body phase space

dΦ3ðpK1
; pl; pνlÞ ¼ δ4ðpD − pK1

− plþ − pνlÞ
d3pK1

ð2πÞ32EK1

d3plþ

ð2πÞ32Elþ

d3pνl

ð2πÞ32Eνl

¼ δ4ðpD − pK1
− qÞð2πÞ4δ4ðq − plþ − pνlÞ

d4q
ð2πÞ4

d3pK1

ð2πÞ32EK1

d3plþ

ð2πÞ32Elþ

d3pνl

ð2πÞ32Eνl

¼ 1

ð2πÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
32m2

D
ð1 −m2

l=q
2Þ × d cos θldq2; ð12Þ

one can obtain the angular distribution for D → K1lþνl

dΓ
dq2d cos θl

¼
G2

FjVcsj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
q2

512π3m3
D

ð1 − m̂2
lÞ2 × ð2c20ðsin2 θl þ m̂2

l cos
2 θlÞ

þ c2þ½ð1þ cos θlÞ2 þ m̂2
l sin

2 θl� þ c2−½ð1 − cos θlÞ2 þ m̂2
l sin

2 θl� þ c2t 2m̂2
l − Re½c0c�t �4m̂2

l cos θÞ: ð13Þ

Integrating over cos θl, one can have partial decay widths [25,26]:

dΓLðD → K1lþνlÞ
dq2

¼
G2

FjVcsj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
q2

512π3m3
D

ð1 − m̂2
lÞ2 ×

�
4

3
c20ð2þ m̂2

lÞ þ 4m̂2
lc

2
t

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
G2

FjVcsj2
384m3

Dπ
3

ð1 − m̂2
lÞ2 ×

�
3m̂2

l λðm2
D;m

2
K1
; q2ÞV2

0

þ ðm̂2
l þ 2Þ

���� 1

2mK1

�
ðm2

D −m2
K1

− q2ÞðmD −mK1
ÞV1 −

λðm2
D;m

2
K1
; q2Þ

mD −mK1

V2

�����
2	

; ð14Þ

dΓ�ðD → K1lþνlÞ
dq2

¼
G2

FjVcsj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
q2

512π3m3
D

ð1 − m̂2
lÞ2 ×

4

3
c2�ð2þ m̂2

lÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
G2

FjVcsj2
384m3

Dπ
3

ð1 − m̂2
lÞ2q2

×

�
ðm̂2

l þ 2Þλðm2
D;m

2
K1
; q2Þ

���� A
mD −mK1

∓ ðmD −mK1
ÞV1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðm2
D;m

2
K1
; q2Þ

q
����
2
	
; ð15Þ

where L and � in the subscripts denote contribution from longitudinal and transverse polarization.
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D. K1 → Kππ

The hadronic part in the decay cascade D → K1lþνl →
ðKππÞlþνl contains:

H · ϵ�WðλÞ ∼ hKππjK1i × hK1jðV − AÞμjDiϵ�μW ðλÞ; ð16Þ

where hKππjK1i is parameterized as

hKππjK1i ¼ ð2πÞ4δ4ðpK1
− pK − pπ − pπÞ × ϵK1

· J:

ð17Þ

Notice that the explicit form of J depends on the convention
of the n⃗.
In the K1 rest frame, one can set the normal direction as

the z-axis and the momenta of ðK; πþ; π−Þ lies in the x-y
plane. Since J is a linear combination of the momenta of
two pions, Jz ¼ 0 and

Jμ ¼ ðJ0; Jx; Jy; 0Þ: ð18Þ

To simplify the calculation, we choose K1 moving along
ðθK;ϕÞ direction, and thus ϵK1

· J is evaluated as

ϵK1
ð0Þ · J ¼ sin θKðJx cosϕþ Jy sinϕÞ; ð19Þ

ϵK1
ð1Þ · J ¼ −

1ffiffiffi
2

p ½cosϕðJx cos θK þ iJyÞ þ sinϕðJy cos θK − iJxÞ�; ð20Þ

ϵK1
ð−1Þ · J ¼ 1ffiffiffi

2
p ½cosϕðJx cos θK − iJyÞ þ sinϕðJy cos θK þ iJxÞ�: ð21Þ

E. Angular distributions in D → K1l+ νl → ðKππÞl+ νl
With the above individuals, one can obtain the total decay amplitude:

M
�
λl ¼ −

1

2

�
¼ L

�
λe ¼ −

1

2
; λν ¼ −

1

2
; λW ¼ −1

�
× ϵK1

ð−1Þ · J × c−

þ L
�
λl ¼ −

1

2
; λν ¼ −

1

2
; λW ¼ 1

�
× ϵK1

ð1Þ · J × cþ

þ L

�
λl ¼ −

1

2
; λν ¼ −

1

2
; λW ¼ 0

�
× ϵK1

ð0Þ · J × c0

− L

�
λl ¼ −

1

2
; λν ¼ −

1

2
; λW ¼ t

�
× ϵK1

ð0Þ · J × ct; ð22Þ

M
�
λl ¼ 1

2

�
¼ L

�
λe ¼

1

2
; λν ¼ −

1

2
; λW ¼ −1

�
× ϵK1

ð−1Þ · J × c−

þ L

�
λl ¼ 1

2
; λν ¼ −

1

2
; λW ¼ 1

�
× ϵK1

ð1Þ · J × cþ

þ L

�
λl ¼ 1

2
; λν ¼ −

1

2
; λW ¼ 0

�
× ϵK1

ð0Þ · J × c0

− L

�
λe ¼

1

2
; λν ¼ −

1

2
; λW ¼ t

�
× ϵK1

ð0Þ · J × ct: ð23Þ

Using two abbreviations:

jJj2 ¼ jJxj2 þ jJyj2; Im½n · ðJ⃗ × J⃗�Þ� ¼ −iðJxJ�y − JyJ�xÞ; ð24Þ

and integrating over ϕ, we obtain:
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jMj2 ¼ 3

4πjJj2
Z

dϕ

�����M
�
λe ¼

1

2

�����
2

þ
����M

�
λe ¼ −

1

2

�����
2
�

¼ 3

8
ðd1 þ d01½cos2 θK cos2 θl� þ d2 cos θl þ d02 cos

2 θK cos θl

þ d3 cos θK þ d03 cos θK cos2 θl þ d4 cos θK cos θl þ d5 cos2 θK þ d05 cos
2 θlÞ; ð25Þ

where a factor 3
4πjJj2 is introduced to be consistent with the three-body decay width. In the above equation, the angular

coefficients are calculated as

d1 ¼ ð1þ m̂2
lÞðjc−j2 þ jcþj2Þ þ 4jc0j2 þ 4m̂2

ljctj2;
d01 ¼ ð1 − m̂2

lÞð4jc0j2 þ jc−j2 þ jcþj2Þ;
d2 ¼ −2½jc−j2 − jcþj2 þ 4Re½c0c�t �m̂2

l�;
d02 ¼ −2½jc−j2 − jcþj2 − 4Re½c0c�t �m̂2

l�;

d3 ¼ 2
Im½n⃗ · ðJ⃗ × J⃗�Þ�

jJj2 ½ð1þ m̂2
lÞðjcþj2 − jc−j2Þ�;

d03 ¼ 2
Im½n⃗ · ðJ⃗ × J⃗�Þ�

jJj2 ½ð1 − m̂2
lÞðjcþj2 − jc−j2Þ�

d4 ¼ 4
Im½n⃗ · ðJ⃗ × J⃗�Þ�

jJj2 ðjc−j2 þ jcþj2Þ;

d5 ¼ −½ð1þ m̂2
lÞð−jc−j2 − jcþj2Þ þ 4jc0j2 þ 4m̂2

ljctj2�;
d05 ¼ −½ð1 − m̂2

lÞð4jc0j2 − jc−j2 − jcþj2Þ�: ð26Þ

Apparently the following combination can be used to extract the hadron amplitude HK1

