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A unified treatment of both chiral and radiative corrections to the low-energy elastic lepton-proton
scattering processes is presented in Heavy Baryon Chiral Perturbations Theory. The proton hadronic chiral
corrections include the next-to-next-to-leading-order corrections, whereas the radiative corrections include
the next-to-leading-order terms in our novel power counting scheme. We find that the net fractional well-
defined chiral corrections with respect to the leading-order Born cross section can be as large as 10% (20%)
for electron (muon) scattering process for MUon Proton Scattering Experiment (MUSE) kinematics. We
show via our model-independent treatment of the low-energy lepton-proton kinematics that the largest
theoretical uncertainty is due to the recent different published values of the proton’s rms radius, while, e.g.,
the next-higher-order hadronic chiral terms are expected to give rather nominal errors. For the radiative
corrections, we demonstrate a systematic order by order cancellation of all infrared singularities and present
our finite ultraviolet regularization results. We find that the radiative corrections for muon-proton scattering
is of the order of 2%, whereas for electron scattering, the radiative corrections could be as large as 25%. We
attribute such a contrasting result partially to the fact that in muon scattering the leading radiative-order
correction goes through zero in some intermediate low-momentum transfer region, leaving the subleading
radiative chiral-order effects to play a dominant role in this particular kinematic region. For the low-energy
MUSE experiment, the often-neglected lepton mass as well as the Pauli form factor contributions of the

relativistic leptons are incorporated in all our computations.
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I. INTRODUCTION

Scattering processes involving charged particles, like the
lepton-proton (£-p) elastic scattering, involve an arbitrary
number of real and virtual photons. The inelastic brems-
strahlung process, Z +p — £ + p + y*, where £ = e*, u™*,
constitutes the most significant undetected background
radiative process.' Many prominent works have estimated
radiative corrections nearly as large as 30%, for electron
scattering, based on analyses over a wide range of
momentum transfers and a variety of experimental con-
ditions, viz. detector designs and resolutions [1]. Especially
for soft (low-energy) photons, these corrections must be
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'"The y* symbol denotes an emitted real bremsstrahlung photon
to distinguish it from the virtual loop-photon y.
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theoretically evaluated as they are inaccessible to direct
experimental probes.

The £-p elastic scattering process has particularly
engendered extensive interests in the scientific community
over the past two decades because of its significant role in
bringing forth various discrepancies in our basic under-
standing of the electromagnetic properties of the proton.
An accurate experimental determination of the proton’s
electromagnetic form factors can shed much-needed light
on the proton’s basic hadronic structure and internal
dynamics. The original discrepancies in the measurements
of the electric (G%) and magnetic (G},) proton form factors
(called the “proton form factor ratio puzzle”) that emerged
about two decades ago stemmed from the utilization of the
novel experimental recoil polarization transfer technique
[2-5]. Such measurements led us not only to question the
validity of the conventional Rosenbluth separation tech-
nique but also raised serious concerns regarding our basic
understanding of the proton structure itself. In order to
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resolve these problems, a flurry of ingenious ideas and
methodologies ensued, which were extensively discussed
in numerous published works as well as reviews; see, e.g.,
Refs. [6-9]. Furthermore, the 2013 revelation of the so-
called proton radius puzzle [10-14] concerns the irrecon-
cilable inconsistency among the different measurement
techniques in determining the proton’s root-mean-squared
(rms) charge radius. Subsequently, unremitting efforts
geared toward the development of high-precision experi-
mental [15-22] and novel theoretical [23-46] techniques
have been pursued over the last nine years, seeking a defi-
nitive answer to the conundrum. However, despite the
efforts, such discrepancies are yet to be conclusively resol-
ved, requiring further improved approaches on either front.

In contrast to the previously designed experiments, the
Muon Proton Scattering Experiment (MUSE), currently
underway at the Paul Scherrer Institute (PSI), aims at a
resolution of the proton radius puzzle. The MUSE Colla-
boration plans to carry out simultaneous high-precision
measurements of low-energy electron-proton (e*p) and
muon-proton (u*p) scattering cross sections [47,48].
MUSE’s goal is to measure the proton’s rms radius at
sub-percentage precision [49]. On the theoretical side, an
improved assessment of the systematic uncertainties is
needed in order to meet the expected level of accuracy
of future MUSE data analysis. In this work, we utilize a
systematic model-independent perturbative procedure to
determine higher-order corrections of the leading-order
(LO) Born contribution (i.e., with pointlike lepton and
proton) for the unpolarized elastic £-p scattering cross
section. In particular, our analysis demonstrates how we
handle both the strong interaction as well as the standard
QED radiative corrections in our formalism. We work in the
framework of a low-energy effective field theory (EFT),
namely, Chiral Perturbation Theory (yPT) [50], which
reflects the inherent low-energy nonperturbative features of
QCD manifested in hadrons, where chiral symmetry and its
violations play decisive roles in determining the observ-
ables. The rationale for using yPT to evaluate the sub-
leading corrections in an essential perturbative framework
is that the methodology allows us to systematically extend
the theoretical predictions to higher levels of accuracy
through a well-defined power counting scheme. This is a
distinctive feature of our approach, which sets our analysis
in contrast to the existing conventional approaches where
hadron structure effects are empirically modeled through
the use of phenomenological proton form factors.

Our evaluations are based on the well-established non-
relativistic version of yPT, namely, heavy baryon xPT
(HByPT), e.g., Refs. [51,52]. HByPT provides a conven-
ient tool to study processes like the low-energy £-p
scattering, where nonrelativistic baryons and relativistic
mesons and leptons are the fundamental degrees of free-
dom. Furthermore, all these particles naturally couple to the
photon in a gauge invariant manner. Here, we adopt the

so-called SU(2) isospin scheme, which is tailor made to
deal with the low-energy hadron dynamics of the nucleon.
The HB yPT power counting incorporates a chiral expan-
sion in terms of powers of the ratio of a generic small
momentum Q over the large chiral scale A, ~4zxf, ~
1 GeV (f, = 92.4 MeV is the pion decay constant), plus a
recoil expansion in powers of the typical momentum scale
of the process, Q=~0.2 GeV/c (in regard to MUSE
kinematics), over the “heavy” proton mass M ~ 1 GeV,

Q Q9

— ~ =< 1.
A, M

Apart from the above-mentioned chiral momentum
expansion, the counting scheme also includes the standard
QED perturbative expansion where the effective Born
amplitude (see the next section), including all its non-
radiative chiral effects, counts as order a = % ~1/137 =~
0.007. In fact, for the evaluation of our “effective Born”
contribution, we make a chiral expansion to include
corrections up to and including Q?/M? ~0.04 in this
work. For the sake of transparency, we assign distinct
nomenclatures to the various chiral corrections. For exam-

ple, we denote the leading-order Born amplitude M;O) ~
O(e?) as “LO,” or simply “LO Born,” the next-to-leading-
order chiral Born amplitude Mgl) ~O(Q/M) ~0O(e?-

0.2) as “NLO,”, and the next-to-next-to-leading-order

chiral Born amplitude M ~ O(e2Q?/M?) ~ O(e? -
0.04) as “NNLO,” (cf. Fig. 1). We note that at the order
Q?/M? and higher, the QO dependence of the proton form
factors enters naturally in the chiral expansion. At NNLO,
the low-energy constants (LECs) of HByPT parametrize
the short-distance physics and, in addition, regulate the
ultraviolet (UV) divergences in diagrams with pion loops
[51-53]. The yPT evaluation of these NNLO, contribu-
tions are well known and yield analytical expressions for
the proton’s charge and magnetic radii [51,52,54]. In this
work, however, we do not repeat such evaluations. Instead,
we use the analytical expression of the yPT renormalized
effective Born amplitude Mﬁz)ms ~ O(e?Q*/M?). In this
work, we shall denote the chirally corrected NNLO,

fractional contributions as 55?) ~ O(Q?/M?), with respect
to the LO Born cross section of O(a?) (cf. Sec. II for
details). Furthermore, it should be noted that the next-fo-
next-to-next-to-leading-order (N°LO ) contributions from
terms of O(e?Q3/M?) ~O(e?-0.008), which are not
included in this work, constitute an important theoretical
uncertainty. We remark that including possible contribu-
tions arising from spin-3/2 A(1232) and other excited
nucleon resonances would be a significant extension of our
present analysis, and they are therefore not included in this
work. In particular, the inclusion of A(1232) in xPT
requires the chiral counting to be supplemented by the
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B(Q); rms

FIG. 1. Born diagrams B(>!:) for #-p elastic scattering at leading-
order [ie., O(e?)], next-to-leading-order [i.e., O(e*Q/M)], and
next-to-next-to-leading-order [i.e., O(e?Q?/M?)] in chiral expan-
sion [see Egs. (9)—(11)]. The effective Born diagram B@ms a]g0
contributing at next-to-next-to-leading-order [see Eqs. (13) and (14)]
parametrizes the proton’s structure effects (pion loops and LECs) via
insertions of the Dirac and Pauli mean-squared radii (r%,2> (crossed
blob). The dark filled blob and square represent the proton-photon
vertex insertion of order 1/M and 1/M?, respectively.

so-called small scale or o- expansion [51,52,55,56]. In
addition, we refer to Refs. [33,37-39] regarding some
recently developed techniques of the so-called dispersively
improved yPT, for a consistent inclusion of resonance
contributions.

The predominant portion of this work deals with the
evaluation the first two orders of our ‘“chiral-radiative”
corrections, namely, the radiative leading-order whose
amplitudes are denoted as “LO,,” ie., O(e’a)x
O(e?-0.007), and the radiative next-to-leading-order
corrections, denoted as “NLO,,” ie., O(e?aQ/M)x~
O(e?-0.0015). The next-higher-order chiral-radiative
amplitudes, ie., O(e’aQ?/M?)~0O(e?-0.0003), are
expected to yield only a tiny contribution.

To the best of our knowledge, the current work repre-
sents the first attempt at using a model-independent EFT
framework, namely, HB yPT, to simultaneously evaluate
the chiral and the radiative corrections in a unified
framework. The EFT radiative evaluation includes all
one-loop virtual correction, viz., the self-energies (SEs),
vertex corrections (VC), vacuum polarization (VP), and the
two-photon exchange (TPE) contributions to the Z-p elastic
scattering process. Moreover, in our work, the contributions
from single soft photon (7} ;) emission are required in order
to demonstrate the cancellation of the infrared (IR)
divergences arising from the virtual processes. The modus
operandi adopted in this paper is reminiscent of the seminal
work of Yennie et al. (YFS) of Ref. [57], developed within
a QED approach with relativistic pointlike Dirac particles.

In order to render the radiative corrections IR-finite, we
need to include the LO, and NLO, soft photon brems-
strahlung amplitudes of O(e?) and O(e*Q/M), respec-
tively. In the ensuing analysis, the LO,, fractional radiative

corrections are denoted by 5(22) ~ O(a), and likewise the

NLO, corrections are denoted by 5%},) ~O(aQ/M), with

respect to the elastic LO (Born) cross section of O(a?). The
interference of the NNLO, terms with the LO, radiative
corrections is included together with other nonfactorizable
NNLO, corrections in 85 ~ O(aQ?/M?), and &5, will be
used in our uncertainty assessment; see Eq. (99). Thus, our

result for the total fractional radiative correction to the £-p
elastic LO (Born) cross section can be symbolically
expressed in the form &,, = 5&2) + 5&;) + 65?.

In one of our previous work, Ref. [58], we evaluated the
TPE contributions to the #-p elastic process at NLO,
accuracy in HB yPT invoking a soft photon approximation
(SPA), e.g., the approach as pursued in Ref. [1] (see the
discussion relating to the use of SPA later in this paper).
We demonstrated that the TPE amplitudes diverge in the
vanishing limit of the photon momenta, vis-a-vis IR
divergences. The present work is an essential follow-up
of that analysis [58]. Here, we shall detail the systematical
stepwise evaluation of the radiative corrections at LO, and
NLO,. In this work, the NNLO, corrections are only
partially included (for brevity, the analytical NNLO,, results
are not displayed explicitly) and contribute to our estimate
of the theoretical error. We explicitly demonstrate how the
chiral power counting allows an order by order cancellation
of all the IR divergences arising from the one-loop virtual
and the single-photon bremsstrahlung processes.

We assign the real bremsstrahlung photon as being either
“soft” or “hard” in comparison to some fixed but frame-
dependent small energy scale AE. The AE as associated
with the outgoing detected lepton, practically fixes the
upper limit of the energy integration of the (undetected)
emitted soft photon when evaluating the bremsstrahlung
cross section. Especially, in the context of laboratory (lab)
frame kinematics, AE = A, where A, is the so-called
detector acceptance.2 In particular, to integrate over this
soft elastic radiative tail, we adopt Tsai’s formalism [59,60]
of boosting to the so-called S-frame, where the other-
wise complicated phase-space integration involving the
photon emission angles becomes rather simplified, as

’In the present radiative analysis of Z-p elastic scattering in the
lab frame, we include only the soft photons whose energies lie
below the detector threshold A, . The hard photons with energies
larger than A - will not be considered since they contribute to the
inelastic radiative process, Z + p — ¢ + p + y*. The soft photons
go undetected in a typical experiment, and therefore it is
necessary to integrate the part of the elastic radiative tail
distribution for photon energies between 0 and A+, in order to

compare with the measured differential cross section.
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demonstrated in the Appendixes. Our results for the
radiative corrections will depend on the resolution factor
A+, which constitutes a free parameter in our theoretical
framework specified by the design of a given experimental
arrangement. In this work, for the sake of numerical
evaluations, we have chosen the value of this parameter
to be approximately 1% of the incoming lepton energy.
The evaluation of the radiative correction diagrams
involve virtual or real photons, which yield matrix elements
containing UV and/or IR divergences. In this work, both the
chiral and the QED divergences will be treated by employ-
ing dimensional regularization (DR).3 While the UV-
divergent terms are renormalized using LECs and QED
counterterms in the Lagrangian, the IR divergences, as
demonstrated in this paper, systematically cancel at each
order in the chiral expansion. The ultimate objective of this
paper is to obtain a finite analytical expression for the
fractional chiral-radiative correction J,, to the elastic £-p
differential cross section in the lab frame, namely,

do el
o,

o dGel 2
Wb [dﬂé]y{l o) M
where the prefactor on the right side includes all our
O(a?Q?/M?) (i.e., NNLO,) hadronic chiral corrections to
the elastic Born differential cross section (cf. Sec. II for
details).

The paper is outlined as follows. The details of our
methodology are presented in Sec. II, where we display
the pertinent terms of the effective Lagrangian (QED +
HByPT). Based on the aforementioned chiral power
counting scheme, we determine the analytical expressions
for the two chiral corrections to the LO Born cross section,
namely, the NLO, and NNLO, terms in HByPT. The
details of the chiral-radiative corrections, namely, at LO,
and NLO,, involving evaluations of the corresponding one-
loop virtual and single real soft photon emission diagrams,
are presented in Secs. Il and IV, respectively. In Sec. V, we
discuss and compare the numerical estimates of the various
contributions in regard to the MUSE kinematical region
[47,48]. We also outline the major sources of theoretical
uncertainties in this section. Finally, Sec. VI summarizes
the key features of our analysis and concludes with
prospects of possible future extensions of this work.
Technical details regarding the utilization of the S-frame

*Most works in the literature prefer to use a nonzero photon
mass, 4 (see, e.g., Refs. [1,60]), which leads to IR-divergent terms

in the form of logarithms, e.g., ln(_’l—;z). We follow the DR

treatment of IR divergences, e.g., Refs. [61-64]). A naive
comparison of the IR treatments leads to the correspondence
\EII_RI—H/E —In (f”é‘;) < —In (_Léz) where u is the subtraction
scale (typically chosen as the momentum scale associated with
the scattering process).

kinematics to perform the bremsstrahlung phase-space
integrals are relegated to the Appendixes.

