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A unified treatment of both chiral and radiative corrections to the low-energy elastic lepton-proton
scattering processes is presented in Heavy Baryon Chiral Perturbations Theory. The proton hadronic chiral
corrections include the next-to-next-to-leading-order corrections, whereas the radiative corrections include
the next-to-leading-order terms in our novel power counting scheme. We find that the net fractional well-
defined chiral corrections with respect to the leading-order Born cross section can be as large as 10% (20%)
for electron (muon) scattering process for MUon Proton Scattering Experiment (MUSE) kinematics. We
show via our model-independent treatment of the low-energy lepton-proton kinematics that the largest
theoretical uncertainty is due to the recent different published values of the proton’s rms radius, while, e.g.,
the next-higher-order hadronic chiral terms are expected to give rather nominal errors. For the radiative
corrections, we demonstrate a systematic order by order cancellation of all infrared singularities and present
our finite ultraviolet regularization results. We find that the radiative corrections for muon-proton scattering
is of the order of 2%, whereas for electron scattering, the radiative corrections could be as large as 25%. We
attribute such a contrasting result partially to the fact that in muon scattering the leading radiative-order
correction goes through zero in some intermediate low-momentum transfer region, leaving the subleading
radiative chiral-order effects to play a dominant role in this particular kinematic region. For the low-energy
MUSE experiment, the often-neglected lepton mass as well as the Pauli form factor contributions of the
relativistic leptons are incorporated in all our computations.
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I. INTRODUCTION

Scattering processes involving charged particles, like the
lepton-proton (l-p) elastic scattering, involve an arbitrary
number of real and virtual photons. The inelastic brems-
strahlung process, lþ p → lþ pþ γ�, where l≡ e�; μ�,
constitutes the most significant undetected background
radiative process.1 Many prominent works have estimated
radiative corrections nearly as large as 30%, for electron
scattering, based on analyses over a wide range of
momentum transfers and a variety of experimental con-
ditions, viz. detector designs and resolutions [1]. Especially
for soft (low-energy) photons, these corrections must be

theoretically evaluated as they are inaccessible to direct
experimental probes.
The l-p elastic scattering process has particularly

engendered extensive interests in the scientific community
over the past two decades because of its significant role in
bringing forth various discrepancies in our basic under-
standing of the electromagnetic properties of the proton.
An accurate experimental determination of the proton’s
electromagnetic form factors can shed much-needed light
on the proton’s basic hadronic structure and internal
dynamics. The original discrepancies in the measurements
of the electric (Gp

E) and magnetic (Gp
M) proton form factors

(called the “proton form factor ratio puzzle”) that emerged
about two decades ago stemmed from the utilization of the
novel experimental recoil polarization transfer technique
[2–5]. Such measurements led us not only to question the
validity of the conventional Rosenbluth separation tech-
nique but also raised serious concerns regarding our basic
understanding of the proton structure itself. In order to
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to distinguish it from the virtual loop-photon γ.
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resolve these problems, a flurry of ingenious ideas and
methodologies ensued, which were extensively discussed
in numerous published works as well as reviews; see, e.g.,
Refs. [6–9]. Furthermore, the 2013 revelation of the so-
called proton radius puzzle [10–14] concerns the irrecon-
cilable inconsistency among the different measurement
techniques in determining the proton’s root-mean-squared
(rms) charge radius. Subsequently, unremitting efforts
geared toward the development of high-precision experi-
mental [15–22] and novel theoretical [23–46] techniques
have been pursued over the last nine years, seeking a defi-
nitive answer to the conundrum. However, despite the
efforts, such discrepancies are yet to be conclusively resol-
ved, requiring further improved approaches on either front.
In contrast to the previously designed experiments, the

Muon Proton Scattering Experiment (MUSE), currently
underway at the Paul Scherrer Institute (PSI), aims at a
resolution of the proton radius puzzle. The MUSE Colla-
boration plans to carry out simultaneous high-precision
measurements of low-energy electron-proton (e�p) and
muon-proton (μ�p) scattering cross sections [47,48].
MUSE’s goal is to measure the proton’s rms radius at
sub-percentage precision [49]. On the theoretical side, an
improved assessment of the systematic uncertainties is
needed in order to meet the expected level of accuracy
of future MUSE data analysis. In this work, we utilize a
systematic model-independent perturbative procedure to
determine higher-order corrections of the leading-order
(LO) Born contribution (i.e., with pointlike lepton and
proton) for the unpolarized elastic l-p scattering cross
section. In particular, our analysis demonstrates how we
handle both the strong interaction as well as the standard
QED radiative corrections in our formalism. Wework in the
framework of a low-energy effective field theory (EFT),
namely, Chiral Perturbation Theory (χPT) [50], which
reflects the inherent low-energy nonperturbative features of
QCD manifested in hadrons, where chiral symmetry and its
violations play decisive roles in determining the observ-
ables. The rationale for using χPT to evaluate the sub-
leading corrections in an essential perturbative framework
is that the methodology allows us to systematically extend
the theoretical predictions to higher levels of accuracy
through a well-defined power counting scheme. This is a
distinctive feature of our approach, which sets our analysis
in contrast to the existing conventional approaches where
hadron structure effects are empirically modeled through
the use of phenomenological proton form factors.
Our evaluations are based on the well-established non-

relativistic version of χPT, namely, heavy baryon χPT
(HBχPT), e.g., Refs. [51,52]. HBχPT provides a conven-
ient tool to study processes like the low-energy l-p
scattering, where nonrelativistic baryons and relativistic
mesons and leptons are the fundamental degrees of free-
dom. Furthermore, all these particles naturally couple to the
photon in a gauge invariant manner. Here, we adopt the

so-called SU(2) isospin scheme, which is tailor made to
deal with the low-energy hadron dynamics of the nucleon.
The HBχPT power counting incorporates a chiral expan-
sion in terms of powers of the ratio of a generic small
momentum Q over the large chiral scale Λ χ ≃ 4πfπ ≃
1 GeV (fπ ≈ 92.4 MeV is the pion decay constant), plus a
recoil expansion in powers of the typical momentum scale
of the process, Q ≃ 0.2 GeV=c (in regard to MUSE
kinematics), over the “heavy” proton mass M ≃ 1 GeV,

Q
Λ χ

∼
Q
M

≪ 1:

Apart from the above-mentioned chiral momentum
expansion, the counting scheme also includes the standard
QED perturbative expansion where the effective Born
amplitude (see the next section), including all its non-
radiative chiral effects, counts as order α ¼ e2

4π ≃ 1=137≈
0.007. In fact, for the evaluation of our “effective Born”
contribution, we make a chiral expansion to include
corrections up to and including Q2=M2 ≃ 0.04 in this
work. For the sake of transparency, we assign distinct
nomenclatures to the various chiral corrections. For exam-

ple, we denote the leading-order Born amplitude Mð0Þ
γ ∼

Oðe2Þ as “LO χ” or simply “LO Born,” the next-to-leading-

order chiral Born amplitude Mð1Þ
γ ∼Oðe2Q=MÞ ≃Oðe2 ·

0.2Þ as “NLO χ”, and the next-to-next-to-leading-order

chiral Born amplitude Mð2Þ
γ ∼Oðe2Q2=M2Þ ≃Oðe2 ·

0.04Þ as “NNLOχ” (cf. Fig. 1). We note that at the order
Q2=M2 and higher, the Q2 dependence of the proton form
factors enters naturally in the chiral expansion. At NNLO χ

the low-energy constants (LECs) of HBχPT parametrize
the short-distance physics and, in addition, regulate the
ultraviolet (UV) divergences in diagrams with pion loops
[51–53]. The χPT evaluation of these NNLO χ contribu-
tions are well known and yield analytical expressions for
the proton’s charge and magnetic radii [51,52,54]. In this
work, however, we do not repeat such evaluations. Instead,
we use the analytical expression of the χPT renormalized

effective Born amplitude Mð2Þ;rms
γ ∼Oðe2Q2=M2Þ. In this

work, we shall denote the chirally corrected NNLO χ

fractional contributions as δð2Þχ ∼OðQ2=M2Þ, with respect
to the LO Born cross section of Oðα2Þ (cf. Sec. II for
details). Furthermore, it should be noted that the next-to-
next-to-next-to-leading-order (N3LO χ) contributions from
terms of Oðe2Q3=M3Þ ≃Oðe2 · 0.008Þ, which are not
included in this work, constitute an important theoretical
uncertainty. We remark that including possible contribu-
tions arising from spin-3=2 Δð1232Þ and other excited
nucleon resonances would be a significant extension of our
present analysis, and they are therefore not included in this
work. In particular, the inclusion of Δð1232Þ in χPT
requires the chiral counting to be supplemented by the
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so-called small scale or δ- expansion [51,52,55,56]. In
addition, we refer to Refs. [33,37–39] regarding some
recently developed techniques of the so-called dispersively
improved χPT, for a consistent inclusion of resonance
contributions.
The predominant portion of this work deals with the

evaluation the first two orders of our “chiral-radiative”
corrections, namely, the radiative leading-order whose
amplitudes are denoted as “LOα,” i.e., Oðe2αÞ≃
Oðe2 · 0.007Þ, and the radiative next-to-leading-order
corrections, denoted as “NLOα,” i.e., Oðe2αQ=MÞ≃
Oðe2 · 0.0015Þ. The next-higher-order chiral-radiative
amplitudes, i.e., Oðe2αQ2=M2Þ ≃Oðe2 · 0.0003Þ, are
expected to yield only a tiny contribution.
To the best of our knowledge, the current work repre-

sents the first attempt at using a model-independent EFT
framework, namely, HBχPT, to simultaneously evaluate
the chiral and the radiative corrections in a unified
framework. The EFT radiative evaluation includes all
one-loop virtual correction, viz., the self-energies (SEs),
vertex corrections (VC), vacuum polarization (VP), and the
two-photon exchange (TPE) contributions to the l-p elastic
scattering process. Moreover, in our work, the contributions
from single soft photon (γ�soft) emission are required in order
to demonstrate the cancellation of the infrared (IR)
divergences arising from the virtual processes. The modus
operandi adopted in this paper is reminiscent of the seminal
work of Yennie et al. (YFS) of Ref. [57], developed within
a QED approach with relativistic pointlike Dirac particles.

In order to render the radiative corrections IR-finite, we
need to include the LOα and NLOα soft photon brems-
strahlung amplitudes of Oðe3Þ and Oðe3Q=MÞ, respec-
tively. In the ensuing analysis, the LOα fractional radiative

corrections are denoted by δð0Þ2γ ∼OðαÞ, and likewise the

NLOα corrections are denoted by δð1Þ2γ ∼OðαQ=MÞ, with
respect to the elastic LO (Born) cross section ofOðα2Þ. The
interference of the NNLO χ terms with the LOα radiative
corrections is included together with other nonfactorizable

NNLOα corrections in δð2Þ2γ ∼OðαQ2=M2Þ, and δð2Þ2γ will be
used in our uncertainty assessment; see Eq. (99). Thus, our
result for the total fractional radiative correction to the l-p
elastic LO (Born) cross section can be symbolically

expressed in the form δ2γ ¼ δð0Þ2γ þ δð1Þ2γ þ δð2Þ2γ .
In one of our previous work, Ref. [58], we evaluated the

TPE contributions to the l-p elastic process at NLOα

accuracy in HBχPT invoking a soft photon approximation
(SPA), e.g., the approach as pursued in Ref. [1] (see the
discussion relating to the use of SPA later in this paper).
We demonstrated that the TPE amplitudes diverge in the
vanishing limit of the photon momenta, vis-à-vis IR
divergences. The present work is an essential follow-up
of that analysis [58]. Here, we shall detail the systematical
stepwise evaluation of the radiative corrections at LOα and
NLOα. In this work, the NNLOα corrections are only
partially included (for brevity, the analytical NNLOα results
are not displayed explicitly) and contribute to our estimate
of the theoretical error. We explicitly demonstrate how the
chiral power counting allows an order by order cancellation
of all the IR divergences arising from the one-loop virtual
and the single-photon bremsstrahlung processes.
We assign the real bremsstrahlung photon as being either

“soft” or “hard” in comparison to some fixed but frame-
dependent small energy scale ΔE. The ΔE as associated
with the outgoing detected lepton, practically fixes the
upper limit of the energy integration of the (undetected)
emitted soft photon when evaluating the bremsstrahlung
cross section. Especially, in the context of laboratory (lab)
frame kinematics, ΔE ¼ Δγ� , where Δγ� is the so-called
detector acceptance.2 In particular, to integrate over this
soft elastic radiative tail, we adopt Tsai’s formalism [59,60]
of boosting to the so-called S-frame, where the other-
wise complicated phase-space integration involving the
photon emission angles becomes rather simplified, as

FIG. 1. Born diagrams Bð0;1;2Þ for l-p elastic scattering at leading-
order [i.e., Oðe2Þ], next-to-leading-order [i.e., Oðe2Q=MÞ], and
next-to-next-to-leading-order [i.e., Oðe2Q2=M2Þ] in chiral expan-
sion [see Eqs. (9)–(11)]. The effective Born diagram Bð2Þ;rms also
contributing at next-to-next-to-leading-order [see Eqs. (13) and (14)]
parametrizes the proton’s structure effects (pion loops and LECs) via
insertions of the Dirac and Pauli mean-squared radii hr21;2i (crossed
blob). The dark filled blob and square represent the proton-photon
vertex insertion of order 1=M and 1=M2, respectively.

2In the present radiative analysis of l-p elastic scattering in the
lab frame, we include only the soft photons whose energies lie
below the detector threshold Δγ� . The hard photons with energies
larger than Δγ� will not be considered since they contribute to the
inelastic radiative process, lþ p → lþ pþ γ�. The soft photons
go undetected in a typical experiment, and therefore it is
necessary to integrate the part of the elastic radiative tail
distribution for photon energies between 0 and Δγ� , in order to
compare with the measured differential cross section.
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demonstrated in the Appendixes. Our results for the
radiative corrections will depend on the resolution factor
Δγ� , which constitutes a free parameter in our theoretical
framework specified by the design of a given experimental
arrangement. In this work, for the sake of numerical
evaluations, we have chosen the value of this parameter
to be approximately 1% of the incoming lepton energy.
The evaluation of the radiative correction diagrams

involve virtual or real photons, which yield matrix elements
containing UVand/or IR divergences. In this work, both the
chiral and the QED divergences will be treated by employ-
ing dimensional regularization (DR).3 While the UV-
divergent terms are renormalized using LECs and QED
counterterms in the Lagrangian, the IR divergences, as
demonstrated in this paper, systematically cancel at each
order in the chiral expansion. The ultimate objective of this
paper is to obtain a finite analytical expression for the
fractional chiral-radiative correction δ2γ to the elastic l-p
differential cross section in the lab frame, namely,

dσel
dΩ0

l

����
lab

¼
�
dσel
dΩ0

l

�
γ

f1þ δ2γðQ2Þg; ð1Þ

where the prefactor on the right side includes all our
Oðα2Q2=M2Þ (i.e., NNLO χ) hadronic chiral corrections to
the elastic Born differential cross section (cf. Sec. II for
details).
The paper is outlined as follows. The details of our

methodology are presented in Sec. II, where we display
the pertinent terms of the effective Lagrangian (QEDþ
HBχPT). Based on the aforementioned chiral power
counting scheme, we determine the analytical expressions
for the two chiral corrections to the LO Born cross section,
namely, the NLO χ and NNLO χ terms in HBχPT. The
details of the chiral-radiative corrections, namely, at LOα

and NLOα, involving evaluations of the corresponding one-
loop virtual and single real soft photon emission diagrams,
are presented in Secs. III and IV, respectively. In Sec. V, we
discuss and compare the numerical estimates of the various
contributions in regard to the MUSE kinematical region
[47,48]. We also outline the major sources of theoretical
uncertainties in this section. Finally, Sec. VI summarizes
the key features of our analysis and concludes with
prospects of possible future extensions of this work.
Technical details regarding the utilization of the S-frame

kinematics to perform the bremsstrahlung phase-space
integrals are relegated to the Appendixes.

II. HBχPT: FORMALISM

The most general effective Lagrangian consistent with
the low-energy symmetries is the sum of the QED
Lagrangian for the lepton fields ψ l and the hadronic πN
effective Lagrangian, namely,

LlNγ ¼ −
1

4
FμνFμν þ 1

2ξA
ð∂ · AÞ2

þ
X
l¼e;μ

ψ̄ lði=D −mlÞψ l þ Leff
πN; ð2Þ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
tensor with Aμ being the photon field and ξA is the gauge
parameter, which in the Feynman gauge is ξA ¼ 1. The
gauge covariant derivatives appearing in the Lagrangian
are defined as Dμ ¼ ∂μ − ieAμ. The hadronic part of
the effective Lagrangian is expressed here as the sum

of the lowest-order pionic Lagrangian Lð2Þ
π and the πN

Lagrangian expanded in an infinite sequence of operator
terms characterized by the chiral dimension ν ¼ 0; 1; 2;…,
namely,

Leff
πN ¼ Lð2Þ

π þ
X
ν¼0

LðνÞ
πN;

where4

Lð2Þ
π ¼ fπ

4
Tr½∇μU†∇μU þ χ†U þ χU†�;

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

π⃗2

f2π

s
þ i
fπ

τ⃗ · π⃗;

χ ¼ 2B

�
mu 0

0 md

�
: ð3Þ

Here, we use the so-called sigma gauge parametrization of
the nonlinear pion field U, and the constant B is related to
the scalar current quark condensate h0jq̄qj0i, the order
parameter of spontaneously broken chiral symmetry. The
chiral covariant derivative∇μ is given in Eq. (7). Below, we
explicitly specify only the ν ¼ 0 (LO χ) and ν ¼ 1 (NLO χ)
terms of the πN Lagrangian. The ν ¼ 2 (NNLO χ) chiral
Lagrangian contains many additional LECs as well as
1=M2-order “fixed” terms and counterterms, some of which
contribute to the lowest-order proton’s form factors, includ-
ing the rms radii (see, e.g., Ref. [54]). Owing to the large

3Most works in the literature prefer to use a nonzero photon
mass, λ (see, e.g., Refs. [1,60]), which leads to IR-divergent terms
in the form of logarithms, e.g., lnð λ2

−Q2Þ. We follow the DR
treatment of IR divergences, e.g., Refs. [61–64]). A naive
comparison of the IR treatments leads to the correspondence
1

jϵIRj þ γE − ln
�
4πμ2

−Q2

	
↔ − ln

�
λ2

−Q2

	
; where μ is the subtraction

scale (typically chosen as the momentum scale associated with
the scattering process).