HK1
¼ d3 þ d03

d2 þ d02
¼ Im½n⃗ · ðJ⃗ × J⃗�Þ�

jJj2 : ð27Þ

Including the phase-space, we arrive at the angular distribution for D → K1lþνl → Kππlþνl as:

dΓ
dq2d cosθld cosθK

¼
G2

FjVcsj2q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
; q2Þ

q
512π3m3

D
ð1− m̂2

lÞ2 ×
3

8
ðd1 þ d01½cos2 θK cos2 θl� þ d2 cosθl þ d02 cos

2 θK cosθl

þ d3 cosθK þ d03 cosθK cos
2 θl þ d4 cosθK cosθl þ d5 cos2 θK þ d05 cos

2 θlÞ: ð28Þ

The ratio of differential up-down asymmetries [24] is evaluated as:

A0
UD ≡

dΓ
dq2 ½cos θK > 0� − dΓ

dq2 ½cos θK < 0�
dΓ
dq2 ½cos θl > 0� − dΓ

dq2 ½cos θl < 0�

¼ 3d3 þ d03
3d2 þ d02

¼ HK1

ð2þ m̂2
lÞðjc−j2 − jcþj2Þ

2½ðjc−j2 − jcþj2Þ þ 2Re½c0c�t �m̂2
l�
: ð29Þ

If the massless limit m̂l → 0, the above ratio is reduced to the hadronic amplitude HK1
, but apparently this reduction is

contaminated by the lepton mass.
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F. Angular distributions in B → K1γ

In this subsection, we will derive the angular distribution
in B → K1ð→ KππÞγ. The effective Hamiltonian for
b → sγ has the general form:

Heff ¼ −
4GFffiffiffi

2
p VtbV�

tsðC7LO7L þ C7RO7RÞ;

O7L;R ¼ emb

16π2
s̄σμν

1� γ5
2

bFμν; ð30Þ

where C7L;7R are the corresponding Wilson coefficients
for O7L;R. Due to the chirality structure of W� in SM, the
photon in b → sγ is predominantly left-handed, while the
right-handed polarization is suppressed by approximately
ms=mb.
Using the helicity amplitude technique one can similarly

calculate the angular distributions for B → K1ð→ KππÞγ,
and the results are easier in two aspects. First, there is no
leptonic part in the decay cascade. Second, the B → K1γ
decay amplitudes only contain two polarizations. Without
including higher order QCD corrections, the two polari-
zation contributions are proportionally to C7L;7R. Then
differential decay rate for B → K1ð→ KππÞγ can be
expressed as [18,19,23]:

dΓK1γ

d cos θK
¼ jAj2jJ⃗j2

4
×

�
1þ cos2θK

þ 2λγ cos θK
Im½n⃗ · ðJ⃗ × J⃗�Þ�

jJ⃗j2
�
: ð31Þ

Here the θK is the same angle as in Fig. 1. The non-
perturbative amplitude A characterizes the B → K1γ. The
photon polarization λγ is defined as

λγ ≡ jAðB → K1RγRÞj2 − jAðB → K1LγLÞj2
jAðB → K1RγRÞj2 þ jAðB → K1LγLÞj2

; ð32Þ

with λγ ≃ −1 for b → sγ but λγ ≃þ1 for b̄ → s̄γ in SM.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. K1 mixing and D → K1 form factors

If the quark model is employed, two kinds of axial-
vector states with a strange quark can be constructed,
depending on the spin of the quark and anti-quark pair. If
their total spin is 1, the resulting axial-vector state is
denoted as 3P1, also calledK1A. When the total spin is 0, the
axial-vector state is usually denoted as 1P1 or K1B. Since
strange quark is heavier than up/down quark,K1ð1270Þ and
K1ð1400Þ are not purelyK1Að3P1Þ andK1Bð1P1Þ states, and
instead they will mix:

jK1ð1270Þi ¼ jK1Ai sinΘK þ jK1Bi cosΘK; ð33Þ

jK1ð1400Þi ¼jK1Ai cosΘK − jK1Bi sinΘK: ð34Þ

Generally, the mixing angle ΘK can be determined by the
experimental data, such as τ− → K−

