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We extend Kodama-Ishibashi and Jansen-Rostworowski-Rutkowski master field framework to study
quasinormal modes of black branes and black holes of Einstein gravity in D ¼ 5 space-time dimensions
with multiple scalars and an arbitrary bulk potential. As an application, we consider a thermodynamically
unstable state of mass deformed N ¼ 4 supersymmetric Yang-Mills theory at strong coupling. The
corresponding gravitational dual is N ¼ 2� black brane with a dynamical instability of its translationary
invariant horizon. We study the dependence of the quasinormal mode spectra as the boundary gauge theory
is compactified on S3—the black brane is turned into the black hole.
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I. INTRODUCTION

One of the thermodynamic inequalities of a thermal state
at equilibrium, also known as a condition for a thermody-
namic stability, is [1],

cv
s
≡ T

s

�∂s
∂T

�
v
> 0; ð1:1Þ

where T is a temperature density, s is an entropy density
and cv is a constant volume specific heat density. In gauge
theory/string theory correspondence [2,3], the properties of
thermal states of strongly coupled gauge theories are
encoded in thermodynamics of the corresponding planar
black hole horizon geometries. The thermodynamic stabil-
ity is equally applicable to black branes: here, the entropy
density is the Bekenstein entropy density of a regular
Schwarzschild planar horizon, and the temperature is its
Hawking temperature. Perturbed black branes relax to
thermal equilibrium via quasinormal modes (QNMs) [4].
In some cases the spectra of QNMs contains unstable states,
i.e., the QNMs with1

Im½w� > 0: ð1:2Þ
When excited, these modes grown exponentially (in a
linearized approximation), rather then decaying. In the dual

boundary language, their presence signals a dynamical
instability of the strongly coupled plasma to density-
pressure fluctuations breaking the translational invariance
of the thermal equilibrium state.
In [5,6] the authors formulated the correlated stability

conjecture (CSC): A black brane thermodynamic (in)
stability correlates with its dynamical (in)stability The
conjecture is applicable only to horizons with translational
invariance, e.g., simple higher-dimensional Schwarzschild
black holes in Einstein gravity with a cosmological con-
stant are stable [7]. If true, the CSC would provide a way to
bypath technically complicated QNM analysis and reestab-
lish the dynamical (in)stability of a horizon.
In one direction, the CSC is trivial [8]: thermodynamic

instability of an extended horizon implies its dynamical
instability. Indeed, a basic thermodynamic relation between
the speed of the sound waves in (uncharged) plasma cs and
its specific heat

c2s ¼
s
cv

; ð1:3Þ

implies that when cv < 0 the speed of the sound waves is
purely imaginary. As a result, the sound mode, i.e., the
scalar channel black brane QNM,

wðqÞ ¼ �csq − 2πi
η

s

�
2

3
þ ζ

2η

�
q2 þOðq3Þ; ð1:4Þ

is unstable for some sign and for small enough q. In (1.4), η
and ζ are the shear and the bulk viscosities of the plasma. The
presence of such dynamical instability in thermodynami-
cally unstable horizons was explicitly verified in [8–11].
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1We define reduced frequency and momenta as w≡ w=ð2πTÞ
and q ¼ k=ð2πTÞ.
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In the other direction the conjecture is simply wrong.2 A
sharp recent counterexample is the holographic conformal
order [13–15]. It is straightforward to construct holographic
models in asymptotically AdSdþ2 with, say Z2 global
symmetry, such that

F
Tdþ1

¼ −C×
�
1; hOi ¼ 0⇒Z2 isunbroken;

κ; hOi ≠ 0⇒Z2 is spontanuouslybroken;

ð1:5Þ

where F is the free energy density, C is a positive constant
proportional to the central charge of the theory, and
0 < κ < 1 is also a constant. The thermodynamics and
the hydrodynamics of both the symmetric and the sym-
metry broken phases are identical, i.e., that of the CFTdþ1.
In particular, see (1.1),

cv
s
¼ d > 0; ð1:6Þ

i.e., both phases are thermodynamically stable. On the
other hand, there is [15] a (nonhydrodynamic) branch of the
scalar sector QNMs that renders the symmetry broken
phase perturbatively unstable, i.e., there is a QNM of the
type (1.2) at q ¼ 0.
The motivation of this study is to “fix” the instabilities of

the extended horizons, by compactifying the Euclidean
space Rd of a dual holographic CFTdþ1 (QFTdþ1 more
generally) on d-dimensional round sphere Sd:

Rd → L2Sd; K ≡ 1

L2
: ð1:7Þ

Specific potential applications are
(i) Curing the instabilities in the hydrodynamic sector,

i.e., in models with c2s < 0. An example: Klebanov-
Strassler black branes [16].

(ii) Curing the instabilities in the nonhydrodynamic
sector, i.e., in models of the holographic conformal
order [15].

The rest of the paper is organized as follows. In
Appendix A we extend the QNM analysis of [17,18] to
black branes/holes in theories of Einstein gravity in D ¼ 5
space-time dimensions with multiple scalars and an arbi-
trary bulk potential:

S5 ¼
Z
M5

d5ξ
ffiffiffiffiffiffi
−g

p �
R −

Xp
j¼1

ηjð∂ϕjÞ2 − VðfϕjgÞ
�
: ð1:8Þ

We then apply the general formalism to N ¼ 2� holo-
graphic model [19–21], summarizing the results in Sec. II.
Technical details of the computations are discussed in

Sec. III. We conclude in Sec. IV. Summary of the numerical
tests performed is presented in Appendix B.
Thermodynamically unstable phase of N ¼ 2� plasma

was identified in [22]. The hydrodynamics of this phase,
and its dynamical instability, was discussed in [9,23,24].
Detailed analysis of the S3-compactified N ¼ 2� unstable
thermodynamics is new.3 Computation of the QNM spectra
of N ¼ 2� black holes is new.

II. SUMMARY

In this section we present results4 of the case study of the
extended unstable horizons in N ¼ 2� holographic model.
We focus on a particular top-down holographic model, and
it is interesting to explore in the future how generic the
reported results are. It is a model of a real string holography
[20,28–30]—we feel it is important to emphasize this as
sometimes subtle effects in toy holographic models do not
occur in string theory [14,31].
We focus on the thermodynamically unstable phase of

the N ¼ 2� theory, where a single mass parameter m is
introduced to the bosonic components of the N ¼ 2

hypermultiplet of N ¼ 4 supersymmetric SUðNÞ Yang-
Mill theory. Wework in the planar limit of the gauge theory,
and at large ’t Hooft coupling—in this case the full string
theory/gauge theory duality is reduced to a supergravity
approximation [2]. The full ten dimensional type IIB
supergravity can be consistently truncated on S5, producing
the Pilch-Warner (PW) effective action [19]. The latter
effective action is in the general class of models covered in
Appendix A.
The general plan is as follows.
(1) We begin with the N ¼ 2� black brane thermody-

namics and hydrodynamics.
(a) We identify a thermodynamically unstable state

ofN ¼ 2� model at K ¼ 0—this is a purple dot5

in Fig. 1, and the left panel of Fig. 3.
(b) Next, we compute the hydrodynamic properties

of this state—Fig. 4. We establish that the speed
of the sound waves c2s < 0, and compute the bulk
viscosity ζ (the purple dots, both panels). We use
the hydrodynamic limit (1.4) as an independent
check on the computation of the QNM spectra in
the framework of Appendix A—the thin red
dashed curves in Fig. 5.

(c) The sound channel QNM of the selected state
(the purple dot) is computed in Fig. 5. We
establish the expected [8] dynamical instability.

(2) We continue with the nonhydrodynamic QNMs of
the N ¼ 2� black brane.

2See [11,12] for an earlier work.

3Some early work appeared in [25,26].
4Also available as a recent talk [27].
5There is nothing special with our selection of the thermody-

namically unstable state—any state on the red dashed curves
would do. The results are qualitatively the same.
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(a) We compute the spectrum of the nonhydrody-
namic modes in the helicity h ¼ 0 sector at
q ¼ 0, initially at m2 ¼ 0, i.e., in pure AdS5-
Schwarzschild black brane, see Fig. 6. This is
one of the two branches of the QNMs in this
helicity sector—the other branch contains the
hydrodynamic (sound) mode with wðq¼0Þ¼0,
detailed in Fig. 5. The two branches decouple at
q ¼ 0. We highlight the two lowest QNMs: the
magenta and the pink one, which we follow,
increasing m2

T2 , to the select unstable thermal state
of interest at (2.14).

(b) The dependence of the magenta (the lowest in
Fig. 6) QNMs at q ¼ 0 as m2

T2 varies as

0 ≤
m2

T2
≤
m2

T2
p
; ð2:1Þ

is shown in Fig. 7. Figure 8 tracks over the same
mass range the pink QNMs in Fig. 6. Both
modes remain stable, i.e., have Im½w� < 0, over
the full mass range (2.1).