II. HByPT: FORMALISM

The most general effective Lagrangian consistent with
the low-energy symmetries is the sum of the QED
Lagrangian for the lepton fields y; and the hadronic zN
effective Lagrangian, namely,

Lp, pw s 9.4y

ElNy = _4 uv 2§A
+ ZV_/l(iD —mp)y; + LN, (2)
l=e.u

where F,, =0,A,—0,A, is the electromagnetic field
tensor with A, being the photon field and &, is the gauge
parameter, which in the Feynman gauge is £, = 1. The
gauge covariant derivatives appearing in the Lagrangian
are defined as D, = 0, —ieA,. The hadronic part of
the effective Lagrangian is expressed here as the sum
of the lowest-order pionic Lagrangian ﬁﬁ? and the zN
Lagrangian expanded in an infinite sequence of operator
terms characterized by the chiral dimensionv =0, 1,2, ...,
namely,

e 2 v
D ¥
v=0
where”

pac %Tr[v,, U + 4 TU + 4 UT):

[ 72
U=\/1-—+—7-7,
7 fx

;{:23(’"“ 0). 3)

0 mgy

Here, we use the so-called sigma gauge parametrization of
the nonlinear pion field U, and the constant B is related to
the scalar current quark condensate (0|gg|0), the order
parameter of spontaneously broken chiral symmetry. The
chiral covariant derivative V, is given in Eq. (7). Below, we
explicitly specify only the v = 0 (LO,) and v = 1 (NLO,)
terms of the zN Lagrangian. The v =2 (NNLO,) chiral
Lagrangian contains many additional LECs as well as
/M 2_order “fixed” terms and counterterms, some of which
contribute to the lowest-order proton’s form factors, includ-
ing the rms radii (see, e.g., Ref. [54]). Owing to the large

“In principle, the LECs in the Lagrangian should be taken in

the chiral limit, e.g., f and goA. However, they will be renormal-
ized to their respective physical values, f, and g4, at a given
chiral-order.
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number of operator terms in Efrz,\),, we just refer the reader to,
e.g., Refs. [52,53], where the complete expression can be
found. The lowest chiral order zN Lagrangian is given as

£ =N (iv- D+ g wN,y; N, = <p> 4)

where in HB yPT the nucleon velocity and spin four-vectors
can be chosen as v, = (16) and S, = (0, G/2) respec-
tively, satisfying the condition » - S = 0. The pion fields
enter 5533 through the term u = VU, where u, =
iu'V,Uu’ is the chiral vielbein. The LEC g, ~1.26 is
the axial-vector coupling constant. The velocity-dependent
heavy nucleon field N, represents the “large” components
of the nucleon isospinor field with the proton (p,) and

neutron (n,) projections. The next sub-leading chiral-order
zN Lagrangian is given by

_ -D)?-D-D ]
= (L) - s pea)

2
+o1Tr(yy) + (6‘2 - ;—;4) (v-u)?®+csu-u

1 ~
+ (c4 + m) (S, 8*]u,u, 4 csTr(f )
i

U RV )| T

where in our case we have

, . - I
Xy =u'yu+uy'u, Z+:Z+_§Tr(l+)’

Fip = u" (fR + v u+ u(fh, + o)

= eFW(uQu* +u' Qu),
3

. T
,Ify = 0,1, = 0yr, —ilr,, 1) =e—=F,,
L . v

o =0,0,—0,0,—i[l, 1), = eEFW,

s I
v,(w> = 65 (0,A,-0,A,), and

Q:%(]I—I—T3):<(1) 8). (6)

Apart from the 1/M-order terms, the v = 1 chiral dimen-
sion Lagrangian contains the seven LECs, ¢;, i=1,
2,...,7, whose values are phenomenologically determined
[50,53]. The speciality of these dimension-0 and -1 LECs
are that they are finite and unaffected by pion loop effects,
which start at chiral-order 2. In particular, the LECs
c¢ = k, and ¢; = (k, — k,)/2, where the nucleon isovector
and isoscalar anomalous magnetic moments are x, = 3.71

and x; = —0.12, respectively [54]. The field tensor f,,
represents the external isoscalar and isovector sources.
As shown in Eq. (6), the external isoscalar field is
vff) = —e1A,, and the isovector right-handed (r,) and
left-handed (/,) external sources are given as
ly=r,=—e

p 2 A,, where I is the identity matrix and 7°
is the diagonal Pauli matrix in isospin SU(2). In this
work, we have ignored all sources of isospin violation.
Consequently, there is no contribution from the term
proportional to cs, since 7, — 0 in the limit my; — m,.
Finally, the covariant derivatives used in the HByPT
Lagrangian are

D,=0,+T,- iv,(f), and

VU =0,U—ir,U+iUl, (7)

where
r _ Lo 0, —i 0, —il)u' 8
”—E[u(ﬂ—lrﬂ)u—l—u(”—t”)u]. (8)

In Fig. 1, we display the LOX, NLOX, and NNLOX Born

amplitudes (diagrams B(!2)) for the elastic lepton-proton

scattering process. As mentioned, we prefer to represent the
proton form factor (rms radii) contributions at NNLO,, via

the effective Born amplitude M?mg (diagram B(2)ms),
The LO Born amplitude is given as

MO = = (w(pyru ()l () v (p,)], (9)

where y is the two-component Pauli spinor for the
nonrelativistic proton, while u; is the Dirac spinors for
the relativistic leptons. The subleading Born amplitudes
needed in this work are given as

MY = MV M

(a _ ¢
M= g

x{(pp+Pp)y—vuv - (pp+ Pp)x(pp)ls
62
M = s ()P (7))

X(2+ K+ 1,88 - Qlx(py), (10)

[i,(p")r*ui(p)] " (P))

where M§1>;a and Mﬁl);b are the spin-independent and
spin-dependent parts of the NLO , amplitude Mﬁl), respec-
tively. Including the v =2 chiral-order interactions, the
1/M?-order Born amplitude is given as

My = = o [P (Pl (7))

x{(2(v-0)* = 0*)v, - Q,v-Ox(p,)]. (11
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Furthermore, the proton’s Dirac and Pauli form factors up
to O(Q*/M?) get contributions from the pion loops and
various LECs. Expressed in terms of the mean square radii
(r}) and (r3), respectively, they are viable in the following
low-energy expansions in Q?:

Q2
FP(Q?) =1 +—<r1> +O(M™3), and
) =x,+ L rom). @)

Including these form factors, we derive the general form for
the effective Born amplitude, diagram B(2)ms namely,

7PV x(p,)]. (13)

where the effective proton-photon vertex, due to form
factor corrections from pion loops and LECs at NNLO,,

is given as
Q2
/4

1
VW = (F! - 1), +M{(Fp - “(Qﬂ M

+2(F) +F) —1—-x,)[S,.S- Q}}

0° 1
Here, k, = (k, +k,)/2 = 1.795 is the anomalous mag-

netic moment of the proton. Analytical expressions for the
form factors evaluated to NNLO, in HB yPT already exist
in the literature [54] and may be used to determine the
scattering cross section. However, in this work, we shall
only consider some representative input for the proton’s
rms charge radius among the recently measured values
from scattering as well as atomic-spectroscopy measure-
ments [10,12,15-22].

In this paper we define the four-momentum transfer
0, = pu—1pu=(Pp),— (pp), of the £-p elastic scatter-
ing process, Z(p)+p(p,) = 2(p')+p(p,), where
0? < 0. The incoming and outgoing lepton four-momenta
are p=(E,p) and p' = (E',p’). The initial and final
proton four-momenta in the lab frame are P = (M,0),
P' = (E),, p),). In the heavy baryon formalism, the initial
and final state proton four-momenta are P* = Mv* + p/,
and P" = Mo + p?ﬁ‘, respectively. We have in the lab
frame, v- p, =0, and v - p), = —('Z’M) (M™2).

The full (chirally corrected) effective Born cross section
in the lab frame is determined by evaluating the phase-
space integral of the expression

2r)*s* P-p —P
do], = (2n)*6*(p+ P = p' = P')
4ME
d3 =d] 5
M (15)
X(27t) 2F (27) 2E’ Z' r
spins
where the squared amplitude is
M2 = M+ MY+ M + MPTE (16)

It is notable that, due to the sum over spins, only the spin-
and MJ(/Z);rms

interference with the LO Born amplitude M;O). The lowest-
order Born contribution is well known, namely,

—Z|M <1 —%) [1 +

spins
The following are the relevant fractional contributions
needed at 1/M?-order accuracy involving the NLO,
amplitudes where we introduce the compact notation

Ro=2

independent parts of Mw contribute to the

for later convenience,

| 2M2
0 1 0 1);
2ReZspins<M}(’ )TMJ(/ )) o 2ReZspins<MJ(/ )TMJ(’ )a> o Q2 =R
0 - 0 - 2 = Vo
Zspins|M§ )|2 Zspim'M( >|2 M
1
Zspins|MJ(’ >|2 _ Zspins|M}’ |2 l< 1+« )2R Q2 + 4(”’!12 - EE/) + o) %4 (18)
2:spins|'/\/lJ(’0)|2 Zspins|M7 | 2 ’ © Q2 +4EE/ ]\44 ’
and those involving the NNLO, amplitudes:
0 2):rms
2ReY s (M M) @2 4 O(Q)
Zspins'M}(’O) |2 3 1 M3 ’
2ReZspins (M;O)TMJ(?) ) 1 Q4
spins 14
053001-6



RADIATIVE AND CHIRAL CORRECTIONS TO ELASTIC ... PHYS. REV. D 104, 053001 (2021)

In fact, the effective Born differential cross section including up to NNLO, corrections may be expressed in terms of the
proton form factors F f,z and the incoming and outgoing lepton velocities,

respectively, in the generic form

do,/(0?) / |p'|dE’
Q) _ [ _PICE e M _F—F E § M, 20
[ a0, | =] G E T g WJ ~ Gan 2M2 gpmJ /™ (20)
where
E E E
_E__E L E 0 21
"=F T E+02m g —cos) (21)

is the proton recoil factor which may either be expressed in terms the four-momentum transfer Q2 or, equivalently, in terms
of the lab frame lepton scattering angle 6. The spin-averaged squared amplitude is

a s o 1 :
PIME = [{|M§°>|2 M 4+ 2Re(M ML (@) + s M
P

spins spms

O)F 4 (@) o
< (FL(QP) + PG + 2R M) (F(@) - 2P @) P12 + 0 (@ )| (22

|
The prefactor #, which arises from the phase-space  Here,
integration over the energy conservation é-function, exactly
cancels out while considering the different ratios of the 0? 03
. .. . 5(”“9) 2\ 2 0]
chirally or radiatively corrected £-p scattering cross sec- x (07) = 3 (ri) + e

tions to the LO Born contribution, ’ 3 o3
_c {(@ - —K"} + 0(—) (26)

do,(Q*)] _ &®p 0’ 4E> E 2m? M
“iar ), e (e g @

stands for the NNLO,, corrections due to the proton’s rms

. . ; ~ )
First, we note that |M.”? contains terms up to and  electric charge radius, r, = (rg), and

including O(M~2). Retaining its complete expression
generates thfzl il)cz)ve LO B(()Ol;nzcross iection. Second, the 55(1 /M) (0?) = 1 Ry { 426, + (1 + Kp)2
term Y |[M, 7~ > M, 7FO(M™*) and is therefore

ignored. Thus, we obtain the full chirally corrected nQ?* +4(nmi — E?) Lo o3

. . . . x —_—
NNLO,, result for the elastic differential cross section of an +4E? M3
the form

(27)

KToY 19 ] {1+ 5 (QZ)} (24)  are O(Q%/M?) contributions. Figure 2 displays separately

! Lo the proton’s NNLO,, recoil and structure-dependent cor-
rections to the LO Born e-p and pu-p elastic scattering cross
sections in the MUSE kinematic region [47,48]. These two
NNLO, terms are the largest of the corrections to the LO
)/ o rms 5 (/M) ) 2 Born contributions, each increasing to about 40% at the
6,°(Q%) = Q)+ 5 (Q%). (25) largest Q? values. However, due to their opposite signs,

|:d0el(Q2)i| _ [ddel(QZ)

where the O(Q?/M?) fractional contributions due to the
pure hadronic chiral effects are represented as
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40

p = 210 MeV/c (&%) / ” p = 210 MeV/c (1) - -~

20

-20

-40

0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
10’1 (GeV/e)* 10°l (GeV/e)?

0 p = 153 MeVic (¢*) ~ 5 P = 153 MeVic (1) _—

- "
- —
—
—

0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04
1Q* (GeV/e)? 1Q*l (GeV/c)*
p = 115 MeVic (&%) __— p = 115 MeV/c (1) _—
5 - —
—"

-10

0.005 0.010 0.015 0.020 0.025 0.005 0.010 0.015 0.020 0.025
10?] (GeV/c) 10* (GeV/c)?

FIG. 2. The fractional chiral corrections (in percentage) to the leading-order Born elastic cross section [Eq. (23)] for e-p (left panel)
and p-p (right panel) at NNLO,, in HB yPT, see Eq. (25), as a function of the squared four-momentum transfer |Q?|. The contributions

due to the proton’s rms radius 55("“) [dashed-dotted (yellow) curve], recoil contributions 55(1/ M) [dashed (red) curve], and their sum 55{2>

[solid (cyan) curve] are separately displayed. Each plot covers the MUSE kinematic range of |Q?| where the scattering angle lies within
the range 6 € [20°,100°] at specific incoming lepton momenta, |p| = p = 115, 153, 210 MeV/c. The curves for the proton’s rms
charge radius in the above plots are varied within the range corresponding to the extracted values from the recent precision e-p scattering
measurements by the PRad Collaboration [21] and that from the erstwhile high-precision muonic hydrogen atomic-spectroscopy
measurements by the CREMA Collaboration [11,12]. The theoretical uncertainty due to the input variation of the rms radius along with
the N3LO error are depicted by the widths of the colored bands.
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there are large cancellations as observed in Fig. 2. Although
the proton rms radius-dependent effects are independent
of the lepton mass, the 1/M?>-order effects are about one-
half times smaller in muon as compared to electron
scattering. The overall contributions are only somewhat
sensitive to lepton mass dependence. To check the sensi-
tivity of our chiral corrections to the input r, value, we
vary r, within the range corresponding to the extracted
value from recent precision e-p scattering measurements
at the Jefferson Laboratory (PRad Collaboration) [21] and
that from the high-precision muonic hydrogen atomic-
spectroscopy measurements at PSI (CREMA Collabo-

(ms)

ration) [11,12]. The resulting plots for o), show a
sensitivity of about +6.4%. We have included both the
experimental and theoretical uncertainties in quadrature
(see footnote 8). These uncertainties are represented by
the error bands in yellow. For the purpose of estimating the
theoretical error, we have, in addition, varied each of the
two chiral corrections in Fig. 2 by £1% to incorporate the
uncertainties due to the N°LO,, [i.e., O(Q*/M?) ~ 0.008]
effects excluded in our analysis. The error bands in cyan

associated with the total chiral corrections 55(2) [with the

error bands in pink representing the 55(1/ M) terms] yield

about 7% uncertainty relative to their central estimates,
after combining the two errors.

In the next section, we demonstrate that the radiative
(QED) contributions are smaller in comparison to the
individual chiral corrections. However, owing to the
subtlety of the large chiral cancellations noted in case of
e-p scattering, the otherwise power counting subdominant
QED effects get effectively promoted as a serious correc-
tion to the Born cross section. Thus, estimating the crucial
radiative effects along with the chiral corrections becomes a
necessary precursor before attempting a precision extrac-
tion of the proton’s rms charge radius.

ITI. RADIATIVE CORRECTION AT LO,

The lowest-order radiative (LO,) corrections to the £-p
elastic scattering process constitute diagrams with ampli-
tudes either of O(e*a), which arise from one-loop virtual
corrections, or of (9(63), associated with the emission of a
single undetectable real soft photon. In this section, we
outline all UV and IR divergences in DR arising in the

analytical evaluation of the LO,, contributions, 5&3) ~O(a).

The UV-divergent terms are renormalized by the
Bogoliubov, Parasiuk, Hepp, and Zimmermann renormal-
ization method [65,66] using Lagrangian counterterms to
render UV-finite results. To this end, all bare Lagrangian
masses, charges, coupling constants, etc., are replaced by
the corresponding physical ones in the standard way. As in
our previous work [58], we analytically evaluate the one-
loop virtual diagrams in order to project out the complete
IR-singularity structures ensuring exact cancellation with

the soft bremsstrahlung IR divergences. Note that, unlike
the SPA which was invoked to allow analytical evaluation
of the TPE box amplitudes in Ref. [58], the other one-loop
virtual amplitudes in this paper will be analytically per-
formed without any approximations. However, for the
purpose of extracting the IR-singularities from the soft
photon bremsstrahlung diagrams, we need to rely on SPA
as a basic precept of the YFS methodology [57]. In what
follows, we consider each of the virtual and real (brems-
strahlung) contributions separately.