1 ντ, whose decay rate is
given by

Γðτ− → K−
1 ντÞ ¼

m3
τ

16π
G2

FjVusj2f2A
�
1 −

m2
A

m2
τ

�
2
�
1þ 2m2

A

m2
τ

�
:

ð35Þ

The measured branching fractions [27] are given as

Bðτ− → K1ð1270ÞντÞ ¼ ð4.7� 1.1Þ × 10−3; ð36Þ

Bðτ− → K1ð1400ÞντÞ ¼ ð1.7� 2.6Þ × 10−3; ð37Þ

through which one can extract the decay constants of K1:

jfK1ð1270Þj ¼ ð169þ19
−21Þ MeV;

jfK1ð1400Þj ¼ ð125þ74
−125Þ MeV: ð38Þ

One can combine the decay constants for K1A, K1B
evaluated for instance in QCD sum rules [28] to determine
the mixing angle ΘK [25]:

−143° < ΘK < −120°; or

−49° < ΘK < −27°; or

37° < ΘK < 60°; or

131° < ΘK < 153°: ð39Þ

The mixing angle can be further constrained with the
data on, such as B → K1γ decays, and it is found that
except the third scenario, the other three scenarios are not
favored by K1 masses or B → K1γ decay widths [29]. With
the available constraints, Ref. [30] suggested the use of
ΘK ¼ 50.8°, while ΘK ¼ 33° is suggested in Ref. [31].
In the following we will use ΘK ¼ 45° as the central result
[which is also favored by BESIII measurements of
BðD → K1eþνeÞ], but the dependence on ΘK in a wider
range 30° < ΘK < 60° will be presented. However it
should be noticed that this range is obtained in conjunction
with the form factors calculated in the covariant light-front
quark model (LFQM) [30–33]. The D → K1 form factors
have also been calculated in QCD sum rules [34–36], but
results differ significantly. The corresponding mixing angle
is obtained differently: ΘK ¼ −ð34� 13Þ∘, which we shall
adopt for consistence in the following comparison.
The results forD → K1 form factors fromRefs. [30,33,34]

are collected in Table I. In these results, the q2-distribution
of form factors is parametrized as:

UP-DOWN ASYMMETRIES AND ANGULAR DISTRIBUTIONS IN … PHYS. REV. D 104, 053003 (2021)

053003-7



TABLE I. The D → K1 form factors calculated in the covariant LFQM [30,33] and QCD sum rules [34]. The coefficients a and b are
parameters in Eq. (40) and (41). The physical K1 states (K1ð1270Þ and K1ð1420Þ) are mixtures of the K1A (JPC ¼ 1þþ) and K1B

(JPC ¼ 1þ−).

F [33] Fð0Þ a b F Fð0Þ a b

ADK1A 0.98 0.92 0.17 VDK1A
0

0.34 1.44 0.15

VDK1A
1

2.02 −0.01 0.03 VDK1A
2

0.03 −0.18 0.10

ADK1B 0.10 1.03 0.48 VDK1B
0

0.44 0.80 0.27

VDK1B
1

1.53 0.39 0.05 VDK1B
2

−0.09 −0.16 0.51

F [30] Fð0Þ a b F Fð0Þ a b

ADK1A 0.15−0.01þ0.01
þ0.01−0.01 0.89−0.03þ0.00

þ0.03−0.01 0.12−0.02−0.01þ0.02þ0.01 VDK1A
0

0.28−0.00−0.00þ0.00þ0.00 0.84−0.02−0.01þ0.01−0.01 0.39−0.05þ0.04
þ0.06−0.03

VDK1A
1

1.60−0.05−0.02þ0.05þ0.01 −0.22−0.00−0.03þ0.00þ0.03 0.07−0.00þ0.00
þ0.00−0.00 VDK1A

2
0.01−0.00þ0.00

þ0.00−0.00 −0.83−0.17þ0.02
þ0.15−0.03 0.24þ0.04−0.01

−0.03þ0.01

ADK1B 0.10þ0.00þ0.00
−0.00−0.00 0.98−0.01−0.01þ0.01þ0.01 0.37−0.03−0.03þ0.03þ0.04 VDK1B