(3) We proceed introducing the curvature to the black
brane horizon of the select unstable state. We omit
the description of the background, and present only
the results for the QNMs at temperature (2.14) as K

m2

varies. A sample background thermodynamics at
K
m2 ¼ 1 is shown in Fig. 2 and the right panel
of Fig. 3.

In the absence of curvature, the dispersion of the low
energy quasinormal modes is characterized by few trans-
port coefficients (the speed of the sound waves cs, the shear
η and the bulk ζ viscosities)—see (1.4) and Fig. 5—valid,
provided

q≡ k
2πT

≪ 1 and q ·
T
m

≪ 1: ð2:2Þ

The finite curvature K
m2 ≠ 0 does not invalidate the hydro-

dynamics, but simply restricts its applicability according to
(2.2). Indeed, compactification of the theory on S3 ’quan-
tizes’ the available spatial momenta according to (A11)

q2 ¼ Klðlþ 2Þ
4π2T2

; l ∈ Zþ; ð2:3Þ

which constrains the order of the harmonic lwell described
by (1.4). For example, for K ≪ minfT2; m2g,

2 ≤ ljhydro ≪ lmax ≡min

�
2πTffiffiffiffi
K

p ;
2πmffiffiffiffi
K

p
�
: ð2:4Þ

Note the lower bound on l: the hydrodynamic fluctuation
are fluctuations of the energy density/pressure, which are
physical on S3 only for l ≥ 2, see Appendix A. Of course,
one can improve the agreement of the exact QNM
dispersion wðqÞ with its hydrodynamic approximation
(1.4) by including the higher-order hydrodynamic transport
coefficients, specifically the second-order curvature cou-
pling coefficient κ [32]. In this paper we compute wðqÞ for
generic q, without relying on hydrodynamic approxima-
tions: l ¼ 0 and l ¼ 1 instabilities (see Fig. 9) are always
outside the hydrodynamic approximation; likewise are
outside the hydrodynamic approximation all l ¼ 2
branches in Fig. 13 except for the black and the brown
subbranches for K

m2 ≪ 1.
(i) As discussed in Appendix A, QNMs of the black

holes with spherical horizon at l ¼ f0; 1g are
physically distinct from those with l ≥ 2: the former
ones include physical fluctuations exclusively in the

FIG. 1. Thermodynamics ofN ¼ 2� model in the canonical ensemble at K ¼ 0. The solid blue curve is the thermodynamically stable
phase with cv > 0; the dashed red curve is the thermodynamically unstable phase with cv < 0. Both phases join at the terminal
temperature, denoted by the black dot. The stable phase has a lower free energy density, and is the thermodynamically preferred one
(right panel). The purple dot indicates the thermal state (in the thermodynamically unstable phase) were we compute the QNM spectra
and follow them as K ≠ 0.
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bulk gravitational scalar sector; while the latter ones
mix the bulk scalar and the physical metric fluctua-
tions. In Fig. 9 we present the dispersion of l ¼ 0
(solid curves) and l ¼ 1 (dashed curves) QNMs
with K

m2 at fixed temperature (2.14). At K ¼ 0 these
modes start from the magenta QNMs of Fig. 7. The
l ¼ 1 mode is stable. While the l ¼ 0 mode starts
as the stable ones at K ¼ 0, it develops an instability
in the range

Kstable
l¼0

m2
≤

K
m2

≤
Kunstable

l¼0

m2
: ð2:5Þ

Of course, the starting point at K ¼ 0 can be any
AdS5 QNM of Fig. 6 evolved to the required value
of m2

T2
p
, see (2.14)—e.g., in Fig. 11 we include the K

m2

dispersion of the l ¼ 0 and l ¼ 1 modes starting
from the pink QNMs of Fig. 8.

(ii) In Fig. 13 we present the dispersion of l ¼ 2 QNMs
with K

m2 at fixed temperature (2.14). We discuss only
the modes that originate at K ¼ 0 from the magenta
QNMs of Fig. 7, and the hydrodynamic (sound)
mode (the cyan dot with Im½w� ¼ 0). The l ¼ 2

mode remains unstable from K ¼ 0 up to Kunstable
l¼2 ,

0 ≤
K
m2

≤
Kunstable

l¼2

m2
: ð2:6Þ

(iii) Interestingly, Kunstable
l¼2 < Kstable

l¼0 , thus there is stabil-
ity range of N ¼ 2� black holes at the intermediate
values of K:

Kunstable
l¼2

m2
<

K
m2

<
Kstable

l¼0

m2
: ð2:7Þ

FIG. 2. Thermodynamics of N ¼ 2� model in the canonical ensemble at K ¼ m2 is qualitatively the same as for K ¼ 0, see Fig. 1.

FIG. 3. Thermodynamics of N ¼ 2� model in the microcanonical ensemble at K ¼ 0 (the left panel) and K ¼ m2 (the right panel).
The thermodynamically stable phases (the solid blue curves) terminate at the Êcit, denoted by the black dot. Thermal states with Ê < Êcrit

are thermodynamically unstable (the red dashed curves). The purple dot indicates the reduced energy density Êp of the state selected for
the QNM spectra analysis.
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(iv) Finally, in Fig. 14 we present the dispersion of
higher-lQNMs with K

m2 at fixed temperature (2.14).
We highlight only the unstable subbranch of the
QNMs, the one that originates at K ¼ 0 from the
hydrodynamic (sound) mode. All these modes are
unstable similar to l ¼ 2 mode, see (2.6), with
distinct Kunstable

l such that

Kunstable
l > Kunstable

l0 ; if l0 > l: ð2:8Þ

In the following plots we always present dimensionless
quantities. Dimensionless frequency and momenta of the
QNMs are defined as in footnote 1. We further introduce
the reduced free energy density F̂, the reduced energy
density Ê, and the reduced entropy density ŝ as follows:

F̂ ¼ 8

3π2N2

F
m4

; Ê¼ 8

3π2N2

E
m4

; ŝ¼ 8

3π2N2

s
m3

; ð2:9Þ

where the overall prefactor is chosen in such a way that

lim
m→0

�
m4

T4
Ê
�
¼ 1: ð2:10Þ

A. The thermodynamics and the hydrodynamics of the
model at K = 0

In Fig. 1 we present the thermodynamics of the model at
K ¼ 0 in the canonical ensemble [33]. There is a critical
(terminal) temperature Tcrit;0 (denoted by the black dot)

m2

T2
crit;0

¼ 5.4098ð7Þ; ð2:11Þ

where the two phases join: the solid blue curve is the phase
with cv > 0while the red dashed curve represents the phase
with cv < 0. As T → Tcrit;0 (from above) the specific heat
diverges as

cv
s
∝ �

�
1 −

Tcrit;0

T

�
−1=2

: ð2:12Þ

The free energy density of the thermodynamically unstable
phase is always above that of the stable phase. This is more
clear in the right panel, were we plot

ðδF̂ Þ2=3 ≡ ðF̂ − F̂ Þ2=3

∝ þ
�
1 −

Tcrit;0

T

�
; as T → Tcrit;0: ð2:13Þ

The linear scaling of ðδF̂ Þ2=3 with the temperature near the
criticality is a reflection of (2.12). Note the purple dot in
the red (thermodynamically unstable phase)—more pro-
nounced in the right panel—at temperature Tp,

m2

T2
p
¼ 5.40959: ð2:14Þ

We will study the QNM spectra of the model for different
K
m2, keeping the temperature fixed as in (2.14).
As shown in Fig. 2, the canonical ensemble phase

diagram is qualitatively unchanged as K ≠ 0; here
K ¼ m2. While the critical temperature at K

m2 ¼ 1, Tcrit;1

Tcrit;1 > Tcrit;0; ð2:15Þ

we find that Tcrit is not a monotonically increasing function
of K

m2, e.g.,

m2

Tcrit

				
K=m2¼0.628169

¼ 7.266ð0Þ > m2

Tcrit

				
K=m2¼0

>
m2

Tcrit

				
K=m2¼1

¼ 4.8903ð1Þ: ð2:16Þ

In Fig. 3 we present the thermodynamics of the model in
the microcanonical ensemble: K ¼ 0 (the left panel) and
K ¼ m2 (the right panel). The black dots indicate the
critical point of the canonical ensemble at K

m2 ¼ 0 and
K
m2 ¼ 1,

Êcrit;0 ¼ 0.025990ð4Þ; Êcrit;1 ¼ 0.0099855ð1Þ: ð2:17Þ

The color coding is the same as in Figs. 1 and 2. The purple
dot (the left panel) identifies the state which we use to study
the QNM spectra of the N ¼ 2� thermodynamically
unstable horizon,