A. One-loop virtual corrections at LO,

The one-loop diagrams contributing to the virtual
radiative corrections are displayed in Fig. 3. It is notable
that the SE loops renormalize the bare masses and wave
functions of the external lepton and proton, but on the
mass shell, such SE diagrams themselves vanish upon
renormalization (these corrections are nonvanishing for
internal off-shell propagator lines). Nonetheless, their
expressions are needed to determine the respective wave-
function renormalization constants le”’ , which by virtue
of Ward-Takahashi identity in QED is equal to the
corresponding vertex renormalization constants ZII'P .
Furthermore, as previously discussed in Ref. [58], the
sum of the real parts of TPE “direct” and “crossed” box
diagrams at LO, in HB yPT (cf. diagrams in the last row of
Fig. 3) vanishes with or without SPA.’ The remaining one-
loop contributions listed in Fig. 3 are evaluated without
invoking SPA and will be discussed in the following:

1. Lepton-photon vertex correction

The one-loop lepton-photon VC amplitude from the
VC! diagram in Fig. 3 using DR is well known (see, e.g.,
Refs. [61,66]). The VC amplitude VC'¥ is

2
¢ by / /
Mitenes = = oz [1(P)T (0. P )ua(p)]

< [T (Ph)vux(py)ls (28)

and the radiative corrections to the lepton-photon vertex in
terms of the Dirac and Pauli form factors, F! = 1 + 6F]
and Pauli F, respectively, is expressed in the general form

H N sl (2 1 00 o
O (1) = 1o} (Q7) + 5 CEFL Q). (29

The evaluation of diagram VC!? yields both UV and
IR divergences for the form factor F!, while F) is finite

The imaginary part of the sum of the LO, TPE box
amplitudes is, however, nonvanishing even after invoking SPA,
but it is irrelevant in this work since it does not contribute to the
unpolarized elastic cross section.
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SEi'®) SEf(©)
Vo)

BOX —lsoft BOX —fooft

ver©)

FIG. 3.

e, i, 7, hadrons

p©)

it

®Box

®@Box”) ) —foott

- lsoft

The one-loop O(e?q) diagrams at LO,, in HB yPT, contributing to the virtual radiative corrections to the elastic leading-order

Born £-p scattering amplitude [see Eq. (9)]. The blob in the diagram VP represents one-loop leptonic and hadronic vacuum
polarization contributions. For the sake of illustration, each leading-order two-photon exchange (direct and crossed) box diagram is
shown with one hard photon (red) and one soft photon (blue) exchange.

at O(a). It is noteworthy that, while the “Dirac” part of

amplitude factorizes into the Born amplitude Mﬁo), the
“Pauli” part does not manifest itself in the same way,
namely,

MY ex = MPVSFL(02) + MO FL(02),

62

"m0 [i,(p")ic" Q,u(p)]

X [T (Ph)vux(py)l. (30)

with M

As discussed, we use DR in order to simultaneously extract
the UV and IR divergences from the loop diagrams. The
UV divergence in space-time dimensions d =4 — 2eyy
(with eyy > 0) is characterized by the pole-term propor-
tional to 1/eyy and a log-dependent subtraction scale .
Likewise, for space-time dimensions d =4 — 2¢jr (with
er < 0), the IR-singularity appears as a pole term propor-
tional to 1/¢g. The one-loop LO, expressions for the Dirac
and Pauli form factor evaluated using DR are, respectively,
given as [61,62]

SF1(0?)

1 4Au>
“ie a7 ()|
47'[ eUV m
1 4
[ e
|€IR| m
v+1] 241, [v+1
X In + In
v—1 2v

-1 208 +1. [v+1
X In —| + In
4y v

) ()}

~n

NI\)t
\/
_ 1
S
|+
—_

and

Fi(Q% =

2 1
av 1n{”+], (31)

4z v

where v = /1 —4m3/Q* and “Sp” denotes the Spence

function, defined as

v—1
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f Infl—1t
Sp(x)—A dty; x<1, (32

and yr = 0.577216... is the Euler-Mascheroni constant.
Note that our definition of the Spence function differs from
the standard one (e.g., as used in Ref. [61]) by an over-
all sign.

The UV divergence is renormalized in the standard way
by adding the counterterm vertex (Z} — 1)y# to the vertex
function I'f, requiring that the total vertex function,
[ =T + (Z! — 1)y*, defines the physical charge at 0% =
0 according to the renormalization condition, i.e.,
[*(Q? = 0) = y*. The wave-function renormalization con-
stant Z) is defined by the derivative of the lepton SE
function X;(p) in the on-shell limit, namely,

1 821(1’) 5
Zy=1+ W |m + O(a?)
=Zl =1-6F(0*=0). (33)

Taking the limit Q%> — 0 (or v = ), i.e.,

Flr"(Q2) = 1 + 6F.(Q?) — 8F}(0)

241 1
lim =~ In [” i ] =2, (34)
V=00 v v—1
we obtain
ox! 1 Aru?
(p) __a o y4n ﬂ/,zt
aﬂ Lm 4r Euv i

a

1 Aru?
— | — —In{—— ] -=2|. (35
+27T |:|€IR| e n( m? ) ] (35)

Thus, by adding the counterterm —8F* (0)y*, the renor-
malized amplitude is given by

= M) [5FL(0%) - 6F} (0)] + M FL(0%),
(36)

1(0
[M y<y;\>/ertex

]ren

where /\_/l}(,0> is given in Eq. (30), and the renormalized one-
loop expression for the Dirac form factor of the lepton is
given as [61,62]

4l 1 N n Aru? 1/2+11n v+ 1 | +y2+lln1/+1 n -1
N 2z | |lewr] vE m? v—1 4y v—1 412

_|_

Besides, the finite Pauli form factor F} contributes to the
lepton’s spin magnetic moment as [61]

-

. eS 1~ e§ a
=1 F = =—11 — .
Hg m, 1+ F3(Q° =0)] o, ( + 27[) (38)

For |Q?| > m? (i.e., v — 1) it implies that F5 — 0. Hence,
F%’s contribution to the unpolarized scattering cross section
can safely be ignored relative to F*, for the case of electron
scattering. However, for low-energy muon scattering, e.g.,
at MUSE kinematics, the Pauli form factor could give
significant contributions.

2. Proton-photon vertex correction

In the literature, the proton-photon vertex has often been
modeled using phenomenological form factors, e.g., as
done in Refs. [1,60]. As discussed earlier, HB yPT allows a
systematic order by order estimation of this vertex using the
gauge invariant couplings of the photon with the hadrons
involved. In general, one parametrizes the proton-photon
vertex in terms of the nonrelativistic electric G% and

208 +1. [v+1 v+ 1 v+1 v—1
w2 () - () )] )

magnetic G}, Sachs form factors which are related to
the standard relativistic Dirac and Pauli form factors via

2
GE(0?) = FI(0%) + 12y FA(Q),

Glu(Q*) = F{(Q%) + F}(Q). (39)

The matrix element of the electromagnetic quark current
between proton states is given by

(p(P")|gr*qlp(P))
= 2 () [rh(en + 2

m G (0*) | x(py).-

(40)

In our heavy baryon formulation when including O(«)
radiative corrections, only the proton’s electric form factor
G% is expected to contribute, while the magnetic form
factor G}, contributes at a higher chiral-order. This is
already apparent in our O(Q?/M?) chiral corrections to the
LO Born cross section presented in Sec. II (also see
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Ref. [54] for details regarding yPT expressions of the
proton form factors). As revealed in our analysis in the next
section, even the inclusion of the chiral-radiative correc-
tions of O(aQ/M) does not renormalize the form factors.
To this end, we write G = G2 + 662, where 5G4
incorporates the radiative corrections to the electric form
factor. Subsequently, the possible UV divergences, arising
from the LO, one-loop photon corrections to the vertex

function, namely, U”Gg(o), are renormalized by adding the
counterterm (Z7 — 1)v*, with the requirement that the total

renormalized vertex function, V), = v}/GY, O 4 (P = 1)
defines the physical proton charge at Q2 =0, ie.,
Vi (Q* = 0) = v*. Similarly to the lepton counterpart,
the proton the wave-function renormalization constant
Z% can be defined as

9z (p,) 1
70O = 220 + O(oﬂ—)
g 8(1) : pp) v-p,=0 M
=70 = 1-5629(0* = 0),
where

azp(pp) (0)
—— = -6GL7(Q*> =0). (41)
(9(1} : pp) v-p,=0 £

With the on-shell conditions for the external protons, v -

p,="0and v-p), = p” +OM
the diagram VCP(©) in F1g. 3 is

=2), the amplitude of

ie*

Myy vertex — Q2 [ﬁl(p/)y”(p’ pl)ul(p)]

y / d*k T(Ph)vex(pp)l
(27)* (K> + i0)(—=v - k + i0)2

= M50 %0. (42)

Here, we used the fact that all scaleless loop integrals of the
type

d 2\m
Z(m,n) = / (d k (k) (43)

22)4 (=0 - k + i0)"

vanish in DR (see, e.g., Ref. [67]). Consequently, there is
no contribution to the proton VC at LO,. In fact, this result
is intuitively anticipated from the fact that in HB yPT there
is no proton bremsstrahlung at this order [68]. In other
words, at LO, the proton is static and unaffected by
radiative correction.

3. Vacuum polarization

The one-loop VP contribution from diagram VP in
Fig. 3 at LO, in HB yPT is IR-finite. However, it contains a
logarithmic UV divergence. Its unrenormalized amplitude
in terms of the bare electric charge ¢ is given by

MW, = a(p')eoy,ui(p))D™(Q)
x [x"(ph)eov,x(py)l- (44)

The full (interacting) photon propagator expressed in terms
of the polarization tensor, [ = (Q*¢"* — Q*Q*)T1(Q?), is

glll/

iD(0) =0+ i (Q)it, ()~

QZ
—ig" . )
= m + terms with Q*Q
_lg/“/
11(0)][1 — (T1(Q?)

~

o1 -

—n())]
(45)

The UV divergence is as usual renormalized by adding the

counterterm —(Q*¢" — Q*Q¥)(Z; — 1) to II*, which
renormalizes the photon propagator,
_ —ig
iD"(Q) = 4+ (46
=gl Z - 1) ’
where the ellipses denote the “gauge terms” containing

0, Q, which do not contribute in any gauge invariant result
[61]. The requirement that D** has a pole at Q% = 0 with
residue 1 yields Z3 = 1 4 I1(0), which renormalizes the
bare QED coupling, ay = a/Z;, where a = e?/(4x)~
1/137 is the physical QED coupling. Finally, the renor-
malized amplitude factorizes into the LO Born amplitude as

[M;JO’?VD]ren = MJ(’O>AH(Q2)7 (47)
with the renormalized polarization function
AII(Q?) = T1(Q?) - I1(0)
= AHlepton(Qz) + AHhadron(Qz)7 (48)

receiving both leptonic Allj.,,, and hadronic Allpagron
contributions at the one-loop level. Using DR, one can
readily obtain the well-known expression for the one-loop
leptonic vacuum polarization (LVP) contribution [61,69,70]:

2 8
AHlepton(Qz) = % Z {g (y? - §>

053001-12



RADIATIVE AND CHIRAL CORRECTIONS TO ELASTIC ...

PHYS. REV. D 104, 053001 (2021)

vp© LVP

FIG. 4. The one-loop vacuum polarization diagram at LO,
receives contributions from both leptonic (LVP) and hadronic
(HVP) particle-antiparticle pairs. We only consider the dominant
HVP due to structureless pions.

Here, vy = /1 — 4m12c/Q2, with index f = e, p, 7 that is

used to distinguish between the different lepton flavors
contributing to the fermion loop. The hadronic vacuum
polarization (HVP) contribution is illustrated in Fig. 4. It
only shows the contribution arising from structureless,
noninteracting pions in the loop. There is no unique method
to determine the contributions for the HVP contributions, and
we consider a simplistic one-loop estimate of HVP that arises
due to a #tx~ pair, evaluated using scalar QED. In this
regard, we quote the renormalized expression obtained by
Tsai [71],

AHhadron(Qz) - AHﬂ*ﬂ’(QQ)

_af 2 2—!—1 —l—ﬁln vpt 1
T2\ 3\ T3 TN,

(50)

where v, = /1 —4m2/Q?. In Fig. 5, we display the O(a)

fractional leptonic and pionic one-loop VP contributions at

2.0r
p =210 MeV/c
—————— T T T
1.5 e —— LVP+HVP
----- LVP (e)
S
S — — LVP(p)
1.0}
S8 — — - HVP(r)
= >
B
---=LVP(7)
0.5F
______——————__'
0.0 e P T e ey T Y e ' e BB B —— = = |
0.00 0.02 0.04 0.06 0.08 0.10

1@ (GeVic)?

FIG. 5. The one- loop leptonic and hadronic vacuum polariza-
tion corrections 5% eprn and their sum ésdz, contributing to the
¢-p elastic cross section at LO,, as a function of the squared four-
momentum transfer |Q?|. The plot covers the full kinematic
scattering range, 0 < |Q?| < [0, z]. The thick-
ened section of each curve corresponds to the MUSE kinematic
cut, where 6 € [20°, 100°].

LO,, 5vac = = 2All; ,, with respect to the Z-p elastic Born

cross section, Eq. (23). The results are shown for the largest
incoming momentum p = 210 MeV /c for MUSE. We note
that these corrections are independent of the flavor of the
incident lepton (£ =e, p) and the beam energy E. As
expected, the eTe™ loop gives the dominant contribution
due to the small electron mass and is an order larger than the
other VP contributions combined. It amounts to about 1.7%
in the MUSE kinematic range. The pu*p~, tt7~, and nt 7~
pairs contribute about 0.15%, 0.002%, and 0.03%, respec-
tively. Thus, the total UV finite VP contribution (i.e.,
LVP + HVP) at LO,, is

Sue(Q?) = 2AT1(Q%) = Sven(02),

Z 6vacf Q2

f=eur

(51)

which amounts to about 2% of the elastic Born differential
Cross section.

4. Complete one-loop virtual contribution

Adding all the nonvanishing renormalized virtual con-
tributions from the one-loop diagrams of Fig. 3 yields the
total UV-finite elastic scattering amplitude at LO,:

M = MO + Mo ien + M )ren
= M + MY [FEren(0?) — 1 + ATI(Q2)]
+ MUFL(Q?). (52)

Here, F'™" is the UV renormalized one-loop leptonic Dirac
form factor given in Eq. (37), and F} is the one-loop finite
leptonic Pauli form factor given in Eq. (31). The renor-
malized VP corrections AIT are obtained from Egs. (49) and
(50), and the amplitude Mﬁo’ is given in Eq. (30). The IR
divergences arising from the photon loops are contained in
the factor multiplying the Born amplitude Mﬁo) . The lab
frame LO, radiative correction to the elastic differential
cross section becomes

A{—d"go)(Qz)]w - [l 0. o)

dg; dg;
with
0)f 0
5<0)(Q2> o 2/R’eZspins(M§ ) M}(’}’>) _
144 - 0
ZspinslMJ(’ >|2
= IR} (0%) + &) (Q). (54)

representing the O(a) fractional contribution from the
virtual photon loops at LO,. The IR-divergent part is

contained in IRJ(,(;)(Qz). The corresponding finite part
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o <(0) _ l;ren (0)

5y includes the LO, lepton-photon VC contributions 8,1 (0%) = 2[F"™(0%) = 1] - IR,/ (Q%), (55)
3231,2, as extracted from Eq. (52), namely, the contribution

from the lepton Dirac form factor, and that from the lepton Pauli form factor,

2ReS i (MTAY) 200> 0’
0) 12y _ spins \Y 17 4 L2 — _ n ()2
oa0) = I T ) - (oo ) (1= a2 ) Phc®
o« 2nm? v+1 Q?
_E<nQ2+4E2> lnL_ 1} +O< M2> (56)

where the above 1/M?-order term is dropped from our central result presented below. However, these 1/M?-order terms
will be included as a part of the theoretical error estimate. The finite part includes the total LO, VP contribution,

552)0 = 2AH(Q2), obtained earlier in this section. Thus, the total finite fractional virtual radiative corrections at LO, read

B (0%) = 810, (0%) + 8,5 (0%) + Y 6% (0%) + 6\kn(0?)

f=eur

al*+1, [v+1 -1 O\ [V +1. [v+1 22 +1. [v+1
=— 1 1 1 1 -1 1
JT|: 4 HL—J n{ 4y2}+n<m%>{ v n[u—l] }4— v n[u—l]
41 v+1 v—1 2 8 3—3\ [y +1
-2 - S —Sp| —— “f,2_° fl S
o) () ) -3 e (5wl )

2(, 1 v (v, +1 1 2nm? v+1 Q2
-~z o)+ = I 57
3(””+3>+3 n[v,z—l}+u<nQ2+4E2 P | R GV (57)

The IR-divergent part of Egs. (54) and (55), Ing)) (Q?), which essentially stems from the “Dirac” contribution to the one-
loop lepton-photon VC at LO,, Eq. (37), is given as

2 2
IRJ(’(;)(QZ) = IRJ[/(}’(?z’ertex(Qz) _g |:|€:R| }/E - ll’l <4;”52>:| |:y 2—:; lln |:ll//i_ i:| - 1:| ‘ (58)
|
In Sec. III B, we show that this IR divergence is relative corrections turn out to be much larger,
canceled by the IR divergence from the soft-bremsstrah- about 107!%.
lung process at LO,. Figure 6 displays the LO, frac- (v) The electronic and muonic Dirac form factor con-
tional contributions from the lepton-photon VC terms, tributions in the region of low momentum transfers,
3(7>1 and 5(7)2, stemming from the form factors F1™" and Q% < 0.1(GeV/c)?, differ by almost 2 orders of
F’,, respectively, for the full kinematic elastic scattering magn_lglédes. The reason is that the electronic Dirac
range 0 < |Q?| < |02, of the MUSE specified incom- term 5},(7;% is enhanced in the soft and collinear region
ing lepton momenta. A summary of our observations is of the loop-momentum integration resulting from
in order: the so-called Sudakov double-logarithms, namely,
(i) All the radiative corrections vanish in the limit
Q? — 0, as dictated by gauge invariance. 4l Ju+1 |
(ii) There is no LO, contribution from the TPE box 4y In L — J ln{ 412 }
diagrams, even without invoking SPA.
(iii) The lepton Dirac form factor contribution is basi- + v+ 1 In (_Q2> In [U + 1] ~ lln2< Q2>’
cally independent of the lepton beam energy. 2v mj v—1] 2 mj
(iv) In contrast, the lepton Pauli form factor contribution
depends strongly on the beam momentum. For in the limit of a small lepton mass (i.e., m? < |Q?)).
electron scattering in the MUSE momentum However, for muon scattering at MUSE kinematics
range, the contributions are practically negligible, where mﬁ = 0.01 GeV? ~|Q?|, no such enhance-
about 107°%. However, for muon scattering, the ments are manifest.
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FIG. 6. The one-loop LO, contributions Si(;)l (upper panel) and 5](,(:)2 (lower panel) to the e-p (left panel) and u-p (right panel) elastic

cross sections (in percentage) from the finite lepton-photon vertex corrections terms containing the (UV and IR-finite) form factors F’

1
1;ren
2

and F'. Each plot covers the full kinematic scattering range, 0 < |Q?| < |Q%,|, when 6 € [0, z] at the incoming lepton momenta,
|p| = p = 115, 153, 210 MeV /c. The thickened section of each curve corresponds to the MUSE kinematic cut, where 6 € [20°, 100°].