0
0.48−0.01þ0.02

þ0.01−0.03 0.94−0.02−0.02þ0.01þ0.01 0.22þ0.00−0.03
−0.00þ0.03

VDK1B
1

1.58þ0.02þ0.03
−0.03−0.05 0.31−0.02−0.01þ0.02þ0.02 0.04−0.00−0.00þ0.00þ0.01 VDK1B

2
−0.13þ0.01−0.01

−0.01þ0.01 0.57−0.06−0.01þ0.04−0.01 0.32þ0.05−0.04
−0.03þ0.06

F [34] Fð0Þ a b F Fð0Þ a b

ADK1A 0.07 0.21 −2.14 VDK1A
0

0.11 0.44 0.61

VDK1A
1

0.37 0.20 −0.13 VDK1A
2

−0.03 −0.70 1.81

ADK1B −0.53 0.46 0.38 VDK1B
0

−0.42 −2.33 9.24

VDK1B
1

−0.29 1.17 1.72 VDK1B
2

0.31 −0.49 −0.21

+ +

+

(a)

(c) (d)

(b)

FIG. 2. Differential decay widths for D → K1ð1270Þlþνl (in units of 10−15 GeV−1) and D → K1ð1400Þlþνl (in units of
10−15 GeV−1) based on the form factors from Ref. [33]. The dotted and dashed lines correspond to the longitudinal and transverse
polarizations, while the solid line gives the total differential decay widths. The shadowed region arises from the uncertainties in the
mixing angle θK .
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+

(a)

(c) (d)

(b)

++

FIG. 3. Differential decay widths for D → K1ð1270Þlþνl (in units of 10−15 GeV−1) and D → K1ð1400Þlþνl (in units of
10−15 GeV−1) based on the form factors from Ref. [30]. The dotted and dashed lines correspond to the longitudinal and transverse
polarizations, while the solid line gives the total differential decay widths. The shadowed region arises from the uncertainties in the
mixing angle θK .

+ +

+

(a)

(c) (d)

(b)

+

FIG. 4. Differential decay widths for D → K1ð1270Þlþνl (in units of 10−15 GeV−1) and D → K1ð1400Þlþνl (in units of
10−15 GeV−1), based on the form factors from QCD sum rules [34]. The dotted and dashed lines correspond to the longitudinal
and transverse polarizations, while the solid line gives the total differential decay widths. The shadowed region arises from the
uncertainties in the mixing angle θK .
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Fðq2Þ ¼ Fð0Þ
1 − aq2=m2

D þ bðq2=m2
DÞ2

; ð40Þ

but a different parametrization is used for VD→K1B
2 in

Refs. [30,33]:

Fðq2Þ ¼ Fð0Þ
ð1 − q2=m2

DÞð1 − aq2=m2
D þ bðq2=m2

DÞ2Þ
: ð41Þ

The physical form factors are obtained through:

FD→K1ð1270Þ ¼ FD→K1A sinΘK þ FD→K1B cosΘK; ð42Þ

FD→K1ð1400Þ ¼ FD→K1A cosΘK − FD→K1B sinΘK: ð43Þ

B. Decay widths and branching fractions

To calculate decay widths, we will use the following
inputs from Particle Data Group [27]:

TABLE II. Results for integrated branching ratios for the D → K1ð1270Þlþνl and D → K1ð1400Þlþνl decays
(in units of 10−3). The experimental results are taken from BESIII measurements [37,38]. For each decay channel,
three sets of theoretical predictions are given, which correspond to the form factors from Ref. [33], Ref. [30], and
Ref. [34], respectively. Uncertainties from the mixing angle θK are also taken into account.