4In principle, the LECs in the Lagrangian should be taken in

the chiral limit, e.g., f
∘
and gA

∘
. However, they will be renormal-

ized to their respective physical values, fπ and gA, at a given
chiral-order.
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number of operator terms in Lð2Þ
πN , we just refer the reader to,

e.g., Refs. [52,53], where the complete expression can be
found. The lowest chiral order πN Lagrangian is given as

Lð0Þ
πN ¼ N̄vðiv ·Dþ gAS · uÞNv; Nv ≡

�
pv
nv

�
; ð4Þ

where in HBχPT the nucleon velocity and spin four-vectors
can be chosen as vμ ¼ ð1; 0⃗Þ and Sμ ¼ ð0; σ⃗=2Þ respec-
tively, satisfying the condition v · S ¼ 0. The pion fields

enter Lð0Þ
πN through the term u ¼ ffiffiffiffi

U
p

, where uμ ¼
iu†∇μUu† is the chiral vielbein. The LEC gA ≃ 1.26 is
the axial-vector coupling constant. The velocity-dependent
heavy nucleon field Nv represents the “large” components
of the nucleon isospinor field with the proton (pv) and
neutron (nv) projections. The next sub-leading chiral-order
πN Lagrangian is given by

Lð1Þ
πN ¼ N̄v

��ðv ·DÞ2 −D ·D
2M

�
−
igA
2M

fS ·D; v · ug

þc1TrðχþÞ þ
�
c2 −

g2A
8M

�
ðv · uÞ2 þ c3u · u

þ
�
c4 þ

1

4M

�
½Sμ; Sν�uμuν þ c5Trð χ̃þÞ

−
i

4M
½Sμ; Sν�½ð1þ c6Þfþμν þ c7TrðfþμνÞ�

�
Nv; ð5Þ

where in our case we have

χþ ¼ u† χuþ uχ†u; χ̃þ ¼ χþ −
I
2
TrðχþÞ;

fþμν ¼ u†ðfRμν þ vðsÞμν Þuþ uðfLμν þ vðsÞμν Þu†
¼ eFμνðuQu† þ u†QuÞ;

fRμν ¼ ∂μrν − ∂νrμ − i½rμ; rν� ¼ e
τ3

2
Fμν;

fLμν ¼ ∂μlν − ∂νlμ − i½lμ; lν�;¼ e
τ3

2
Fμν;

vðsÞμν ¼ e
I
2
ð∂μAν − ∂νAμÞ; and

Q ¼ 1

2
ðI þ τ3Þ ¼

�
1 0

0 0

�
: ð6Þ

Apart from the 1=M-order terms, the ν ¼ 1 chiral dimen-
sion Lagrangian contains the seven LECs, ci, i ¼ 1;
2;…; 7, whose values are phenomenologically determined
[50,53]. The speciality of these dimension-0 and -1 LECs
are that they are finite and unaffected by pion loop effects,
which start at chiral-order 2. In particular, the LECs
c6 ¼ κv and c7 ¼ ðκs − κvÞ=2, where the nucleon isovector
and isoscalar anomalous magnetic moments are κv ¼ 3.71

and κs ¼ −0.12, respectively [54]. The field tensor fþμν
represents the external isoscalar and isovector sources.
As shown in Eq. (6), the external isoscalar field is

vðsÞμ ¼ −e I
2
Aμ, and the isovector right-handed (rμ) and

left-handed (lμ) external sources are given as

lμ ¼ rμ ¼ −e τ3

2
Aμ, where I is the identity matrix and τ3

is the diagonal Pauli matrix in isospin SU(2). In this
work, we have ignored all sources of isospin violation.
Consequently, there is no contribution from the term
proportional to c5, since χ̃þ → 0 in the limit md → mu.
Finally, the covariant derivatives used in the HBχPT
Lagrangian are

Dμ ¼ ∂μ þ Γμ − ivðsÞμ ; and

∇μU ¼ ∂μU − irμU þ iUlμ; ð7Þ
where

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�: ð8Þ

In Fig. 1, we display the LO χ , NLO χ , and NNLO χ Born
amplitudes (diagrams Bð0;1;2Þ) for the elastic lepton-proton
scattering process. As mentioned, we prefer to represent the
proton form factor (rms radii) contributions at NNLOχ via

the effective Born amplitude Mð2Þ;rms
γ (diagram Bð2Þ;rms).

The LO Born amplitude is given as

Mð0Þ
γ ¼ −

e2

Q2
½ūlðp0ÞγμulðpÞ�½χ†ðp0

pÞvμ χðppÞ�; ð9Þ

where χ is the two-component Pauli spinor for the
nonrelativistic proton, while ul is the Dirac spinors for
the relativistic leptons. The subleading Born amplitudes
needed in this work are given as

Mð1Þ
γ ¼ Mð1Þ;a

γ þMð1Þ;b
γ ;

Mð1Þ;a
γ ¼ −

e2

2MQ2
½ūlðp0ÞγμulðpÞ�½χ†ðp0

pÞ

×fðpp þ p0
pÞμ − vμv · ðpp þ p0

pÞgχðppÞ�;

Mð1Þ;b
γ ¼ −

e2

2MQ2
½ūlðp0ÞγμulðpÞ�½χ†ðp0

pÞ

×ð2þ κs þ κvÞ½Sμ; S ·Q�χðppÞ�; ð10Þ

where Mð1Þ;a
γ and Mð1Þ;b

γ are the spin-independent and

spin-dependent parts of the NLO χ amplitudeMð1Þ
γ , respec-

tively. Including the ν ¼ 2 chiral-order interactions, the
1=M2-order Born amplitude is given as

Mð2Þ
γ ¼ −

e2

8M2Q2
½ūlðp0ÞγμulðpÞ�½χ†ðp0

pÞ

×fð2ðv ·QÞ2 −Q2Þvμ −Qμv ·QgχðppÞ�: ð11Þ
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Furthermore, the proton’s Dirac and Pauli form factors up
to OðQ2=M2Þ get contributions from the pion loops and
various LECs. Expressed in terms of the mean square radii
hr21i and hr22i, respectively, they are viable in the following
low-energy expansions in Q2:

Fp
1 ðQ2Þ ¼ 1þQ2

6
hr21i þOðM−3Þ; and

Fp
2 ðQ2Þ ¼ κp þ

Q2

6
hr22i þOðM−3Þ: ð12Þ

Including these form factors, we derive the general form for
the effective Born amplitude, diagram Bð2Þ;rms, namely,

Mð2Þ;rms
γ ¼ −

e2

Q2
½ūlðp0ÞγμulðpÞ�½χ†ðp0

pÞVð2Þ
μ χðppÞ�; ð13Þ

where the effective proton-photon vertex, due to form
factor corrections from pion loops and LECs at NNLO χ ,
is given as

Vð2Þ
μ ¼ ðFp

1 − 1Þvμ þ
1

M



ðFp

1 − 1Þ
�
Qμ þ

Q2

2M
vμ

�
þ 2ðFp

1 þ Fp
2 − 1 − κpÞ½Sμ; S ·Q�

�
−

Q2

8M2
ðFp

1 − 2Fp
2 − 1Þvμ þO

�
1

M3

�
: ð14Þ

Here, κp ¼ ðκv þ κsÞ=2 ¼ 1.795 is the anomalous mag-
netic moment of the proton. Analytical expressions for the
form factors evaluated to NNLO χ in HBχPT already exist
in the literature [54] and may be used to determine the
scattering cross section. However, in this work, we shall
only consider some representative input for the proton’s
rms charge radius among the recently measured values
from scattering as well as atomic-spectroscopy measure-
ments [10,12,15–22].

In this paper, we define the four-momentum transfer
Qμ ¼ pμ − p0

μ ¼ ðp0
pÞμ − ðppÞμ of the l-p elastic scatter-

ing process, lðpÞ þ pðppÞ → lðp0Þ þ pðp0
pÞ, where

Q2 < 0. The incoming and outgoing lepton four-momenta
are p ¼ ðE; p⃗Þ and p0 ¼ ðE0; p⃗0Þ. The initial and final
proton four-momenta in the lab frame are P ¼ ðM; 0Þ,
P0 ¼ ðE0

p; p⃗0
pÞ. In the heavy baryon formalism, the initial

and final state proton four-momenta are Pμ ¼ Mvμ þ pμ
p

and P0μ ¼ Mvμ þ p0μ
p , respectively. We have in the lab

frame, v · pp ¼ 0, and v · p0
p ¼ − ðp0

pÞ2
2M þOðM−2Þ.

The full (chirally corrected) effective Born cross section
in the lab frame is determined by evaluating the phase-
space integral of the expression

½dσel�γ ¼
ð2πÞ4δ4ðpþ P − p0 − P0Þ

4ME

×
d3p⃗0

ð2πÞ32E0
d3P⃗0

ð2πÞ32E0
p

1

4

X
spins

jMγj2; ð15Þ

where the squared amplitude is

jMγj2 ¼ jMð0Þ
γ þMð1Þ

γ þMð2Þ
γ þMð2Þ;rms

γ j2: ð16Þ

It is notable that, due to the sum over spins, only the spin-

independent parts of Mð1Þ
γ and Mð2Þ;rms

γ contribute to the

interference with the LO Born amplitudeMð0Þ
γ . The lowest-

order Born contribution is well known, namely,

1

4

X
spins

jMð0Þ
γ j2 ¼ 4e4

Q2
M2

�
1 −

Q2

4M2

��
1þ 4EE0

Q2

�
: ð17Þ

The following are the relevant fractional contributions
needed at 1=M2-order accuracy involving the NLO χ

amplitudes, where we introduce the compact notation

RQ ≡ Q2

2M2 for later convenience,

2Re
P

spinsðMð0Þ†
γ Mð1Þ

γ ÞP
spinsjMð0Þ

γ j2
¼ 2Re

P
spinsðMð0Þ†

γ Mð1Þ;a
γ ÞP

spinsjMð0Þ
γ j2

¼ Q2

2M2
≡RQ;

P
spinsjMð1Þ

γ j2P
spinsjMð0Þ

γ j2
¼

P
spinsjMð1Þ;b

γ j2P
spinsjMð0Þ

γ j2
¼ 1

2
ð1þ κpÞ2RQ

�
Q2 þ 4ðm2

l − EE0Þ
Q2 þ 4EE0

�
þO

�
Q4

M4

�
; ð18Þ

and those involving the NNLO χ amplitudes:

2Re
P

spinsðMð0Þ†
γ Mð2Þ;rms

γ ÞP
spinsjMð0Þ

γ j2
¼ Q2

3
hr21i þO

�
Q3

M3

�
;

2Re
P

spinsðMð0Þ†
γ Mð2Þ

γ ÞP
spinsjMð0Þ

γ j2
¼ −

1

2
RQ þO

�
Q4

M4

�
: ð19Þ
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In fact, the effective Born differential cross section including up to NNLOχ corrections may be expressed in terms of the
proton form factors Fp

1;2 and the incoming and outgoing lepton velocities,

β ¼ jp⃗j
E

and

β0 ¼ jp⃗0j
E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ηml

E

�
2

s
;

respectively, in the generic form�
dσelðQ2Þ

dΩ0
l

�
γ

¼
Z jp⃗0jdE0

ð2πÞ216M2E
δfEþM − E0 − E0

pg
1

4

X
spins

jMγj2 ¼
1

64π2M2

�
β0

ηβ

�
1

4

X
spins

jMγj2; ð20Þ

where

η≡ E
E0 ¼

E
EþQ2=2M

¼ 1þ E
M

ð1 − cos θÞ ð21Þ

is the proton recoil factor which may either be expressed in terms the four-momentum transfer Q2 or, equivalently, in terms
of the lab frame lepton scattering angle θ. The spin-averaged squared amplitude is

1

4

X
spins

jMγj2 ¼
1

4

X
spins

�
fjMð0Þ

γ j2 þ jMð1Þ;a
γ j2 þ 2ReðMð0Þ†

γ Mð1Þ;a
γ ÞgðFp

1 ðQ2ÞÞ2 þ 1

ð1þ κpÞ2
jMð1Þ;b

γ j2

× ðFp
1 ðQ2Þ þ Fp

2 ðQ2ÞÞ2 þ 2ReðMð0Þ†
γ Mð2Þ

γ ÞðFp
1 ðQ2Þ − 2Fp

2 ðQ2ÞÞFp
1 ðQ2Þ þO

�
α2

Q3

M3

��
: ð22Þ

The prefactor η, which arises from the phase-space
integration over the energy conservation δ-function, exactly
cancels out while considering the different ratios of the
chirally or radiatively corrected l-p scattering cross sec-
tions to the LO Born contribution,�

dσelðQ2Þ
dΩ0

l

�
0

¼ α2β0

ηβQ2

�
1 −

Q2

4M2

��
1þ 4E2

ηQ2

�
: ð23Þ

First, we note that jMð0Þ
γ j2 contains terms up to and

including OðM−2Þ. Retaining its complete expression
generates the above LO Born cross section. Second, the

term
P jMð1Þ;a

γ j2 ∼P jMð0Þ
γ j2OðM−4Þ and is therefore

ignored. Thus, we obtain the full chirally corrected
NNLOχ result for the elastic differential cross section of
the form�

dσelðQ2Þ
dΩ0

l

�
γ

¼
�
dσelðQ2Þ

dΩ0
l

�
0

f1þ δð2Þχ ðQ2Þg; ð24Þ

where the OðQ2=M2Þ fractional contributions due to the
pure hadronic chiral effects are represented as

δð2Þχ ðQ2Þ ¼ δðrmsÞ
χ ðQ2Þ þ δð1=M

2Þ
χ ðQ2Þ: ð25Þ

Here,

δðrmsÞ
χ ðQ2Þ ¼ Q2

3
hr21i þO

�
Q3

M3

�
¼ Q2

3

�
hr2Ei −

3κp
2M2

�
þO

�
Q3

M3

�
ð26Þ

stands for the NNLO χ corrections due to the proton’s rms

electric charge radius, rp ¼
ffiffiffiffiffiffiffiffiffi
hr2Ei

p
, and

δð1=M
2Þ

χ ðQ2Þ ¼ 1

2
RQ

�
1þ 2κp þ ð1þ κpÞ2

×

�
ηQ2 þ 4ðηm2

l − E2Þ
ηQ2 þ 4E2

��
þO

�
Q3

M3

�
ð27Þ

are OðQ2=M2Þ contributions. Figure 2 displays separately
the proton’s NNLOχ recoil and structure-dependent cor-
rections to the LO Born e-p and μ-p elastic scattering cross
sections in the MUSE kinematic region [47,48]. These two
NNLOχ terms are the largest of the corrections to the LO
Born contributions, each increasing to about 40% at the
largest Q2 values. However, due to their opposite signs,
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0.005 0.015 0.025 0.015 0.025

FIG. 2. The fractional chiral corrections (in percentage) to the leading-order Born elastic cross section [Eq. (23)] for e-p (left panel)
and μ-p (right panel) at NNLO χ in HBχPT, see Eq. (25), as a function of the squared four-momentum transfer jQ2j. The contributions
due to the proton’s rms radius δðrmsÞ

χ [dashed-dotted (yellow) curve], recoil contributions δð1=M
2Þ

χ [dashed (red) curve], and their sum δð2Þχ
[solid (cyan) curve] are separately displayed. Each plot covers the MUSE kinematic range of jQ2j where the scattering angle lies within
the range θ ∈ ½20°; 100°� at specific incoming lepton momenta, jp⃗j ¼ p ¼ 115, 153, 210 MeV=c. The curves for the proton’s rms
charge radius in the above plots are varied within the range corresponding to the extracted values from the recent precision e-p scattering
measurements by the PRad Collaboration [21] and that from the erstwhile high-precision muonic hydrogen atomic-spectroscopy
measurements by the CREMACollaboration [11,12]. The theoretical uncertainty due to the input variation of the rms radius along with
the N3LO error are depicted by the widths of the colored bands.
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there are large cancellations as observed in Fig. 2. Although
the proton rms radius-dependent effects are independent
of the lepton mass, the 1=M2-order effects are about one-
half times smaller in muon as compared to electron
scattering. The overall contributions are only somewhat
sensitive to lepton mass dependence. To check the sensi-
tivity of our chiral corrections to the input rp value, we
vary rp within the range corresponding to the extracted
value from recent precision e-p scattering measurements
at the Jefferson Laboratory (PRad Collaboration) [21] and
that from the high-precision muonic hydrogen atomic-
spectroscopy measurements at PSI (CREMA Collabo-

ration) [11,12]. The resulting plots for δðrmsÞ
χ show a

sensitivity of about �6.4%. We have included both the
experimental and theoretical uncertainties in quadrature
(see footnote 8). These uncertainties are represented by
the error bands in yellow. For the purpose of estimating the
theoretical error, we have, in addition, varied each of the
two chiral corrections in Fig. 2 by �1% to incorporate the
uncertainties due to the N3LO χ [i.e., OðQ3=M3Þ ∼ 0.008]
effects excluded in our analysis. The error bands in cyan

associated with the total chiral corrections δð2Þχ [with the

error bands in pink representing the δð1=M
2Þ

χ terms] yield
about 7% uncertainty relative to their central estimates,
after combining the two errors.
In the next section, we demonstrate that the radiative

(QED) contributions are smaller in comparison to the
individual chiral corrections. However, owing to the
subtlety of the large chiral cancellations noted in case of
e-p scattering, the otherwise power counting subdominant
QED effects get effectively promoted as a serious correc-
tion to the Born cross section. Thus, estimating the crucial
radiative effects along with the chiral corrections becomes a
necessary precursor before attempting a precision extrac-
tion of the proton’s rms charge radius.

III. RADIATIVE CORRECTION AT LOα

The lowest-order radiative (LOα) corrections to the l-p
elastic scattering process constitute diagrams with ampli-
tudes either of Oðe2αÞ, which arise from one-loop virtual
corrections, or of Oðe3Þ, associated with the emission of a
single undetectable real soft photon. In this section, we
outline all UV and IR divergences in DR arising in the

analytical evaluation of the LOα contributions, δ
ð0Þ
2γ ∼OðαÞ.

The UV-divergent terms are renormalized by the
Bogoliubov, Parasiuk, Hepp, and Zimmermann renormal-
ization method [65,66] using Lagrangian counterterms to
render UV-finite results. To this end, all bare Lagrangian
masses, charges, coupling constants, etc., are replaced by
the corresponding physical ones in the standard way. As in
our previous work [58], we analytically evaluate the one-
loop virtual diagrams in order to project out the complete
IR-singularity structures ensuring exact cancellation with

the soft bremsstrahlung IR divergences. Note that, unlike
the SPA which was invoked to allow analytical evaluation
of the TPE box amplitudes in Ref. [58], the other one-loop
virtual amplitudes in this paper will be analytically per-
formed without any approximations. However, for the
purpose of extracting the IR-singularities from the soft
photon bremsstrahlung diagrams, we need to rely on SPA
as a basic precept of the YFS methodology [57]. In what
follows, we consider each of the virtual and real (brems-
strahlung) contributions separately.