B. Soft bremsstrahlung corrections at LO,

A review of known results using standard field theo-
retical techniques can be found in, e.g., Refs. [1,59-62]).
We reevaluated the bremsstrahlung process, £p — £py*,
in our HByPT work of Ref. [68]. By virtue of tranver-
sality of real photons with polarization four-vector g,
namely, k - ¢ = 0, the Coulomb gauge condition, v - € = 0,
is naturally satisfied for the bremsstrahlung process.

|

B d4k - /i (ﬂ - k + m)
/\/lf,(yo) = —¢3 /—(2][)4 [UI(P i —(p ~ k)7 - m12
0 3 dk [_, . (P +K+m)
M, = —e /(271.)4 [”l(p )¢ (0 + k) —m

lzwump)} o).

Consequently, with the LO,, proton-photon vertex in heavy
baryon formalism proportional to v - €*, the “static”” proton
does not radiate at the leading chiral-order. Therefore, in
this case, the lowest-order soft bremsstrahlung process
consists of a single soft photon that is emitted from either
the incoming lepton, diagram Ri'"), or the outgoing one,
diagram Rf'") as displayed in Fig. 7, with amplitudes
given as

fkuz(P)} ﬁ[)ﬁ(p’,,)vﬂx(pp)], and
1

(Q—k)?
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*
Vsoft

*
Vsoft

Ril(o) R,fl(o)

Ri?©) R0

FIG. 7. Soft bremsstrahlung diagrams at LO, [i.e., O(e*)] in HB ¥PT contributing to the radiative corrections to the elastic leading-
order (Born) Z-p scattering amplitude [see Eq. (9)]. The proton radiating diagrams vanish.

In the above expressions, k, is the four-momentum of
the bremsstrahlung photon, and py, is the four-momentum
of the inelastically scattered outgoing lepton. In this
paper, we are only concerned with the undetectable
soft photon emissions. Thus, by the YFS methodology
[57], the real photon emission amplitudes are evaluated
using SPA, where SPA regards p) as the physical four-
momentum of the elastically scattered lepton. Henceforth,
for reasons of brevity, we drop all distinctions between
the pj, and pj, unless explicitly mentioned. In SPA, the
photon momentum of the propagator numerator is taken
to be zero, i.e., k, — 0, with the crucial assumption that
the soft emissions does not alter the elastic kinematics.
In other words, in this limit, the four-momentum transfer
for the bremsstrahlung process, g, = (Q — k),,, is practi-
cally indistinguishable from its -elastic counterpart,
Q,=(p-7p'),= (P =P), Then, the matrix elements

|

get factorized into the LO (Born) amplitude M;(,()),
namely,

10)i Voot (1(0);i o(p-€
M M :eM£>< )

144 144 p- k
lO;fy:ul /l\()/;f 0 pl'g*
MU T p O —eM§)<p, _ k). (60)

Taking the square of the total LO, bremsstrahlung matrix
element, Mﬁg) = ./\/l;(ﬁ);1 + /\/l]l,(yq);f, in SPA yields a cross
section in accordance with the well-known Low’s soft photon
theorem [72]. This implies that in terms of the bremsstrah-
lung soft photon energy, the first two terms in the expansion
of the unpolarized radiative cross section depend only on the
corresponding nonradiative unpolarized cross section. Thus,
the lab frame differential cross cross section for the LO,
bremsstrahlung process is given by the expression

d (LO,)

$Bp BP Bk ) p+P-p —P —k)1 0
br ]W* = ZZ|MW

(2m)32E' (27)*2E), (27)2E, 4AME

2, (61)

spins

where

2 x40V 10y oot | (10)i 1 (10):f)2
=|MW* +MW \ W>|MW —l—/\/l},y* |

DMy

spin

_ 2 O (™M m}  2pp
- gswy|((1D'k)2+(p’-k)2 (p-k)(p'.k)>‘ (62)

The phase-space integrated cross section also factorizes
into the Born cross section, Eq. (23), and reads

o .
A doy, ”(Q)] 7y a [dow(0?)
aQ; |, 22| dQ; |,
X (=Ljj = Li + Lir).  (63)
The integrals, L;, Ly, and L;, are three-momentum

integrals involving the soft photons radiated by the leptons.
They are evaluated in Appendix B using the method of,

[

e.g., Refs. [1,59-62]. The integrals, L;;, L, and Ly, are all
IR-divergent. As demonstrated in the Appendix B, we
isolate the corresponding finite contributions, L;;, L, and
L, using DR. This yields the lab frame LO,, bremsstrah-
lung correction to the elastic differential cross section
with all possible soft photon emissions with energies less

than Ayi,

*

<A x
A dO'g;O)<Q2) (Epr<by) B dGez(Qz) 5(0)(Q2) (64
|, de) e
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where the O(a) fractional bremsstrahlung contribution 53(,2) at LO, reads [1,61]

50(0%) = IRY(0%) 150, (65)
with
vy =@ =3 e () |5 - <“>

being the IR-divergent term, and the finite part of the LO, bremsstrahlung contribution is represented by

(Qz) ( Lll_Lff+Llf)
a[ <4772A2>[1/ +1 [u+1 /1+ 1+
= — ln Il
- 0? v—1 1-8 4ﬂ’ -4
v +1 1+ 4 +p ( A =1 > ( A, =1 )
- In? — In? Sp Sp(1--2»—1_
2 {“\/1—ﬂ \/ —p PP\ o) P T e

*%“a%%ﬁ)*%“a%ﬁﬁ)H «

where v is defined below Eq. (31), and &, = W
(0)

divergent term IR . from the LO, bremsstrahlung diagrams, being equal and opposite to the LO, one-loop IR-divergent

and 1, =

-dependent kinematic variables. The IR-

counterpart IR)(,(y [cf. Eq. (58)], exactly cancels out in the sum of the LO, real and virtual radiative contributions. Thus, the
resulting finite contribution is

85 (0%) = 67 (0%) + 61, (0) = 37 (0) + 3 0?). (68)

C. Total radiative corrections at LO,

After eliminating all the UV and IR divergences, we obtain the desired analytical result for the complete radiative
contributions at LO,, in HB yPT. The finite one-loop O(a) expression for the LO,, fractional radiative corrections to the £-p
elastic differential cross section is given by the expression

o _a[P+1 [v+1], [P =11 2°+1 [v+1] *+1 v\ (v
527_77{ 4y lnL_Jln{ 41/2}—'— 2v In v—1 2u 5P 2u 5P 2u
3-132 v+ 1 2 N v [v,+1
~ ¥ 1 22 D g |V
2 3 G 0es) v (5l -5 () ]
1/ 2qm? v+ 1 APANA+1, [v+1 1 1+p
+;Q¢+MQML—J+m< >{ mL—J_q+@m =
1+/}’ u+1 1+p +p
AN M= V ﬂ“+s 1_ 1—ﬂ€)
rso(1- 7t ”)S(l————)S(l ) role) @
U pe) PU T a-pmae) ~° <+ﬁma

Apart from the pionic VP contribution result of Tsai [71] that is included in above expression, the remaining expression is
by and large identical to what is found in the literature [1,59-62].
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FIG. 8. The individual one-loop LO,, contributions (in percentage), namely, the vacuum polarization correction 5\(,2)0 lepton-photon

(0)

e
cross sections as a function of the squared four-momentum transfer | Q?|. The total LO, contribution 3;3) is displayed as the solid (black)
line. Each plot covers the full kinematically allowed scattering range, 0 < |Q?| < |Q2,..|, when @ € [0, z] (cf. Table I of Ref. [58]). The
thickened portion of each curve corresponds to the MUSE kinematic cut, where § € [20°, 100°]. The lab frame detector acceptance A,- is
taken to be 1% of the incident lepton beam energy E.

vertex correction Eﬁggvemx, and the soft photon bremsstrahlung correction §,.., to the e*-p (left panels) and p*-p (right panels) elastic

053001-18



RADIATIVE AND CHIRAL CORRECTIONS TO ELASTIC ...

PHYS. REV. D 104, 053001 (2021)

In Fig. 8, we summarize all the fractional radiative
corrections to the Z-p elastic cross section at LO, in

HB yPT, namely, the VP correction, 5&2& => fepr <0) +

Vac o

5%, .: the lepton-photon VC, 5<y)vemx = 5§y) L+ 5(72, and

the soft bremsstrahlung correction 5%2, in the MUSE
kinematic range. A key feature of these LO, radiative
corrections is that they are charge-symmetric; viz., the
cross sections are identical for both Z~p and #"p scatter-
ings. We find that the negative bremsstrahlung contribution
is the most dominant correction in this low-|Q?| range. In
contrast, the lepton-photon VC and VP correction are both
positive. The plots in essence suggests very little sensitivity
of the radiative corrections to the incoming lepton beam
momenta. While the VP contributions are identical in both
electron and muon scatterings, the following observations

3A2
-0 0*>m? o n Az,
390 ~ 1;{111( E2y>[ln<

2

3

depict the contrasting nature of the other two LO, radiative
corrections, viz., the lepton-photon vertex and soft brems-
strahlung corrections, associated with MUSE kinematics:
(i) While both electronic VC and the soft photon
bremsstrahlung contributions are very large and of
comparable magnitudes, the muonic VC is roughly 2
orders of magnitude smaller. One reason for this
contrast is evidently the absence of Sudakov en-
hancement in muonic scattering since m;, ~ |Q?|, as
mentioned earlier.
The electron and muon bremsstrahlung corrections
are both negative, but the latter is over a magnitude
smaller. Here, too, the Sudakov enhancement of the

term 5}(,22 plays a vital role, which can be seen as

follows. In the limit of small lepton mass (i.e.,
m? < |Q?|), we obtain

(i)

—O2
—Qz> - 1] —lln2< Q2> +ln( Q2>
mj 2 m? m?

1 0
—Elnzn T Sp (cos2 5)]

In regard to the low-|Q?| MUSE kinematics, the

approximations of 31(,(;2

“high-energy” for electron
scattering are quite legitimate since m2 < |Q?|
(m2 = 0.25 x 107% GeV?), which cannot be justi-
fied in case of the muon. With A . typically much
smaller than the beam energies, the first two double-
log terms containing the factor —In(—Q2/m?)
dominates in case of electron scattering, accounting
for the large negative sign of the bremsstrahlung
contribution. This contrasts the positive sign of
electron-photon VC attributed to the dominant
positive contributions from the Sudakov terms
proportional to In?(—Q?/m2), as elucidated earlier.®
Large cancellations occur between the VC and
bremsstrahlung contributions and lead to approx-
imately 20% correction in electron scattering.
For the muon, cancellations between the compa-

rable VP and bremsstrahlung contributions lead to

(iii)

®It should be noted that the above expression differs by a factor
ln(_m—sz) [ln(_m—sz) — 1] compared to the standard expression known
1 1

in the existing literature (see, e.g., Refs. [1]). This difference is
due to the DR scheme we have adopted in order to separate the
IR-divergent part from the finite contribution. Specifically, in DR,

we prefer to retain the factor ln(i”é‘z) in the IR-singular part IR 57)’

instead of ln(4”” ), which is a more standard representation in the
o1

literature. For the same reason, our leptonic VC result
[cf. Eq. (57)] differs by the same factor.

approximately 1% correction only at the largest
MUSE beam momenta.

At lowest-order in chiral expansion, the proton is
essentially an infinitely heavy static object, i.e.,
leptons scatter off a static Coulomb potential. This
naturally explains why all LO, radiative effects on
the proton vanish.

@iv)

IV. RADIATIVE CORRECTION AT NLO,

The next-order radiative corrections are dynamical in
nature, since they arise from the NLO,, interactions in the
HByPT Lagrangian. Thus, the power counting scheme
allows for diagrams containing either one NLO,, vertex or
one insertion of an NLO, proton propagator. The NLO,
diagrams that we consider are the O(e*aQ/M) one-loop
virtual correction amplitudes, along with those of the
O(e*Q/M) soft photon bremsstrahlung amplitudes.
Employing the DR scheme, we extract the UV and IR
divergences generated at NLO, to obtain the corres-
ponding fractional radiative corrections to the cross sec-
tion, 5 ~ O(aQ/M). The NLO, TPE box diagrams were
evaluated analytically invoking SPA in Sec. III of Ref. [58]
(we shall make some pertinent comments regarding SPA
and its validity in the evaluation of the TPE box diagrams in
Secs. V and VI of this paper). In this section, the other
virtual NLO,, one-loop diagrams shall be evaluated exactly;
i.e., we make no approximations in our evaluation of the
one-loop diagrams. Below, we elucidate the details of the
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FIG. 9. The one-loop lepton and proton self-energies, lepton-proton vertex corrections, and the vacuum polarizations at NLO,, in
HBPT [i.e., O(e?aQ/M)], contributing to the radiative corrections to the LO (Born) Z-p elastic scattering amplitude [see Eq. (9)]. The

filled blobs represent 1/M-order proton-photon vertex insertions. In particular, the proton self-energy “tadpoles” (diagrams SEi, 5

(1))

have e?/M-order vertices. The proton propagators with the crossed blobs “®” represent 1/M-order propagator insertions. While all the
self-energy diagrams vanish in the on-shell limit of the external particles, the lepton vertex correction and vacuum polarization diagrams
do not contribute at NLO,, since they are kinematically suppressed to 1/M?-order.

NLO, virtual and real contributions and the subsequent
cancellation of the IR divergences.

A. One-loop virtual corrections at NLO,

In case of the external on-shell particles, the lepton and
proton SE amplitude terms (diagrams SEi,f!") and

.....

the elastic scattering amplitude as they vanish due to the on-
shell renormalization condition. The respective SE loops,
however, renormalize the off-shell bare masses in the
propagators. In addition, their derivatives contribute at
NLO, to the respective wave-function renormalization

(1

constants le’p In the following, we discuss the

evaluations of the other one-loop NLO, amplitudes at
O(e*aQ/M), which include the lepton-photon VC dia-
gram (VC'(V) in Fig. 9), the VP diagram (VP(!) in Fig. 9),

.....

Furthermore, the NLO, TPE amplitudes, which were
already evaluated invoking SPA in our previous work
[58], are used in this work to determine the complete
one-loop virtual radiative contribution at NLO,,.