Êp ¼ 0.0258644: ð2:18Þ

In Fig. 4 we present the results for the speed of the sound
waves [22] (the left panel), and the bulk viscosity (the right
panel) of the N ¼ 2� black branes [9,23,34]. For consis-
tency, we use the same color coding as in earlier plots: the
solid blue curves denote the thermodynamically stable
phase, and the red dashed ones represent the thermody-
namically unstable phase. As expected from [8], c2s < 0 in
the thermodynamically unstable phase. Note that the speed
of the sound waves vanishes at Tcrit;0, see (2.11), respon-
sible [according to (1.3)] for the divergence of the specific
heat (2.12). The bulk viscosity is finite at the criticality,
denoted as the black dot. The unstable thermal state of
interest once again is indicated with the purple dot—here
the temperature Tp is given by (2.14), and the specific
values of the transport coefficients are

c2s ¼−0.016312ð8Þ; ζ

η
¼ 7.1791ð6Þ; η

s
¼ 1

4π
; ð2:19Þ
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where we included the universal result for the shear
viscosity η as well [35,36]. The knowledge of the transport
(2.19) provides a prediction for the dispersion of the
hydrodynamic sound waves as in (1.4), and a valuable
test of the QNM computations reported in Fig. 5 in the
framework of Appendix A.
In Fig. 5 we present the dispersion w ¼ wðqÞ of the

hydrodynamic quasinormal mode of the N ¼ 2� black
branes in the thermodynamically unstable state represented
by the purple dot in Figs. 1, 3 and 4, at temperature (2.14),
and the energy density (2.18). The dashed red curves
represent the Oðq2Þ hydrodynamic approximation (1.4),
with the appropriate transport coefficients (2.19). The solid
black and blue curves represent wðqÞ for the unstable and
the stable subbranches of the hydrodynamic QNM com-
puted in the framework of Appendix A for q ≥ 1

50
. Note the

agreement with the hydrodynamic predictions (1.4) for
small q. The black/blue subbranches are purely imaginary,
and coalesce at

qo ¼ 0.11215ð1Þ; ð2:20Þ

represented by the vertical dashed orange lines. For q > qo
the hydrodynamic sound mode, nonpropagating for
q ∈ ½0; qo�, becomes propagating, i.e., it develops
Re½w� ≠ 0. The propagating part of the sound hydrody-
namic QNM is represented with solid green curves. As
expected from the general arguments [8], the N ¼ 2�
thermodynamically unstable black brane state (2.14) is
dynamically unstable for

FIG. 4. The speed of the sound waves c2s (the left panel) and the ratio of bulk-to-shear viscosities ζ
η (the right panel) in N ¼ 2� black

branes close to a critical point (2.11) (the black dot). Thermodynamically stable and unstable phases are represented by the solid and the
dashed curves correspondingly. The purple dot identifies the thermal state of interest, see (2.19) for the values of its transport
coefficients.

FIG. 5. The dispersion relation of the hydrodynamic QNMwðqÞ of the thermodynamically unstable state of theN ¼ 2� black brane at
temperature (2.14). The dashed red curves represent the Oðq2Þ hydrodynamic approximation (1.4). The mode is nonpropagating for
q < qo, represented by the vertical dashed orange lines. It is unstable (the black branch) in the range of q between the two
cyan dots, see (2.21).
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q ∈ ð0; qunstableÞ; qunstable ¼ 0.055273ð8Þ; ð2:21Þ

represented by the vertical dashed cyan line.

B. Nonhydrodynamic QNMs of the model at K = 0

We begin discussion of the nonhydrodynamic QNMs
of the N ¼ 2� black brane at m ¼ 0, i.e., in the pure
AdS5-Schwarzschild limit in Fig. 6. There are two distinct
h ¼ 0 subsectors, which are decoupled when m ¼ 0. One
of these subsectors contains a hydrodynamic sound mode;
we focus on the other subsector at q ¼ 0. We highlight the
two lowest pairs of the QNMs: the magenta and the pink
one. In Fig. 7 we follow the magenta QNMs, increasing m
to reach the thermodynamically unstable state of interest at
temperature (2.14):

0 ≤
m2

T2
≤
m2

T2
p
: ð2:22Þ

While these QNMs start having both the real and the
imaginary part of the frequency w at m ¼ 0, they become
purely dissipative for T < To,

m2

T2
o
¼ 5.38162 <

m2

T2
p
; ð2:23Þ

represented by a vertical dashed orange line. Note that
these modes are stable in the thermodynamically unstable
N ¼ 2� black brane state of interest. In Fig. 8 we follow in
the same fashion the pink QNMs of Fig. 6: they remain
stable, and have Re½w� ≠ 0 up to the temperature (2.14).

C. QNMs of the model at K ≠ 0

We fix the temperature at (2.14), i.e., in the thermody-
namically unstable state of the (originally) N ¼ 2� black
brane, and study the QNMs as the horizon curvature K
becomes nonzero.
In Fig. 9 we present the dispersion of the l ¼ 0 (solid

curves) and l ¼ 1 (dashed curves) modes of the N ¼ 2�

black hole with K
m2, that originate from the magenta QNMs

atK ¼ 0, see Fig. 7. These modes have Re½w� ¼ 0. Initially
stable l ¼ 0 mode becomes unstable (solid black curve)
when

K
m2

>
Kstable

l¼0

m2
¼ 0.18290ð4Þ; ð2:24Þ

represented by the vertical cyan line. The instability persists
until

K
m2

<
Kunstable

l¼0

m2
¼ 0.62454ð7Þ; ð2:25Þ

FIG. 6. Non-hydrodynamic QNMs of N ¼ 2� black brane in
the limit m2

T2 → 0 at q ¼ 0.

FIG. 7. We follow the pair of magenta QNMs of Fig. 6, at q ¼ 0, increasingm to reach the thermodynamically unstableN ¼ 2� black
brane state (2.14). For Tp ≤ T < To these modes are purely dissipative. The temperature To is represented by vertical dashed
orange lines.
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represented by the cyan vertical dashed line. The QNM
subbranches originating from different QNMs at K ¼ 0
(the magenta dots) coalesce at

l ¼ 1∶
Ko;1

m2
¼ 0.11079ð4Þ;

l ¼ 0∶
Ko;0

m2
¼ 0.61958ð2Þ; ð2:26Þ

as the stable QNMs, represented by the orange dots. Since
Ko;0 < Kunstable

l¼0 , this implies that close toKunstable
l¼0 the QNM

subbranches can not be single-valued functions of K
m2. As

Fig. 10 shows this is indeed the case. See Sec. III for details
how we are tracing the QNM curves.

In Fig. 11 we present the dispersion of the l ¼ 0 (solid
green curves) and l ¼ 1 (dashed purple curves) modes of
theN ¼ 2� black hole with K

m2, that originate from the pink
QNMs at K ¼ 0, see Fig. 8. These modes have Re½w� ≠ 0,
and are stable. We follow them toK > Kunstable

l¼0 and observe
that their Im½w� start decreasing again. Close to Kunstable

l¼0

these QNM subbranches are not single-valued functions of
K
m2 as well, see Fig. 12.
In Fig. 13 we present the dispersion of the l ¼ 2 modes

of the N ¼ 2� black holes with K
m2, that originate from the

magenta QNMs at K ¼ 0 of Fig. 7 (grey and blue solid
curves), and from the hydrodynamic QNM at K ¼ 0,
represented with the cyan dot at w ¼ 0 (black and brown
solid curves). The purely dissipative (stable) brown and
grey branches (note that they originate from the hydro-
dynamic (the cyan dot) and the nonhydrodynamic (the
magenta dot) modes at K ¼ 0) coalesce at

l ¼ 2∶
Ko;2;bg

m2
¼ 0.0055428ð2Þ; ð2:27Þ

represented by (the first) orange dot. A new (stable)
subbranch, represented by the solid green lines starts of
this orange dot. The QNM branch represented by the solid
black curve contains the instabilities seen at K ¼ 0 in
Fig. 5: these QNMs are unstable in the range between the
two cyan dashed vertical lines

0 <
K
m2

<
Kunstable

l¼2

m2
¼ 0.0521ð5Þ: ð2:28Þ

The Re½w� ¼ 0 black and blue branches (note that they
originate from the hydrodynamic (the cyan dot) and the
nonhydrodynamic (the magenta dot) modes at K ¼ 0)
coalesce at

FIG. 8. We follow the pair of pink QNMs of Fig. 6, at q ¼ 0, increasing m to reach the thermodynamically unstable N ¼ 2� black
brane state (2.14). These modes remain stable, with Re½w� ≠ 0.

FIG. 9. l ¼ 0 (solid curves) and l ¼ 1 (dashed curves) QNMs
ofN ¼ 2� black holes at fixed temperature (2.14) as functions of
the curvature K. The l ¼ 0 (solid black) subbranch is unstable in
the range of K between the vertical dashed cyan lines. QNMs at
K ¼ 0 originate from the (different) magenta modes of Fig. 7—
they coalesce as stable QNMs, represented by the orange dots.
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FIG. 12. Both l ¼ 0 (solid green curves) and l ¼ 1 (dashed purple curves) N ¼ 2� black hole QNMs, originated from the pink
modes of Fig. 8, are not single-valued functions of K

m2 in the vicinity of Kunstable
l¼0 , represented by the vertical dashed cyan lines.