D0 → K−ð1270Þlþνl BL BT FL Btotal Bdata

l ¼ e 1.3þ0
−0.094 1.5þ0.29

−0.42 0.47þ0.065
−0.06 2.7þ0.21

−0.51 1.09� 0.13þ0.09
−0.16 � 0.12

1.2þ0.0058
−0.16 0.59þ0

−0.041 0.66þ0.017
−0.018 1.8þ0

−0.2
0.35þ0.026

−0.059 0.31þ0.047
−0.071 0.53þ0.02

−0.018 0.66þ0.074
−0.13

l ¼ μ 1:þ0
−0.075 1.3þ0.25

−0.36 0.45þ0.064
−0.059 2.3þ0.19

−0.44 …

0.94þ0.0058
−0.13 0.53þ0

−0.036 0.64þ0.018
−0.019 1.5þ0

−0.16
0.27þ0.019

−0.045 0.26þ0.04
−0.061 0.51þ0.02

−0.018 0.54þ0.06
−0.11

Dþ → K̄0ð1270Þlþνl BL BT FL Btotal Bdata

l ¼ e 3.3þ0
−0.24 3.7þ0.74

−1.1 0.47þ0.065
−0.06 7:þ0.54

−1.3 2.30� 0.26þ0.18
−0.21 � 0.25

3:þ0.015
−0.4 1.5þ0

−0.1 0.66þ0.017
−0.018 4.5þ0

−0.5
0.9þ0.066

−0.15 0.78þ0.12
−0.18 0.53þ0.02

−0.018 1.7þ0.19
−0.33

l ¼ μ 2.6þ0
−0.19 3.2þ0.63

−0.92 0.45þ0.064
−0.059 5.9þ0.47

−1.1 …

2.4þ0.015
−0.33 1.3þ0

−0.092 0.64þ0.018
−0.019 3.7þ0

−0.41
0.69þ0.049

−0.11 0.67þ0.1
−0.15 0.51þ0.02

−0.018 1.4þ0.15
−0.27

D0 → K−ð1400Þlþνl BL BT FL Btotal

l ¼ e 0.00056þ0.014
0 0.14þ0.1

−0.08 0.004þ0.19
0 0.14þ0.11

−0.067 …

0.0057þ0.026
−0.004 0.00044þ0.0071

0 0.93þ0
−0.74 0.0062þ0.031

0

0.0083þ0.014
−0.0074 0.02þ0.02

−0.014 0.29þ0.064
−0.16 0.028þ0.034

−0.021

l ¼ μ 0.00066þ0.011
0 0.11þ0.079

−0.061 0.0062þ0.2
0 0.11þ0.087

−0.05 …

0.0046þ0.02
−0.0031 0.00034þ0.0057

0 0.93þ0
−0.74 0.0049þ0.024

0

0.0052þ0.0094
−0.0047 0.015þ0.015

−0.01 0.25þ0.068
−0.16 0.021þ0.025

−0.015

Dþ → K̄0ð1400Þlþνl BL BT FL Btotal

l ¼ e 0.0014þ0.035
0 0.36þ0.26

−0.2 0.004þ0.19
0 0.36þ0.29

−0.17 …

0.015þ0.065
−0.01 0.0011þ0.018

0 0.93þ0
−0.74 0.016þ0.078

0

0.021þ0.035
−0.019 0.051þ0.051

−0.035 0.29þ0.064
−0.16 0.072þ0.087

−0.054

l ¼ μ 0.0017þ0.028
0 0.27þ0.2

−0.15 0.0062þ0.2
0 0.27þ0.22

−0.13 …

0.012þ0.05
−0.0079 0.00086þ0.014

0 0.93þ0
−0.74 0.012þ0.061

0

0.013þ0.024
−0.012 0.039þ0.039

−0.026 0.25þ0.068
−0.16 0.052þ0.062

−0.038
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τðD0Þ ¼ ð0.4101� 0.0015Þ × 10−12 s;

τðDþÞ ¼ ð1.040� 0.007Þ × 10−12 s;

mK1ð1270Þ ¼ 1.253 GeV;

mK1ð1400Þ ¼ 1.403 GeV; Vcs ¼ 0.973: ð44Þ

Differential decay widths dΓ=dq2 (in units of
10−15 GeV−1) for D → K1ð1270Þlþνl and D →
K1ð1400Þlþνl are shown in Fig. 2, Fig. 3, and Fig. 4,
respectively. The dotted and dashed lines correspond to the
longitudinal and transverse polarizations, while the solid
line gives the total differential decay widths. The shadowed
region arises from the uncertainties in the mixing angle θK .
Results for integrated branching ratios for the

D → K1ð1270Þlþνl and D → K1ð1400Þlþνl decays
(in units of 10−3) are given in Tab. II. The experimental
results are taken from BESIII measurements [37,38]. For
each decay channel, three sets of theoretical predictions are
given, corresponding to the form factors from Ref. [30,33]
and Ref. [34], respectively. A few remarks are given as
in order.