1. Lepton-photon vertex and vacuum
polarization corrections

Formally, the only nontrivial NLO, contributions in
Fig. 9 are expected to arise from the last two diagrams,

namely, the lepton-photon VC (diagram VC/V)) and the VP
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vy

vy v

v vep v

FIG. 10. One-loop proton-photon vertex correction diagrams at NLO,, in HByPT [i.e., O(e?aQ/M)], contributing to the radiative
corrections to the LO (Born) ¢-p elastic scattering amplitude [see Eq. (9)]. The filled blobs represent 1/M-order proton-photon vertex

insertions. In particular, the two-photon proton vertices (diagrams VC?_%)) are of order /M. The proton propagators with the crossed

blobs ® represent 1/M-order propagator insertions (diagrams VCgfé)). None of these diagrams contributes to the cross section at NLO,,
(see the text).

(diagram VP(!)) contributions. The result closely resembles M) = MY + MIV[FEe (02) — 1 4 ATI(02)]

the corresponding LO,, result, Eq. (52), in that the ampli- —— (1) ol 12

tude of each of the above NLO, diagrams, apart from the + M, TF(Q7). (70)
vertex term proportional to F%, factorizes into the NLO P

Born amplitude M;l) [see Eq. (11)], namely, where

MY = MY+ MY
2
2 4(1)a e — N v (oA / /
M = = i )i Quu (P (P Ly + ) = v (py + ) by

e? .

M = i (P)io" Q)L (7)) 2 4, + k) [5,.5 - QL)) )

Here, F i;re“ is the renormalized Dirac form factor of the lepton, Eq. (37). In Sec. II, it was demonstrated that the interference
of the LO and NLO,, Born amplitudes is proportional to Ry ~ O(M~?) [see Eq. (18)]. Consequently, with F bren 92y _ 1,
ATI(Q?), and F(Q?) of O(a), the relevant NLO, terms which arise from the interference of the amplitudes, Egs. (52) and

(70), and which should formally contribute here, are de facto kinematically suppressed to O(aQ?/M?), i.e., in essence
NNLO,, in HByPT. Thus, we have

51 g2 — ZmslIMey + My | = MGV~ 2Re(MY M+ MM
apins M
Sapins My P
epins M |2>
, 2R Y MY 4 MU + )

0
Zspins|MJ(/ )|2

~2F(Q) - 1+ AN (Ro +

FL(0%) + O(c?)
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— RIIRY (02) + 37 (@1{ 1+ 5 1+ 5,

Q> + 4(mj - E?)
Q° +4E?

)}

0 1 (0% +4(m? — E?) Q2
+(1+ KP>ZRQ5;732(Q2){1 -3 ( L +0(@)~O(a s (72)
by using the results of Egs. (18), (55)—(57) as well as the two estimates
RS e (MM 4 D AL
ZAP ( Z |M |2 14 )FIZ(QQ) — RQé}(/g?Z(QZ)’ and
spins 14
2ReZspins (Mﬁl);a%m}(’l);a + M}(’U;b%m}(’l);b) 1 2 2 2 Q4
>l M PO = 11 RS0 o ) 7

where the symbol o(aQ*/M*) denotes further terms of
order 1/M?*, which we ignore. Please note that 5< )2 already
contains 1/M?-order terms [cf. Eq. (56)]. As illustrated
above, a notable feature regarding these subleading chiral-
order radiative corrections is that they generally do not

completely factorize as a simple product of the O(Q?/M?)
(/M) ef. Eq. (25)], and the
O(a) leading virtual radiative correction 6,(,7>. At our
accuracy of O(aQ/M), however, we eventually drop all

1/M?-order terms in our final expressions for the fractional

pure chiral correction, e.g., &,

[

theoretical uncertainties. We then conclude that none of
the diagrams displayed in Fig. 9 contributes to the scatter-
ing cross section at NLO,,.

2. Proton-photon vertex corrections
As displayed in Fig. 10, a total of seven diagrams,

VCZO), s VC(’;(I), contribute to the proton-photon VC at
NLO, in HByPT. Five of these diagrams involve 1/M-
order proton-photon vertex insertions, and the remaining
two involve 1/M-order “heavy” proton propagator inser-

contributions. These NNLO,, terms of O(aQ2/M?) above,  tions. The amplitudes of these diagrams M) (1A G an
as mentioned earlier, will be useful in estimating our  be expressed as follows:
|
~ ie* k L' (pp){(pp + Pl = 2k), = [v- (P, + Pp = 20)]0.} ()]
My = 2age P )7 ulp)] / 7S LA P U O P e | POy ey
P P
.4 4 / 2 2
pp i€t / d*k ' () vux(py)] Lo P (Pp=k)
yravertex 2MO? [i,(p")r*ui(p)] (271_)4 (k2 +i0)[v- (p;, — k) + i0] + (v- k)2 (v- k)2 ’
4 4 T /2 i 2
p(:C e =\ / d*k [)( (pp)vy)((pp)] 1 (pp) _(pp_k)
Myy;verlex 2MQ2 [ul(p )}/ M](p)] (271,)4 (kZ + 10)[7) . (pp — k) + 10] T (’U . k)2 (1) . k)z ’
(1) ie* d*k ' (pp)vdlv- 2p, =) = [v- 2p, = K)]0*}x(p,)]
MR, = o )] [ 55 PP BPom SRk e P,
0 (27) (k* 4 i0)[v - (p, — k) + i0][v - (p!, — k) + i0]
: iet dk " (pp)vdly - 2p), = k)] = [v- (2p, = &)’} x(p))]
e B (o L LB
0 @n)f (R +i0)[v- (py—K) +i0][v- (p — k) + i0]
;o i % (P = ) xpy)]
p(1);F _ e _ o / d*k [)( (pp)”u< vT)xX\Pp o
Myy;venex 2MQ2 [ul(p )}/ M[(p)] (271_)4 (k2 + 10)[1) K ( ) + l()] ’
vl 4 ()
iet d*k ' (pp)v,(1—v )){(pp)]
= =0. 74
Myy vertex 2MQ2 [Ml(p )7/ Ml(p)] / (271_)4 (k2 + lO)[U K ( ) 4 ] ( )
Since v? = 1, the last four amplitudes MW Velﬁ)ef "9 Vanish as indicated. To evaluate the remaining three amplitudes

p(1);:A,B,C
Myy vertex

as earlier, we first use (in the lab frame) the on-shell relations, v - p, = Oand v - p), =

(M~2), in the

denominators of the leading chiral-order proton propagators. Second, we incorporate a 1/M expansion and retain terms up
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to O(e?aQ/M) in the NLO, proton-photon VC amplitudes. Using DM this eventually leads to vanishing contribution,

namely,
M s = MU+ MEVE + MIVS,
= e )] [ g e s 2o =20 ()
* 2&;2 (P} (p)] / ((21:;4 (kz[)i(ig;)]()?f-(kp p+)]i0) (1 - (viy) <2 - 21\(4?,[;)-210 o >
0. (75)

In the last step, we again used the fact that all scaleless
loop integrals of the type Z(m, n), Eq. (43), vanish in DR
[67]. Consequently, none of the NLO, proton-photon
vertex correction diagrams shown in Fig. 10 contributes
to the radiative corrections. The nonvanishing radiative
corrections from NNLO,, vertices (excluded in this work)
are potentially expected to renormalize the proton’s Sachs
form factors. This leaves us only with the TPE diagrams
which do contribute to the NLO, one-loop radiative
corrections for the LO Born lepton-proton elastic scattering
cross section.

3. Two-photon exchange corrections

The NLO, TPE diagrams of O(e?aQ/M), comprising
the direct-box, crossed-box, and seagull amplitudes,

contribute to the fractional radiative correction, 5;;) ~

O(aQ/M). The TPE box amplitudes are IR-divergent,
and their exact analytical evaluation involves an intricate
system of scalar and tensor three- and four-point integral
functions and their derivatives. In contrast to the relativistic
treatment of the proton propagator within the TPE loops in
d dimensions, the integrals involving the nonrelativistic
“heavy nucleon” propagator is a challenge in d dimensions.
To the best of our knowledge, an exact analytical evalua-
tion of such “heavy baryon TPE loop” functions in order
to isolate the IR divergences has not been pursued in the
literature. However, we remark that efforts are currently
underway [73] to analytically isolate the IR-singularities
from the box integrals in the context of a cutoff
|

|
regularization scheme. A direct numerical evaluation of
the TPE loops without approximation per se may not be
feasible unless the IR-divergent parts are first analytically
isolated. We therefore rely on an approximate analytical
method to evaluate the TPE box amplitudes in order to
project out the IR-singular parts, as outlined in details in the
work of Ref. [58]. Notably, the IR-finite TPE seagull
amplitude can be straightforwardly evaluated analytically
without any approximations.

Following the seminal review of Mo and Tsai [60], and
as later advocated in the work of Koshchii and Afanasev
[45], Ref. [58] evaluated the TPE box diagrams invoking
SPA. A “less drastic” variant of this approximation was
advocated for in the work of Maximon and Tjon [1]. The
use of SPA has the advantage that the seemingly intractable
four-point functions get reduced to scalar three-point
integrals which can be readily evaluated in analytical
form. The disadvantage of this methodology is that,
while the vital IR-divergent parts are evaluated correctly,
the numerically small finite parts are estimated only
partially up to terms that preclude the TPE kinematical
region of simultaneous propagation of two hard photons
(see, e.g., Ref. [42]). As demonstrated in Ref. [58], using
SPA the TPE box amplitudes get factorized into the LO

Born amplitude M;(,O). Our NLO, TPE contribution is
given by the sum of the factorizable IR-singular TPE
box amplitudes and the nonfactorizable IR-finite “residual
part” of the TPE seagull amplitude (see Ref. [58] for
details),

wy €0 o) 4P\ (1, ﬂ Ny JLEP
MVV;TPE*16;T2MEM? H|elR| ( Q? ﬂ+ﬂ’ -/
_L __12 1+ iﬂ 1_ +h <2ﬁ' H
1-5 ﬂ’ -8 TN+,
0’
—1-716”2’”12]‘4 {N111 -N, <Iz+ I3> - N <I6_ Is) N4ml I4}Seaguu’ (76)
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where the TPE seagull amplitude is expressed in terms of

the nonfactorizable amplitudes, N/, e(/\/l (i=1,...,4),
namely,

Ny = [a(p")r (mi + P)ru(p)Il" (Pp) x(p )]s

Na = [a(p")r* (¥ = L)ru(p)]l" (Pp)x(pp)]:

N5 = [a(p")r* Qrau(p)l ' (py)x(p,)).

Ny =1[a(p")r (20 = P)r,u(p)llx* (Pp)x(pp)). (77)

For brevity, the analytic expressions for the Q*-dependent
integrals Z,_; 4 are given in Ref. [58].

.....

4. Complete one-loop virtual contribution

Using the result for the TPE amplitude, we find that the
total one-loop NLO,, radiative amplitude is
|

“oins M(0)+M(1)2_ M(1)2
o1 (g7 — ZamlMy + M =M

My = M+ MG, (78)

where ./\/l%,l) is determined from the lepton-photon VC and
the VP contributions at NLO,, Eqgs. (70) and (71). This
yields the lab frame one-loop radiative correction to the LO
Born differential cross section

A{%] - [ddif—g(z;Qz)] 055?(Q2), (79)

where the fractional contribution 6}(,;) including the kine-

matically suppressed O(aQ?/M?) terms (contributing to
the theoretical error) reads

— 2Re(M MY+ MO M)

0
Zspins|MJ(/ )|2

— IRU(02) + 58 (0%) + 5 (02) + R 5L <Q2>{

+1

1 Q2+4 2_E2
_(1+K”)2( o LiE )>}

2

1
1+ Roo@){ 15 (

Q2 —|—4(m2—E2) Q2
Q2—|—411E2 >}+0( M2>

(30)

Here again, the symbol o(aQ?/M?) denotes other possible virtual radiative corrections (from additional LECs and pion
loops) of 1/M?-order that are not explicitly accounted for in our analysis. The insofar obtained IR divergences stemming
from the NLO,, one-loop lepton VC and TPE box diagrams are contained in

IR} (0%) = IR"\1:(0%) + IR} (QY)R

2 1
IR?0,(0%) = - %2 [

2zME[ |€1R|

{1 +1(1+z< )2 (Q2 ZSTE;EZ)»;

1+5 1+ 5
[ /5’ =g

(81)

where the term IRW is dlsplayed in Eq. (58) and the expression for IRW(TI))E is extracted from Ref. [58]. The remaining IR-

finite contributions 5%

and 8%®" originating from the TPE diagrams are, respectively, given as [58]

~(box) . aQ? 71'_2_ 1+ 2p M z 1+ p 3 25
57’7 (QZ) - ZﬂMEﬁ{ 1n2 l—ﬂ Sp(l +,B) + ,B/ 1n2 1— ﬂ/ Sp(l 4 ﬂ/) }7 (82)
and
seagu 2 Q2 Ez 1 + Q2
ooy - 22 [P 1,0 + 1) + L) - 1@} (53

As already pointed out, all nonvanishing O(e?aQ/M)
one-loop diagrams, displayed in Figs. 9 and 10, though
formally expected to contribute to the NLO, virtual

corrections, 5,(,;) ~O(aQ/M), are in effect kinematically

|
suppressed, contributing at NNLO,,. Therefore, such con-
tributions shall be dropped in presenting our central results.
However, here, we prefer to retain the full structure
of the IR-divergent terms, i.e., including also the 1/M?
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suppressed contributions proportional to R, Eq. (81), in
order to demonstrate their complete cancellations after
including the corresponding NLO, bremsstrahlung
|

e =(DbOX seagu 2
50(02) = 31(2) + sl g2y = - 22

25 4B
_Sp<1 +ﬁ> +Q2+4E2{

Note that in order to arrive at the above NLO, expres-
sion, we removed terms of O(1/M?) by replacing E' — E
(ie,n=1)and f — pB.

B. Soft bremsstrahlung corrections at NLO,

In HByPT, all bremsstrahlung diagrams with leading-
order photon emission proton vertex, e.g., diagrams Ri, f7(0)
in Fig. 7 and diagrams Ri, () and Ri, 2" in Fig. 11,
proportional to v -¢* vanish at the amplitude level. The
NLO,, bremsstrahlung diagrams with a 1/M-order photon

R

FIG. 11.

aME/pS

2
1(0°) + 1:(0") + S 1:(0) —I4(Q2)}}

counterpart. Thus, at O(aQ/M), the IR-finite part of the
one-loop NLO, radiative corrections, that arises solely
from the NLO, TPE contributions, reads

S % 1 +p_ o 145

ro(e2). 6

|
emission vertex yield the first nonvanishing contributions.
The soft bremsstrahlung corrections at NLO,, originate from
diagrams with either the lepton or proton emitting a single
undetectable soft photon (y7 ), as illustrated in Fig. 11. We
use the soft photon limit kK — 0 to evaluate the IR-divergent
contributions to the cross section at NLO,. These contribu-
tions arise from the diagrams, namely, Ri/("), Rf/(1), Ri?(1),
and Rf?(), in Fig. 11, which get factorized into the LO , and

NLO, Born amplitudes M£0’1>. In the k& — O limit, the
amplitudes are, respectively, given as

*
Vsoft

Rv?(M)

Soft bremsstrahlung diagrams at NLO,, in HB yPT [i.e., O(e?Q/M)], contributing to the radiative corrections to the elastic #-

p scattering amplitude [see Eq. (9)]. The filled blobs represent 1/M-order proton-photon vertices. In particular, the two-photon proton
vertex (diagram Rv”(!)) is of order e? /M. The proton propagators with the crossed blobs ® represent 1/M-order propagator insertions.