FIG. 10. l ¼ 0 N ¼ 2� black hole QNMs, originated from the magenta modes of Fig. 7, are not single-valued functions of K
m2 in the

vicinity of Kunstable
l¼0 , represented by the vertical dashed cyan lines.

FIG. 11. Stable l ¼ 0 (solid green curves) and l ¼ 1 (dashed purple curves) QNMs ofN ¼ 2� black holes at fixed temperature (2.14)
as functions of the curvature K, that originate from the pink QNMs at K ¼ 0, see Fig. 8.
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l ¼ 2∶
Ko;2;bb

m2
¼ 0.11050ð5Þ; ð2:29Þ

represented by (the second) orange dot. No new sub-
branches start at the second orange dot. Interestingly,
Kunstable

l¼2 < Kstable
l¼0 , as a result there is a finite range of K

m2,
see (2.7), where l ¼ 2 QNMs are already stable, but l ¼ 0
QNMs have yet to become unstable.
We conclude the summary of the N ¼ 2� black hole

QNMs at temperature (2.14) in Fig. 14: we show l ¼
f2; 3; 4; 5g subbranches that originate from the hydrody-
namic w ¼ 0 QNM at K ¼ 0, and contain instabilities. All
these modes are unstable as K

m2 → 0, and higher-lmodes are
stabilized at successively smaller values of K

m2. Thus, the
instabilities ofl > 2modesdo not further constrain the set of
values of K

m2 beyond that of the l ¼ 2 QNMs.

III. TECHNICAL DETAILS

The relevant effective action [19] describing N ¼ 2�
black holes is in the general class (A1) with p ¼ 2:

ϕ1 ≡ α; η1 ¼ 12; ϕ2 ≡ χ; η2 ¼ 4;

V ¼ 1

4

�
1

3

�∂W
∂α

�
2

þ
�∂W
∂χ

�
2
�
−
4

3
W2; ð3:1Þ

where the superpotential W is

W ¼ −e−2α −
1

2
e4α coshð2χÞ: ð3:2Þ

The scalars α and χ are the holographic dual to operators
O2 and O3 correspondingly, describing the mass deforma-
tion of the maximally supersymmetric N ¼ 4 Yang-Mills6

[20,22,37]

FIG. 13. l ¼ 2 QNMs ofN ¼ 2� black holes at fixed temperature (2.14) as functions of the curvature K. The solid black subbranch is
unstable in the range of K between the vertical dashed cyan lines. QNMs at K ¼ 0 originate from the magenta modes of Fig. 7 (grey and
blue curves), and from the hydrodynamic QNM at w ¼ 0 (black and brown curves). The brown and grey subbranches coalesce, and
continues as a green subbranch with Re½w� ≠ 0. No new subbranches originate once the black and the blue curves coalesce.

FIG. 14. Subbranches of the l ¼ 2, 3, 4, 5 QNMs of N ¼ 2� black holes at fixed temperature (2.14) that contain instabilities. Note
that higher-lQNMs are stabilized at successively smaller values of K

m2.

6The field content of the N ¼ 4 SYM theory includes
the gauge field Aμ, four Majorana fermions ψa and three
complex scalars ϕi, where all of these fields are in the adjoint
representation.
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LN¼2� ¼ LN¼4 − 2½m2
bO2 þmfO3�;

O2 ¼
1

3
Trðjϕ1j2 þ jϕ2j2 − 2jϕ3j2Þ;

O3 ¼ −Trðiψ1ψ2 −
ffiffiffi
2

p
gYMϕ3½ϕ1;ϕ

†
1�

þ
ffiffiffi
2

p
gYMϕ3½ϕ†

2;ϕ2� þ H:c:Þ

þ 2

3
mfTrðjϕ1j2 þ jϕ2j2 þ jϕ3j2Þ: ð3:3Þ

The non-normalizable coefficients of the gravitational bulk
scalars are the bosonic m2

b and the fermionic mf mass
parameters. The thermodynamically unstable phase of the
N ¼ 2� plasma in R3 is present as long as [9]

0 ≤
m2

f

m2
b

< 1: ð3:4Þ

The effective action (3.2) can be consistently truncated to
a single scalar α, i.e., setting

χ ≡ 0 ⇒ mf ¼ 0; ð3:5Þ

which we will do in the rest of this paper. To avoid
cluttering we denote

mb ≡m: ð3:6Þ

A. PW black holes and their thermodynamics

We use the background geometry (A2) parameterization
as in [38] and set

c1 ¼
f1=2

rh1=4
; c2 ¼

1

rh1=4
; c3 ¼

h1=4

rf1=2
; ð3:7Þ

where the radial coordinate

r ∈ ð0;þ∞Þ: ð3:8Þ

From (A5)–(A8) we obtain the second order equations

0 ¼ f00 −
3f0

r
−
5h0f0

4h
þ 4hK; ð3:9Þ

0 ¼ h00 −
5ðh0Þ2
4h

− 16hðα0Þ2; ð3:10Þ

0 ¼ α00 þ a0
�
f0

f
−
3

r
−
5h0

4h

�
þ h1=2

6r2f
ðe2α − e−4αÞ; ð3:11Þ

and the first order constraint

0 ¼ ðα0Þ2 þ hK
2f

−
ðh0Þ2
16h2

þ h0f0

16fh
−

h0

2rh
þ f0

4rf

−
1

r2
þ h1=2

6r2f

�
e2α þ 1

2
e−4α

�
: ð3:12Þ

Eqs. (3.9)–(3.12) are solved with the following asymptotics:
(i) in the UV, i.e., as r → 0

f¼ 1þ16r2K−32r3βKþ r4f4;0þOðr5Þ; ð3:13Þ

h¼ 16−64βrþ160r2β2−320r3β3

þ r4
�
−
128

9
a2;0a2;1þ

416

27
a22;1þ

256

3
a22;0þ560β4

þ
�
512

3
a2;0a2;1−

128

9
a22;1

�
lnrþ256

3
a22;1 ln

2 r

�
þOðr5 ln2 rÞ; ð3:14Þ

α¼r2ða2;0þa2;1 lnrÞ−βð2a2;0þa2;1þ2a2;1 lnrÞr3

þr4
�
3a2;0β2þ

5

2
a2;1β2−8Ka2;1þa22;0−2a2;0a2;1

þ3

2
a22;1þð3a2;1β2þ2a2;0a2;1−2a22;1Þlnr

þa22;1 ln
2r

�
þOðr5 ln2rÞ; ð3:15Þ

(ii) in the IR, i.e., as y≡ 1
r → 0

f ¼ fh1y −
�
5

3
r20ðhh0Þ1=2 þ 7hh0K þ 5ðhh0Þ1=2

6r40

�
y2

þOðy3Þ;

ĥ ¼ hh0 −
�
8ðhh0Þ3=2r20

3fh1
þ 8ðhh0Þ2K

fh1
þ 4ðhh0Þ3=2

3fh1r
4
0

�
y

þOðy2Þ;

α ¼ ln r0 −
ðr60 − 1Þðhh0Þ1=2

6fh1r
4
0

yþOðy2Þ; ð3:16Þ

where we defined

ĥ≡ y−4h: ð3:17Þ

The non-normalizable coefficient a2;1 of the bulk scalar
α is related to the mass parameter (3.6) as follows [20,22]

m2 ¼ 3

8
a2;1: ð3:18Þ

β is a residual gauge parameter of the background geometry
(3.7) parameterization associated with the constant λ
rescaling of radial coordinate (3.8), r → rλ or y → y

λ:
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β → βλ; K → Kλ2;

a2;1 → a2;1λ2; a2;0 → ða2;0 þ a2;1 ln λÞλ2;

f4;0 → f4;0λ2; fh1 →
fh1
λ
;

hh0 →
hh0
λ4

; r0 → r0: ð3:19Þ

Because (3.19) acts on all dimensionful parameters (K and
m specifically), the results of the holographic renormaliza-
tion of the model has to be expressed as dimensionless
quantities (2.9). The holographic renormalization of the
N ¼ 2� model has been discussed extensively in the past,
so we present the results only [26,39,40]:

Ê ¼ 1

24π4

�
−
2

3
−
2f4;0
3a22;1

þ 128K2

3a22;1
−
8

3
ln 2

−
4

3
ln a2;1 þ

8a2;0
3a2;1

þ 32β2K
a22;1

�
;

ŝ ¼ 27=2

35=2π3ðhh0Þ3=4a3=22;1

;

T
m

¼ fh1
61=2πðhh0Þ1=2a1=22;1

: ð3:20Þ

Note that (3.20) are left invariant under (3.19). The basic
thermodynamic relation,

F ¼ E − sT; ð3:21Þ

is automatically enforced by the holographic renormalization
[39], while the first law of thermodynamics,

dÊ ¼ T
m
dŝ

				
K
m2¼const

; ð3:22Þ

must be verified numerically. We always check (3.22) in
numerical constructions of the N ¼ 2� black brane/black
hole geometries—a sample of tests, for K

m2 ¼ 0 and K
m2 ¼ 1, is

shown in Fig. 16.