A. One-loop virtual corrections at LOα

The one-loop diagrams contributing to the virtual
radiative corrections are displayed in Fig. 3. It is notable
that the SE loops renormalize the bare masses and wave
functions of the external lepton and proton, but on the
mass shell, such SE diagrams themselves vanish upon
renormalization (these corrections are nonvanishing for
internal off-shell propagator lines). Nonetheless, their
expressions are needed to determine the respective wave-
function renormalization constants Zl;p

2 , which by virtue
of Ward-Takahashi identity in QED is equal to the
corresponding vertex renormalization constants Zl;p

1 .
Furthermore, as previously discussed in Ref. [58], the
sum of the real parts of TPE “direct” and “crossed” box
diagrams at LOα in HBχPT (cf. diagrams in the last row of
Fig. 3) vanishes with or without SPA.5 The remaining one-
loop contributions listed in Fig. 3 are evaluated without
invoking SPA and will be discussed in the following:

1. Lepton-photon vertex correction

The one-loop lepton-photon VC amplitude from the
VClð0Þ diagram in Fig. 3 using DR is well known (see, e.g.,
Refs. [61,66]). The VC amplitude VClð0Þ is

Mlð0Þ
γγ;vertex ¼ −

e2

Q2
½ūlðp0ÞδΓμ

l ðp; p0ÞulðpÞ�

× ½χ†ðp0
pÞvμ χðppÞ�; ð28Þ

and the radiative corrections to the lepton-photon vertex in
terms of the Dirac and Pauli form factors, Fl

1 ¼ 1þ δFl
1

and Pauli Fl
2, respectively, is expressed in the general form

δΓμ
l ðp; p0Þ ¼ γμδFl

1ðQ2Þ þ iσμνQν

2ml
Fl
2ðQ2Þ: ð29Þ

The evaluation of diagram VClð0Þ yields both UV and
IR divergences for the form factor Fl

1, while Fl
2 is finite

5The imaginary part of the sum of the LOα TPE box
amplitudes is, however, nonvanishing even after invoking SPA,
but it is irrelevant in this work since it does not contribute to the
unpolarized elastic cross section.
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at OðαÞ. It is noteworthy that, while the “Dirac” part of

amplitude factorizes into the Born amplitude Mð0Þ
γ , the

“Pauli” part does not manifest itself in the same way,
namely,

Mlð0Þ
γγ;vertex ¼ Mð0Þ

γ δFl
1ðQ2Þ þMð0Þ

γ Fl
2ðQ2Þ;

with Mð0Þ
γ ¼ −

e2

2mlQ2
½ūlðp0ÞiσμνQνulðpÞ�

× ½χ†ðp0
pÞvμ χðppÞ�: ð30Þ

As discussed, we use DR in order to simultaneously extract
the UV and IR divergences from the loop diagrams. The
UV divergence in space-time dimensions d ¼ 4 − 2ϵUV
(with ϵUV > 0) is characterized by the pole-term propor-
tional to 1=ϵUV and a log-dependent subtraction scale μ.
Likewise, for space-time dimensions d ¼ 4 − 2ϵIR (with
ϵIR < 0), the IR-singularity appears as a pole term propor-
tional to 1=ϵIR. The one-loop LOα expressions for the Dirac
and Pauli form factor evaluated using DR are, respectively,
given as [61,62]

δFl
1ðQ2Þ ¼ α

4π

��
1

ϵUV
− γE þ ln

�
4πμ2

m2
l

��
−
�

1

jϵIRj
þ γE − ln

�
4πμ2

m2
l

��
ν2 þ 1

ν

× ln

�
νþ 1

ν − 1

�
þ ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
× ln

�
ν2 − 1

4ν2

�
þ 2ν2 þ 1

ν
ln

�
νþ 1

ν − 1

�
−
ν2 þ 1

ν



Sp

�
νþ 1

2ν

�
− Sp

�
ν − 1

2ν

���
;

and

Fl
2ðQ2Þ ¼ α

4π

ν2 − 1

ν
ln

�
νþ 1

ν − 1

�
; ð31Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l =Q
2

q
and “Sp” denotes the Spence

function, defined as

FIG. 3. The one-loop Oðe2αÞ diagrams at LOα in HBχPT, contributing to the virtual radiative corrections to the elastic leading-order
Born l-p scattering amplitude [see Eq. (9)]. The blob in the diagram VPð0Þ represents one-loop leptonic and hadronic vacuum
polarization contributions. For the sake of illustration, each leading-order two-photon exchange (direct and crossed) box diagram is
shown with one hard photon (red) and one soft photon (blue) exchange.

TALUKDAR, SHASTRY, RAHA, and MYHRER PHYS. REV. D 104, 053001 (2021)

053001-10



SpðxÞ ¼
Z

x

0

dt
ln j1 − tj

t
; x < 1; ð32Þ

and γE ¼ 0.577216… is the Euler-Mascheroni constant.
Note that our definition of the Spence function differs from
the standard one (e.g., as used in Ref. [61]) by an over-
all sign.
The UV divergence is renormalized in the standard way

by adding the counterterm vertex ðZl
1 − 1Þγμ to the vertex

function Γμ
l , requiring that the total vertex function,

Γ̃μ
l ¼ Γμ

l þ ðZl
1 − 1Þγμ, defines the physical charge at Q2 ¼

0 according to the renormalization condition, i.e.,
Γ̃μðQ2 ¼ 0Þ ¼ γμ. The wave-function renormalization con-
stant Zl

2 is defined by the derivative of the lepton SE
function ΣlðpÞ in the on-shell limit, namely,

Zl
2 ¼ 1þ ∂ΣlðpÞ

∂=p
����
=p¼ml

þOðα2Þ

≡ Zl
1 ¼ 1 − δFl

1ðQ2 ¼ 0Þ: ð33Þ

Taking the limit Q2 → 0 (or ν → ∞), i.e.,

lim
ν→∞

ν2 � 1

ν
ln

�
νþ 1

ν − 1

�
¼ 2; ð34Þ

we obtain

∂ΣlðpÞ
∂=p

����
=p¼ml

¼ −
α

4π

�
1

ϵUV
− γE þ ln

�
4πμ2

m2
l

��

þ α

2π

�
1

jϵIRj
þ γE − ln

�
4πμ2

m2
l

�
− 2

�
: ð35Þ

Thus, by adding the counterterm −δFl
1ð0Þγμ, the renor-

malized amplitude is given by

½Mlð0Þ
γγ;vertex�ren ¼ Mð0Þ

γ ½δFl
1ðQ2Þ − δFl

1ð0Þ� þ M̄ð0Þ
γ Fl

2ðQ2Þ;
ð36Þ

where M̄ð0Þ
γ is given in Eq. (30), and the renormalized one-

loop expression for the Dirac form factor of the lepton is
given as [61,62]

Fl;ren
1 ðQ2Þ ¼ 1þ δFl

1ðQ2Þ − δFl
1ð0Þ

¼ 1þ α

2π

�
−
�

1

jϵIRj
þ γE − ln

�
4πμ2

m2
l

���
ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
− 1

�
þ ν2 þ 1

4ν
ln

�
νþ 1

ν − 1

�
ln

�
ν2 − 1

4ν2

�
þ 2ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
− 2 −

ν2 þ 1

2ν



Sp

�
νþ 1

2ν

�
− Sp

�
ν − 1

2ν

���
: ð37Þ

Besides, the finite Pauli form factor Fl
2 contributes to the

lepton’s spin magnetic moment as [61]

μ⃗lS ¼
eS⃗
2ml

½1þ Fl
2ðQ2 ¼ 0Þ� ¼ eS⃗

2ml

�
1þ α

2π

�
: ð38Þ

For jQ2j ≫ m2
l (i.e., ν → 1) it implies that Fl

2 → 0. Hence,
Fl
2’s contribution to the unpolarized scattering cross section

can safely be ignored relative to Fl
1 for the case of electron

scattering. However, for low-energy muon scattering, e.g.,
at MUSE kinematics, the Pauli form factor could give
significant contributions.

2. Proton-photon vertex correction

In the literature, the proton-photon vertex has often been
modeled using phenomenological form factors, e.g., as
done in Refs. [1,60]. As discussed earlier, HBχPT allows a
systematic order by order estimation of this vertex using the
gauge invariant couplings of the photon with the hadrons
involved. In general, one parametrizes the proton-photon
vertex in terms of the nonrelativistic electric Gp

E and

magnetic Gp
M Sachs form factors which are related to

the standard relativistic Dirac and Pauli form factors via

Gp
EðQ2Þ ¼ Fp

1 ðQ2Þ þ Q2

4M2
Fp
2 ðQ2Þ;

Gp
MðQ2Þ ¼ Fp

1 ðQ2Þ þ Fp
2 ðQ2Þ: ð39Þ

The matrix element of the electromagnetic quark current
between proton states is given by

hpðP0Þjq̄γμqjpðPÞi

→ χ†ðp0
pÞ
�
vμGp

EðQ2Þ þ ½Sμ; S ·Q�
M

Gp
MðQ2Þ

�
χðppÞ:

ð40Þ

In our heavy baryon formulation when including OðαÞ
radiative corrections, only the proton’s electric form factor
Gp

E is expected to contribute, while the magnetic form
factor Gp

M contributes at a higher chiral-order. This is
already apparent in ourOðQ2=M2Þ chiral corrections to the
LO Born cross section presented in Sec. II (also see
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Ref. [54] for details regarding χPT expressions of the
proton form factors). As revealed in our analysis in the next
section, even the inclusion of the chiral-radiative correc-
tions of OðαQ=MÞ does not renormalize the form factors.

To this end, we write Gp
E ¼ Gpð0Þ

E þ δGpð0Þ
E , where δGpð0Þ

E
incorporates the radiative corrections to the electric form
factor. Subsequently, the possible UV divergences, arising
from the LOα one-loop photon corrections to the vertex

function, namely, vμGpð0Þ
E , are renormalized by adding the

counterterm ðZp
1 − 1Þvμ, with the requirement that the total

renormalized vertex function, Vμ
p ¼ vμl G

pð0Þ
E þ ðZp

1 − 1Þvμ,
defines the physical proton charge at Q2 ¼ 0, i.e.,
Vμ
pðQ2 ¼ 0Þ ¼ vμ. Similarly to the lepton counterpart,

the proton the wave-function renormalization constant
Zp
2 can be defined as

Zpð0Þ
2 ¼ 1þ ∂ΣpðppÞ

∂ðv · ppÞ
����
v·pp¼0

þO
�
α2;

1

M

�
≡Zpð0Þ

1 ¼ 1 − δGpð0Þ
E ðQ2 ¼ 0Þ;

where

∂ΣpðppÞ
∂ðv · ppÞ

����
v·pp¼0

¼ −δGpð0Þ
E ðQ2 ¼ 0Þ: ð41Þ

With the on-shell conditions for the external protons, v ·

pp ¼ 0 and v · p0
p ¼ − ðp0

pÞ2
2M þOðM−2Þ, the amplitude of

the diagram VCpð0Þ in Fig. 3 is

Mpð0Þ
γγ;vertex ¼

ie4

Q2
½ūlðp0Þγμðp; p0ÞulðpÞ�

×
Z

d4k
ð2πÞ4

½χ†ðp0
pÞvμ χðppÞ�

ðk2 þ i0Þð−v · kþ i0Þ2

×

�
1 −

ðp0
pÞ2

2Mðv · kÞ þ � � �
�

≡Mð0Þ
γ δGpð0Þ

E ↦
DR
0: ð42Þ

Here, we used the fact that all scaleless loop integrals of the
type

Iðm; nÞ ¼
Z

ddk
ð2πÞd

ðk2Þm
ð−v · kþ i0Þn ð43Þ

vanish in DR (see, e.g., Ref. [67]). Consequently, there is
no contribution to the proton VC at LOα. In fact, this result
is intuitively anticipated from the fact that in HBχPT there
is no proton bremsstrahlung at this order [68]. In other
words, at LOα the proton is static and unaffected by
radiative correction.

3. Vacuum polarization

The one-loop VP contribution from diagram VPð0Þ in
Fig. 3 at LOα in HBχPT is IR-finite. However, it contains a
logarithmic UV divergence. Its unrenormalized amplitude
in terms of the bare electric charge e0 is given by

Mð0Þ
γγ;v:p: ¼ ½ūlðp0Þe0γμulðpÞ�DμνðQÞ

× ½χ†ðp0
pÞe0vν χðppÞ�: ð44Þ

The full (interacting) photon propagator expressed in terms
of the polarization tensor,Πμν ¼ ðQ2gμν −QμQνÞΠðQ2Þ, is

iDμνðQÞ ¼ −igμν

Q2
þ iDμρðQÞiΠρσðQÞ

�
−igσν

Q2

�
¼ −igμν

Q2½1 − ΠðQ2Þ� þ terms withQμQν

≃
−igμν

Q2½1 − Πð0Þ�½1 − ðΠðQ2Þ − Πð0ÞÞ� þ � � � :

ð45Þ

The UV divergence is as usual renormalized by adding the
counterterm −ðQ2gμν −QμQνÞðZ3 − 1Þ to Πμν, which
renormalizes the photon propagator,

iD̃μνðQÞ ¼ −igμν

Q2½1 − ΠðQ2Þ þ ðZ3 − 1Þ� þ � � � ; ð46Þ

where the ellipses denote the “gauge terms” containing
QμQν which do not contribute in any gauge invariant result
[61]. The requirement that D̃μν has a pole at Q2 ¼ 0 with
residue 1 yields Z3 ¼ 1þ Πð0Þ, which renormalizes the
bare QED coupling, α0 ¼ α=Z3, where α ¼ e2=ð4πÞ ≈
1=137 is the physical QED coupling. Finally, the renor-
malized amplitude factorizes into the LO Born amplitude as

½Mð0Þ
γγ;v:p:�ren ¼ Mð0Þ

γ ΔΠðQ2Þ; ð47Þ

with the renormalized polarization function

ΔΠðQ2Þ ¼ ΠðQ2Þ − Πð0Þ
¼ ΔΠleptonðQ2Þ þ ΔΠhadronðQ2Þ; ð48Þ

receiving both leptonic ΔΠlepton and hadronic ΔΠhadron

contributions at the one-loop level. Using DR, one can
readily obtain the well-known expression for the one-loop
leptonic vacuum polarization (LVP) contribution [61,69,70]:

ΔΠleptonðQ2Þ ¼ α

2π

X
f¼e;μ;τ



2

3

�
ν2f −

8

3

�

þνf

�
3 − ν2f

3

�
ln

�
νf þ 1

νf − 1

��
: ð49Þ
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Here, νf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=Q
2

q
, with index f ¼ e, μ, τ that is

used to distinguish between the different lepton flavors
contributing to the fermion loop. The hadronic vacuum
polarization (HVP) contribution is illustrated in Fig. 4. It
only shows the contribution arising from structureless,
noninteracting pions in the loop. There is no unique method
to determine the contributions for theHVPcontributions, and
we consider a simplistic one-loop estimate ofHVP that arises
due to a πþπ− pair, evaluated using scalar QED. In this
regard, we quote the renormalized expression obtained by
Tsai [71],

ΔΠhadronðQ2Þ → ΔΠπþπ−ðQ2Þ

¼ α

2π



−
2

3

�
ν2π þ

1

3

�
þ ν3π

3
ln

�
νπ þ 1

νπ − 1

��
;

ð50Þ

where νπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=Q2
p

. In Fig. 5, we display the OðαÞ
fractional leptonic and pionic one-loop VP contributions at

LOα, δ
ð0Þ
vac;f;π ¼ 2ΔΠf;π , with respect to the l-p elastic Born

cross section, Eq. (23). The results are shown for the largest
incoming momentum p ¼ 210 MeV=c for MUSE. We note
that these corrections are independent of the flavor of the
incident lepton (l ¼ e, μ) and the beam energy E. As
expected, the eþe− loop gives the dominant contribution
due to the small electron mass and is an order larger than the
other VP contributions combined. It amounts to about 1.7%
in the MUSE kinematic range. The μþμ−, τþτ−, and πþπ−
pairs contribute about 0.15%, 0.002%, and 0.03%, respec-
tively. Thus, the total UV finite VP contribution (i.e.,
LVPþ HVP) at LOα is

δð0ÞvacðQ2Þ ¼ 2ΔΠðQ2Þ ¼
X

f¼e;μ;τ

δð0Þvac;fðQ2Þ þ δð0Þvac;πðQ2Þ;

ð51Þ
which amounts to about 2% of the elastic Born differential
cross section.

4. Complete one-loop virtual contribution

Adding all the nonvanishing renormalized virtual con-
tributions from the one-loop diagrams of Fig. 3 yields the
total UV-finite elastic scattering amplitude at LOα:

Mð0Þ
γγ ¼ Mð0Þ

γ þ ½Mlð0Þ
γγ;vertex�ren þ ½Mð0Þ

γγ;v:p:�ren
¼ Mð0Þ

γ þMð0Þ
γ ½Fl;ren

1 ðQ2Þ − 1þ ΔΠðQ2Þ�
þMð0Þ

γ Fl
2ðQ2Þ: ð52Þ

Here, Fl;ren
1 is the UV renormalized one-loop leptonic Dirac

form factor given in Eq. (37), and Fl
2 is the one-loop finite

leptonic Pauli form factor given in Eq. (31). The renor-
malized VP correctionsΔΠ are obtained from Eqs. (49) and

(50), and the amplitude Mð0Þ
γ is given in Eq. (30). The IR

divergences arising from the photon loops are contained in

the factor multiplying the Born amplitude Mð0Þ
γ . The lab

frame LOα radiative correction to the elastic differential
cross section becomes

Δ
�
dσðLOÞel ðQ2Þ

dΩ0
l

�
γγ

¼
�
dσelðQ2Þ

dΩ0
l

�
0

δð0Þγγ ðQ2Þ; ð53Þ

with

δð0Þγγ ðQ2Þ ¼ 2Re
P

spinsðMð0Þ†
γ Mð0Þ

γγ ÞP
spinsjMð0Þ

γ j2
− 2

¼ IRð0Þ
γγ ðQ2Þ þ δ̄ð0Þγγ ðQ2Þ; ð54Þ

representing the OðαÞ fractional contribution from the
virtual photon loops at LOα. The IR-divergent part is

contained in IRð0Þ
γγ ðQ2Þ. The corresponding finite part

FIG. 4. The one-loop vacuum polarization diagram at LOα

receives contributions from both leptonic (LVP) and hadronic
(HVP) particle-antiparticle pairs. We only consider the dominant
HVP due to structureless pions.

FIG. 5. The one-loop leptonic and hadronic vacuum polariza-
tion corrections δð0Þvac;e;μ;τ;π and their sum δð0Þvac, contributing to the
l-p elastic cross section at LOα, as a function of the squared four-
momentum transfer jQ2j. The plot covers the full kinematic
scattering range, 0 < jQ2j < jQ2

maxj, when θ ∈ ½0; π�. The thick-
ened section of each curve corresponds to the MUSE kinematic
cut, where θ ∈ ½20°; 100°�.
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δ̄ð0Þγγ includes the LOα lepton-photon VC contributions

δ̄ð0Þγγ;1;2, as extracted from Eq. (52), namely, the contribution
from the lepton Dirac form factor,

δ̄ð0Þγγ;1ðQ2Þ ¼ 2½Fl;ren
1 ðQ2Þ − 1� − IRð0Þ

γγ ðQ2Þ; ð55Þ

and that from the lepton Pauli form factor,

δð0Þγγ;2ðQ2Þ ¼ 2Re
P

spinsðMð0Þ†
γ Mð0Þ

γ ÞP
spinsjMð0Þ

γ j2
Fl
2ðQ2Þ ¼ −

�
2ηQ2

ηQ2 þ 4E2

��
1 −

Q2

4M2

�
Fl
2ðQ2Þ

¼ α

πν

�
2ηm2

l

ηQ2 þ 4E2

�
ln

�
νþ 1

ν − 1

�
þO

�
α
Q2

M2

�
; ð56Þ

where the above 1=M2-order term is dropped from our central result presented below. However, these 1=M2-order terms
will be included as a part of the theoretical error estimate. The finite part includes the total LOα VP contribution,

δð0Þvac ¼ 2ΔΠðQ2Þ, obtained earlier in this section. Thus, the total finite fractional virtual radiative corrections at LOα read

δ̄ð0Þγγ ðQ2Þ ¼ δ̄ð0Þγγ;1ðQ2Þ þ δð0Þγγ;2ðQ2Þ þ
X

f¼e;μ;τ

δð0Þvac;fðQ2Þ þ δð0Þvac;πðQ2Þ

¼ α

π

�
ν2 þ 1

4ν
ln

�
νþ 1

ν − 1

�
ln

�
ν2 − 1

4ν2

�
þ ln

�
−Q2

m2
l

��
ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
− 1

�
þ 2ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
− 2 −

ν2 þ 1

2ν



Sp

�
νþ 1

2ν

�
− Sp

�
ν − 1

2ν

��
þ

X
f¼e;μ;τ



2

3

�
ν2f −

8

3

�
þ νf

�
3 − ν2f

3

�
ln

�
νf þ 1

νf − 1

��

−
2

3

�
ν2π þ

1

3

�
þ ν3π

3
ln

�
νπ þ 1

νπ − 1

�
þ 1

ν

�
2ηm2

l

ηQ2 þ 4E2

�
ln

�
νþ 1

ν − 1

��
þO

�
α
Q2

M2

�
: ð57Þ

The IR-divergent part of Eqs. (54) and (55), IRð0Þ
γγ ðQ2Þ, which essentially stems from the “Dirac” contribution to the one-

loop lepton-photon VC at LOα, Eq. (37), is given as

IRð0Þ
γγ ðQ2Þ≡ IRlð0Þ

γγ;vertexðQ2Þ ¼ −
α

π

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

���
ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
− 1

�
: ð58Þ

In Sec. III B, we show that this IR divergence is
canceled by the IR divergence from the soft-bremsstrah-
lung process at LOα. Figure 6 displays the LOα frac-
tional contributions from the lepton-photon VC terms,

δ̄ð0Þγγ;1 and δð0Þγγ;2, stemming from the form factors Fl;ren
1 and

Fl
2, respectively, for the full kinematic elastic scattering

range 0 < jQ2j < jQ2
maxj of the MUSE specified incom-

ing lepton momenta. A summary of our observations is
in order:

(i) All the radiative corrections vanish in the limit
Q2 → 0, as dictated by gauge invariance.