The amplitudes (diagrams Ri, 71 and R, pr(l)) with the leading-order proton-photon vertices trivially vanish.
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Ml(l):iygg‘ j\/fll(vl);i — oM (P a the cross section will need additional 1/M? or NNLO,

s rr’ 4 k) i i -

p bremsstrahlung diagrams, which we currently exclude com

T T I g* mensurate with the NLO,, virtual corrections. In contrast to
MIDTZ DT — e ) (—p )

7 the aforementioned factorizable amplitudes (diagrams

o ) Ri, f©1) and Ri, f7()) which potentially give rise to IR
Mfy(})ﬂ Teon Mf;f*l);i — ‘MO (p p € ) -0, divergences, the diagram Rv”(!) with a proton—two photon
&

M NLO, vertex and a nonfactorizable amplitude, namely,

* - !, ok
Mp(*l);f Tson Mp(*l);f _ —iMﬁo) Pp )7 (85) y o3
" v vk M = — s PP () (py) - (86)

where the otherwise nonzero amplitude M?¥ triviall . . o )
P " Y yields IR-finite contributions only. The corresponding cross

section terms are evaluated without explicitly taking the
k — 0 limit, as reminiscent of the IR-finite one-loop virtual
counterpart arising from the TPE seagull diagram having the
k] also vanish on the soft photon limit. Evidently, restricting  same NLO,, vertex. To this end, the total bremsstrahlung

to O(a®Q/M) the bremsstrahlung cross section gets con-  amplitude using the appropriate soft photon limits is given by
tributions only from the interference between the LO, and  the sum

NLO,, bremsstrahlung amplitudes. Nevertheless, in order to
keep track of the systematic uncertainties, we evaluate all
possible O(a® Q% /M?) terms that may arise from the above
amplitudes. This requires us to evaluate the squared modulus
of the full bremsstrahlung amplitude up to and including

0 I .
NLO,, namely, Miy) + Miy) ?, and retain O(a’Q*/M?) Next, the relevant contributions to the squared modulus
terms. Notably, the complete O(a’ Q*/M?) expression for  of the full NLO, amplitude read
!

vanishes with the initial state proton’s residual four-momen-
tum vectoras p,, = 0 in the lab frame. Moreover, the proton’s
spin-dependent terms proportional to the commutator [S),, S -

O | A ) 00, Oy (1)
MO+ M) = MU+ MET M

+ MR AP e (87)

} _y [W;;z - 2Re(/\/l£(y)27/\/l“))]

s

PONSVOrEERIvO)
Z [|MW* + MW* - |MW‘

spins spins

1
= eIV (Ro + 2 My >|2> ( m_ o om_2pp )
spins ’ ¢ Zspins|M}(’0)|2 (P : k)2 (p/ : k)2 (p : k)(p/ : k)

A (o e R e ]

(0) (N AP (D p(1)v 2
—l—Z{ZRe(MW + M) MY — My ] (88)

spin

The first set of terms, namely, those due to the lepton-lepton and lepton-proton bremsstrahlung, are factorizable, being

proportional to the squared modulus of the LO Born amplitude M;O). The first of these terms are analogous to the LO,,
bremsstrahlung contribution, Eq. (62), apart from the extra 1/M?>-order prefactors. All such 1/M?-order IR-finite terms may
be dropped from our analytical expressions, as their primary purpose in this work is to contribute to the theoretical error.
Nevertheless, we prefer to retain all IR-singular contributions up to 1/M?-order to demonstrate their order by order
cancellations with the corresponding IR-divergent one-loop counterparts. The latter set of interference terms with the
proton—two photon vertex diagram leads to IR-finite nonfactorizable contributions and may be readily evaluated, namely,

(1/Mm)

6 A
pl)vp _ 32e p(1)v=p(1)v ;9
E' M == 0 M{ v }+(9<a M),
spin
E : 10);iF 4 p(1):v 64¢° 2 / / / 3P 2
spin Q q (p : )
(1/M)
AL
1(0)i=p(1)v 5 Q
—HO)i=p(h)v O =),
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£+ v 64(36 1
ZZRC(M}I,(yQ)i Mf},(*l)’ )= WM{’”IZ(E +E)—E(p'-k)+E(p-k)—(v-k) <§ 0 - mlz)
spin

(1/m)
A
t<o>f p()v 32
frole)
l/M
(it p(Divy 32¢°
> 2Re(M,, M) = - ) { } + (’)<a —)
spin
l/M
105, p(D)ivy 32¢°
I 25} (e ).
spin
S 2Re(MEPT M) = § oRe(MEDTT MDY = 0. (89)

spin spin

The last two terms exactly vanish, and the A(/M)

s are finite terms contributing to the cross section at NNLO,. Hence, in

Eq. (89), apart from the interference terms with the LO, lepton bremsstrahlung amplitude, all the remaining terms are
needed only to estimate the theoretical error incurred in our NLO,, results. We may explicitly spell out these terms (replacing

E' — E at this order), namely,

(1/M) 1
Ap(v-p(iyy = 2Q2< Q* + m12>’
(1/M) 1
Ajoyicpyy = 5 (v-k)E[2m} + QO - k]
(1/M) 1
Air-piyy =73

L (Lo e
Jowr(30 ),

(v-k)E [2m12+Q-k]+%(v-k)2(§Q2—m12>,

A = =200 (502 = 07 ) = 2030 )

(1/m)
Al-p(i)v

Notably, with |/\/l](,0)

=2(p'- k)( Q2+m?>+%m?Q2-

(90)

|2 o M? contributing to the LO Born cross section, for the error estimate, it is sufficient to retain at the

most MC-order terms as displayed above. Next, the lab frame soft bremsstrahlung correction to the elastic LO differential

cross section at NLO,, accuracy in HB yPT is expressed as

AJdon QY] v @ [don(QY)
dsz; o 200 A |

1
X |:<_Lii - Lff + Llf)RQ{l +§(1 + K'p>2(

QZ
M

The IR-divergent integrals, L;;, L, and L;;, are identical
to the ones we obtained in our LO, bremsstrahlung
evaluations. The two new integrals, L; and L, appearing
at this order stem from the factorizable lepton-proton
interference contribution. All these integrals are IR diver-
gent and conveniently evaluated using DR, as detailed in
Appendix B. In particular, to evaluate Eq. (91) at NLO,
accuracy, the exact expression of these integrals displayed

— = (Li+ Ly )] - [

Q> +4(mj — Ez)) }
Q? +4E?

2 (1)3v
do—br(Q ):| IP : . (91)

Q| .

144

|

in the Appendix could be approximated with E' — E,

p — p, leading to L; = Ly and L; = L;. The last non-

factorizable contribution, namely, [d?;’}lp (1 )V, is IR-finite
ry

and readily evaluated using Eq. (89) [see Eq. (B16) in
Appendix B]. The resulting expression in the lab frame
yields the correction due to soft photon emission with
energy less than A, namely,
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(NLO) Ep<Ap)
(9% 7 [doa(Q*)]
[ - [ e .

where the fractional NLO, bremsstrahlung contribution is given as

51,/(0%) = IRJ)(0%) + 5, (0?). (93)

Using Ly = Ly; and Ly = L; at NLO,, accuracy, the finite part of the contribution is expressed as

Q? + 4(mj - E2)> } 20°

1
‘£(Q2) ﬂ{( 2L"+Llf)RQ{1+2(1+z<,,)2< T —L]+5”’ Y(0?).

with
Ip(1)v/ A2 dUbr(Qz) p(1 dael(Q )
5]’}’* <Q ) |: dQ/ - dQ’ O’ (94)

whose explicit expression due to the various interference terms involving the diagram Rv”(!) is worked out in Appendix B.
The term

R~ IRYV(@) + IRY@R{ 1401+ (L))

Q° +4E?
1 2 +4 2 _ E2
— IR (07 - IR (@)Ro{ 145 14,2 (L ZE)) | )

collects the IR divergences formally arising from the soft bremsstrahlung contributions of the LO, and NLO,, diagrams with
IR = —IR}) [cf. Egs. (58) and (66)] and IR/\" = —IR"1).. [cf. Eq. (81)]. Thus, as anticipated, IR')) is exactly

equal in magnitude but opposite in sign to IRS,) [cf. Eq. (81)]. Consequently, the sum of the real and virtual radiative
corrections at NLO,, namely,

85 (02) = 8, (Q2) +8.1(0%) =5 (0?) + 8.1 (0?). (96)

is free of IR divergences, where E)‘W represents the finite part of the NLO, TPE contributions [cf. Eq. (84)].
Furthermore, the NNLO,, error terms that we partially considered are also shown to be IR-finite. This, of course, does
not preclude the presence of further IR-singularities which may arise from various NNLO,, contributions not included in
this analysis.

Having established the complete cancellation of the IR-singularities among the NLO, virtual and real (soft)
photon emission diagrams, we explicitly drop all terms of 1/M?-order, i.e., terms beyond our intended order of
accuracy. Such excluded terms also include “implicit” 1/M?-order terms proportional to (E—E')/M and
(p—p)/M, that is justified following the replacements, E' — E, 5 — 1, and ' — f in all the NLO, expression.
This yields the finite NLO, bremsstrahlung contribution, which modifies the total fractional elastic contribution and

is given by
=(1) aQZ 4A2 ﬂ 2p l 2p
% (Q%) aMEp [I < 0? In -p S p+1 25p p—1

2P
3 ﬂE2A2 o
TR ) < W) 7

053001-28



RADIATIVE AND CHIRAL CORRECTIONS TO ELASTIC ...

PHYS. REV. D 104, 053001 (2021)

C. Total radiative corrections at NLO,

By using our analytically derived NLO, expressions for the IR-finite virtual (i.e., TPE) and real contributions
[cf. Egs. (84) and (97)], we obtain the total fractional radiative corrections to the elastic differential cross section accurate up

to order 1/M, which reads

2 407, 1+
@)= i n(Cge ) o 1—/;
32PE2AL
N
4B

* Q? +4E?

where Z,_; 4 are finite integrals given in Ref. [58].
Our calculated radiative corrections depend on the value
of the detector resolution parameter A,. Theoretically, A,
determines the maximal energy for the soft bremsstrahlung
photon in the lab frame. Anticipating the typical accuracy
levels of present-day experiments, in this work, we have
chosen a reasonable benchmark estimate, A« = 1%, of the
incoming lepton energy. Figure 12 shows the IR-finite one-

loop virtual NLO,, radiative (i.e., TPE) corrections 5}(,]/ and
the soft photon bremsstrahlung NLO,, radiative corrections
5;;2, Eqs. (84) and (97), respectively. The following
observations describe the features of the NLO, radiative
corrections:
(i) The TPE corrections as expected vanish as Q> — 0,
while the soft bremsstrahlung corrections become
negative, albeit infinitesimally small, at Q> =0

due to nonvanishing of the finite nonfactorizable
Ip(1);v

term 571,* .
|
dO-eI(QZ) — dGel(Qz)
A i ey

where 5& ) and 5& ) are given in Egs. (69) and (98),
respectively. The last term 5( ) includes the interference
terms between the NNLO,, and the LO,, corrections as well
as nonfactorizable NNLOa terms, e.g., those in Eqgs. (80)
and (94), which are beyond the intended accuracy of this
work. These higher-order terms, which constitute the
O(aQ?/M?) fractional chiral-radiative corrections to the
LO elastic Born cross section, are only partially included in
this work and are just used to estimate the systematic error
of our methodology.

By comparing the different contributions in Eq. (99), we
can obtain a reasonable estimate of the relative magnitudes
of the different radiative corrections. To that end, we first
discuss the total fractional radiative correction up to and

including NLO, accuracy, ie. &, =06y +06y (ie.

1 2B 1
ESp<ﬁ+1> 2

2 1+ p 1+p TL
1— 1—

{L<Q2> 11,09 + 2 (00

Sp(ﬂw )

2
2
Q _7,(0%) }

l

ro(a). o)
|

(i) Both the real and virtual NLO,, corrections display a
roughly linear rise with increasing momentum trans-
fer |Q?|.

(iii) Like the LO, chiral-order results, the NLO,, correc-
tions do not change rapidly with the increasing
lepton beam momenta.

(iv) Both the NLO, contributions are comparable in
magnitudes but of opposite signs. At the largest
MUSE lepton beam momenta, we observe about 5%
and 1% total radiative corrections at NLO, for
electron and muon scatterings, respectively.

V. NUMERICAL RESULTS AND DISCUSSION

In order to determine the total #-p elastic differential
cross section, we sum up all the leading (LO,,) and next-to-
leading (NLO,) chiral-order radiative corrections, in addi-
tion to the chirally expanded elastic Born terms (i.e., up to
NNLO,), as given in Eq. (25), to yield

} [1+8™(0%) +6/"(0%) + 83 (02) + 85 (0%) + 85 (QZ)HO(Q) .

I

excluding NNLO,). Table I displays the LO, and NLO,
corrections as well as their sum 52y, for both lepton and
antilepton scatterings off the proton (i.e., e*p and p*p). As
observed in the table, we make a comparison of the relative
magnitudes of the two chiral-order corrections, viz., NLO,
to LO, ratio (i.e., 5&‘) :
indicate ratios which change with momentum transfer |Q?|
and incident lepton beam momentum p = |p|, from about
2:3 for the largest |Q?| and p values to about 1:110 for the
smallest |Q?| and p values. In comparison, for electron
scattering the comparable ratios are about 1:5 and 1:25
for the largest and smallest |Q?|, p values, respectively.
Evidently, there are drastic changes in the NLO, to LO,
ratio in going from the lowest to the largest possible

55(;)). The results for muon scattering
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FIG. 12. The fractional NLO, virtual corrections (in percentage) due to the two-photon contributions 5;:,) (short-dashed curves), the
soft photon bremsstrahlung corrections Sx,) (dashed curves), and their sum 62) (solid curves). The left (right) panel displays the results
for e-p (u-p) elastic cross section vs the squared four-momentum transfer |Q?|, for the MUSE beam momenta of |p| = p = 115, 153,
210 MeV/c. Each plot covers the full kinematical scattering range, 0 < |Q?| < |QZ.x|, when @ € [0, z]. The thickened portion of each
curve corresponds to the MUSE kinematic cut, where 6 € [20°, 100°]. The lab frame detector acceptance A, is taken as 1% of the

incident lepton energy E.
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TABLEI The fractional radiative corrections with respect to the LO elastic Born cross section, 5&7) atLO, 6;) at NLO,, and their sum

Oy = 5(0> + 5<21y>, evaluated in HByPT for #*p elastic scattering. The incident lepton beam momenta, |pl = p =0.115, 0.153,
0.210 GeV /¢, at some specific |Q?| values within the allowed MUSE kinematic range are used. The above numerical figures correspond

to the lab frame detector acceptance A,

= 1% of the incident lepton energy E.

- 0 1

p=pl 07| LO: & NLO: &) LO+NLO: 6,, LO+NLO: 6,,

GeV/c (GeV/c)? etp uEp etp utp ep Wp e'p Wp
0.005 ~0.1485 00222  +0.0058 400002  —0.1543 00220  —0.1427  0.0224

0.115 0.015 -0.1671 00197  +0.0174 400012  —0.1846 00185  —0.1497  0.0209
0.025 -0.1760 00171  +0.0291 400023  —02050 00147  —0.1469  0.0194
0.01 ~0.1598 00211  +0.0092  +0.0008  —0.1689 00203  —0.1506  0.0219

0.153 0.025 ~0.1752 00171  +0.0230  +0.0026  —0.1981 00145  —0.1523  0.0197
0.04 ~0.1831 00137  +0.0367  +0.0045  —02199 00092  —0.1465  0.0181
0.02 -0.1709 00185  +0.0140 400020  —0.1850 00165  —0.1569  0.0206

0210 0.04 ~0.1829 00137  +0.0281 400045  —02105 00092  —0.1543  0.0182
0.06 ~0.1892  0.0099  +0.0421 400069  —02313 00030  —0.1470  0.0169

kinematical limits in the case of the muon scattering at
MUSE. Furthermore, we note that the TPE and the soft
bremsstrahlung corrections at NLO,, depend on the lepton
(¢*) charge. Hence, not only do the NLO, corrections

6&? corresponding to the #*p scattering processes change

sign, the total corrections, &,, = 59 + 52), are somewhat
smaller (larger) for 4~ p (e~p) scattering than the u*p (e*p)
scattering.