B. Helicity h= 0 QNMs of the PW black holes

We suppress the h ¼ 0 superscript, and refer to a single
scalar index as s ¼ 0, rather then s ¼ ð0; jÞ. Using the
background parametrization (3.7), we obtain from (A12):

0 ¼ D2F2 −W2;2F2 −W2;0F0;

0 ¼ D2F0 −W2;0F2 −W0;0F0; ð3:23Þ

where the second-order differential operator D2 [coming
from □ on the background geometry (A2)] is

D2Fðt; rÞ≡ −
h1=2r2

f
∂2
ttF þ r2f

h1=2
∂2
rrF

þ
�
r2f0

h1=2
−
5r2fh0

4h3=2
−
3rf

h1=2

�
∂rF

− h1=2r2k2F; ð3:24Þ

and

W2;2 ¼ −
1024r4h7=2fk2ð3K − k2Þðα0Þ2

G2
þ 32r2h3=2fðh0rþ 4hÞ2ðk2 − 3KÞ2

G2

−
2rð3K − k2Þ

3Gh1=2
ð16h3k2r2 þ 6hh0f0r2 − 9fðh0Þ2r2 þ 24h2f0r − 72hfh0r − 144h2fÞ

−
4

3
k2h1=2r2; ð3:25Þ

W2;0 ¼
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2ðk2 − 3KÞ

p
3G2

ð9h1=2fr2ðh0rþ 4hÞð16Kh2r − 8h2k2rþ 4hf0 þ h0f0rÞα0

þ 2h2rð8h2k2r − 12hf0 − 3h0f0rÞðe2α − e−4αÞ − 576h5=2ff0r4ðα0Þ3Þ; ð3:26Þ

W0;0 ¼ −
1

3hG2
ð96h2f0rðe2α − e−4αÞð8h2k2r − 12hf0 − 3h0f0rÞα0 þ 288h1=2r2ðα0Þ2

× ð32Kh4fk2r2 − 16h4fk4r2 þ 8h3ðf0Þ2k2r2 − 24h3ff0k2r − 6h2fh0f0k2r2

− 12h2ðf0Þ3r − 3hh0ðf0Þ3r2 þ 48h2fðf0Þ2 þ 24hfh0ðf0Þ2rþ 3fðh0Þ2ðf0Þ2r2Þ

− 13824h5=2fðf0Þ2r4ðα0Þ4Þ − 1

3
ðe2α þ 2e−4αÞ; ð3:27Þ
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with k given by (A11) and

G≡ 8h2k2r − 12hf0 − 3h0f0r: ð3:28Þ

Generically, F0 and F2, as well as w ¼ wðqÞ, are
complex. We need to impose the normalizable boundary
conditions as r → 0, and the incoming wave boundary
conditions at the black brane/black hole horizon, i.e., as
y≡ 1

r → 0. We can explicitly factor the boundary condi-
tions, and the harmonic time dependence, redefining F0

and F2 as

F0ðt; rÞ ¼ ð1þ rÞiw=2 r2

1þ r2
e−i2πTwtf0ðrÞ;

F2ðt; rÞ ¼ ð1þ rÞiw=2 r2

1þ r2
e−i2πTwtf2ðrÞ; ð3:29Þ

which renders both f0ðrÞ and f2ðrÞ regular and Oð1Þ both
at the boundary and at the horizon. While the boundary
normalization of the master scalar F2 ∼Oðr2Þ near the
AdS5 boundary is independent of any presence of the bulk
gravitational scalars, the boundary normalization of the
master scalar F0 ∼Oðr2Þ reflects the fact that this scalar is
associated with the fluctuations of the gravitational bulk
scalar α dual to an operator of the conformal dimension
Δ ¼ 2. The incoming wave boundary condition at the
horizon, i.e., F ∝ y−iw=2 is universal for all the master
scalars. Further introducing

f0 ¼ f0;Re þ if0;Im; f2 ¼ f2;Re þ if2;Im;

w ¼ wRe þ iwIm; ð3:30Þ

we obtain from (3.23) four (generically coupled) second
order linear ODEs for

ff0;Re; f0;Im; f2;Re; f2;Img: ð3:31Þ

Because of the linearity, there is an arbitrary complex
overall normalization of solution; we fix this normalization
imposing

l ≥ 2∶ lim
r→0

f2;Re ¼ 1; lim
r→0

f2;Im ¼ 0;

l < 2∶ lim
r→0

f0;Re ¼ 1; lim
r→0

f0;Im ¼ 0: ð3:32Þ

The QNM equations for (3.31) are solve with the following
asymptotics:

(i) in the UV, i.e., as r → 0 (without loss of generality,
we work in the gauge β ¼ 1—see (3.13)–(3.15) )

f2;Re ¼ 1þ
�
−2þ 1

2
wIm

�
rþOðr2Þ;

f2;Im ¼−
1

2
wRerþOðr2Þ;

f0;Re ¼ f0;Re;0

þ
�
−2f0;Re;0þ

1

2
f0;Im;0wReþ

1

2
f0;Re;0wIm

�
r

þOðr2Þ;
f0;Im ¼ f0;Im;0

þ
�
−2f0;Im;0þ

1

2
f0;Im;0wIm−

1

2
f0;Re;0wRe

�
r

þOðr2Þ; ð3:33Þ

(ii) in the IR, i.e., as y≡ 1
r → 0

f2;Re ¼ fh2;Re;0 þOðyÞ; f2;Im ¼ fh2;Im;0 þOðyÞ;
f0;Re ¼ fh0;Re;0 þOðyÞ; f0;Im ¼ fh0;Im;0 þOðyÞ:

ð3:34Þ

Note that, for a fixed background and q, the solution
is characterized in total by 8 parameters

fwRe;wIm; f0;Re;0; f0;Im;0; fh2;Re;0;

fh2;Im;0; f
h
0;Re;0; f

h
0;Im;0g; ð3:35Þ

precisely as needed to specify a solution of 4 second
order ODEs.

We now highlight the reduction of the set of the QNM
equations in some special cases.

(i) For branches of the QNMmodes with Re½w� ¼ 0, as
in Figs. 5, 13, and 14 we can consistently set

f2;ImðrÞ≡0; f0;ImðrÞ≡ 0; wRe ¼ 0; ð3:36Þ

correspondingly eliminating, in addition to wRe,
f0;Im;0, fh2;Im;0, and fh0;Im;0 from the parameter list
(3.35)—we are left with 2 second order differential
equations and 4 specifying parameters.

(ii) Special case harmonics l ¼ 0 and l ¼ 1 can be
treated by dropping the master equation for f2, and
setting k ¼ 0 or k ¼ ffiffiffiffiffiffiffi

3K
p

(for l ¼ 0 and l ¼ 1
correspondingly) in the remaining equations for
f0;Re and f0;Im. Note that in this case we need to
normalize the solution as in the second line in
(3.32). QNM branches of this type appear in Figs. 7
and 8.
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(iii) Yet further reduction occurs for l ¼ 0 and l ¼ 1 if
the QNMs have Re½w� ¼ 0, as in Figs. 7 and 9. Here
we have a single second order equation for the
function f0;Re (with k ¼ 0 or k ¼ ffiffiffiffiffiffiffi

3K
p

) and a pair of
specifying parameters wIm and fh0;Re;0.

(iv) We included K ¼ 0 (the black brane) case of QNMs
at k ¼ 0 with l ¼ 0 case covered above.

We add some practical remarks for theQNMcomputation.
(i) In solving the QNM boundary value problems we

use the shooting method developed in [41].
(ii) To obtain results for the QNMs reported in Figs. 7

and 8 we set K ¼ 0, and produce the data sets of
backgrounds changing in small increments param-
eter a2;1 in (3.13)–(3.15) from a2;1 ¼ 0 (the pure
AdS5-Schwarzschild black brane) to the value
a2;1 ¼ 0.09158879. We fix the gauge parameter
β ¼ 1. This allows a black brane construction cover-
ing the range of m

2

T2 reported in Figs. 1 and 4. Note that
a monotonic change in a2;1 translates into nonmono-
tonic dependence of m2

T2 , allowing to cover both the
thermodynamically stable and the unstable phases.
The thermodynamically unstable state of interest
(2.14) is within the scanned range. For each black
brane background we compute the QNMs, using as
initial seeds the AdS5-Schwarzschild black brane
QNMs reported in Fig. 6.