(ii) There is no LOα contribution from the TPE box
diagrams, even without invoking SPA.

(iii) The lepton Dirac form factor contribution is basi-
cally independent of the lepton beam energy.

(iv) In contrast, the lepton Pauli form factor contribution
depends strongly on the beam momentum. For
electron scattering in the MUSE momentum
range, the contributions are practically negligible,
about 10−5%. However, for muon scattering, the

relative corrections turn out to be much larger,
about 10−1%.

(v) The electronic and muonic Dirac form factor con-
tributions in the region of low momentum transfers,
jQ2j < 0.1 ðGeV=cÞ2, differ by almost 2 orders of
magnitudes. The reason is that the electronic Dirac

term δ̄lð0Þγγ;1 is enhanced in the soft and collinear region
of the loop-momentum integration resulting from
the so-called Sudakov double-logarithms, namely,

ν2 þ 1

4ν
ln

�
νþ 1

ν − 1

�
ln

�
ν2 − 1

4ν2

�
þ ν2 þ 1

2ν
ln

�
−Q2

m2
l

�
ln

�
νþ 1

ν − 1

�
≈
1

2
ln2

�
−Q2

m2
l

�
;

in the limit of a small lepton mass (i.e., m2
l ≪ jQ2j).

However, for muon scattering at MUSE kinematics
where m2

μ ¼ 0.01 GeV2 ≈ jQ2j, no such enhance-
ments are manifest.
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B. Soft bremsstrahlung corrections at LOα

A review of known results using standard field theo-
retical techniques can be found in, e.g., Refs. [1,59–62]).
We reevaluated the bremsstrahlung process, lp → lpγ�,
in our HBχPT work of Ref. [68]. By virtue of tranver-
sality of real photons with polarization four-vector εμ,
namely, k · ε ¼ 0, the Coulomb gauge condition, v · ε ¼ 0,
is naturally satisfied for the bremsstrahlung process.

Consequently, with the LOα proton-photon vertex in heavy
baryon formalism proportional to v · ε�, the “static” proton
does not radiate at the leading chiral-order. Therefore, in
this case, the lowest-order soft bremsstrahlung process
consists of a single soft photon that is emitted from either
the incoming lepton, diagram Rilð0Þ, or the outgoing one,
diagram Rflð0Þ, as displayed in Fig. 7, with amplitudes
given as

Mlð0Þ;i
γγ� ¼ −e3

Z
d4k
ð2πÞ4

�
ūlðp00Þγμ ð=p − =kþmÞ

ðp − kÞ2 −m2
l

=ε�ulðpÞ
�

1

ðQ − kÞ2 ½χ
†ðp0

pÞvμ χðppÞ�; and

Mlð0Þ;f
γγ� ¼ −e3

Z
d4k
ð2πÞ4

�
ūlðp00Þ=ε� ð=p00 þ =kþmÞ

ðp00 þ kÞ2 −m2
l

γμulðpÞ
�

1

ðQ − kÞ2 ½χ
†ðp0

pÞvμ χðppÞ�: ð59Þ

FIG. 6. The one-loop LOα contributions δ̄
ð0Þ
γγ;1 (upper panel) and δð0Þγγ;2 (lower panel) to the e-p (left panel) and μ-p (right panel) elastic

cross sections (in percentage) from the finite lepton-photon vertex corrections terms containing the (UVand IR-finite) form factors Fl
1;ren

and Fl
2. Each plot covers the full kinematic scattering range, 0 < jQ2j < jQ2

maxj, when θ ∈ ½0; π� at the incoming lepton momenta,
jp⃗j ¼ p ¼ 115, 153, 210 MeV=c. The thickened section of each curve corresponds to the MUSE kinematic cut, where θ ∈ ½20°; 100°�.
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In the above expressions, kμ is the four-momentum of
the bremsstrahlung photon, and p00

μ is the four-momentum
of the inelastically scattered outgoing lepton. In this
paper, we are only concerned with the undetectable
soft photon emissions. Thus, by the YFS methodology
[57], the real photon emission amplitudes are evaluated
using SPA, where SPA regards p00

μ as the physical four-
momentum of the elastically scattered lepton. Henceforth,
for reasons of brevity, we drop all distinctions between
the p0

μ and p00
μ, unless explicitly mentioned. In SPA, the

photon momentum of the propagator numerator is taken
to be zero, i.e., kμ → 0, with the crucial assumption that
the soft emissions does not alter the elastic kinematics.
In other words, in this limit, the four-momentum transfer
for the bremsstrahlung process, qμ ¼ ðQ − kÞμ, is practi-
cally indistinguishable from its elastic counterpart,
Qμ ¼ ðp − p0Þμ ¼ ðP0 − PÞμ. Then, the matrix elements

get factorized into the LO (Born) amplitude Mð0Þ
γ ,

namely,

Mlð0Þ;i
γγ� ⇝

γ�soft g
Mlð0Þ;i

γγ� ¼ eMð0Þ
γ

�
p · ε�

p · k

�
;

Mlð0Þ;f
γγ� ⇝

γ�soft g
Mlð0Þ;f

γγ� ¼ −eMð0Þ
γ

�
p0 · ε�

p0 · k

�
: ð60Þ

Taking the square of the total LOα bremsstrahlung matrix

element, Mð0Þ
γγ� ¼ Mlð0Þ;i

γγ� þMlð0Þ;f
γγ� , in SPA yields a cross

section in accordancewith thewell-knownLow’s soft photon
theorem [72]. This implies that in terms of the bremsstrah-
lung soft photon energy, the first two terms in the expansion
of the unpolarized radiative cross section depend only on the
corresponding nonradiative unpolarized cross section. Thus,
the lab frame differential cross cross section for the LOα

bremsstrahlung process is given by the expression

½dσðLOαÞ
br �γγ� ¼

d3p⃗0

ð2πÞ32E0
d3P⃗0

ð2πÞ32E0
p

d3k⃗
ð2πÞ32Eγ

ð2πÞ4δ4ðpþ P − p0 − P0 − kÞ
4ME

1

4

X
spins

jMð0Þ
γγ� j2; ð61Þ

where

X
spin

jMð0Þ
γγ� j2 ≡ jMlð0Þ;i

γγ� þMlð0Þ;f
γγ� j2 ⇝γ

�
soft j g

Mlð0Þ;i
γγ� þ g

Mlð0Þ;f
γγ� j2

¼ −e2
X
spins

jMð0Þ
γ j2

�
m2

l

ðp · kÞ2 þ
m2

l

ðp0 · kÞ2 −
2p0 · p

ðp · kÞðp0 · kÞ
�
: ð62Þ

The phase-space integrated cross section also factorizes
into the Born cross section, Eq. (23), and reads

Δ
�
dσðLOÞbr ðQ2Þ

dΩ0
l

�
γγ�

⇝
γ�soft α

2π2

�
dσelðQ2Þ

dΩ0
l

�
0

× ð−Lii − Lff þ LifÞ: ð63Þ

The integrals, Lii, Lff , and Lif , are three-momentum
integrals involving the soft photons radiated by the leptons.
They are evaluated in Appendix B using the method of,

e.g., Refs. [1,59–62]. The integrals, Lii, Lff , and Lif , are all
IR-divergent. As demonstrated in the Appendix B, we
isolate the corresponding finite contributions, L̃ii, L̃ff , and
L̃if , using DR. This yields the lab frame LOα bremsstrah-
lung correction to the elastic differential cross section
with all possible soft photon emissions with energies less
than Δγ� ,

Δ
�
dσðLOÞbr ðQ2Þ

dΩ0
l

�ðEγ�<Δγ� Þ

γγ�
¼

�
dσelðQ2Þ

dΩ0
l

�
0

δð0Þγγ� ðQ2Þ; ð64Þ

FIG. 7. Soft bremsstrahlung diagrams at LOα [i.e., Oðe3Þ] in HBχPT contributing to the radiative corrections to the elastic leading-
order (Born) l-p scattering amplitude [see Eq. (9)]. The proton radiating diagrams vanish.
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where the OðαÞ fractional bremsstrahlung contribution δð0Þγγ� at LOα reads [1,61]

δð0Þγγ�ðQ2Þ ¼ IRð0Þ
γγ� ðQ2Þ þ δ̄ð0Þγγ� ðQ2Þ; ð65Þ

with

IRð0Þ
γγ� ðQ2Þ≡ IRlð0Þ

γγ� ðQ2Þ ¼ α

π

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

���
ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
− 1

�
ð66Þ

being the IR-divergent term, and the finite part of the LOα bremsstrahlung contribution is represented by

δ̄ð0Þγγ� ðQ2Þ ¼ α

π
ð−L̃ii − L̃ff þ L̃ifÞ

¼ α

π

�
ln

�
4η2Δ2

γ�

−Q2

��
ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
− 1

�
þ 1

4β
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
þ 1

4β0
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s

−
ν2 þ 1

2ν



ln2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
þ Sp

�
1 −

λν − η

ð1 − β0Þξν

�
þ Sp

�
1 −

λν − η

ð1þ β0Þξν

�
− Sp

�
1 −

λν − η

ð1 − βÞηλνξν

�
− Sp

�
1 −

λν − η

ð1þ βÞηλνξν

���
; ð67Þ

where ν is defined below Eq. (31), and ξν ¼ 2ν
ðνþ1Þðν−1Þ and λν ¼ 3ν−1

ν−1 are Q2-dependent kinematic variables. The IR-

divergent term IRð0Þ
γγ� from the LOα bremsstrahlung diagrams, being equal and opposite to the LOα one-loop IR-divergent

counterpart IRð0Þ
γγ [cf. Eq. (58)], exactly cancels out in the sum of the LOα real and virtual radiative contributions. Thus, the

resulting finite contribution is

δð0Þ2γ ðQ2Þ ¼ δð0Þγγ ðQ2Þ þ δð0Þγγ�ðQ2Þ≡ δ̄ð0Þγγ ðQ2Þ þ δ̄ð0Þγγ�ðQ2Þ: ð68Þ

C. Total radiative corrections at LOα

After eliminating all the UV and IR divergences, we obtain the desired analytical result for the complete radiative
contributions at LOα in HBχPT. The finite one-loopOðαÞ expression for the LOα fractional radiative corrections to the l-p
elastic differential cross section is given by the expression

δð0Þ2γ ¼ α

π

�
ν2 þ 1

4ν
ln

�
νþ 1

ν − 1

�
ln

�
ν2 − 1

4ν2

�
þ 2ν2 þ 1

2ν
ln

�
νþ 1

ν − 1

�
−
ν2 þ 1

2ν



Sp

�
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2ν

�
− Sp

�
ν − 1

2ν

��
− 2þ
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f¼e;μ;τ
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3 − ν2f
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νf þ 1

νf − 1
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ν2π þ

1
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þ ν3π

3
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νπ þ 1
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þ 1
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2ηm2
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ηQ2 þ 4E2

�
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4η2Δ2
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ν − 1
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− 1

�
þ 1
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ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β
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þ 1

4β0
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
−
ν2 þ 1

2ν



ln2

ffiffiffiffiffiffiffiffiffiffiffiffi
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1 − β

s
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
þ Sp
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1 −

λν − η

ð1 − β0Þξν
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þ Sp

�
1 −
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ð1þ β0Þξν
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− Sp
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1 −
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�
− Sp

�
1 −
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���
þO

�
Q2

M2

�
: ð69Þ

Apart from the pionic VP contribution result of Tsai [71] that is included in above expression, the remaining expression is
by and large identical to what is found in the literature [1,59–62].
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FIG. 8. The individual one-loop LOα contributions (in percentage), namely, the vacuum polarization correction δð0Þvac, lepton-photon

vertex correction δ̄ð0Þγγ;vertex, and the soft photon bremsstrahlung correction δ̄ð0Þγγ� , to the e�-p (left panels) and μ�-p (right panels) elastic

cross sections as a function of the squared four-momentum transfer jQ2j. The total LOα contribution δ̄
ð0Þ
γγ is displayed as the solid (black)

line. Each plot covers the full kinematically allowed scattering range, 0 < jQ2j < jQ2
maxj, when θ ∈ ½0; π� (cf. Table I of Ref. [58]). The

thickened portion of each curve corresponds to the MUSE kinematic cut, where θ ∈ ½20°; 100°�. The lab frame detector acceptanceΔγ� is
taken to be 1% of the incident lepton beam energy E.
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In Fig. 8, we summarize all the fractional radiative
corrections to the l-p elastic cross section at LOα in

HBχPT, namely, the VP correction, δð0Þvac ¼
P

f¼e;μ;τ δ
ð0Þ
vac;fþ

δð0Þvac;π; the lepton-photon VC, δ̄ð0Þγγ;vertex ¼ δ̄ð0Þγγ;1 þ δð0Þγγ;2; and

the soft bremsstrahlung correction δ̄ð0Þγγ� , in the MUSE
kinematic range. A key feature of these LOα radiative
corrections is that they are charge-symmetric; viz., the
cross sections are identical for both l−p and lþp scatter-
ings. We find that the negative bremsstrahlung contribution
is the most dominant correction in this low-jQ2j range. In
contrast, the lepton-photon VC and VP correction are both
positive. The plots in essence suggests very little sensitivity
of the radiative corrections to the incoming lepton beam
momenta. While the VP contributions are identical in both
electron and muon scatterings, the following observations

depict the contrasting nature of the other two LOα radiative
corrections, viz., the lepton-photon vertex and soft brems-
strahlung corrections, associated with MUSE kinematics:

(i) While both electronic VC and the soft photon
bremsstrahlung contributions are very large and of
comparable magnitudes, the muonic VC is roughly 2
orders of magnitude smaller. One reason for this
contrast is evidently the absence of Sudakov en-
hancement in muonic scattering since m2

μ ≈ jQ2j, as
mentioned earlier.

(ii) The electron and muon bremsstrahlung corrections
are both negative, but the latter is over a magnitude
smaller. Here, too, the Sudakov enhancement of the

term δ̄ð0Þγγ� plays a vital role, which can be seen as
follows. In the limit of small lepton mass (i.e.,
m2

l ≪ jQ2j), we obtain

δ̄ð0Þγγ� ðQ2Þ ≈
Q2≫m2

l α

π

�
ln
�
η3Δ2

γ�

E2

��
ln
�
−Q2

m2
l

�
− 1

�
−
1

2
ln2

�
−Q2

m2
l

�
þ ln

�
−Q2

m2
l

�
−
1

2
ln2η −

π2

3
− Sp

�
cos2

θ

2

��
:

In regard to the low-jQ2j MUSE kinematics, the

“high-energy” approximations of δ̄ð0Þγγ� for electron
scattering are quite legitimate since m2

e ≪ jQ2j
(m2

e ¼ 0.25 × 10−6 GeV2), which cannot be justi-
fied in case of the muon. With Δγ� typically much
smaller than the beam energies, the first two double-
log terms containing the factor − ln ð−Q2=m2

eÞ
dominates in case of electron scattering, accounting
for the large negative sign of the bremsstrahlung
contribution. This contrasts the positive sign of
electron-photon VC attributed to the dominant
positive contributions from the Sudakov terms
proportional to ln2ð−Q2=m2

eÞ, as elucidated earlier.6

(iii) Large cancellations occur between the VC and
bremsstrahlung contributions and lead to approx-
imately 20% correction in electron scattering.
For the muon, cancellations between the compa-
rable VP and bremsstrahlung contributions lead to

approximately 1% correction only at the largest
MUSE beam momenta.

(iv) At lowest-order in chiral expansion, the proton is
essentially an infinitely heavy static object, i.e.,
leptons scatter off a static Coulomb potential. This
naturally explains why all LOα radiative effects on
the proton vanish.

IV. RADIATIVE CORRECTION AT NLOα

The next-order radiative corrections are dynamical in
nature, since they arise from the NLOα interactions in the
HBχPT Lagrangian. Thus, the power counting scheme
allows for diagrams containing either one NLOα vertex or
one insertion of an NLO χ proton propagator. The NLOα

diagrams that we consider are the Oðe2αQ=MÞ one-loop
virtual correction amplitudes, along with those of the
Oðe3Q=MÞ soft photon bremsstrahlung amplitudes.
Employing the DR scheme, we extract the UV and IR
divergences generated at NLOα to obtain the corres-
ponding fractional radiative corrections to the cross sec-

tion, δð1Þ2γ ∼OðαQ=MÞ. The NLOα TPE box diagrams were
evaluated analytically invoking SPA in Sec. III of Ref. [58]
(we shall make some pertinent comments regarding SPA
and its validity in the evaluation of the TPE box diagrams in
Secs. V and VI of this paper). In this section, the other
virtual NLOα one-loop diagrams shall be evaluated exactly;
i.e., we make no approximations in our evaluation of the
one-loop diagrams. Below, we elucidate the details of the

6It should be noted that the above expression differs by a factor
lnð−Q2

m2
l
Þ½lnð−Q2

m2
l
Þ − 1� compared to the standard expression known

in the existing literature (see, e.g., Refs. [1]). This difference is
due to the DR scheme we have adopted in order to separate the
IR-divergent part from the finite contribution. Specifically, in DR,
we prefer to retain the factor lnð4πμ2−Q2Þ in the IR-singular part IRð0Þ

γγ� ,

instead of lnð4πμ2m2
l
Þ, which is a more standard representation in the

literature. For the same reason, our leptonic VC result
[cf. Eq. (57)] differs by the same factor.
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NLOα virtual and real contributions and the subsequent
cancellation of the IR divergences.

A. One-loop virtual corrections at NLOα

In case of the external on-shell particles, the lepton and
proton SE amplitude terms (diagrams SEi; flð1Þ and

SEi; fpð1ÞA;…;F shown in Fig. 9) do not contribute directly to
the elastic scattering amplitude as they vanish due to the on-
shell renormalization condition. The respective SE loops,
however, renormalize the off-shell bare masses in the
propagators. In addition, their derivatives contribute at
NLOα to the respective wave-function renormalization

constants Zl;pð1Þ
1 . In the following, we discuss the

evaluations of the other one-loop NLOα amplitudes at
Oðe2αQ=MÞ, which include the lepton-photon VC dia-
gram (VClð1Þ in Fig. 9), the VP diagram (VPð1Þ in Fig. 9),

and the proton VC diagrams (VCpð1Þ
A;…;G in Fig. 10).

Furthermore, the NLOα TPE amplitudes, which were
already evaluated invoking SPA in our previous work
[58], are used in this work to determine the complete
one-loop virtual radiative contribution at NLOα.