In our treatment of the radiative corrections presented
hitherto, we only considered the dominant O(«) or leading
QED contributions. The higher-order QED corrections
(of negative sign) proportional to a" where n = 2,3, ...
will tend to cause deviations from the leading QED
predictions, especially at momentum transfers much larger
than the typical kinematic scale; e.g., in our case of lepton
scattering, such enhancements are typically expected for
|Q?| > m3?. In practice, to evaluate higher-order QED
effects involves a very intricate task of calculating multiple
photon-loop diagrams that is evidently beyond the scope
of this work. It is, however, well known that the double-
logarithmic Sudakov terms are responsible for the largest
enhancements, especially in the soft and collinear kin-
ematical regions for near-massless particles (such as the
electron) in the soft photon limit. Schwinger [74,75],
based on work by Bloch and Nordsieck [76] (see also
Refs. [57,77-83]), showed that one could by and large
compensate for such large enhanced negative contributions
to all orders in a by the exponentiation of their contribution
to the elastic cross section. Symbolically, this means that if
8,,(Q%) < 0 denotes the nth-order photon-loop and soft
photon bremsstrahlung corrections (not including VP con-
tributions), then the replacement,

1+5,,(0%) — exp{5,,(0)}.

leads to an essential suppression of such “artificial”
enhancements resulting from the truncation of perturbative
expansions. Theoretically, a tacit assumption in this regard
is that the emission and reabsorption of an infinite number
of soft photons are statistical independent and that these
do not alter the elastic kinematics. Furthermore, as seen in
our LO, results, there is significant contribution from the
VP corrections which are comparable in magnitude but
opposite in sign to the photon-loop (vertex) contributions.
Consequently, following Ref. [61], commensurate with
the exponentiation of the radiative corrections arising from
the photon-loop terms, we find it consistent to include the
resummation of the one-particle irreducible VP diagrams to
all orders. This is useful to preserve essential cancellations
that can manifest themselves among the higher-order
radiative corrections. To this end, the £-p elastic differential
cross section reads

dael(Qz) ~ dael(Qz)
O/ de,

] {14 62(0%) + 6tlm ()1,
0
(100)

where 55,” includes the NNLO, chiral corrections
(cf. Sec. II), while the modified fractional QED corrections,
taking into account the partial resummation of all the
potentially large double-logarithm terms, is given by

exp {52y(Q2) Vac(Qz)}
[1 - vac(Qz)/z}
52,(Q%) = 85 (0?) + 85)(0%) + &5, (Q?),

Sésum(Q?) =

-1
(101)

with 5 (the explicit expression is not displayed) repre-
senting the additional NNLO,, error terms. The VP con-

tribution is assigned as ,,. — 5&2)0, the LO, VP correction
[cf. Eq. (51)], in the absence of the NLO,, [i.e., O(aQ/M)]
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VP term.” While estimating the theoretical error due
to NNLO, corrections, the VP contributions must be
modified as

2

(S5

8ae(0?) = 81(0?) [1 + RQ{1 gy

In Fig. 13, we plot the total fractional radiative cor-
rections 6,,, up to and including NLO, in HByPT, and

compare with the LO, corrections 5(2?,), Eq. (69), and the
corresponding partially resummed QED results 8¢,
Eq. (101), for low-energy ¢-p scatterings. In the case of
electron scattering with large negative bremsstrahlung
contributions, the total radiative corrections d,, stay neg-
ative, and the magnitude of &,, monotonically increases
with increasing squared four-momentum transfer |Q?|. The
total corrections vary in the range of (22-27)% in the
MUSE kinematic range. On the other hand, for muon
scattering, the total radiative corrections reach no larger
than 1.5% in the same region. However, as distinct from the

electron scattering case, the 5&2) corrections for the muon

undergo a sign change at these low energies. As seen in the

figure, 5&3) is positive for very small momentum transfers,

say, |0?] < 0.04 (GeV/c)?, due to the dominance of the VP

contributions in that region. However, for larger |Q?|

values, 5&3) turns negative as the VP corrections are

eventually superseded by the dominant soft bremsstrahlung
contributions. Nevertheless, for the lowest MUSE muon
beam momentum, p = |p| 2 115 MeV/c, even the total
correction 6,, remains positive due to VP dominance. It is
also quite evident that there is no significant lepton beam
momentum dependence on the individual LO, and NLO,
components of the radiative corrections in the MUSE
kinematical range, 115 < p <210 MeV/c.

"It is worth noting that Schwinger’s method of exponentia-
ting radiative corrections is strictly applicable only for the
“IR-enhanced” double-log terms, e.g., ones proportional to
In (mZ/|Q?) or In(A2./|Q%), where the so-called Sudakov
regions are clearly defined with the only relevant scale as
|Q?| — . However, it is not immediately apparent how to
generalize such ultrarelativistic results to low energies, especially
with other relevant scales, such as mi,M2 > 02, etc., and
constitutes a topic certainly beyond the scope of the present
discussion. Consequently, in a simplified approach, we naively
approximate the large double-log resummation by exponentiating
our NLO,, result (also including the NNLO, errors) &,,, save the
VP contributions d,,., which do not contain IR-enhanced terms.

Figure 13 also displays the 8¢, results where the
potentially large double-logarithms have been effectively
iterated to all orders in a. The exponentiated radiative
effects leads to the well-known Sudakov suppression, as is
clearly evident in the electron scattering results. This Q2
suppression effect is almost numerically comparable to
the O(a) NLO,, corrections. In contrast, for muon scatter-
ing, there is no discernible NLO, suppression. Such
contrasting results can be easily anticipated in regard to
the MUSE kinematics, since the same |Q?| range that may
be identified with typical low-momentum transfer dynam-
ics for p-p scattering becomes a region of high-momentum
transfer in relativistic e-p scattering. For example, in
Ref. [68], the same reason was attributed to the validity
of the high-energy peaking approximation for electron
scattering at MUSE, when it fails for muon scattering. We
therefore anticipate such characteristic suppression to
manifest itself in the radiatively corrected future MUSE
data for electron-proton scattering.

The theoretical uncertainties involved in our calculations
are categorized as the pure chiral hadronic corrections and
the radiative corrections. The following sources of uncer-
tainties are identified in our treatment of the effective Born
cross section. First, the proton’s rms charge radius r),
[cf. Eq. (26)] is an essential input to our chirally corrected
result at v = 2 order. An uncertainty due to the numerical
differences in the different proton’s rms radius measure-
ments is required. These differences in the extracted charge
radius from high-precision electronic and muonic mea-

surements result in an appreciable error in the value of the

chiral correction '™, namely, A, ~6.4% (ie., with

respect to our central result) [cf. Fig. 2]. However, given the
ongoing contentious radius puzzle scenario [10-14], it
seems not too unreasonable to estimate an error of such
magnitude.8 Second, the hadronic corrections beyond
NNLO, constitute an important corrections to the LO

8 . . .

For instance, using the measured rms radius from the
recent PRad Collaboration [21], 7" = 0.831 = 0.007(stat) -
0.012(syst) fm, and from the erstwhile CREMA Collabora-

tion [12], r¥" =0.84087(39) fm, we could obtain an

effective error estimate due to the input rms radius con-
(rms)

tributions in the chiral chiral corrections &) as A=
2 2 2 2
V/ Afgaa + AZrema T Adigs + Ao ~6.4%,,  where  Axnio ~
2r§;"7)(5r5f’7)) 2r§f‘H) (5rEfH))exp

1%, and Apgyg = 22 ~5.5%, Acrema =

(7Y = (ryy 2
(uH) ( (ep) _ (uH)
2r ry, —r H
P(r(,fﬂ),;z SK,; >~3.1%,, where (5)”5,” ))
P T
for respective experimental uncertainties. Note that the above-

quoted percentage errors are not relative to the LO Born

contributions but are with respect to the central values of 65;"“).

0.1%, Adiff = stands

exp
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FIG. 13. The total fractional radiative corrections (in percentage) at LO,, 62(;), and up to and including NLO,, 6,, = 6(2?,) + 6%), in

HByPT for e-p (left panel) and p-p (right panel) elastic cross sections as a function of |Q?| for the MUSE beam momenta,
|p| = p = 115, 153, 210 MeV /c. Each plot covers the full kinematically allowed scattering range 0 < |Q?| < |Q2.<| when 0 € [0, z].
The thickened portion of each curve corresponds to the MUSE kinematic cut, where € € [20°, 100°]. The lab frame detector acceptance
A, is taken to be 1% of the incident lepton energy E. The corresponding total fractional resummed results, 8¢ um» Bq. (101), are
also displayed for comparison.
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Born cross section, Eq. (23). As mentioned, the N3LOZ
[i.e., O(Q%/M?) ~ 0.008] corrections due to the exclusion
of v =3 chiral-order hadronic interactions constitute an
uncontrolled error, the estimation of which really lies
beyond the present scope of this work. Nevertheless,
commensurate with our discussions of our EFT power
counting (cf. Sec. ), an error of Aynio ~ 1% on each of the
two types of chiral corrections, viz., rms and recoil con-
tributions [cf. Eq. (25)], can naively be attributed for the
low-energy MUSE kinematics (cf. Fig. 2). Third, other
sources of hadronic uncertainties arise from nonperturbative
effects due to various resonances and excited nucleon states
(see, e.g., Refs. [51,52,55,56]. Furthermore, nonperturbative
techniques, such as dispersively improved yPT [33,37-39]
are needed for rigorous estimation of the inherent systematics
which are not captured in the perturbative framework such as
ours. However, such contributions also constitute uncon-
trolled uncertainties that we cannot readily assess.

The uncertainties in our treatment of the radiative
corrections can be summarized as follows:

1. The only free parameter in this work is the soft-
photon detector acceptance factor A,.. The sensi-
tivity of our result on the parametric dependence on
this cutoff parameter is illustrated in Fig. 14. This
figure depicts our analytical results corresponding to
the partially resummed NLO,, radiative corrections
8¢l ms AS A, is varied in the reasonable range (0.5—
2)% of the incident lepton beam energy E, with
A, = 1% being our benchmark value of the accep-
tance. As expected, for electron scattering, the
radiative corrections decrease in magnitude with
larger values of the acceptance. However, for muon
scattering, the behavior is somewhat atypical due the

change of sign of 5&?,) versus |Q?.

2. Our HByPT calculations indicate much larger than
expected NLO, to LO, relative corrections in the
case of muon scattering close to the upper limit of
the MUSE kinematic range. As mentioned, for muon
scattering, &,, goes through a zero at some small 0?

value. Especially, when 62?,) =~ (0, the NNLO, con-

tributions are needed for a more robust evaluation of
radiative corrections. We, however, provide a partial
assessment of the NNLO, effects that reveals a

maximal uncertainty of 3% and 0.1%, respectively,
to effect the LO elastic Born cross section for
electron and muon scatterings at MUSE energies
(cf. Fig. 15).

3. One source of uncontrolled systematics afflicting
our evaluations is attributed to the inherent
differences in the TPE evaluations with and without
invoking SPA. As already mentioned, an exact
evaluation of our IR-divergent one-loop diagrams
with an insertion of a heavy baryon propagator is
rather intricate and has not been pursued earlier. We
already referred to Ref. [42], in which an attempt
was made in order to include the hard two-photon
effects in the TPE contributions. We are, however,
unable to currently assess the uncertainty due to the
missing hard-photon contribution based solely on
this work. We simply refer to an ongoing effort [73]
to analytically evaluate a family of such TPE direct
and crossed box diagrams at NLO,, wherein the
large cancellations among them in the k& — O limit,
as noted in Ref. [58], are not explicitly manifest
without SPA. A detailed investigation of the TPE
diagrams without SPA shall be presented in a future
publication.

Figure 15 displays our HByPT results for the total
corrections (chiral plus radiative) to the Z-p elastic differ-
ential cross section, Eq. (101), where all tractable sources
of systematic uncertainties are consolidated. Our central

results for the total factional corrections, 65(2) + 0%, as

denoted by the solid red curves, correspond to the radiative
corrections up to and including NLO,, partially resummed
to all orders in QED. Likewise, our partially resummed
results including the NNLO, terms, that contribute to the
theoretical uncertainty, are denoted by the dashed blue
curves. For electron scattering, the largest conceivable
source of theoretical uncertainty evidently stems from
the parametric dependence on the detector acceptance
A,. (yellow bands), which overwhelms the proton’s 55(2)
uncertainty (cyan bands). In contrast, for muon scattering,
the uncertainty in both §¢,,, and 65(2) is rather moderate
with the latter slightly larger than the former. Only for
electron scattering do we find a moderate difference (about
3% of the LO Born cross section) between our complete
NLO,, and partially included NNLO,, results.
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FIG. 14. Variation of the partially resummed fractional radiative correction up to and including NLO,,, 8¢, in HB yPT to e-p (left
panel) and u-p (right panel) elastic cross sections as a function of | Q?| for the MUSE beam momenta, |p| = p = 115, 153,210 MeV//c.
Each plot covers the full kinematic range 0 < |Q?| < |Q2,,| when @ € [0, z]. The thickened portion of each curve corresponds to the
MUSE kinematic cut, where 6 € [20°, 100°]. The (yellow) bands correspond to the variation of the results with the lab frame detector
acceptance in the range, 0.5% < A, < 2%, of the incident lepton energy E.
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FIG. 15. The total fractional corrections considered in this work, i.e., 55(2) + 8¢ um, (in percentage) for e-p (left panel) and y-p (right
panel) elastic scattering cross sections as a function of |Q?|. Each plot covers only the MUSE kinematic range of |Q?| values where the
scattering angle lies within the range, 6 € [20°, 100°], at specific incoming lepton momenta, |p| = p = 115, 153,210 MeV/c. The solid
(dashed) red (blue) curves correspond to the partially resummed radiative corrections up to and including NLO,, (including NNLO,,),
with the lab frame detector acceptance A,- being 1% of the incident lepton energy E. The yellow bands correspond to the error in the
radiative corrections due to the variation, 0.5% < A,- < 2%, while the bands in cyan correspond to the error in the pure hadronic chiral

corrections 6(5) .
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VI. CONCLUSIONS

Within the framework of HByPT, we have evaluated
up-to-and-including-NNLO, hadronic chiral corrections
as well as the NLO, radiative corrections to elastic
lepton-proton scattering cross section. The hadronic chiral
corrections include the pion loop effects and LECs para-
metrizing the proton structure. We found that in the MUSE
kinematic range the NNLO, fractional corrections with
respect to the leading-order Born cross section are about
10% and 20% for electron and muon scattering processes,
respectively. We further estimated that the next-higher-
order hadronic corrections (N3LOZ) do not contribute a
larger uncertainty than the current experimental dis-
crepancies pertaining to the rms radius. Regarding the
radiative corrections, we included all possible virtual
photon loops as well as soft photon bremsstrahlung
corrections. We demonstrated that the IR divergences
systematically cancel at each radiative chiral-order, i.e.,
at LO, and NLO,,.

Only in our analytical calculations of the one-loop
TPE box diagrams, do we invoke SPA following our
evaluations in the previous work outlined in Ref. [58].
With methodological difficulties associated with the exact
evaluation of the box diagrams in DR, the SPA method-
ology offers a standard analytical procedure in assessing
the contribution from the elastic intermediate proton state,
as advocated in Refs. [1 ,45].9 Unfortunately, the contribu-
tion of the kinematically hard two-photon-loops integration
regions is left out in the process. It is, however, a well-
accepted fact that the contribution from the hard part of the
TPE loops becomes significant only at large-|Q?| values
and lepton beam energies as well as in the proximal region
of backscattering. On the other hand, given the very low-
energy dynamics of our calculations, it is conceivable that
the hard part (those essentially stemming from the inelastic
dynamics of partons) would not effect the TPE contribu-
tions in any significant way (see, e.g., Ref. [84] for recent
discussions). Nevertheless, the issue of including the two-
hard-photon exchange should be considered in a future
investigation in order to reduce the systematic errors in the
TPE evaluation. In order to minimize possible model
dependence, our approach utilizes the existing analytically
derived yPT form factors [51,52,54], consistent with our
power counting scheme. By directly relying on the input
proton’s rms radius, we tacitly bypassed the introduction of
model form factors, F{, at the photon-proton vertices,
unlike in the work of, e.g., Ref. [42], in which the finite part
of the TPE amplitudes was evaluated numerically in a
relativistic framework. What is still not clear is how large

To contrast our nonrelativistic chiral expansion in inverse
powers of the proton mass M, the analysis of the TPE amplitudes,
e.g., in Ref [45], were evaluated relativistically, meaning that they
preserve terms to all orders in 1/M.

the two-hard-photon contributions are relative to the
SPA they employed in order to isolate the IR-singularity
following Ref. [1]. For this reason, and since we cannot
assess the influence the form factors on their results, we are
at this point unable to estimate the possible systematic
uncertainties incurred due of the use of SPA in our
evaluation.

In our estimate of the bremsstrahlung contributions due
to the undetected soft photons with energies below the
detector threshold A, we use the soft photon momentum
limit £ — 0 in our calculations, a methodology widely used
to extract the IR divergences as introduced in Ref. [57].
However, the introduction of the artificial dependence on
the free parameter A,- is certainly a demerit of the current
methodology that needs to be improved in future, e.g., by
the inclusion of the hard or detectable part of the elastic
radiative tail for a realistic estimation of the radiative
corrections. All our analytical results presented in this
paper depend on A, ~ 1%, which theoretically complies
with the expected lowest bremsstrahlung photon energy
detectable in present-day experiments. We simply note
here that in the case of the MUSE setup with a single arm
beam line arrangement, only high-energy photons at for-
ward angles can be detected. Thus, from a more practical
viewpoint, a modification of our current analysis incorpo-
rating the anticipated MUSE features must be employed for
a more pertinent future data analysis.