(iii) To obtain results for the QNMs reported in
Figs. 9–13 we produce N ¼ 2� black hole back-
grounds keeping mass-to-temperature ratio m2

T2 fixed
at (2.14), and changing K from zero in small
increments. For each generated black hole back-
ground we compute the QNMs, using as initial seeds
the QNMs of the N ¼ 2� black brane. Since we
work in a fixed β ¼ 1 gauge, the physical curvature
is not K, but rather its dimensionless analog, K

m2.

Similar to the black brane constructions from varia-
tion of a2;1, we observe that while we monotonically
increase K at fixed m2

T2 , K
m2 varies nonmonotonically—

this is the origin of the nonsingle valuedness of the
QNM spectra in Figs. 10 and 12.

C. Helicity h= 0 QNMs of PW black branes
in the limit a2;1 → 0

The purpose of this section is to discuss the limit of the
general QNM equations (3.23) when K ¼ 0 and a2;1 ¼ 0.
This is a pure AdS5-Schwarzschild black brane limit, and
could be helpful to the reader to study prior to tackling the
general case covered in Sec. III B.
Solving (3.9)–(3.12) with K ¼ 0, a2;1 ¼ 0 and the

boundary conditions (3.13)–(3.16) we find:

α≡ 0; h ¼ 16

ðβrþ 1Þ4 ;

f ¼ ð2βrþ 1Þð2β2r2 þ 2βrþ 1Þ
ðβrþ 1Þ4 : ð3:37Þ

As in Sec. III B, we set the gauge parameter β ¼ 1.
Given (3.37), the general QNM equations (3.23)

decouple:

0 ¼ ∂2
ttF0 −

ð2rþ 1Þ2ð2r2 þ 2rþ 1Þ2
16ðrþ 1Þ4 ∂2

rrF0

−
ð2rþ 1Þð2r2 þ 2rþ 1Þð4r4 − 10r2 − 10r − 3Þ

16rðrþ 1Þ5 ∂rF0

þ ð2rþ 1Þð2r2 þ 2rþ 1Þð4k2r2 − r2 − 2r − 1Þ
4ðrþ 1Þ4r2 F0;

ð3:38Þ

0 ¼ ∂2
ttF2 −

ð2rþ 1Þ2ð2r2 þ 2rþ 1Þ2
16ðrþ 1Þ4 ∂2

rrF2

−
ð2rþ 1Þð2r2 þ 2rþ 1Þð4r4 − 10r2 − 10r − 3Þ

16rðrþ 1Þ5 ∂rF2

þ k2ð2rþ 1Þð2r2 þ 2rþ 1Þ
ðrþ 1Þ4ð8k2r2 þ 16k2rþ 3r2 þ 8k2Þ2r2 ð64k

4r6 þ 256k4r5 − 16k2r6 þ 384k4r4

− 96k2r5 − 15r6 þ 256k4r3 − 240k2r4 − 72r5 þ 64k4r2 − 320k2r3 − 108r4

− 240k2r2 − 72r3 − 96k2r − 18r2 − 16k2ÞF2: ð3:39Þ

(i) Eq. (3.38) has a smooth limit k → 0. Redefining
F0ðt; rÞ as in (3.29) and solving the resulting
equations at k ¼ 0, we produce the spectrum of
Δ ¼ 2 QNMs in AdS5-Schwarzschild black brane

reported in Fig. 6, reproducing the appropriate
results of [42].

(ii) Because of the factor ð8k2r2 þ 16k2rþ 3r2 þ 8k2Þ
in the denominator of the equation (3.39), the k → 0
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and r → 0 limits do not commute. We can still solve,
say for the hydrodynamic QNM, using the redefi-
nition (3.29) and generate the spectrum wðqÞ for
q ≥ 1

100
. The results are presented in Fig. 15, along

with the expected small q holographic-CFT approxi-
mation (dashed red curves):

wðqÞ ¼ � 1ffiffiffi
3

p q −
1

3
q2 þOðq3Þ: ð3:40Þ

At q ¼ 1 we can compare our results with those
reported in Appendix E of [18] (JRR):

this work∶ wð1Þ ¼ �0.7414299655ð2Þ
− 0.2862800072ð6Þi;

JRR∶ wð1Þ ¼ �0.7414299655ð?Þ
− 0.2862800072ð?Þi; ð3:41Þ

where ð?Þ denotes the unreported truncation in [18].

IV. CONCLUSIONS

In this paper we extended the master field framework of
black brane/black hole QNM computations to Einstein-
multiscalar gravitational effective actions of the type (A1).
As an application, we discussed the stabilization of the

thermodynamically unstableN ¼ 2� black brane horizons,
as the boundary gauge theory is compactified on S3 of a
curvature scale K. The initial instability in the helicity
h ¼ 0 hydrodynamic sector, present for small curvature, is
cured once K > Kunstable

l¼2 . Surprisingly, we found that while
l ¼ 0 QNMs are stable for K ∈ ½0; Kunstable

l¼2 �, they develop
an instability for yet larger K > Kstable

l¼0 > Kunstable
l¼2 . They

can ultimately be stabilized for K > Kunstable
l¼0 . l ¼ 1 QNMs

in the helicity h ¼ 0 sector in the model discussed are
always stable.
In the example of the N ¼ 2� holography, the extended

thermodynamically unstable horizons can be alternatively

stabilized when the space of the boundary gauge theory is
compactified on sufficiently small three-torus: the unstable
hydrodynamic modes are simply projected from the spec-
trum.7 However, toroidal compactification would not be
able to cure the instability of the holographic conformal
order, present in the nonhydrodynamic sector at zero spatial
momentum [15].
Many avenues are left open for future studies:
(i) it would be interesting to understand when Kleba-

nov-Strassler black holes [38] become dynamically
stable;

(ii) it would be interesting to explore whether the
holographic conformal order [13–15] can be stabi-
lized on Sd, before it is destroyed;

(iii) what aspects of the stabilization when black branes
are deformed to black holes are universal? are l ¼ 1
harmonics in the helicity h ¼ 0 sector always stable?

Finally, in this work we considered effective actions
relevant to holographic models without the bulk gauge
field, correspondingly without conserved global charges of
the thermal states of the boundary gauge theory. It is only in
this setting that one straightforwardly relate via (1.3) the
thermodynamic and the dynamical instabilities [8]. In the
presence of a conserved Uð1Þ charge density ρ and a
chemical potential μ the story is more nuanced,8 as the
expression for the speed of the sound waves (1.3) becomes
more complicated in the charged plasma:

c2s ¼
�
ðEþPÞ∂ðP;ρÞ∂ðT;μÞ þ ρ

∂ðE;PÞ
∂ðT;μÞ

��
ðEþPÞ ∂ðE;ρÞ∂ðT;μÞ

�
−1
:

ð4:1Þ

Additionally, in the presence of the global charges, one can
no longer establish in full generality the stability of the
QNMs in the helicity h ¼ 1 sector. It would be interesting
to explore this in the future.

FIG. 15. The hydrodynamic QNM of AdS5-Schwarzschild black brane computed in the framework of Appendix A. Dashed red curves
represent the leading q → 0 approximation, see (3.40).

7We would like to thank David Mateos for pointing this out.
8See [11].
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APPENDIX A: MASTER EQUATIONS OF
EINSTEIN-SCALAR BLACK HOLES IN D= 5

In this section we extend the work of [18] to black holes
in theories of Einstein gravity in D ¼ 5 space-time dimen-
sions with multiple scalars.9 We adhere to the notations of
[18] as much as it is practical.
Consider an effective action

S5¼
Z
M5

d3þ2ξ
ffiffiffiffiffiffi
−g

p �
R−

Xp
j¼1

ηjð∂ϕjÞ2−VðfϕjgÞ
�
; ðA1Þ

where j ¼ 1 � � �p indices the scalars ϕi; ηi’s are the
constant normalizations of the scalar kinetic terms, and
V is an arbitrary potential. We will be interested in the
stability analysis of the black branes/holes in the
theory (A1) with maximally symmetric 3-dimensional
Schwarzschild horizons:

ds25 ¼ −c21dt2 þ c22dX
2
3;K þ c23dr

2; ðA2Þ

where ci ¼ ciðrÞ, ϕj ¼ ϕjðrÞ and

dX2
3;K ¼

8>><
>>:

dx2 ≡ dx21 þ dx22 þ dx23; K ¼ 0; planar;

dΩ2
ð3Þ; K > 0; spherical;

dH2
ð3Þ; K < 0; hyperbolic:

ðA3Þ

Note that we do not fixK ¼ f0;�1g, but instead allow it to
vary smoothly—this would allow for the interpolation
of the quasinormal spectra between different maximally
symmetric horizons, notably between the planar
and the spherical ones. A useful way to explicitly para-
metrize X3;K and a metric on it is as follows: X3;K ¼
ðx1 ≡ x; x2 ≡ y; x3 ≡ zÞ, and

dX2
3;K¼

dx2

ð1−Kx2Þþð1−Kx2Þ
�

dy2

ð1−Ky2Þþð1−Ky2Þdz2
�
:

ðA4Þ

From (A1) we obtain the following second order
equations of motion (0 ≡ d

dr and ∂j ≡ ∂
∂ϕj

)

0 ¼ c001 þ c01

�
ln
c32
c3

�0
þ c23c1

3
V; ðA5Þ

0 ¼ c002 þ c02

�
ln
c1c22
c3

�0
þ c2c23

3

�
V −

6K
c22

�
; ðA6Þ

0 ¼ ϕ00
j þ ϕ0

j

�
ln
c1c32
c3

�0
−

c23
2ηj

∂jV; ðA7Þ

and the first order constraint10

0¼
Xp
j¼1

ηjðϕ0
jÞ2− ½lnc32�0½lnðc21c22Þ�0 þc23

�
6K
c22

−V

�
: ðA8Þ

We organize all the gauge invariant fluctuations into
three sets of master scalars of different helicity h:

(i) the helicity h ¼ 2 set, fΦð2Þ
2 g;

(ii) the helicity h ¼ 1 set, fΦð1Þ
2 g;

(iii) the helicity h ¼ 0 set, fΦð0Þ
2 ;Φð0Þ

ð0;jÞg, j ¼ 1 � � �p.
Any master scalar ΦðhÞ

s (s ¼ 2 or s ¼ ð0; jÞ and h ¼
f0; 1; 2g) is assumed to have the following dependence:

ΦðhÞ
s ðξÞ ¼ FðhÞ

s ðt; rÞSðX3;KÞ; ðA9Þ

where SðX3;KÞ is a scalar eigenfunction of the Laplacian
ΔK on (A4) with an eigenvalue k2:

ΔKSþ k2S ¼ 0: ðA10Þ

In this work we will be concerned with planar (K ¼ 0) or
spherical (K > 0) horizons. In the former case, k2 ∈
½0;þ∞Þ and in the latter case

k2 ¼ Klðlþ 2Þ with l ∈ Zþ: ðA11Þ

Each of the master scalars satisfies a coupled master
equation of the form

□ΦðhÞ
s −WðhÞ

s;s0 ðrÞΦðhÞ
s0 ¼ 0; ðA12Þ

where □ is the wave operator on the full D ¼ 5 metric
(A2), and the symmetric potential matrix,9The motivation is to verify and fix typos in the original work

[18], and to prepare the stage for the stability analysis of the black
holes on the conifold with fluxes [38]. 10We verified that (A8) is consistent with (A5)–(A7).
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WðhÞ
s;s0 ¼ WðhÞ

s0;s; ðA13Þ

couples master scalars in a given helicity set.
We now present results for potentials WðhÞ

s;s0 in different
helicity sectors, as well as relations between the master
scalars and a specific set of gauge invariant fluctuations in
that sector. We refer the reader to [18] for a detailed
discussion exactly how the gauge invariant fluctuations are
constructed.11

1. Helicity h= 0 sector

The relation between the gauge invariant fluctuations in
the scalar sector

fφj; htr; hrr; hxr; httg; ðA14Þ
and the master scalars

fFð0Þ
ð0;jÞ; F

ð0Þ
2 g; ðA15Þ

all being functions of ðt; rÞ, is as follows:

φj ¼ −
1ffiffiffiffiffiffiffi
2ηj

p Fð0Þ
ð0;jÞ þ

ffiffiffi
3

p
kc2ϕ0

j

6k̃c02
Fð0Þ
2 ; ðA16Þ

hrr ¼
c2c23ðc02c1 − c01c2Þ

D

Xp
j¼1

f
ffiffiffiffiffiffi
2ηi

p
ϕ0
jF

ð0Þ
ð0;jÞg þ

�
c22c

2
3k

3
ffiffiffi
3

p ðc02Þ2k̃
Xp
j¼1

fηjðϕ0
jÞ2g −

c2c23c
0
1kffiffiffi

3
p

c1c02k̃
−
2

ffiffiffi
3

p
c1c43Kk

Dk̃

−
k

ffiffiffi
3

p
c23ððc02Þ2c1 − c23c1k

2 − c01c
0
2c2Þ

k̃D

�
Fð0Þ
2 þ c2c23kffiffiffi

3
p

c02k̃
∂rF

ð0Þ
2 ; ðA17Þ

hxr ¼
c22c

2
3c1
D

Xp
j¼1

� ffiffiffiffi
ηj
2

r
ϕ0
jF

ð0Þ
ð0;jÞ

�
þ
�
−
3

ffiffiffi
3

p
c1c2c02c

2
3K

kk̃D
þ c2c23k

2
ffiffiffi
3

p
c02Dk̃

�
c23c1k

2 þ 3ðc02Þ2c1 þ 3c01c
0
2c2

��
Fð0Þ
2

þ
ffiffiffi
3

p
c22

2kk̃
∂rF

ð0Þ
2 ; ðA18Þ

where we set

k̃≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 3K

p
; D≡ c23c1k

2 − 3ðc02Þ2c1 þ 3c01c
0
2c2: ðA19Þ

Additionally,

htt ¼
2c21
c23

�
ln

c3
c1c2

�0
hxr −

2c21
c23

∂rhxr þ
c21
c23

hrr;

htr ¼
4c22
k2

Xp
j¼1

fηjϕ0
j∂tφjg þ 2∂thxr −

6c02c2
c23k

2
∂thrr: ðA20Þ

The master scalars Φð0Þ
s satisfy (A12) with the potentials:

Wð0Þ
2;2 ¼

4

3D2c22

�
c22c

2
1c

2
3k

2k̃2
Xp
n¼1

fηnðϕ0
nÞ2g þ ðk2 − 6KÞD2 − 9k̃2c01c

0
2c2D

− 3k̃2ðk2 − 2KÞc1c23Dþ 2k̃4c1c23ðc23k2c1 þ 3c01c
0
2c2Þ

�
; ðA21Þ

11In a holographic setting gauge invariant fluctuations in Einstein-scalar theories were used for the first time in [43].
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Wð0Þ
2;ð0;iÞ ¼ −

k̃kc23c1
D

ffiffiffiffiffiffi
2

3ηi

s
∂iV −

k̃kc2c1ðc01c2 − c02c1Þ
D2

ffiffiffiffiffiffi
8ηi
3

r
ϕ0
i

Xp
n¼1

fηnðϕ0
nÞ2g

þ k̃kc1c02ðD − c23k
2c1Þ

c2D2

ffiffiffiffiffiffi
8ηi
3

r
ϕ0
i þ

k̃kc21c
2
3c

0
2ðk2 − 2KÞ
D2c2

ffiffiffiffiffiffiffiffiffi
24ηi

p
ϕ0
i; ðA22Þ

Wð0Þ
ð0;iÞ;ð0;jÞ ¼

1

2
ffiffiffiffi
ηi

p ffiffiffiffi
ηj

p ∂i∂jV −
c2ðc02c1 − c01c2Þ

D

� ffiffiffiffi
ηj
ηi

r
ϕ0
j∂iV þ

ffiffiffiffi
ηi
ηj

r
ϕ0
i∂jV

�

þ 2c22ðc02c1 − c01c2Þ2
c23D

2

ffiffiffiffi
ηi

p
ϕ0
i

ffiffiffiffi
ηj

p
ϕ0
j

Xp
n¼1

fηnðϕ0
nÞ2g þ

ffiffiffiffi
ηi

p
ϕ0
i

ffiffiffiffi
ηj

p
ϕ0
j

D2

�
2c21c

2
3k

2ðk2 − 2KÞ

þ 2k2ðc02c1 þ 2c01c2Þðc02c1 − c01c2Þ −
12c02ðc02c1 þ c01c2Þðc02c1 − c01c2Þ2

c23c1

�
; ðA23Þ

where k̃ and D are defined in (A19).