1. Lepton-photon vertex and vacuum
polarization corrections

Formally, the only nontrivial NLOα contributions in
Fig. 9 are expected to arise from the last two diagrams,
namely, the lepton-photon VC (diagram VClð1Þ) and the VP

FIG. 9. The one-loop lepton and proton self-energies, lepton-proton vertex corrections, and the vacuum polarizations at NLOα in
HBχPT [i.e.,Oðe2αQ=MÞ], contributing to the radiative corrections to the LO (Born) l-p elastic scattering amplitude [see Eq. (9)]. The

filled blobs represent 1=M-order proton-photon vertex insertions. In particular, the proton self-energy “tadpoles” (diagrams SEi; fpð1ÞF )
have e2=M-order vertices. The proton propagators with the crossed blobs “⊗” represent 1=M-order propagator insertions. While all the
self-energy diagrams vanish in the on-shell limit of the external particles, the lepton vertex correction and vacuum polarization diagrams
do not contribute at NLOα since they are kinematically suppressed to 1=M2-order.
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(diagram VPð1Þ) contributions. The result closely resembles
the corresponding LOα result, Eq. (52), in that the ampli-
tude of each of the above NLOα diagrams, apart from the
vertex term proportional to Fl

2, factorizes into the NLO χ

Born amplitude Mð1Þ
γ [see Eq. (11)], namely,

Mlð1Þ
γγ ¼ Mð1Þ

γ þMð1Þ
γ ½Fl;ren

1 ðQ2Þ − 1þ ΔΠðQ2Þ�
þMð1Þ

γ Fl
2ðQ2Þ; ð70Þ

where

Mð1Þ
γ ¼ Mð1Þ;a

γ þMð1Þ;b
γ ;

Mð1Þ;a
γ ¼ −

e2

4mlMQ2
½ūlðp0ÞiσμνQνulðpÞ�½χ†ðp0

pÞfðpp þ p0
pÞμ − vμv · ðpp þ p0

pÞgχðppÞ�;

Mð1Þ;b
γ ¼ −

e2

4mlMQ2
½ūlðp0ÞiσμνQνulðpÞ�½χ†ðp0

pÞð2þ κs þ κvÞ½Sμ; S ·Q�χðppÞ�: ð71Þ

Here, Fl;ren
1 is the renormalized Dirac form factor of the lepton, Eq. (37). In Sec. II, it was demonstrated that the interference

of the LO and NLO χ Born amplitudes is proportional to RQ ∼OðM−2Þ [see Eq. (18)]. Consequently, with Fl;ren
1 ðQ2Þ − 1,

ΔΠðQ2Þ, and Fl
2ðQ2Þ of OðαÞ, the relevant NLOα terms which arise from the interference of the amplitudes, Eqs. (52) and

(70), and which should formally contribute here, are de facto kinematically suppressed to OðαQ2=M2Þ, i.e., in essence
NNLOα in HBχPT. Thus, we have

δlð1Þγγ ðQ2Þ ¼
P

spins½jMð0Þ
γγ þMlð1Þ

γγ j2 − jMð1Þ
γ j2 − 2ReðMð0Þ†

γ Mð1Þ
γ þMð0Þ†

γ Mð0Þ
γγ Þ�P

spinsjMð0Þ
γ j2

þ 1

¼ 2½Fl;ren
1 ðQ2Þ − 1þ ΔΠðQ2Þ�

�
RQ þ

P
spinsjMð1Þ

γ j2P
spinsjMð0Þ

γ j2
�

þ 2Re
P

spinsðMð0Þ†
γ Mð1Þ

γ þMð1Þ†
γ Mð0Þ

γ þMð1Þ†
γ Mð1Þ

γ ÞP
spinsjMð0Þ

γ j2
Fl
2ðQ2Þ þOðα2Þ

FIG. 10. One-loop proton-photon vertex correction diagrams at NLOα in HBχPT [i.e., Oðe2αQ=MÞ], contributing to the radiative
corrections to the LO (Born) l-p elastic scattering amplitude [see Eq. (9)]. The filled blobs represent 1=M-order proton-photon vertex

insertions. In particular, the two-photon proton vertices (diagrams VCpð1Þ
F;G ) are of order e2=M. The proton propagators with the crossed

blobs⊗ represent 1=M-order propagator insertions (diagrams VCpð1Þ
B;C ). None of these diagrams contributes to the cross section at NLOα

(see the text).
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¼ RQ½IRð0Þ
γγ ðQ2Þ þ δ̄ð0Þγγ ðQ2Þ�



1þ 1

2
ð1þ κpÞ2

�
Q2 þ 4ðm2

l − E2Þ
Q2 þ 4E2

��
þ ð1þ κpÞ2RQδ

ð0Þ
γγ;2ðQ2Þ



1 −

1

2

�
Q2 þ 4ðm2

l − E2Þ
Q2 þ 4E2

��
þOðα2Þ ∼O

�
α
Q2

M2

�
ð72Þ

by using the results of Eqs. (18), (55)–(57) as well as the two estimates

2Re
P

spinsðMð0Þ†
γ Mð1Þ;a

γ þMð1Þ;a†
γ Mð0Þ

γ ÞP
spinsjMð0Þ

γ j2
Fl
2ðQ2Þ ¼ RQδ

ð0Þ
γγ;2ðQ2Þ; and

2Re
P

spinsðMð1Þ;a†
γ Mð1Þ;a

γ þMð1Þ;b†
γ Mð1Þ;b

γ ÞP
spinsjMð0Þ

γ j2
Fl
2ðQ2Þ ¼ ð1þ κpÞ2RQδ

ð0Þ
γγ;2ðQ2Þ þ o

�
α
Q4

M4

�
; ð73Þ

where the symbol oðαQ4=M4Þ denotes further terms of

order 1=M4, which we ignore. Please note that δð0Þγγ;2 already
contains 1=M2-order terms [cf. Eq. (56)]. As illustrated
above, a notable feature regarding these subleading chiral-
order radiative corrections is that they generally do not
completely factorize as a simple product of the OðQ2=M2Þ
pure chiral correction, e.g., δð1=M

2Þ
χ [cf. Eq. (25)], and the

OðαÞ leading virtual radiative correction δ̄ð0Þγγ . At our
accuracy of OðαQ=MÞ, however, we eventually drop all
1=M2-order terms in our final expressions for the fractional
contributions. These NNLOα terms of OðαQ2=M2Þ above,
as mentioned earlier, will be useful in estimating our

theoretical uncertainties. We then conclude that none of
the diagrams displayed in Fig. 9 contributes to the scatter-
ing cross section at NLOα.

2. Proton-photon vertex corrections

As displayed in Fig. 10, a total of seven diagrams,

VCpð1Þ
A ;…;VCpð1Þ

G , contribute to the proton-photon VC at
NLOα in HBχPT. Five of these diagrams involve 1=M-
order proton-photon vertex insertions, and the remaining
two involve 1=M-order “heavy” proton propagator inser-

tions. The amplitudes of these diagrams Mp;ð1Þ;A;…;G
γγ;vertex can

be expressed as follows:

Mpð1Þ;A
γγ;vertex ¼

ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞfðpp þ p0

p − 2kÞμ − ½v · ðpp þ p0
p − 2kÞ�vμgχðppÞ�

ðk2 þ i0Þ½v · ðpp − kÞ þ i0�½v · ðp0
p − kÞ þ i0� ;

Mpð1Þ;B
γγ;vertex ¼

ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞvμ χðppÞ�

ðk2 þ i0Þ½v · ðp0
p − kÞ þ i0�

�
1þ p2

p

ðv · kÞ2 −
ðpp − kÞ2
ðv · kÞ2

�
;

Mpð1Þ;C
γγ;vertex ¼

ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞvμ χðppÞ�

ðk2 þ i0Þ½v · ðpp − kÞ þ i0�
�
1þ ðp0

pÞ2
ðv · kÞ2 −

ðp0
p − kÞ2

ðv · kÞ2
�
;

Mp;ð1Þ;D
γγ;vertex ¼

ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞvμf½v · ð2pp − kÞ� − ½v · ð2pp − kÞ�v2gχðppÞ�

ðk2 þ i0Þ½v · ðpp − kÞ þ i0�½v · ðp0
p − kÞ þ i0� ¼ 0;

Mpð1Þ;E
γγ;vertex ¼

ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞvμf½v · ð2p0

p − kÞ� − ½v · ð2p0
p − kÞ�v2gχðppÞ�

ðk2 þ i0Þ½v · ðpp − kÞ þ i0�½v · ðp0
p − kÞ þ i0� ¼ 0;

Mpð1Þ;F
γγ;vertex ¼

ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞvμð1 − v2ÞχðppÞ�

ðk2 þ i0Þ½v · ðpp − kÞ þ i0� ¼ 0;

Mpð1Þ;G
γγ;vertex ¼

ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞvμð1 − v2ÞχðppÞ�

ðk2 þ i0Þ½v · ðp0
p − kÞ þ i0� ¼ 0: ð74Þ

Since v2 ¼ 1, the last four amplitudes Mpð1Þ;D;E;F;G
γγ;vertex vanish as indicated. To evaluate the remaining three amplitudes

Mpð1Þ;A;B;C
γγ;vertex , as earlier, we first use (in the lab frame) the on-shell relations, v · pp ¼ 0 and v · p0

p ¼ − ðp0
pÞ2

2M þOðM−2Þ, in the
denominators of the leading chiral-order proton propagators. Second, we incorporate a 1=M expansion and retain terms up
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to Oðe2αQ=MÞ in the NLOα proton-photon VC amplitudes. Using DM this eventually leads to vanishing contribution,
namely,

Mpð1Þ
γγ;vertex ¼ Mpð1Þ;A

γγ;vertex þMpð1Þ;B
γγ;vertex þMpð1Þ;C

γγ;vertex

¼ ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞðpp þ p0

p − 2kÞμ χðppÞ�
ðk2 þ i0Þð−v · kþ i0Þ2

�
1 −

ðp0
pÞ2

2Mðv · kÞ þ � � �
�

þ ie4

2MQ2
½ūlðp0ÞγμulðpÞ�

Z
d4k
ð2πÞ4

½χ†ðp0
pÞvμ χðppÞ�

ðk2 þ i0Þð−v · kþ i0Þ
�
1 −

k2

ðv · kÞ2
��

2 −
ðp0

pÞ2
2Mðv · kÞ þ � � �

�
↦
DR
0: ð75Þ

In the last step, we again used the fact that all scaleless
loop integrals of the type Iðm; nÞ, Eq. (43), vanish in DR
[67]. Consequently, none of the NLOα proton-photon
vertex correction diagrams shown in Fig. 10 contributes
to the radiative corrections. The nonvanishing radiative
corrections from NNLOα vertices (excluded in this work)
are potentially expected to renormalize the proton’s Sachs
form factors. This leaves us only with the TPE diagrams
which do contribute to the NLOα one-loop radiative
corrections for the LO Born lepton-proton elastic scattering
cross section.

3. Two-photon exchange corrections

The NLOα TPE diagrams of Oðe2αQ=MÞ, comprising
the direct-box, crossed-box, and seagull amplitudes,

contribute to the fractional radiative correction, δð1Þγγ ∼
OðαQ=MÞ. The TPE box amplitudes are IR-divergent,
and their exact analytical evaluation involves an intricate
system of scalar and tensor three- and four-point integral
functions and their derivatives. In contrast to the relativistic
treatment of the proton propagator within the TPE loops in
d dimensions, the integrals involving the nonrelativistic
“heavy nucleon” propagator is a challenge in d dimensions.
To the best of our knowledge, an exact analytical evalua-
tion of such “heavy baryon TPE loop” functions in order
to isolate the IR divergences has not been pursued in the
literature. However, we remark that efforts are currently
underway [73] to analytically isolate the IR-singularities
from the box integrals in the context of a cutoff

regularization scheme. A direct numerical evaluation of
the TPE loops without approximation per se may not be
feasible unless the IR-divergent parts are first analytically
isolated. We therefore rely on an approximate analytical
method to evaluate the TPE box amplitudes in order to
project out the IR-singular parts, as outlined in details in the
work of Ref. [58]. Notably, the IR-finite TPE seagull
amplitude can be straightforwardly evaluated analytically
without any approximations.
Following the seminal review of Mo and Tsai [60], and

as later advocated in the work of Koshchii and Afanasev
[45], Ref. [58] evaluated the TPE box diagrams invoking
SPA. A “less drastic” variant of this approximation was
advocated for in the work of Maximon and Tjon [1]. The
use of SPA has the advantage that the seemingly intractable
four-point functions get reduced to scalar three-point
integrals which can be readily evaluated in analytical
form. The disadvantage of this methodology is that,
while the vital IR-divergent parts are evaluated correctly,
the numerically small finite parts are estimated only
partially up to terms that preclude the TPE kinematical
region of simultaneous propagation of two hard photons
(see, e.g., Ref. [42]). As demonstrated in Ref. [58], using
SPA the TPE box amplitudes get factorized into the LO

Born amplitude Mð0Þ
γ . Our NLOα TPE contribution is

given by the sum of the factorizable IR-singular TPE
box amplitudes and the nonfactorizable IR-finite “residual
part” of the TPE seagull amplitude (see Ref. [58] for
details),

Mlpð1Þ
γγ;TPE ¼ e2Q2

16π2ME
Mð0Þ

γ


�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

���
1

β
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
þ η

β0
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s �

−
1

β

�
π2

2
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− Sp

�
2β

1þ β

��
−

η

β0

�
π2

2
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
− Sp

�
2β0

1þ β0

���
box

þ e4

16π2m2
l M



N 1I1 −N 2

�
I2 þ

Q2

m2
l

I3

�
−N 3

�
I6 −

Q2

m2
l

I5

�
−N 4

Q2

m2
l

I4

�
seagull

; ð76Þ
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where the TPE seagull amplitude is expressed in terms of
the nonfactorizable amplitudes, N i∝M

ð0Þ
γ (i ¼ 1;…; 4),

namely,

N 1 ¼ ½ūðp0Þγμðml þ =pÞγμuðpÞ�½χ†ðp0
pÞχðppÞ�;

N 2 ¼ ½ūðp0Þγμð=p − =QÞγμuðpÞ�½χ†ðp0
pÞχðppÞ�;

N 3 ¼ ½ūðp0Þγμ=QγμuðpÞ�½χ†ðp0
pÞχðppÞ�;

N 4 ¼ ½ūðp0Þγμð2=Q − =pÞγμuðpÞ�½χ†ðp0
pÞχðppÞ�: ð77Þ

For brevity, the analytic expressions for the Q2-dependent
integrals I i¼1;…;4 are given in Ref. [58].

4. Complete one-loop virtual contribution

Using the result for the TPE amplitude, we find that the
total one-loop NLOα radiative amplitude is

Mð1Þ
γγ ¼ Mlð1Þ

γγ þMlpð1Þ
γγ;TPE; ð78Þ

whereMlð1Þ
γγ is determined from the lepton-photon VC and

the VP contributions at NLOα, Eqs. (70) and (71). This
yields the lab frame one-loop radiative correction to the LO
Born differential cross section

Δ
�
dσðNLOÞel ðQ2Þ

dΩ0
l

�
γγ

¼
�
dσelðQ2Þ

dΩ0
l

�
0

δð1Þγγ ðQ2Þ; ð79Þ

where the fractional contribution δð1Þγγ including the kine-
matically suppressed OðαQ2=M2Þ terms (contributing to
the theoretical error) reads

δð1Þγγ ðQ2Þ ¼
P

spins½jMð0Þ
γγ þMð1Þ

γγ j2 − jMð1Þ
γ j2 − 2ReðMð0Þ†

γ Mð1Þ
γ þMð0Þ†

γ Mð0Þ
γγ Þ�P

spinsjMð0Þ
γ j2

þ 1

¼ IRð1Þ
γγ ðQ2Þ þ δ̄ðboxÞγγ ðQ2Þ þ δðseagullÞγγ ðQ2Þ þRQδ̄

ð0Þ
γγ ðQ2Þ



1þ 1

2
ð1þ κpÞ2

�
Q2 þ 4ðm2

l − E2Þ
Q2 þ 4E2

��
þ ð1þ κpÞ2RQδ

ð0Þ
γγ;2ðQ2Þ



1 −

1

2

�
Q2 þ 4ðm2

l − E2Þ
Q2 þ 4E2

��
þ o

�
α
Q2

M2

�
: ð80Þ

Here again, the symbol oðαQ2=M2Þ denotes other possible virtual radiative corrections (from additional LECs and pion
loops) of 1=M2-order that are not explicitly accounted for in our analysis. The insofar obtained IR divergences stemming
from the NLOα one-loop lepton VC and TPE box diagrams are contained in

IRð1Þ
γγ ðQ2Þ ¼ IRlpð1Þ

γγ;TPEðQ2Þ þ IRð0Þ
γγ ðQ2ÞRQ



1þ 1

2
ð1þ κpÞ2

�
Q2 þ 4ðm2

l − E2Þ
Q2 þ 4E2

��
;

IRlpð1Þ
γγ;TPEðQ2Þ ¼ αQ2

2πMEβ

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��"
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
þ ηβ

β0
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s #
; ð81Þ

where the term IRð0Þ
γγ is displayed in Eq. (58) and the expression for IRlpð1Þ

γγ;TPE is extracted from Ref. [58]. The remaining IR-

finite contributions δ̄ðboxÞγγ and δðseagullÞγγ originating from the TPE diagrams are, respectively, given as [58]

δ̄ðboxÞγγ ðQ2Þ ¼ −
αQ2

2πMEβ

("
π2

2
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− Sp

�
2β

1þ β

�#
þ ηβ

β0

"
π2

2
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
− Sp

�
2β0

1þ β0

�#)
; ð82Þ

and

δðseagullÞγγ ðQ2Þ ¼ −
2αQ2

πME

�
E2ð1þ ηÞ
ηQ2 þ 4E2

�

I1ðQ2Þ þ I2ðQ2Þ þQ2

m2
l

½I3ðQ2Þ − I4ðQ2Þ�
�
: ð83Þ

As already pointed out, all nonvanishing Oðe2αQ=MÞ
one-loop diagrams, displayed in Figs. 9 and 10, though
formally expected to contribute to the NLOα virtual

corrections, δ̄ð1Þγγ ∼OðαQ=MÞ, are in effect kinematically

suppressed, contributing at NNLOα. Therefore, such con-
tributions shall be dropped in presenting our central results.
However, here, we prefer to retain the full structure
of the IR-divergent terms, i.e., including also the 1=M2
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suppressed contributions proportional to RQ, Eq. (81), in
order to demonstrate their complete cancellations after
including the corresponding NLOα bremsstrahlung

counterpart. Thus, at OðαQ=MÞ, the IR-finite part of the
one-loop NLOα radiative corrections, that arises solely
from the NLOα TPE contributions, reads

δ̄ð1Þγγ ðQ2Þ ¼ δ̄ðboxÞγγ ðQ2Þ þ δðseagullÞγγ ðQ2Þ ¼ −
αQ2

πMEβ

"
π2

2
þ ln

�
−Q2

m2
l

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s

− Sp

�
2β

1þ β

�
þ 4E2β

Q2 þ 4E2



I1ðQ2Þ þ I2ðQ2Þ þQ2

m2
l

½I3ðQ2Þ − I4ðQ2Þ�
�#

þO
�
α
Q2

M2

�
: ð84Þ

Note that in order to arrive at the above NLOα expres-
sion, we removed terms of Oð1=M2Þ by replacing E0 → E
(i.e, η ¼ 1) and β0 → β.

B. Soft bremsstrahlung corrections at NLOα

In HBχPT, all bremsstrahlung diagrams with leading-
order photon emission proton vertex, e.g., diagrams Ri; fpð0Þ

in Fig. 7 and diagrams ¯Ri; fpð1Þ and ¯Ri; fpð1ÞM in Fig. 11,
proportional to v · ε� vanish at the amplitude level. The
NLOα bremsstrahlung diagrams with a 1=M-order photon

emission vertex yield the first nonvanishing contributions.
The soft bremsstrahlung corrections at NLOα originate from
diagrams with either the lepton or proton emitting a single
undetectable soft photon (γ�soft), as illustrated in Fig. 11. We
use the soft photon limit k → 0 to evaluate the IR-divergent
contributions to the cross section at NLOα. These contribu-
tions arise from the diagrams, namely, Rilð1Þ, Rflð1Þ, Ripð1Þ,
and Rfpð1Þ, in Fig. 11, which get factorized into the LOχ and

NLO χ Born amplitudes Mð0;1Þ
γ . In the k → 0 limit, the

amplitudes are, respectively, given as

FIG. 11. Soft bremsstrahlung diagrams at NLOα in HBχPT [i.e.,Oðe3Q=MÞ], contributing to the radiative corrections to the elastic l-
p scattering amplitude [see Eq. (9)]. The filled blobs represent 1=M-order proton-photon vertices. In particular, the two-photon proton
vertex (diagram Rvpð1Þ) is of order e2=M. The proton propagators with the crossed blobs⊗ represent 1=M-order propagator insertions.