Notably, in all our evaluations in this work, we have
explicitly included the masses of the leptons and also the
often neglected Pauli form factor contributions to the
lepton-photon vertex corrections. Our calculations revealed
that both the TPE and the proton bremsstrahlung process
start to contribute to the radiative corrections only at NLO,
in HB yPT. Our work suggests that in the MUSE kinematic
range, the total radiative corrections up to and including
NLO,, for electron scattering can be as large as 25%, while
for muon scattering, they are no more than 2% (cf. Fig. 14).
Furthermore, we observe that for the muon scattering,
the LO, radiative correction 5&? goes through zero in the
MUSE kinematic range; i.e., in this energy range, the
NLO, contributions dominate. This naturally indicates
the importance of the NNLO, corrections in order to
correctly assess the insofar neglected proton’s structure-
dependent chiral-radiative effects. Although such NNLO,
corrections have been partially included in this work for the
sake of estimating the theoretical error, a complete NNLO,,
evaluation is relegated to a possible future project. We
finally remark that in the work of Ref. [68], a HByPT
estimation of the elastic radiative tail distribution was
considered at NLO,, accuracy, where IR divergences were
not explicitly addressed. Thus, a renewed low-energy
HByPT approach is needed in order to explore the
prospects of a systematic inclusion of the radiative tail
effects in a complete radiative “unfolding” analysis in close
analogy to the erstwhile work of Ref. [61].
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APPENDIX A: S-FRAME

In this Appendix, we discuss the T between the lab frame
and the boosted S-frame [1,59-62]. The S-frame is defined
as the center-of-mass system of the recoil proton and the
soft bremsstrahlung photon, such that

- S-frame =

P+ k=0""505=0. (A1)

Here, 5;, and k are the respective lab frame three-momenta of
the recoil proton and the emitted soft photon, and Q =

-

p— D' = P, — p, is the three-momentum transferred in the
¢-p elastic scattering process in the lab frame, i.e., the target

proton three-momentum j, = 0. The maximum energy of
the soft (undetected) photon fixes the upper limit of the
bremsstrahlung energy integration and is conventionally
taken as detector acceptance A, in the lab frame. This in
essence corresponds to the maximal deviation of the out-
going lepton energy E’*! from its theoretical elastic limit E’
while practically preserving elastic conditions, i.e.,
E'—FE* <A,. In the ensuing treatment using the soft
photon limit, namely, k = (Eyl_c') — 0, we shall use
E'' ~ E'."In aboosted frame, the maximum photon energy
limit becomes a frame-dependent quantity, which we denote
as Ag # A, in the S-frame. The phase-space integration for
the lab frame differential cross section for the soft brems-
strahlung process, £p = £pyi;. hamely,

(doL0aNL0)] QoS &p &k
or " 8ME),E (2r)*2E' (2n)*2E,.
1 ~—(LO,.NLO,) 2
XZZW% 1, (A2)
spins

with the LO,, and NLO,, squared bremsstrahlung amplitudes
/\/lf;o «NLOu) in the respective soft photon limits [cf. Egs. (62)
"In general, with real photon emissions, E'* < E'. The
equality only holds for the “strictly elastic” (nonradiative)
kinematics, which is evidently unrealistic in a given laboratory
experiment. In this work, since we are concerned with the
“physical” elastic process that is naturally accompanied by soft
photon bremsstrahlung, E"/ ~ E’ is implicitly understood.

and (88) in the main text], is complicated by the dependence
on the photon emission angles present in the energy
conserving d-function, namely,

o =6(E+M—E —\/(Q-07 + M - E,),

appearing in the above expression. Consequently, the emitted
photon radiation spectrum in the lab frame becomes aniso-
tropic, being defined over a ellipsoidal integration volume,
which is difficult to evaluate analytically. However, by
boosting to the S-frame, the integration simplifies into a
standard spherical one (see, e.g., Ref. [59]), with the above
o-function becoming free of the photon angles in the soft
photon limit. This effectively transforms the S-frame kin-
ematics into one akin to a “reversed” elastic scenario in the soft
photon limit, denoted by the constraint,

S — S S S S
8 =68(E5+ E5 —ES — EV),

where all S-frame quantities are denoted by the superscript/
subscript “S”. In terms of the lab frame quantities, the
following relationships can then be justified,

E
(i) ESwE ==,
n

(iv) ES ~ E,,
(vi) Ag~nA,.,

i) ES~M,
(i) E;

(iii) ES ~ E,

(v) cosfg = cosb, (A3)
wheren = 1 + 2E sin?(0/2)/M is the lab frame proton recoil
factor. In other words, the energy transformations between the
two frames are easily effected by simply interchanging the
energies between the initial and final states of the elastic
process.

In view of pedagogical interests, we derive these rela-
tions between the two frames using the limit of soft
photons. We make use of the four-momentum conservation
relation for the bremsstrahlung process, namely, p + P —
p =P +k

(i) First, we consider the invariant (P’ + k) in the

S-frame:

(P +k%)* = M? + 2EES. 4+ 2(ES.)?
Sy ey
Since p'5 + &5 =0, we must have
(P + k)2 = (ES + ES. )5 (ES)?,
. . . S ~
which implies E}, ~ M.

(ii) Second, we consider the invariant p - (P’ 4+ k). In
the S-frame, we have

pS - (P + k) = ES(ES + ES.) S MES,
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(iii)

(iv)

)

(vi)

while in the lab frame, we have

p-(P+k)=p-(P+0)

2
:ME—i—%:ME’.

This implies ES ~ E'.
Third, we consider the invariant p’ - (P’ + k):

P (P k) = pS (PS4 1)
< p'-(P+Q)=ESE; +E)

Vsoft Q 2

wME' — > ~ ME'S.

Since, E = E' — 0?/(2M), the above relation im-
plies ES ~ E.

Fourth, we consider the energy conservation in the
S-frame,

ES+E§—E’S:E’I,S+E§*,
E) =Ej + E). + E® - ES

Vsoft

¥M+E-E~E),

where we have used the relations derived for ES, E'S,
and E}y. Thus ES ~ E),.

Fifth, we use the invariant expression for the squared
four-momentum transfer Q> = Q% in each frame,

Q? =2m3 —2EE'(1 — B cos0),
03 = 2m2 —2ESES(1 - sy o5 5)

Vsoft

w2m? —2E'E(1 — ff/ fcos Os),

where the incoming and outgoing lepton velocities
in the lab frame and S-frame are (S = |p|/E,
B =PI/ and (Bs = |PSI/ES, /= |pS|/ED),
respectively, and 0, O are the corresponding scatter-
ing angles. Using the relations derived for ES, E'S it
follows that cos fg = cos 6.

Finally, squaring the aforementioned four-momen-
tum conservation relation and then expressing the
left- and right-hand sides in terms of the lab frame
and S-frame quantities, respectively, yields

2m} —2p - p' +2M(E — E!) = 2P"S - kS

Ag\?
=2MAgy/1 — 2A%,
a1+ (3) +

where E' — E"! < Ay, with Ag being the maximal
limit of the emitted soft photon energy in the S-

frame, i.e., E}. = k5| < Ay < M. Next, to obtain an
estimate for Ay in the soft photon limit, we further
neglect the lepton mass, m; << M, such that the
above relation becomes

M(E — E"") — EE"!(1 — cos 0)

ol

Furthermore, in the elastic limit, i.e., with Ag — 0
and E°! - E', the above equation reduces to

M(E—-E")—EE'(1 —cosf) = 0.

Then, subtracting the latter relation from the former
yields our desired expression for Ag:

2E 0
Ag = (E' — E'*) {1 +o7 sin’ (5>]
Ag

Thus, the upper limit of the soft photon bremsstrah-
lung integrals (see Appendix B) in the S-frame is
taken as Ag < nAy*.

APPENDIX B: SOFT BREMSSTRAHLUNG
INTEGRALS

As detailed in this paper, the one-loop virtual radiative
corrections possess IR divergences at the amplitude level.
These integrals are conveniently evaluated by boosting
to the S-frame following, e.g., Refs. [1,59-62], and some
details of these calculations will be outlined in this
Appendix. For the bremsstrahlung corrections, similar
IR divergences have to be extracted at the cross section
level, which involves integration over the soft photon
radiative tail below the detector threshold, i.e., E,» < A..
The IR divergences so extracted in each case were
demonstrated to cancel order by order. Below, we
demonstrate the process of extracting the IR divergences
using DR from the phase-phase integration of Eq. (A2).
Notably, the assumption that the soft photon emission
(i.e., k = 0) does not effectively alter the elastic kin-
ematics, implies that the four-momentum transfer for the
bremsstrahlung process, g = (Q — k), is approximately
equal to the four-momentum transfer Q for the elastic
process. This simplification allows the photon phase-
space integration to be performed analytically in closed
form. Using the LO, and NLO, squared bremsstrahlung
amplitudes [cf. Egs. (62) and (88) in the main text]
results in the following type of integrals:
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@LO, & NLO, : /ﬁ L g (B1)
SN O Gk
ek 1
@LO, & NLO,: / TW(s}fb, (B2)
@LO &NLO'/£ PP (g3)
“ “ ) k(p-R)p k)t
@NLO,: / R L ()
) ok (vk)(p-k)tT
@NLO,: / o 1 (B5)
“ k (v-k)(p' k)"

Especially, the first three types of integrals appearing
in both the LO, and NLO,, contributions to the bremsstrah-
lung process were known from earlier works, e.g., in
Refs. [61,85]. The presence of the bremsstrahlung -function
constraint 5 (see Appendix A) in the above integrals
complicates their evaluation in the lab frame. However, this
apparent hurdle is overcome by employing Tsai’s technique
[59] of boosting to the S-frame in the soft photon limit.
The corresponding elastic 5-function 5% (see Appendix A)

becomes |1?\ = E, independent and can therefore be readily
taken outside the integrals. The resulting integrals in the
S-frame are evaluated by analytically continuing to d — 1
spatial dimensions, where d—1=3—-2eRr with e < 0.
Thus, in terms of laboratory frame variables, the following
S-frame integrals are required to be evaluated via dimensional
regularization,

o m: [F 1 prm? [dVUES
(="Tr /= - Z =
ii 2 kS (pS . kS)2 2 kS (pS . kS)Z
2
m e [T pSVd=3 s# d-208 1
=—(2 IR k dk A QY ———
> ( ”ﬂ) A ( ) k(ps‘kS)2

1 Aru? =(8)
=r|l—+vy —ln<—>}+2ﬂLii , B6
|:|€IR| . -0* (BS)
where p is the subtraction scale, and similarly,
2 d-17,8 2
(s) DR my [d“7'k 1 B 1 4ru =(8)
i 7/ S (pS kS 4 e +re—In —0? + 27l (B7)
d-11.8 1S, S 2 2
(S)DR/d k (ps - p%) B { 1 (47r/4 )]v +1 [1/4—1] = (s)
L' — = +yg—In In +2xLy”, B8
f T T I I ey e P i
1 [d¥ kS 1 1 Ay’ 1 / -
Li(S) = s S\(nS . 1S\ 7 7 [ +7e —1Il< ﬂ'u2>] In * 'B, + ZnLi(S>, (B9)
2) K (w-k)(pP-k) PE [[er] -0 1-p
(s) DR 1/dd-1k5 1 T { <4nﬂ2)] 1+ - ()
L — = =— |—+4yg—In Iny/——=+2xL;". B10
CU) T er e E e TN )| M T (B10)

Here, k5 = [K°] = Ej. is the soft photon three-momen-
tum or energy; f = p/Eand ' = p'/E' = p¢! = p'°!/E"!
are the incoming and elastically scattered outgoing lepton

velocities; and as found ubiquitous in the main text, v =

\/1—4m3/Q?% is an invariant kinematical variable asso-

ciated with the radiative corrections to the lepton scattering.
Note that we additionally encounter an integral stemming
from Eq. (88) (main text), formally contributing to the
bremsstrahlung cross section at NLO, but kinematically
suppressed to NNLO,, being proportional to R, namely,

B8 pr d4-1kS
ZRQ/_(kS)3 = ZRQ/—(kS)3 —)0,

which is scaleless and vanishes trivially on using DR.
Next, after isolating the finite parts, LY I:Ef ), and L

i if »
from their respective IR-divergent parts, we revert back
to the lab frame. In this case, the corresponding lab
frame integrals are readily obtained by substituting the
energy transformation relations (see Appendix A),

namely,
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1 dnp? , .1 [APA2 1 1
Li— ﬂ{—+y5—1n<”—”z>} 27l Ly==In ("—;> Ly AP (B11)
ler| -0 2 - 4p 1-p
1 Azu? - - 1 /47 AL 1 14 p
Ly =nm|— —In{ — 27 Lgs; Lg=~=1 P ——Iny/—", B12
ff ﬂ[|€IR|+}’E n<—Q2>}+ 7L f 2n< —0? 4ﬂ’n =5 (B12)

1 drp\ 12+ 1 [v+1 -
Ly = |:|€IR’ +vE— ln(_ )] In + 27Ly;

0? v v—1
N S AL S RS , [1+p 1+ ME —E
b=, 1“( —Q2>1“[v—1]+1“ —p " l—ﬂ_sp(l_u—ﬁ’)E'«:y)
ME — E ME — E ME — E
-Spl1-—"2——— Spl1—-—"F————— Spl1—-——"2—— )], B13
p( (Hﬂ')%)+ p( (1—ﬂ)Eﬂy§y>+ p( (Hﬂ)Eﬂy:y) (B13)
o |1 dmp® 1+p
Li‘ﬁ[ﬁ*“‘“‘(-—gz)]l“\/l gk
o1 4 A7 1+4 1 2p 1 2B
=g | () e () 29 () B

oz 1 Azu? 1+ 4 -
b= 5 [y 72 (%) A
4 A7 N+p 1 25 1 24
1n< o >ln 1—ﬁ’+§Sp(ﬂ’+l>_§Sp<ﬂ’—l> , (B15)

(1/+12)l(/v—1) and /11/ = 3;—_11'

Finally, we present the expression for the nonfactorizable finite part [i.e., not proportional to the LO Born contribution,
Eq. (23) in the main text] of the bremsstrahlung differential cross sections at NLO,, [cf. Eq. (91) in the main text] involving
an exact analytical evaluation (viz., without considering the soft photon limit) by boosting to the S-frame:

. !
Li=
" 2pE

where &, =

|:dgbr—(Q2):| Ip(1)

403 (np nh,x kSdkS
dQ; 0?

CPOMN\ P —2k5(E' - E)

- e - (500l + 7).

8a’nA,- X
= — :QIZ‘IV; (%é) ”AW(EJFE/)_{Zmzz(E—E’)—nAy* (EQZ_mIZ>}

x{iln1/1+ﬁ— ! In 1+ﬂ/}—17A},* £ {(1_£>]n 1+ﬁ/—ﬂ}
Eﬁ l—ﬁ E/ﬁ/ ]_ﬁl E/ﬂ/ ﬂ/ l_ﬁ/

E/2 / , A .
-, Eﬂ{<1 ’Z)ln 1+§ ﬁ’} <{Q;‘7/}) .

Here, the evaluated integral is expressed in terms of lab frame quantities for convenience. Noting that E — E' =
—Q?/2M, the symbol “0” represents other possible 1/M-order terms which arise due to the soft bremsstrahlung integration
over the A(/M)s [cf. Eqgs. (90)] and contribute to the NNLO, theoretical error. Since these terms are eventually dropped
from our central analytical results intended at NLO, accuracy, for brevity, we refrain from displaying such lengthy

{47:(15 LB+ miE + EYLS —LY)

rr* S-frame

(B16)
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expressions. They are, nonetheless, evaluated numerically while estimating the error. Finally, in the above expression, Lff ),

L® Lgvs), and I]_Ef) are the finite two-dimensional angular integrals:

4n 1+p
# ko S kS Elﬂ/kSln 11— ﬁ/’ (B17)

PPk AzE B 1+ p
L #dgs s =g | mg) oy A (B18)
) 1 B 47 14+ p
L = # O 5= e ™ 1o g (B19)

a3 2k pS-kS  4nE
fv /S kS Eﬂ

<1 —%/) In \/i—?—?— ﬂ’]. (B20)

On reverting back to the laboratory frame from the S-frame, we again use the same set of kjnematical transformations (see

Appendix A) to obtain the contribution to the fractional NLO,, bremsstrahlung corrections 5 [cf Eq. (94) in the main text]
to the LO elastic (Born) differential cross section:

Ip(1)v A2y dGbr(Qz) (D dael(Qz)
O (Q>_{ aQ; |, . dQ; |,

rY

8A . 1
- _ﬂf‘aln <an +y4E2> (E+E)=2mi(E~E) + A, (5 0 - m;)}
ﬁ 1 ﬂ/ E2 ,B i ﬁ/
IS Y
P I+p5 Q2
Ar Eﬁ{<1 ?) ﬂ_ﬂ} +0<"W>' (B21)
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