(i) Through this table, one can see that the theoretical
results show dramatic dependence on the form
factors.

(ii) Results obtained with the light-front quark model
form factors are larger than the data by BESIII
experiment, while using the QCD sum rule results,
the branching fractions are more consistent with
the data.

(iii) It should be noted again that to accommodate the other
data such asB → K1γ, themixing angle θK is obtained
in correlation with the form factors. In Refs. [30,33]
this angle is preferred as θK ∼ 45°, while for Ref. [34],
the preferred region is −47° < θK < −21°. Thus to
estimate the uncertainties from the mixing angle, we
have used the consistent value for θK with the form
factors. We have also checked that if one uses the
form factors from Ref. [34] and 30° < θK < 60°, the
resulting branching fraction for D0 → K−ð1270Þeþ
νe is about ð0.21þ0.18

−0.14Þ × 10−3, which is much smaller
than the data. From this table, we can see that the
uncertainties are less significant compared to the ones
from form factors.

(a) (b)

FIG. 5. Dependence of branching ratios BðD0 → K−
1 l

þνlÞ (in units of 10−3) on the mixing angle ΘK in the range 30° < ΘK < 60°
based on the form factors from LFQM in Ref. [33] (the two upper lines), and Ref. [30] (the two lower curves). Dotted and dashed curves
correspond to the electron and muon mode, respectively.

(a) (b)

FIG. 6. Dependence of branching ratios BðD0 → K−
1 l

þνlÞ (in units of 10−3) on the mixing angle ΘK in the range −47° < ΘK < −21°
based on the form factors from QCD sum rules [34]. Dotted and dashed curves correspond to the electron and muon mode, respectively.
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Figure 5 and Fig. 6 show the dependence of branching
fractions BðD0 → K−

1l
þνlÞ (in units of 10−3) on the

mixing angle ΘK . Dotted and dashed curves correspond
to the electron and muon mode, respectively.

C. Angular distributions

Results for up-down asymmetry A0
UD (in unit of HK1

) in
D → K1lþνl are shown in Fig. 7. The solid curve
corresponds to the electron final state, in which the lepton
mass is negligible and the result is very close to unity. The
results shadowed in red (upper) and blue (lower) corre-
spond to the muon mode with form factors from light-front
quark model in Ref. [30,33], respectively, while the green
band (middle) is obtained using the QCD sum rules in
Ref. [34], respectively. From this figure, one can see that
the nonzero mass of muon can give considerable correc-
tions also shown in Eq. (29). The results on the asymmetry
are also dependent on the dynamical form factors, which
can be tested in experiment.

Integrating over the q2, we obtain the angular distribu-
tions of D → K1ð→ KππÞlþνl dataset as

dΓ
d cos θld cos θK

¼ a1 þ a2½cos2 θK cos2 θl� þ a3 cos θl

þ a4 cos2 θK cos θl þ a5 cos θK

þ a6 cos θK cos2 θl þ a7 cos θK cos θl

þ a8 cos2 θK þ a9 cos2 θl; ð45Þ

with

ai¼
3

8

Z
dq2

G2
FV

2
csq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
K1
;q2Þ

q
512π3m3

D
ð1−m2

l=q
2Þ2×di:

ð46Þ

As an illustration, we use a standalone fast simulation
software RapidSim [39] with the LHCb geometrical accep-
tance to generate MC samples. The D0 → K1ð1270Þ−μþνμ
decays are described by EVTGEN [40], and the K1ð1270Þ−
meson is allowed to decay into all intermediate processes
that result in a K−πþπ− final state. The BFs of K1ð1270Þ−
meson subdecaysmeasured byBelle [41] are used as inputs in
the simulation.Based on 2 fb−1 data recorded at 8TeV,LHCb
observed close to 2000 D�þ→D0πþ;D0→K−πþμþμ−

signal candidates in the ρ=ω mass region [42]. As BðD0 →
K1ð1270Þ−ð→ K−πþπ−ÞμþνμÞ is expected to be about
two orders of magnitude higher than the known BðD0 →
K−πþ½μþμ−�ρ=ωÞ [27], it is reasonable to estimate that
Oð105ÞD�þ → D0πþ; D0 → K1ð1270Þ−μþνμ signal candi-
dates can be collected based on 9 fb−1 Runs 1–2 data
from LHCb. Therefore, to have a rough estimation on the
LHCb sensitivity, we have generated about 1.0 × 105 D�þ →
D0πþ; D0 → K1ð1270Þ−ð→ K−πþπ−Þμþνμ events without
considering any detector resolution effects.
A comparison of fitting these MC samples using the

formula (45) and the one from previous work [24] is given
in Fig. 8. Through these figures, one can see that our
simulated angular distributions can not be well described

FIG. 7. Results for up-down asymmetry A0
UD (in unit ofHK1

) in
D → K1ð→ KππÞlþνl. The solid curve corresponds to the
electron final state, in which the lepton mass is negligible and
the result is very close to unity. The results shadowed in red
(upper) and blue (lower) correspond to the muon mode with form
factors from light-front quark model in Ref. [30,33], respectively,
while the green band (middle) is obtained using the QCD sum
rules in Ref. [34], respectively. The nonzero mass of μ provides
sizable corrections as shown in Eq. (29).
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FIG. 8. Fit to 1.0 × 105 MC events with 3 components using two models: ml ¼ 0 (Red) and ml ≠ 0 (Blue)
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by the angular distribution in the previous work [24]. With
the inclusion of the muon mass, the agreement between
theoretical description and angular distributions of MC
events is greatly improved, and the fittedHK1

is compatible
with the input of 9.2% based on the SM expectation [24].
The statistical uncertainty for HK1

is 1.1%.

IV. SUMMARY

Weak decays of heavy quarks have played an important
role in testing standard model and probing new physics
beyond. Recent studies of flavor-changing neutral current
process has revealed some hints for potential NP effects
(see for instance Ref. [43]), but a conclusive result is far
from well-established, and requests more dedicated theo-
retical and experimental studies in future [44]. At the same
time, the photon helicity in b → sγ might render very
competitive potentials for new physics.
Compared to the previous WYZ method [24] in which a

ratio of up-down asymmetries in D → K1ð→ KππÞeþνe,
A0

UD, has been proposed to quantify the hadronic effects in
K1 → Kππ decay, we have in this work systematically
derived differential decay widths and angular distributions
for the decay cascade D → K1ð1270; 1400Þlþνl →
ðKππÞlþνlðl ¼ e; μÞ. In the derivation, the mass of
electron/muon is explicitly included. Using the D → K1

form factors from light-front quark model and QCD sum
rule, we have calculated partial decay widths and branching
fractions for D0 → K−

1l
þνl and Dþ → K0

1l
þνl, but

pointed out that these theoretical results for BðD →
K1eþνeÞ show dramatic dependence on the form factors.
With the angular coefficients, we have demonstrated

that the measurement of up-down asymmetry in D →
K1eþνe → ðKππÞeþνe and the angular distribution in
D → K1lþνl → ðKππÞlþνl can help to pin down had-
ronic uncertainties in B → K1ð→ KππÞγ. Based on Monte-
Carlo simulation, we have found that after including
the muon mass, the angular distributions can be well
described by the theoretical framework. Performing an
angular analysis using Eq. (45) on a sample of 105 D0 →
K1ð1270Þ−ð→ K−πþπ−Þμþνμ decays corresponding to the
signal statistics assumed for LHCb in Runs 1–2 leads to a
statistical uncertainty of ∼1.1% on HK1

.
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