The amplitudes (diagrams Ri; fpð1Þ and Ri; fpð1ÞM ) with the leading-order proton-photon vertices trivially vanish.
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Mlð1Þ;i
γγ� ⇝

γ�soft g
Mlð1Þ;i

γγ� ¼ eMð1Þ
γ

�
p · ε�

p · k

�
;

Mlð1Þ;f
γγ� ⇝

γ�soft g
Mlð1Þ;f

γγ� ¼ −eMð1Þ
γ

�
p0 · ε�

p0 · k

�
:

Mpð1Þ;i
γγ� ⇝

γ�soft g
Mpð1Þ;i

γγ� ¼ e
M

Mð0Þ
γ

�
pp · ε�

v · k

�
¼ 0;

Mpð1Þ;f
γγ� ⇝

γ�soft g
Mpð1Þ;f

γγ� ¼ −
e
M

Mð0Þ
γ

�
p0
p · ε�

v · k

�
; ð85Þ

where the otherwise nonzero amplitude Mpð1Þ;i
γγ� trivially

vanishes with the initial state proton’s residual four-momen-
tumvector aspp ¼ 0 in the lab frame.Moreover, theproton’s
spin-dependent terms proportional to the commutator ½Sμ; S ·
k� also vanish on the soft photon limit. Evidently, restricting
to Oðα3Q=MÞ the bremsstrahlung cross section gets con-
tributions only from the interference between the LOα and
NLOα bremsstrahlung amplitudes. Nevertheless, in order to
keep track of the systematic uncertainties, we evaluate all
possible Oðα3Q2=M2Þ terms that may arise from the above
amplitudes. This requires us to evaluate the squaredmodulus
of the full bremsstrahlung amplitude up to and including

NLOα, namely, jMð0Þ
γγ� þMð1Þ

γγ� j2, and retain Oðα3Q2=M2Þ
terms. Notably, the complete Oðα3Q2=M2Þ expression for

the cross section will need additional 1=M2 or NNLOα
bremsstrahlung diagrams, which we currently exclude com-
mensurate with the NLOα virtual corrections. In contrast to
the aforementioned factorizable amplitudes (diagrams
Ri; flð0;1Þ and Ri; fpð1Þ) which potentially give rise to IR
divergences, the diagram Rvpð1Þ with a proton–two photon
NLOα vertex and a nonfactorizable amplitude, namely,

Mpð1Þ;v
γγ� ¼ −

e3

MQ2
½ūlðp0Þ=εulðpÞ�½χ†ðp0

pÞχðppÞ�; ð86Þ

yields IR-finite contributions only. The corresponding cross
section terms are evaluated without explicitly taking the
k → 0 limit, as reminiscent of the IR-finite one-loop virtual
counterpart arising from the TPE seagull diagram having the
same NLOα vertex. To this end, the total bremsstrahlung
amplitude using the appropriate soft photon limits is given by
the sum

g
Mð0Þ

γγ� þ
g
Mð1Þ

γγ� ¼
g

Mlð0Þ;i
γγ� þ g

Mlð0Þ;f
γγ� þ g

Mlð1Þ;i
γγ�

þ g
Mlð1Þ;f

γγ� þ g
Mpð1Þ;f

γγ� þMpð1Þ;v
γγ� : ð87Þ

Next, the relevant contributions to the squared modulus
of the full NLOα amplitude read

X
spins

�
j gMð0Þ

γγ� þ
g
Mð1Þ

γγ� j2 − j gMð0Þ
γγ� j2

�
≡X

spins

�
j gMð1Þ

γγ� j2 þ 2Reð g
Mð0Þ

γγ�
† g
Mð1Þ

γγ�Þ
�

¼ −e2
X
spins

jMð0Þ
γ j2

��
RQ þ

P
spinsjMð1Þ

γ j2P
spinsjMð0Þ

γ j2
��

m2
l

ðp · kÞ2 þ
m2

l

ðp0 · kÞ2 −
2p0 · p

ðp · kÞðp0 · kÞ
�

þQ2

M

�
1

ðv · kÞðp · kÞ þ
1

ðv · kÞðp0 · kÞ
�
þRQ

2

ðv · kÞ2 þO
�
Q3

M3

��
þ
X
spin

�
2ReðMð0Þ

γγ� þMð1Þ
γγ�Þ†Mpð1Þ;v

γγ� − jMpð1Þ;v
γγ� j2

�
: ð88Þ

The first set of terms, namely, those due to the lepton-lepton and lepton-proton bremsstrahlung, are factorizable, being

proportional to the squared modulus of the LO Born amplitude Mð0Þ
γ . The first of these terms are analogous to the LOα

bremsstrahlung contribution, Eq. (62), apart from the extra 1=M2-order prefactors. All such 1=M2-order IR-finite terms may
be dropped from our analytical expressions, as their primary purpose in this work is to contribute to the theoretical error.
Nevertheless, we prefer to retain all IR-singular contributions up to 1=M2-order to demonstrate their order by order
cancellations with the corresponding IR-divergent one-loop counterparts. The latter set of interference terms with the
proton–two photon vertex diagram leads to IR-finite nonfactorizable contributions and may be readily evaluated, namely,

X
spin

jMpð1Þ;v
γγ� j2 ¼ −

32e6

Q6
M


Δð1=MÞ
pð1Þv−pð1Þv

M

�
þO

�
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Q
M

�
;

X
spin

2ReðMlð0Þ;i
γγ�

†Mpð1Þ;v
γγ� Þ ¼ −

64e6

Q2q2ðp · kÞM


m2

l ðEþ E0Þ − Eðp0 · kÞ þ E0ðp · kÞ þ ðv · kÞ
�
1

2
Q2 −m2

l

�

þ
Δð1=MÞ

lð0Þi−pð1Þv
M

�
þO

�
α3

Q
M

�
;
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X
spin

2ReðMlð0Þ;f
γγ�

†Mpð1Þ;v
γγ� Þ ¼ 64e6

Q2q2ðp0 · kÞM
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�
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Q
M

�
;

X
spin
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32e6

Q2q2ðp0 · kÞM
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lð1Þf−pð1Þv
M
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�
α3

Q
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;

X
spin
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γγ� Þ ¼

X
spin

2ReðMpð1Þ;f
γγ�

†Mpð1Þ;v
γγ� Þ ¼ 0: ð89Þ

The last two terms exactly vanish, and the Δð1=MÞs are finite terms contributing to the cross section at NNLOα. Hence, in
Eq. (89), apart from the interference terms with the LOα lepton bremsstrahlung amplitude, all the remaining terms are
needed only to estimate the theoretical error incurred in our NLOα results. We may explicitly spell out these terms (replacing
E0 → E at this order), namely,
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pð1Þv−pð1Þv ¼ 2Q2
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2
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;
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l

�
− 2m2
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�
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2
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l

�
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2
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l Q
2: ð90Þ

Notably, with jMð0Þ
γ j2 ∝ M2 contributing to the LO Born cross section, for the error estimate, it is sufficient to retain at the

most M0-order terms as displayed above. Next, the lab frame soft bremsstrahlung correction to the elastic LO differential
cross section at NLOα accuracy in HBχPT is expressed as

Δ
�
dσðNLOÞbr ðQ2Þ

dΩ0
l

�
γγ�

⇝
γ�soft α

2π2

�
dσelðQ2Þ

dΩ0
l

�
0

×

�
ð−Lii − Lff þ LifÞRQ



1þ 1

2
ð1þ κpÞ2

�
Q2 þ 4ðm2

l − E2Þ
Q2 þ 4E2

��
−
Q2

M
ðLi þ LfÞ

�
þ
�
dσbrðQ2Þ

dΩ0
l

�
lpð1Þ;v

γγ�
: ð91Þ

The IR-divergent integrals, Lii, Lff , and Lif , are identical
to the ones we obtained in our LOα bremsstrahlung
evaluations. The two new integrals, Li and Lf , appearing
at this order stem from the factorizable lepton-proton
interference contribution. All these integrals are IR diver-
gent and conveniently evaluated using DR, as detailed in
Appendix B. In particular, to evaluate Eq. (91) at NLOα

accuracy, the exact expression of these integrals displayed

in the Appendix could be approximated with E0 → E,
β0 → β, leading to Lii ¼ Lff and Li ¼ Lf . The last non-

factorizable contribution, namely, ½dσbrdΩ0
l
�lpð1Þ;v
γγ�

, is IR-finite

and readily evaluated using Eq. (89) [see Eq. (B16) in
Appendix B]. The resulting expression in the lab frame
yields the correction due to soft photon emission with
energy less than Δγ� , namely,
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�
dσðNLOÞbr ðQ2Þ

dΩ0
l

�ðEγ�<Δγ� Þ
¼

�
dσelðQ2Þ

dΩ0
l

�
0

δð1Þγγ�ðQ2Þ; ð92Þ

where the fractional NLOα bremsstrahlung contribution is given as

δð1Þγγ�ðQ2Þ ¼ IRð1Þ
γγ� ðQ2Þ þ δ̄ð1Þγγ� ðQ2Þ: ð93Þ

Using L̃ff ¼ L̃ii and L̃f ¼ L̃i at NLOα accuracy, the finite part of the contribution is expressed as
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��
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dΩ0
l

�
0

; ð94Þ

whose explicit expression due to the various interference terms involving the diagram Rvpð1Þ is worked out in Appendix B.
The term

IRð1Þ
γγ� ðQ2Þ ¼ IRlpð1Þ

γγ� ðQ2Þ þ IRð0Þ
γγ� ðQ2ÞRQ
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ð1þ κpÞ2

�
Q2 þ 4ðm2

l − E2Þ
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��
ð95Þ

collects the IR divergences formally arising from the soft bremsstrahlung contributions of the LOα and NLOα diagrams with

IRð0Þ
γγ� ¼ −IRð0Þ

γγ [cf. Eqs. (58) and (66)] and IRlpð1Þ
γγ� ¼ −IRlpð1Þ

γγ;TPE, [cf. Eq. (81)]. Thus, as anticipated, IR
ð1Þ
γγ� is exactly

equal in magnitude but opposite in sign to IRð1Þ
γγ [cf. Eq. (81)]. Consequently, the sum of the real and virtual radiative

corrections at NLOα, namely,

δð1Þ2γ ðQ2Þ ¼ δð1Þγγ ðQ2Þ þ δð1Þγγ�ðQ2Þ≡ δ̄ð1Þγγ ðQ2Þ þ δ̄ð1Þγγ�ðQ2Þ; ð96Þ

is free of IR divergences, where δ̄ð1Þγγ represents the finite part of the NLOα TPE contributions [cf. Eq. (84)].
Furthermore, the NNLOα error terms that we partially considered are also shown to be IR-finite. This, of course, does
not preclude the presence of further IR-singularities which may arise from various NNLOα contributions not included in
this analysis.
Having established the complete cancellation of the IR-singularities among the NLOα virtual and real (soft)

photon emission diagrams, we explicitly drop all terms of 1=M2-order, i.e., terms beyond our intended order of
accuracy. Such excluded terms also include “implicit” 1=M2-order terms proportional to ðE − E0Þ=M and
ðβ − β0Þ=M, that is justified following the replacements, E0 → E, η → 1, and β0 → β in all the NLOα expression.
This yields the finite NLOα bremsstrahlung contribution, which modifies the total fractional elastic contribution and
is given by

δ̄ð1Þγγ� ðQ2Þ ¼ −
αQ2

πMEβ

�
ln
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ffiffiffiffiffiffiffiffiffiffiffiffi
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�
: ð97Þ
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C. Total radiative corrections at NLOα

By using our analytically derived NLOα expressions for the IR-finite virtual (i.e., TPE) and real contributions
[cf. Eqs. (84) and (97)], we obtain the total fractional radiative corrections to the elastic differential cross section accurate up
to order 1=M, which reads
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αQ2

πMEβ
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�#

þO
�
α
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�
; ð98Þ

where I i¼1;…;4 are finite integrals given in Ref. [58].
Our calculated radiative corrections depend on the value

of the detector resolution parameter Δγ�. Theoretically, Δγ�

determines the maximal energy for the soft bremsstrahlung
photon in the lab frame. Anticipating the typical accuracy
levels of present-day experiments, in this work, we have
chosen a reasonable benchmark estimate, Δγ� ¼ 1%, of the
incoming lepton energy. Figure 12 shows the IR-finite one-

loop virtual NLOα radiative (i.e., TPE) corrections δ̄
ð1Þ
γγ and

the soft photon bremsstrahlung NLOα radiative corrections

δ̄ð1Þγγ� , Eqs. (84) and (97), respectively. The following
observations describe the features of the NLOα radiative
corrections:

(i) The TPE corrections as expected vanish as Q2 → 0,
while the soft bremsstrahlung corrections become
negative, albeit infinitesimally small, at Q2 ¼ 0
due to nonvanishing of the finite nonfactorizable

term δlpð1Þ;vγγ� .

(ii) Both the real and virtual NLOα corrections display a
roughly linear rise with increasing momentum trans-
fer jQ2j.

(iii) Like the LOα chiral-order results, the NLOα correc-
tions do not change rapidly with the increasing
lepton beam momenta.

(iv) Both the NLOα contributions are comparable in
magnitudes but of opposite signs. At the largest
MUSE lepton beam momenta, we observe about 5%
and 1% total radiative corrections at NLOα for
electron and muon scatterings, respectively.

V. NUMERICAL RESULTS AND DISCUSSION

In order to determine the total l-p elastic differential
cross section, we sum up all the leading (LOα) and next-to-
leading (NLOα) chiral-order radiative corrections, in addi-
tion to the chirally expanded elastic Born terms (i.e., up to
NNLOχ), as given in Eq. (25), to yield

dσelðQ2Þ
dΩ0

l

����
lab

¼
�
dσelðQ2Þ

dΩ0
l

�
0

½1þ δðrmsÞ
χ ðQ2Þ þ δð1=M

2Þ
χ ðQ2Þ þ δð0Þ2γ ðQ2Þ þ δð1Þ2γ ðQ2Þ þ δð2Þ2γ ðQ2Þ� þO

�
Q3

M3

�
; ð99Þ

where δð0Þ2γ and δð1Þ2γ are given in Eqs. (69) and (98),
respectively. The last term δð2Þ2γ includes the interference
terms between the NNLOχ and the LOα corrections as well
as nonfactorizable NNLOα terms, e.g., those in Eqs. (80)
and (94), which are beyond the intended accuracy of this
work. These higher-order terms, which constitute the
OðαQ2=M2Þ fractional chiral-radiative corrections to the
LO elastic Born cross section, are only partially included in
this work and are just used to estimate the systematic error
of our methodology.
By comparing the different contributions in Eq. (99), we

can obtain a reasonable estimate of the relative magnitudes
of the different radiative corrections. To that end, we first
discuss the total fractional radiative correction up to and

including NLOα accuracy, i.e., δ2γ ¼ δð0Þ2γ þ δð1Þ2γ (i.e.,

excluding NNLOα). Table I displays the LOα and NLOα

corrections as well as their sum δ2γ , for both lepton and
antilepton scatterings off the proton (i.e., e�p and μ�p). As
observed in the table, we make a comparison of the relative
magnitudes of the two chiral-order corrections, viz., NLOα

to LOα ratio (i.e., δ
ð1Þ
2γ ∶δ

ð0Þ
2γ ). The results for muon scattering

indicate ratios which change with momentum transfer jQ2j
and incident lepton beam momentum p ¼ jp⃗j, from about
2∶3 for the largest jQ2j and p values to about 1∶110 for the
smallest jQ2j and p values. In comparison, for electron
scattering the comparable ratios are about 1∶5 and 1∶25
for the largest and smallest jQ2j, p values, respectively.
Evidently, there are drastic changes in the NLOα to LOα

ratio in going from the lowest to the largest possible
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FIG. 12. The fractional NLOα virtual corrections (in percentage) due to the two-photon contributions δ̄ð1Þγγ (short-dashed curves), the

soft photon bremsstrahlung corrections δ̄ð1Þγγ� (dashed curves), and their sum δð1Þ2γ (solid curves). The left (right) panel displays the results
for e-p (μ-p) elastic cross section vs the squared four-momentum transfer jQ2j, for the MUSE beam momenta of jp⃗j ¼ p ¼ 115, 153,
210 MeV=c. Each plot covers the full kinematical scattering range, 0 < jQ2j < jQ2

maxj, when θ ∈ ½0; π�. The thickened portion of each
curve corresponds to the MUSE kinematic cut, where θ ∈ ½20°; 100°�. The lab frame detector acceptance Δγ� is taken as 1% of the
incident lepton energy E.
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kinematical limits in the case of the muon scattering at
MUSE. Furthermore, we note that the TPE and the soft
bremsstrahlung corrections at NLOα depend on the lepton
(l�) charge. Hence, not only do the NLOα corrections

δð1Þ2γ corresponding to the l�p scattering processes change

sign, the total corrections, δ2γ ¼ δð0Þ2γ þ δð1Þ2γ , are somewhat
smaller (larger) for μ−p (e−p) scattering than the μþp (eþp)
scattering.
In our treatment of the radiative corrections presented

hitherto, we only considered the dominant OðαÞ or leading
QED contributions. The higher-order QED corrections
(of negative sign) proportional to αn where n ¼ 2; 3;…
will tend to cause deviations from the leading QED
predictions, especially at momentum transfers much larger
than the typical kinematic scale; e.g., in our case of lepton
scattering, such enhancements are typically expected for
jQ2j ≫ m2

l . In practice, to evaluate higher-order QED
effects involves a very intricate task of calculating multiple
photon-loop diagrams that is evidently beyond the scope
of this work. It is, however, well known that the double-
logarithmic Sudakov terms are responsible for the largest
enhancements, especially in the soft and collinear kin-
ematical regions for near-massless particles (such as the
electron) in the soft photon limit. Schwinger [74,75],
based on work by Bloch and Nordsieck [76] (see also
Refs. [57,77–83]), showed that one could by and large
compensate for such large enhanced negative contributions
to all orders in α by the exponentiation of their contribution
to the elastic cross section. Symbolically, this means that if
δnγðQ2Þ < 0 denotes the nth-order photon-loop and soft
photon bremsstrahlung corrections (not including VP con-
tributions), then the replacement,

1þ δnγðQ2Þ → expfδnγðQ2Þg;

leads to an essential suppression of such “artificial”
enhancements resulting from the truncation of perturbative
expansions. Theoretically, a tacit assumption in this regard
is that the emission and reabsorption of an infinite number
of soft photons are statistical independent and that these
do not alter the elastic kinematics. Furthermore, as seen in
our LOα results, there is significant contribution from the
VP corrections which are comparable in magnitude but
opposite in sign to the photon-loop (vertex) contributions.
Consequently, following Ref. [61], commensurate with
the exponentiation of the radiative corrections arising from
the photon-loop terms, we find it consistent to include the
resummation of the one-particle irreducible VP diagrams to
all orders. This is useful to preserve essential cancellations
that can manifest themselves among the higher-order
radiative corrections. To this end, the l-p elastic differential
cross section reads

dσelðQ2Þ
dΩ0

l

����
lab

≈
�
dσelðQ2Þ

dΩ0
l

�
0

f1þ δð2Þχ ðQ2Þ þ δelresumðQ2Þg;

ð100Þ

where δð2Þχ includes the NNLOχ chiral corrections
(cf. Sec. II), while the modified fractional QED corrections,
taking into account the partial resummation of all the
potentially large double-logarithm terms, is given by

δelresumðQ2Þ ¼ exp fδ2γðQ2Þ − δvacðQ2Þg
½1 − δvacðQ2Þ=2�2 − 1;

δ2γðQ2Þ ¼ δð0Þ2γ ðQ2Þ þ δð1Þ2γ ðQ2Þ þ δð2Þ2γ ðQ2Þ; ð101Þ

with δð2Þ2γ (the explicit expression is not displayed) repre-
senting the additional NNLOα error terms. The VP con-

tribution is assigned as δvac → δð0Þvac, the LOα VP correction
[cf. Eq. (51)], in the absence of the NLOα [i.e., OðαQ=MÞ]

TABLE I. The fractional radiative corrections with respect to the LO elastic Born cross section, δð0Þ2γ at LOα, δ
ð1Þ
2γ at NLOα and their sum

δ2γ ¼ δð0Þ2γ þ δð1Þ2γ , evaluated in HBχPT for l�p elastic scattering. The incident lepton beam momenta, jp⃗j ¼ p ¼ 0.115, 0.153,
0.210 GeV=c, at some specific jQ2j values within the allowedMUSE kinematic range are used. The above numerical figures correspond
to the lab frame detector acceptance Δγ� ¼ 1% of the incident lepton energy E.

p ¼ jp⃗j jQ2j LO: δð0Þ2γ NLO: δð1Þ2γ LO+NLO: δ2γ LO+NLO: δ2γ

GeV=c ðGeV=cÞ2 e�p μ�p e�p μ�p e−p μ−p eþp μþp

0.005 −0.1485 0.0222 �0.0058 �0.0002 −0.1543 0.0220 −0.1427 0.0224
0.115 0.015 −0.1671 0.0197 �0.0174 �0.0012 −0.1846 0.0185 −0.1497 0.0209

0.025 −0.1760 0.0171 �0.0291 �0.0023 −0.2050 0.0147 −0.1469 0.0194

0.01 −0.1598 0.0211 �0.0092 �0.0008 −0.1689 0.0203 −0.1506 0.0219
0.153 0.025 −0.1752 0.0171 �0.0230 �0.0026 −0.1981 0.0145 −0.1523 0.0197

0.04 −0.1831 0.0137 �0.0367 �0.0045 −0.2199 0.0092 −0.1465 0.0181

0.02 −0.1709 0.0185 �0.0140 �0.0020 −0.1850 0.0165 −0.1569 0.0206
0.210 0.04 −0.1829 0.0137 �0.0281 �0.0045 −0.2105 0.0092 −0.1543 0.0182

0.06 −0.1892 0.0099 �0.0421 �0.0069 −0.2313 0.0030 −0.1470 0.0169
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VP term.7 While estimating the theoretical error due
to NNLOα corrections, the VP contributions must be
modified as

δvacðQ2Þ ¼ δð0ÞvacðQ2Þ
�
1þRQ



1þ 1

2
ð1þ κpÞ2

×

�
Q2 þ 4ðm2

l − E2Þ
Q2 þ 4E2

���
: ð102Þ

In Fig. 13, we plot the total fractional radiative cor-
rections δ2γ , up to and including NLOα in HBχPT, and

compare with the LOα corrections δð0Þ2γ , Eq. (69), and the
corresponding partially resummed QED results δelresum,
Eq. (101), for low-energy l-p scatterings. In the case of
electron scattering with large negative bremsstrahlung
contributions, the total radiative corrections δ2γ stay neg-
ative, and the magnitude of δ2γ monotonically increases
with increasing squared four-momentum transfer jQ2j. The
total corrections vary in the range of (22–27)% in the
MUSE kinematic range. On the other hand, for muon
scattering, the total radiative corrections reach no larger
than 1.5% in the same region. However, as distinct from the

electron scattering case, the δð0Þ2γ corrections for the muon
undergo a sign change at these low energies. As seen in the

figure, δð0Þ2γ is positive for very small momentum transfers,
say, jQ2j≲ 0.04 ðGeV=cÞ2, due to the dominance of the VP
contributions in that region. However, for larger jQ2j
values, δð0Þ2γ turns negative as the VP corrections are
eventually superseded by the dominant soft bremsstrahlung
contributions. Nevertheless, for the lowest MUSE muon
beam momentum, p ¼ jp⃗j≳ 115 MeV=c, even the total
correction δ2γ remains positive due to VP dominance. It is
also quite evident that there is no significant lepton beam
momentum dependence on the individual LOα and NLOα

components of the radiative corrections in the MUSE
kinematical range, 115 < p < 210 MeV=c.

Figure 13 also displays the δelresum results where the
potentially large double-logarithms have been effectively
iterated to all orders in α. The exponentiated radiative
effects leads to the well-known Sudakov suppression, as is
clearly evident in the electron scattering results. This Q2

suppression effect is almost numerically comparable to
the OðαÞ NLOα corrections. In contrast, for muon scatter-
ing, there is no discernible NLOα suppression. Such
contrasting results can be easily anticipated in regard to
the MUSE kinematics, since the same jQ2j range that may
be identified with typical low-momentum transfer dynam-
ics for μ-p scattering becomes a region of high-momentum
transfer in relativistic e-p scattering. For example, in
Ref. [68], the same reason was attributed to the validity
of the high-energy peaking approximation for electron
scattering at MUSE, when it fails for muon scattering. We
therefore anticipate such characteristic suppression to
manifest itself in the radiatively corrected future MUSE
data for electron-proton scattering.
The theoretical uncertainties involved in our calculations

are categorized as the pure chiral hadronic corrections and
the radiative corrections. The following sources of uncer-
tainties are identified in our treatment of the effective Born
cross section. First, the proton’s rms charge radius rp
[cf. Eq. (26)] is an essential input to our chirally corrected
result at ν ¼ 2 order. An uncertainty due to the numerical
differences in the different proton’s rms radius measure-
ments is required. These differences in the extracted charge
radius from high-precision electronic and muonic mea-
surements result in an appreciable error in the value of the

chiral correction δðrmsÞ
χ , namely, Δrms ∼ 6.4% (i.e., with

respect to our central result) [cf. Fig. 2]. However, given the
ongoing contentious radius puzzle scenario [10–14], it
seems not too unreasonable to estimate an error of such
magnitude.8 Second, the hadronic corrections beyond
NNLOχ constitute an important corrections to the LO

7It is worth noting that Schwinger’s method of exponentia-
ting radiative corrections is strictly applicable only for the
“IR-enhanced” double-log terms, e.g., ones proportional to
ln ðm2

e=jQ2jÞ or ln ðΔ2
γ�=jQ2jÞ, where the so-called Sudakov

regions are clearly defined with the only relevant scale as
jQ2j → ∞. However, it is not immediately apparent how to
generalize such ultrarelativistic results to low energies, especially
with other relevant scales, such as m2

μ;M2 ≳Q2, etc., and
constitutes a topic certainly beyond the scope of the present
discussion. Consequently, in a simplified approach, we naively
approximate the large double-log resummation by exponentiating
our NLOα result (also including the NNLOα errors) δ2γ , save the
VP contributions δvac, which do not contain IR-enhanced terms.

8For instance, using the measured rms radius from the
recent PRad Collaboration [21], rðepÞp ¼ 0.831� 0.007ðstatÞ �
0.012ðsystÞ fm, and from the erstwhile CREMA Collabora-

tion [12], rðμHÞ
p ¼ 0.84087ð39Þ fm, we could obtain an

effective error estimate due to the input rms radius con-

tributions in the chiral chiral corrections δðrmsÞ
χ as Δrms¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
PRadþΔ2

CREMAþΔ2
diffþΔ2

NNLO

p
∼6.4%;, where ΔNNLO ∼

1%, and ΔPRad ¼ 2rðepÞp ðδrðepÞp Þexp
ðrðepÞp Þ2− 3κp

2M2

∼ 5.5%; ΔCREMA ¼ 2rðμHÞ
p ðδrðμHÞ

p Þexp
ðrðμHÞ

p Þ2− 3κp

2M2

∼

0.1%; Δdiff ¼ 2rðμHÞ
p ðrðepÞp −rðμHÞ

p Þ
ðrðμHÞ

p Þ2− 3κp

2M2

∼ 3.1%;, where ðδrðμHÞ
p Þexp stands

for respective experimental uncertainties. Note that the above-
quoted percentage errors are not relative to the LO Born

contributions but are with respect to the central values of δðrmsÞ
χ .

TALUKDAR, SHASTRY, RAHA, and MYHRER PHYS. REV. D 104, 053001 (2021)

053001-32



FIG. 13. The total fractional radiative corrections (in percentage) at LOα, δ
ð0Þ
2γ , and up to and including NLOα, δ2γ ¼ δð0Þ2γ þ δð1Þ2γ , in

HBχPT for e-p (left panel) and μ-p (right panel) elastic cross sections as a function of jQ2j for the MUSE beam momenta,
jp⃗j ¼ p ¼ 115, 153, 210 MeV=c. Each plot covers the full kinematically allowed scattering range 0 < jQ2j < jQ2

maxj when θ ∈ ½0; π�.
The thickened portion of each curve corresponds to the MUSE kinematic cut, where θ ∈ ½20°; 100°�. The lab frame detector acceptance
Δγ� is taken to be 1% of the incident lepton energy E. The corresponding total fractional resummed results, δelresum, Eq. (101), are
also displayed for comparison.
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Born cross section, Eq. (23). As mentioned, the N3LO χ

[i.e., OðQ3=M3Þ ∼ 0.008] corrections due to the exclusion
of ν ¼ 3 chiral-order hadronic interactions constitute an
uncontrolled error, the estimation of which really lies
beyond the present scope of this work. Nevertheless,
commensurate with our discussions of our EFT power
counting (cf. Sec. I), an error ofΔNNLO ∼ 1% on each of the
two types of chiral corrections, viz., rms and recoil con-
tributions [cf. Eq. (25)], can naively be attributed for the
low-energy MUSE kinematics (cf. Fig. 2). Third, other
sources of hadronic uncertainties arise from nonperturbative
effects due to various resonances and excited nucleon states
(see, e.g., Refs. [51,52,55,56]. Furthermore, nonperturbative
techniques, such as dispersively improved χPT [33,37–39]
are needed for rigorous estimationof the inherent systematics
which are not captured in the perturbative framework such as
ours. However, such contributions also constitute uncon-
trolled uncertainties that we cannot readily assess.
The uncertainties in our treatment of the radiative

corrections can be summarized as follows:
1. The only free parameter in this work is the soft-

photon detector acceptance factor Δγ�. The sensi-
tivity of our result on the parametric dependence on
this cutoff parameter is illustrated in Fig. 14. This
figure depicts our analytical results corresponding to
the partially resummed NLOα radiative corrections
δelresum, as Δγ� is varied in the reasonable range (0.5–
2)% of the incident lepton beam energy E, with
Δγ� ¼ 1% being our benchmark value of the accep-
tance. As expected, for electron scattering, the
radiative corrections decrease in magnitude with
larger values of the acceptance. However, for muon
scattering, the behavior is somewhat atypical due the

change of sign of δð0Þ2γ versus jQ2j.
2. Our HBχPT calculations indicate much larger than

expected NLOα to LOα relative corrections in the
case of muon scattering close to the upper limit of
the MUSE kinematic range. As mentioned, for muon
scattering, δ2γ goes through a zero at some small Q2

value. Especially, when δð0Þ2γ ≈ 0, the NNLOα con-
tributions are needed for a more robust evaluation of
radiative corrections. We, however, provide a partial
assessment of the NNLOα effects that reveals a

maximal uncertainty of 3% and 0.1%, respectively,
to effect the LO elastic Born cross section for
electron and muon scatterings at MUSE energies
(cf. Fig. 15).

3. One source of uncontrolled systematics afflicting
our evaluations is attributed to the inherent
differences in the TPE evaluations with and without
invoking SPA. As already mentioned, an exact
evaluation of our IR-divergent one-loop diagrams
with an insertion of a heavy baryon propagator is
rather intricate and has not been pursued earlier. We
already referred to Ref. [42], in which an attempt
was made in order to include the hard two-photon
effects in the TPE contributions. We are, however,
unable to currently assess the uncertainty due to the
missing hard-photon contribution based solely on
this work. We simply refer to an ongoing effort [73]
to analytically evaluate a family of such TPE direct
and crossed box diagrams at NLOα, wherein the
large cancellations among them in the k → 0 limit,
as noted in Ref. [58], are not explicitly manifest
without SPA. A detailed investigation of the TPE
diagrams without SPA shall be presented in a future
publication.

Figure 15 displays our HBχPT results for the total
corrections (chiral plus radiative) to the l-p elastic differ-
ential cross section, Eq. (101), where all tractable sources
of systematic uncertainties are consolidated. Our central

results for the total factional corrections, δð2Þχ þ δelresum, as
denoted by the solid red curves, correspond to the radiative
corrections up to and including NLOα partially resummed
to all orders in QED. Likewise, our partially resummed
results including the NNLOα terms, that contribute to the
theoretical uncertainty, are denoted by the dashed blue
curves. For electron scattering, the largest conceivable
source of theoretical uncertainty evidently stems from
the parametric dependence on the detector acceptance

Δγ� (yellow bands), which overwhelms the proton’s δð2Þχ
uncertainty (cyan bands). In contrast, for muon scattering,

the uncertainty in both δelresum and δð2Þχ is rather moderate
with the latter slightly larger than the former. Only for
electron scattering do we find a moderate difference (about
3% of the LO Born cross section) between our complete
NLOα and partially included NNLOα results.
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FIG. 14. Variation of the partially resummed fractional radiative correction up to and including NLOα, δelresum, in HBχPT to e-p (left
panel) and μ-p (right panel) elastic cross sections as a function of jQ2j for the MUSE beam momenta, jp⃗j ¼ p ¼ 115, 153, 210 MeV=c.
Each plot covers the full kinematic range 0 < jQ2j < jQ2

maxj when θ ∈ ½0; π�. The thickened portion of each curve corresponds to the
MUSE kinematic cut, where θ ∈ ½20°; 100°�. The (yellow) bands correspond to the variation of the results with the lab frame detector
acceptance in the range, 0.5% < Δγ� < 2%, of the incident lepton energy E.
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FIG. 15. The total fractional corrections considered in this work, i.e., δð2Þχ þ δelresum, (in percentage) for e-p (left panel) and μ-p (right
panel) elastic scattering cross sections as a function of jQ2j. Each plot covers only the MUSE kinematic range of jQ2j values where the
scattering angle lies within the range, θ ∈ ½20°; 100°�, at specific incoming lepton momenta, jp⃗j ¼ p ¼ 115, 153, 210 MeV=c. The solid
(dashed) red (blue) curves correspond to the partially resummed radiative corrections up to and including NLOα (including NNLOα),
with the lab frame detector acceptance Δγ� being 1% of the incident lepton energy E. The yellow bands correspond to the error in the
radiative corrections due to the variation, 0.5% < Δγ� < 2%, while the bands in cyan correspond to the error in the pure hadronic chiral

corrections δð2Þχ .
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VI. CONCLUSIONS

Within the framework of HBχPT, we have evaluated
up-to-and-including-NNLOχ hadronic chiral corrections
as well as the NLOα radiative corrections to elastic
lepton-proton scattering cross section. The hadronic chiral
corrections include the pion loop effects and LECs para-
metrizing the proton structure. We found that in the MUSE
kinematic range the NNLO χ fractional corrections with
respect to the leading-order Born cross section are about
10% and 20% for electron and muon scattering processes,
respectively. We further estimated that the next-higher-
order hadronic corrections (N3LO χ) do not contribute a
larger uncertainty than the current experimental dis-
crepancies pertaining to the rms radius. Regarding the
radiative corrections, we included all possible virtual
photon loops as well as soft photon bremsstrahlung
corrections. We demonstrated that the IR divergences
systematically cancel at each radiative chiral-order, i.e.,
at LOα and NLOα.
Only in our analytical calculations of the one-loop

TPE box diagrams, do we invoke SPA following our
evaluations in the previous work outlined in Ref. [58].
With methodological difficulties associated with the exact
evaluation of the box diagrams in DR, the SPA method-
ology offers a standard analytical procedure in assessing
the contribution from the elastic intermediate proton state,
as advocated in Refs. [1,45].9 Unfortunately, the contribu-
tion of the kinematically hard two-photon-loops integration
regions is left out in the process. It is, however, a well-
accepted fact that the contribution from the hard part of the
TPE loops becomes significant only at large-jQ2j values
and lepton beam energies as well as in the proximal region
of backscattering. On the other hand, given the very low-
energy dynamics of our calculations, it is conceivable that
the hard part (those essentially stemming from the inelastic
dynamics of partons) would not effect the TPE contribu-
tions in any significant way (see, e.g., Ref. [84] for recent
discussions). Nevertheless, the issue of including the two-
hard-photon exchange should be considered in a future
investigation in order to reduce the systematic errors in the
TPE evaluation. In order to minimize possible model
dependence, our approach utilizes the existing analytically
derived χPT form factors [51,52,54], consistent with our
power counting scheme. By directly relying on the input
proton’s rms radius, we tacitly bypassed the introduction of
model form factors, Fp

1;2 at the photon-proton vertices,
unlike in the work of, e.g., Ref. [42], in which the finite part
of the TPE amplitudes was evaluated numerically in a
relativistic framework. What is still not clear is how large

the two-hard-photon contributions are relative to the
SPA they employed in order to isolate the IR-singularity
following Ref. [1]. For this reason, and since we cannot
assess the influence the form factors on their results, we are
at this point unable to estimate the possible systematic
uncertainties incurred due of the use of SPA in our
evaluation.
In our estimate of the bremsstrahlung contributions due

to the undetected soft photons with energies below the
detector threshold Δγ� , we use the soft photon momentum
limit k → 0 in our calculations, a methodology widely used
to extract the IR divergences as introduced in Ref. [57].
However, the introduction of the artificial dependence on
the free parameter Δγ� is certainly a demerit of the current
methodology that needs to be improved in future, e.g., by
the inclusion of the hard or detectable part of the elastic
radiative tail for a realistic estimation of the radiative
corrections. All our analytical results presented in this
paper depend on Δγ� ∼ 1%, which theoretically complies
with the expected lowest bremsstrahlung photon energy
detectable in present-day experiments. We simply note
here that in the case of the MUSE setup with a single arm
beam line arrangement, only high-energy photons at for-
ward angles can be detected. Thus, from a more practical
viewpoint, a modification of our current analysis incorpo-
rating the anticipated MUSE features must be employed for
a more pertinent future data analysis.
Notably, in all our evaluations in this work, we have

explicitly included the masses of the leptons and also the
often neglected Pauli form factor contributions to the
lepton-photon vertex corrections. Our calculations revealed
that both the TPE and the proton bremsstrahlung process
start to contribute to the radiative corrections only at NLOα

in HBχPT. Our work suggests that in the MUSE kinematic
range, the total radiative corrections up to and including
NLOα for electron scattering can be as large as 25%, while
for muon scattering, they are no more than 2% (cf. Fig. 14).
Furthermore, we observe that for the muon scattering,

the LOα radiative correction δð0Þ2γ goes through zero in the
MUSE kinematic range; i.e., in this energy range, the
NLOα contributions dominate. This naturally indicates
the importance of the NNLOα corrections in order to
correctly assess the insofar neglected proton’s structure-
dependent chiral-radiative effects. Although such NNLOα

corrections have been partially included in this work for the
sake of estimating the theoretical error, a complete NNLOα

evaluation is relegated to a possible future project. We
finally remark that in the work of Ref. [68], a HBχPT
estimation of the elastic radiative tail distribution was
considered at NLOα accuracy, where IR divergences were
not explicitly addressed. Thus, a renewed low-energy
HBχPT approach is needed in order to explore the
prospects of a systematic inclusion of the radiative tail
effects in a complete radiative “unfolding” analysis in close
analogy to the erstwhile work of Ref. [61].

9To contrast our nonrelativistic chiral expansion in inverse
powers of the proton massM, the analysis of the TPE amplitudes,
e.g., in Ref [45], were evaluated relativistically, meaning that they
preserve terms to all orders in 1=M.
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APPENDIX A: S-FRAME

In this Appendix, we discuss the ī between the lab frame
and the boosted S-frame [1,59–62]. The S-frame is defined
as the center-of-mass system of the recoil proton and the
soft bremsstrahlung photon, such that

p⃗0
p þ k⃗ ¼ Q⃗ ⟶

S-frame
Q⃗S ¼ 0⃗: ðA1Þ

Here, p⃗0
p and k⃗ are the respective lab frame three-momenta of

the recoil proton and the emitted soft photon, and Q⃗ ¼
p⃗ − p⃗0 ¼ p⃗0

p − p⃗p is the three-momentum transferred in the
l-p elastic scattering process in the lab frame, i.e., the target
proton three-momentum p⃗p ¼ 0⃗. The maximum energy of
the soft (undetected) photon fixes the upper limit of the
bremsstrahlung energy integration and is conventionally
taken as detector acceptance Δγ� in the lab frame. This in
essence corresponds to the maximal deviation of the out-
going lepton energy E0el from its theoretical elastic limit E0
while practically preserving elastic conditions, i.e.,
E0 − E0el ≤ Δγ� . In the ensuing treatment using the soft

photon limit, namely, k ¼ ðEγ� ; k⃗Þ → 0, we shall use
E0el ≈ E0.10 In a boosted frame, the maximum photon energy
limit becomes a frame-dependent quantity, which we denote
as ΔS ≠ Δγ� in the S-frame. The phase-space integration for
the lab frame differential cross section for the soft brems-
strahlung process, lp → lpγ�soft, namely,

½d̃σðLOα;NLOαÞ
br �γγ� ¼

ð2πÞδlabk
8ME0

pE
d3p⃗0

ð2πÞ32E0
d3k⃗

ð2πÞ32Eγ�

×
1

4

X
spins

jfMðLOα;NLOαÞ
γγ� j2; ðA2Þ

with the LOα and NLOα squared bremsstrahlung amplitudesfMðLOα;NLOαÞ
γγ� in the respective soft photon limits [cf. Eqs. (62)

and (88) in the main text], is complicated by the dependence
on the photon emission angles present in the energy
conserving δ-function, namely,

δlabk ≡ δ
�
EþM − E0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ⃗ − k⃗Þ2 þM2

q
− Eγ�

	
;

appearing in the above expression. Consequently, the emitted
photon radiation spectrum in the lab frame becomes aniso-
tropic, being defined over a ellipsoidal integration volume,
which is difficult to evaluate analytically. However, by
boosting to the S-frame, the integration simplifies into a
standard spherical one (see, e.g., Ref. [59]), with the above
δ-function becoming free of the photon angles in the soft
photon limit. This effectively transforms the S-frame kin-
ematics intooneakin to a“reversed”elastic scenario in thesoft
photon limit, denoted by the constraint,

δS ≡ δðES þ ES
p − E0S − E0S

p Þ;

where all S-frame quantities are denoted by the superscript/
subscript “S”. In terms of the lab frame quantities, the
following relationships can then be justified,

ðiÞ E0S
p ≈M; ðiiÞ ES ≈ E0 ¼ E

η
;

ðiiiÞ E0S ≈ E; ðivÞ ES
p ≈ E0

p;

ðvÞ cos θS ≈ cos θ; ðviÞ ΔS ≈ ηΔγ� ; ðA3Þ

whereη ¼ 1þ 2E sin2ðθ=2Þ=M is the lab frameproton recoil
factor. In otherwords, the energy transformations between the
two frames are easily effected by simply interchanging the
energies between the initial and final states of the elastic
process.
In view of pedagogical interests, we derive these rela-

tions between the two frames using the limit of soft
photons. We make use of the four-momentum conservation
relation for the bremsstrahlung process, namely, pþ P−
p0 ¼ P0 þ k:

(i) First, we consider the invariant ðP0 þ kÞ2 in the
S-frame:

ðP0S þ kSÞ2 ¼ M2 þ 2E0S
p ES

γ� þ 2ðES
γ� Þ2

⇝
γsoftM2:

Since p⃗0S
p þ k⃗S ¼ 0, we must have

ðP0S þ kSÞ2 ¼ ðE0S
p þ ES

γ� Þ2⇝
γsoftðE0S

p Þ2;

which implies E0S
p ≈ M.

(ii) Second, we consider the invariant p · ðP0 þ kÞ. In
the S-frame, we have

pS · ðP0S þ kSÞ ¼ ESðE0S
p þ ES

γ� Þ⇝
γsoftMES;

10In general, with real photon emissions, E0el ≤ E0. The
equality only holds for the “strictly elastic” (nonradiative)
kinematics, which is evidently unrealistic in a given laboratory
experiment. In this work, since we are concerned with the
“physical” elastic process that is naturally accompanied by soft
photon bremsstrahlung, E0el ≈ E0 is implicitly understood.
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while in the lab frame, we have

p · ðP0 þ kÞ ¼ p · ðPþQÞ

¼ MEþQ2

2
¼ ME0:

This implies ES ≈ E0.
(iii) Third, we consider the invariant p0 · ðP0 þ kÞ:

p0 · ðP0 þ kÞ ¼ p0S · ðP0S þ kSÞ
↪ p0 · ðPþQÞ ¼ E0SðE0S

p þ ES
γ� Þ

⇝
γsoftME0 −

Q2

2
≈ME0S:

Since, E ¼ E0 −Q2=ð2MÞ, the above relation im-
plies E0S ≈ E.

(iv) Fourth, we consider the energy conservation in the
S-frame,

ES þ ES
p − E0S ¼ E0S

p þ ES
γ� ;

ES
p ¼ E0S

p þ ES
γ� þ E0S − ES

⇝
γsoftM þ E − E0 ≈ E0

p;

where we have used the relations derived for ES, E0S,
and E0S

p . Thus ES
p ≈ E0

p.
(v) Fifth, we use the invariant expression for the squared

four-momentum transfer Q2 ¼ Q2
S in each frame,

Q2 ¼ 2m2
l − 2EE0ð1 − ββ0 cos θÞ;

Q2
S ¼ 2m2

l − 2ESE0Sð1 − βSβ
0
S cos θSÞ

⇝
γsoft

2m2
l − 2E0Eð1 − β0β cos θSÞ;

where the incoming and outgoing lepton velocities
in the lab frame and S-frame are (β ¼ jp⃗j=E,
β0 ¼ jp⃗0j=E0) and (βS ¼ jp⃗Sj=ES, β0 ¼ jp⃗0Sj=E0S),
respectively, and θ, θS are the corresponding scatter-
ing angles. Using the relations derived for ES, E0S, it
follows that cos θS ≈ cos θ.

(vi) Finally, squaring the aforementioned four-momen-
tum conservation relation and then expressing the
left- and right-hand sides in terms of the lab frame
and S-frame quantities, respectively, yields

2m2
l − 2p · p0 þ 2MðE − E0elÞ ¼ 2P0S · kS

¼ 2MΔS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ΔS

M

�
2

s
þ 2Δ2

S;

where E0 − E0el ≤ ΔS, with ΔS being the maximal
limit of the emitted soft photon energy in the S-

frame, i.e., ES
γ� ¼ jk⃗Sj≲ ΔS ≪ M. Next, to obtain an

estimate for ΔS in the soft photon limit, we further
neglect the lepton mass, ml ≪ M, such that the
above relation becomes

MðE − E0elÞ − EE0elð1 − cos θÞ

¼ MΔS

�
1þO

�
ΔS

M

��
:

Furthermore, in the elastic limit, i.e., with ΔS → 0

and E0el → E0, the above equation reduces to

MðE − E0Þ − EE0ð1 − cos θÞ ¼ 0:

Then, subtracting the latter relation from the former
yields our desired expression for ΔS:

ΔS ¼ ðE0 − E0elÞ
�
1þ 2E

M
sin2

�
θ

2

��
þO

�
ΔS

M

�
≈ ηΔγ� :

Thus, the upper limit of the soft photon bremsstrah-
lung integrals (see Appendix B) in the S-frame is
taken as ΔS ≤ ηΔγ� .

APPENDIX B: SOFT BREMSSTRAHLUNG
INTEGRALS

As detailed in this paper, the one-loop virtual radiative
corrections possess IR divergences at the amplitude level.
These integrals are conveniently evaluated by boosting
to the S-frame following, e.g., Refs. [1,59–62], and some
details of these calculations will be outlined in this
Appendix. For the bremsstrahlung corrections, similar
IR divergences have to be extracted at the cross section
level, which involves integration over the soft photon
radiative tail below the detector threshold, i.e., Eγ� < Δγ� .
The IR divergences so extracted in each case were
demonstrated to cancel order by order. Below, we
demonstrate the process of extracting the IR divergences
using DR from the phase-phase integration of Eq. (A2).
Notably, the assumption that the soft photon emission
(i.e., k → 0) does not effectively alter the elastic kin-
ematics, implies that the four-momentum transfer for the
bremsstrahlung process, q ¼ ðQ − kÞ, is approximately
equal to the four-momentum transfer Q for the elastic
process. This simplification allows the photon phase-
space integration to be performed analytically in closed
form. Using the LOα and NLOα squared bremsstrahlung
amplitudes [cf. Eqs. (62) and (88) in the main text]
results in the following type of integrals:

RADIATIVE AND CHIRAL CORRECTIONS TO ELASTIC … PHYS. REV. D 104, 053001 (2021)

053001-39



@LOα & NLOα∶
Z

d3k⃗
k

1

ðp · kÞ2 δ
lab
k ; ðB1Þ

@LOα & NLOα∶
Z

d3k⃗
k

1

ðp0 · kÞ2 δ
lab
k ; ðB2Þ

@LOα & NLOα∶
Z

d3k⃗
k

p0 · p
ðp · kÞðp0 · kÞ δ

lab
k ; ðB3Þ

@NLOα∶
Z

d3k⃗
k

l
ðv · kÞðp · kÞ δ

lab
k ; ðB4Þ

@NLOα∶
Z

d3k⃗
k

l
ðv · kÞðp0 · kÞ δ

lab
k : ðB5Þ

Especially, the first three types of integrals appearing
in both the LOα and NLOα contributions to the bremsstrah-
lung process were known from earlier works, e.g., in
Refs. [61,85]. The presence of thebremsstrahlung δ-function
constraint δlabk (see Appendix A) in the above integrals
complicates their evaluation in the lab frame. However, this
apparent hurdle is overcome by employing Tsai’s technique
[59] of boosting to the S-frame in the soft photon limit.
The corresponding elastic δ-function δS (see Appendix A)
becomes jk⃗j ¼ Eγ� independent and can therefore be readily
taken outside the integrals. The resulting integrals in the
S-frame are evaluated by analytically continuing to d − 1
spatial dimensions, where d−1¼3−2ϵIR with ϵIR < 0.
Thus, in terms of laboratory frame variables, the following
S-frame integrals are required to be evaluated via dimensional
regularization,

LðSÞ
ii ¼ m2

l

2

Z
d3k⃗S

kS
1

ðpS · kSÞ2 ↦
DR m2

l

2

Z
dd−1kS

kS
1

ðpS · kSÞ2

¼ m2
l

2
ð2πμÞ2ϵIR

Z
ηΔγ�

0

ðkSÞd−3dkS∯ dd−2ΩS
k

1
ðpS · kSÞ2

¼ π

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
þ 2πL̃ðSÞ

ii ; ðB6Þ

where μ is the subtraction scale, and similarly,

LðSÞ
ff ↦

DR m2
l

2

Z
dd−1kS

kS
1

ðp0S · kSÞ2 ¼ π

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
þ 2πL̃ðSÞ

ff ; ðB7Þ

LðSÞ
if ↦

DR
Z

dd−1kS

kS
ðp0S · pSÞ

ðpS · kSÞðp0S · kSÞ ¼ π

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
ν2 þ 1

ν
ln

�
νþ 1

ν − 1

�
þ 2πL̃ðSÞ

if ; ðB8Þ

LðSÞ
i ↦

DR 1

2

Z
dd−1kS

kS
1

ðv · kSÞðpS · kSÞ ¼
π

β0E0

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
þ 2πL̃ðSÞ

i ; ðB9Þ

LðSÞ
f ↦

DR 1

2

Z
dd−1kS

kS
1

ðv · kSÞðp0S · kSÞ ¼
π

βE

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
þ 2πL̃ðSÞ

f : ðB10Þ

Here, kS ¼ jk⃗Sj ¼ ES
γ� is the soft photon three-momen-

tum or energy; β ¼ p=E and β0 ¼ p0=E0 ≈ β0el ¼ p0el=E0el
are the incoming and elastically scattered outgoing lepton

velocities; and as found ubiquitous in the main text, ν ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l =Q
2

q
is an invariant kinematical variable asso-

ciated with the radiative corrections to the lepton scattering.
Note that we additionally encounter an integral stemming
from Eq. (88) (main text), formally contributing to the
bremsstrahlung cross section at NLOα but kinematically
suppressed to NNLOα being proportional to RQ, namely,

2RQ

Z
d3k⃗S

ðkSÞ3 ↦
DR

2RQ

Z
dd−1kS

ðkSÞ3 → 0;

which is scaleless and vanishes trivially on using DR.

Next, after isolating the finite parts, L̃ðSÞ
ii , L̃ðSÞ

ff , and L̃ðSÞ
if ,

from their respective IR-divergent parts, we revert back
to the lab frame. In this case, the corresponding lab
frame integrals are readily obtained by substituting the
energy transformation relations (see Appendix A),
namely,
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Lii ¼ π

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
þ 2πL̃ii; L̃ii ¼

1

2
ln

�
4η2Δ2

γ�

−Q2

�
−

1

4β
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
; ðB11Þ

Lff ¼ π

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
þ 2πL̃ff ; L̃ff ¼

1

2
ln

�
4η2Δ2

γ�

−Q2

�
−

1

4β0
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
; ðB12Þ

Lif ¼ π

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
ν2 þ 1

ν
ln

�
νþ 1

ν − 1

�
þ 2πL̃if ;

L̃if ¼
ν2 þ 1

2ν

"
ln

�
4η2Δ2

γ�

−Q2

�
ln

�
νþ 1

ν − 1

�
þ ln2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− Sp

�
1 −

λνE0 − E
ð1 − β0ÞE0ξν

�

− Sp

�
1 −

λνE0 − E
ð1þ β0ÞE0ξν

�
þ Sp

�
1 −

λνE0 − E
ð1 − βÞEλνξν

�
þ Sp

�
1 −

λνE0 − E
ð1þ βÞEλνξν

�#
; ðB13Þ

Li ¼
π

βE

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
þ 2πL̃i;

L̃i ¼
1

2βE

"
ln

�
4η2Δ2

γ�

−Q2

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
þ 1

2
Sp

�
2β

β þ 1

�
−
1

2
Sp

�
2β

β − 1

�#
; ðB14Þ

Lf ¼
π

β0E0

�
1

jϵIRj
þ γE − ln

�
4πμ2

−Q2

��
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
þ 2πL̃f ;

L̃f ¼
1

2β0E0

"
ln

�
4η2Δ2

γ�

−Q2

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
þ 1

2
Sp

�
2β0

β0 þ 1

�
−
1

2
Sp

�
2β0

β0 − 1

�#
; ðB15Þ

where ξν ¼ 2ν
ðνþ1Þðν−1Þ and λν ¼ 3ν−1

ν−1 .

Finally, we present the expression for the nonfactorizable finite part [i.e., not proportional to the LO Born contribution,
Eq. (23) in the main text] of the bremsstrahlung differential cross sections at NLOα [cf. Eq. (91) in the main text] involving
an exact analytical evaluation (viz., without considering the soft photon limit) by boosting to the S-frame:�
dσbrðQ2Þ

dΩ0
l

�
lpð1Þ;v

γγ�

����
S-frame

¼ −
4α3

π2Q2M

�
ηβ

β0

�Z
ηΔγ�

0

kSdkS

Q2 − 2kSðE0 − EÞ
�
4πðEþ E0Þ þm2

l ðEþ E0ÞðLðSÞ
iv − LðSÞ

fv Þ

− E0LðSÞ
fv − ELðSÞ

iv þ kS
�
1

2
Q2 −m2

l

�
ðLðSÞ

iv þ LðSÞ
fv Þ

�
;

¼ −
8α3ηΔγ�

πQ4M

�
ηβ

β0

�"
ηΔγ� ðEþ E0Þ −



2m2

l ðE − E0Þ − ηΔγ�

�
1

2
Q2 −m2

l

��

×

(
1

Eβ
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
−

1

E0β0
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s )
− ηΔγ�

E2

E0β0

(�
1 −

β

β0

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
− β

)

− ηΔγ�
E02

Eβ

(�
1 −

β0

β

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− β0

)
þ o

�fQ; ηΔγ�g
M

�#
: ðB16Þ

Here, the evaluated integral is expressed in terms of lab frame quantities for convenience. Noting that E − E0 ¼
−Q2=2M, the symbol “o” represents other possible 1=M-order terms which arise due to the soft bremsstrahlung integration
over the Δð1=MÞs [cf. Eqs. (90)] and contribute to the NNLOα theoretical error. Since these terms are eventually dropped
from our central analytical results intended at NLOα accuracy, for brevity, we refrain from displaying such lengthy
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expressions. They are, nonetheless, evaluated numerically while estimating the error. Finally, in the above expression, LðSÞ
iv ,

LðSÞ
iv , LðSÞ

fv , and LðSÞ
fv are the finite two-dimensional angular integrals:

LðSÞ
iv ¼ ∯ dΩS

k
1

pS · kS
¼ 4π

E0 β0kS
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
; ðB17Þ

LðSÞ
iv ¼ ∯ dΩS

k
p0S · kS

pS · kS
¼ 4πE

E0β0

"�
1 −

β

β0

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
− β

#
; ðB18Þ

LðSÞ
fv ¼ ∯ dΩS

k
1

p0S · kS
¼ 4π

EβkS
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
; ðB19Þ

LðSÞ
fv ¼ ∯ dΩS

k
pS · kS

p0S · kS
¼ 4πE0

Eβ

"�
1 −

β0

β

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− β0

#
: ðB20Þ

On reverting back to the laboratory frame from the S-frame, we again use the same set of kinematical transformations (see

Appendix A) to obtain the contribution to the fractional NLOα bremsstrahlung corrections δð1Þγγ� [cf. Eq. (94) in the main text]
to the LO elastic (Born) differential cross section:

δlpð1Þ;vγγ� ðQ2Þ ¼
�
dσbrðQ2Þ

dΩ0
l

�
lpð1Þ;v

γγ�

��
dσelðQ2Þ

dΩ0
l

�
0

¼ −
α

πMη

�
8Δγ�

ηQ2 þ 4E2

�"
Δγ� ðEþ E0Þ −



2ηm2

l ðE − E0Þ þ Δγ�

�
1

2
Q2 −m2

l

��

×

(
1

Eβ
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
−

1

E0β0
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s )
− Δγ�

E2

E0 β0

(�
1 −

β

β0

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
− β

)

− Δγ�
E02

Eβ

(�
1 −

β0

β

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− β0

)#
þ o

�
α
Q2

M2

�
: ðB21Þ
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