Notice that for K > 0, the relations (A17) and (A18)
between the master scalars and the gauge invariant fluc-
tuations are singular for l ¼ 0 and l ¼ 1. This is so
because in these cases the dynamical degrees of freedom
are those of the scalars only. These cases must be treated
separately [18].

a. l= 0

For l ¼ 0, there are no htx, hxr and h− components of the
metric perturbations; furthermore, the gauge transforma-
tions can be used to set metric components htr ¼ 0 and
hþ ¼ 0. Thus, we are left with perturbations

fφj; htt; hrrg: ðA24Þ

We find12

hrr ¼
2c23c2
3c02

Xp
i¼1

fηiϕ0
iφig; ðA25Þ

c21∂r

�
htt
c21

�
¼−

2c21c2
3c02

Xp
i¼1

fηiϕ0
i∂rφigþ

c21c
2
3c2

3c02

Xp
i¼1

f∂iVφig

þ 2c21c
2
2

9ðc02Þ2
Xp
j¼1

fηjðϕ0
jÞ2g

Xp
i¼1

fηiϕ0
iφig

−
4c1ðc1c02þ c2c01Þ

3c02

Xp
i¼1

fηiϕ0
iφig: ðA26Þ

Introducing the master scalars as

φj ¼ −
1ffiffiffiffiffiffiffi
2ηj

p Fð0Þ
ð0;jÞ; ðA27Þ

we obtain master equations for Φð0Þ
ð0;jÞ with Wð0Þ

ð0;iÞ;ð0;jÞ given
formally by (A23) in the limit k → 0.

b. l = 1

For l ¼ 1 there is no h− component of the metric
fluctuations. We can use gauge transformations to set
metric components htx ¼ 0 and hþ ¼ 0. Thus, are left
with the (gauge variant) perturbations

fφj; htr; hrr; hxr; httg: ðA28Þ

Note that the scalar eigenfunction for l ¼ 1 is explicitly

SðX3;KÞ ¼ x
ffiffiffiffi
K

p
: ðA29Þ

From the fluctuation equations of motion we find (compare
with (A20) )

htt ¼
2c21
c23

�
ln

c3
c1c2

�0
hxr −

2c21
c23

∂rhxr þ
c21
c23

hrr;

htr ¼
4c22
k2

Xp
j¼1

fηjϕ0
j∂tφjg þ 2∂thxr −

6c02c2
c23k

2
∂thrr: ðA30Þ

The remaining fluctuations can be expressed through the
master scalars (A15) as

φj ¼ −
1ffiffiffiffiffiffiffi
2ηj

p Fð0Þ
ð0;jÞ þ

gc2ϕ0
j

c02
Fð0Þ
2 ; ðA31Þ

12As pointed out in [18], here, as well as for l ¼ 1, there is also
a certain inhomogeneous piece in the master equations. This
piece must be set to zero to study fluctuations in a fixed-mass
black hole background.

ALEX BUCHEL PHYS. REV. D 104, 046025 (2021)

046025-18



hrr ¼
c2c23ðc02c1 − c01c2Þ

D

Xp
j¼1

f
ffiffiffiffiffiffi
2ηi

p
ϕ0
jF

ð0Þ
ð0;jÞg þ 2g

�
c22c

2
3

3ðc02Þ2
Xp
j¼1

fηjðϕ0
jÞ2g

−
c2c23c

0
1

c1c02
−
6c1c43K

D
−
3c23ððc02Þ2c1 − c23c1k

2 − c01c
0
2c2Þ

D

�
Fð0Þ
2 þ 2g

c2c23
c02

∂rF
ð0Þ
2 ; ðA32Þ

hxr ¼
c22c

2
3c1
D

Xp
j¼1

� ffiffiffiffi
ηj
2

r
ϕ0
jF

ð0Þ
ð0;jÞ

�
þ 2g

�
−
9c1c2c02c

2
3K

k2D
þ c2c23
2c02D

�
c23c1k

2

þ 3ðc02Þ2c1 þ 3c01c
0
2c2

��
Fð0Þ
2 þ g

3c22
k2

∂rF
ð0Þ
2 ; ðA33Þ

where D is given by (A19), and g is an arbitrary constant
parameter of the unfixed gauge transformation [18]. Note
that (A31), (A32) and (A33) are equivalent to (A31), (A17)
and (A18) up to replacement

2g ↔
kffiffiffi
3

p
k̃
: ðA34Þ

The only physical master equations are those for the

scalarsΦð0Þ
ð0;jÞ (in these equations there is a decoupling of the

“gauge” master scalar Φð0Þ
2 ), with the relevant potentials

Wð0Þ
ð0;iÞ;ð0;jÞ obtained setting k̃ ¼ 0 in (A23). The equation for

the gauge master scalar can also be obtained from the
general expressions valid for l ≥ 2, provided we identify
(compare (A16) and (A31)

Fð0Þ
2

			
l≥2

≡ 2g

ffiffiffi
3

p
k̃

k
Fð0Þ
2

			
l¼1

; ðA35Þ

prior to taking the limit k̃ → 0. Because of (A35), this latter
equation is necessarily singular in the limit g → 0.

2. Helicity h= 1 sector

The relation between the gauge invariant fluctuations in
the vector sector

fhtz; hzrg; ðA36Þ

and the master scalar

fFð1Þ
2 g; ðA37Þ

all being functions of ðt; rÞ, is as follows:

htz ¼
3c2c1c02
k̃c3

Fð1Þ
2 þc22c1

k̃c3
∂rF

ð1Þ
2 ;

hzr¼
c3c22
k̃c1

∂tF
ð1Þ
2 ; ðA38Þ

where we deliberately introduced a singularity at l ¼ 1 i.e.,
k̃ ¼ 0 (A19), to highlight the fact that the fluctuations
(A36) are gauge invariant only for l ≥ 1 [18].
The master scalar Φð1Þ

2 satisfies (A12) with the potential

Wð1Þ
2;2¼

1

c23

Xp
j¼1

fηjðϕ0
jÞ2g−

3K
c22

þ3ðc02Þ2
c22c

2
3

−
6c01c

0
2

c1c2c23
: ðA39Þ

a. l = 1

The case l ¼ 1 is special since in this case there are no
dynamical degrees of freedom [18]. Indeed, here, there are
no hxz component of the metric fluctuations, and the gauge
can be fixed setting hzr ¼ 0. The remaining metric com-
ponent htz satisfies

∂r

�
htzðt; rÞ

c22

�
¼ 0; ðA40Þ

which is normalizable only if it identically vanishes.

3. Helicity h= 2 sector

The relation between a particular gauge invariant fluc-
tuation hyzðt; rÞ and the master scalar Fð2Þ

2 ðt; rÞ in the tensor
sector is as follows

δds25 ¼ δgyzðt; r; X3;KÞdydz ¼ hyzðt; rÞ
STðxÞ
1 − Ky2

dydz

¼ c22F
ð2Þ
2 ðt; rÞ STðxÞ

1 − Ky2
dydz; ðA41Þ

where STðxÞ satisfies [18]

ð1 − Kx2ÞS00T ¼ −KxS0T −
�
k2 þ 2K

�
1þ Kx2

1 − Kx2

��
ST:

ðA42Þ

The master scalar

Φð2Þ
2 ðξÞ≡ Fð2Þ

2 ðt; rÞSðX3;KÞ ðA43Þ
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equation is universally that of the minimally coupled
massless scalar

□Φð2Þ
2 ¼ 0; ðA44Þ

i.e.,

Wð2Þ
2;2 ≡ 0: ðA45Þ

The universality of the h ¼ 2 sector at K ¼ 0 was empha-
sized originally in [44].

4. Stability of h= 1 and h= 2 sectors

It was argued in [18] that the QNMs of Einstein-scalar
black holes/black branes, i.e., when K ≥ 0, are stable in
h ¼ 2 and h ¼ 1 helicity sectors.
Since h ¼ 2 sector is not directly sensitive to scalars of the

effective action, it is obviously stable even for the more
general effective actions (A1). The potential of the QNMs in
the h ¼ 1 helicity sector explicitly depends on the scalars,
see (A39). Nonetheless, the arguments of [18] can still be
literally repeated, leading to the conclusion of the stability.

APPENDIX B: NUMERICAL TESTS

The work presented in this paper is numerical. It is
imperative that we do as many tests as possible to confirm
the reliability of the results. In the rest of this section we
highlight a subset of the tests that we performed.
(1) The N ¼ 2� black brane thermodynamics has been

discussed previously in [22]. The previous work is
done in a different parametrization of the back-
ground geometry, compare to the parameterization
(3.7) used here. We recover13 the previous results.

(2) The hydrodynamics of N ¼ 2� black brane was
discussed earlier (again in a different parameter-
ization) in [9,23]. Once again, we recover the
previous results.

(3) The AdS5-Schwarzschild Δ ¼ 2 black brane spec-
trum at q ¼ 0 presented in Fig. 6 agrees with the
results reported in [42], obtained using a completely
different method.

(4) While we did not present the AdS5-Schwarzschild
results for the h ¼ 0 sector graviton QNMs,14

obtained solving for the QNM spectrum from
(3.39) at q ¼ 1

100
, we confirmed that the results

obtained are in agreement with Δ ¼ 4 results re-
ported in [42], obtained using a completely different
method.

(5) We use the master field formalism [18], but we use
finite difference rather than the spectral methods
in computing the QNMs, as well as a different back-
groundgeometry parameterization.We find agreement
with the numerical result for the AdS5-Schwarzschild
h ¼ 0 graviton QNM at q ¼ 1, see (3.41).

(6) In constructing N ¼ 2� black brane and black hole
geometries, we always verify the first law of
thermodynamics (3.22). Typical results of such tests
are shown in Fig. 16.

(7) N ¼ 2� black hole background at temperature
(2.14) and a given value of K

m2 can be reached from
AdS5-Schwarzschild horizon geometry in two ways:
(a) we can keep K ¼ 0 and increase m2

T2 from zero to
(2.14), followed by the increase of K

m2 from zero
to the value of interest;

(b) we can start with AdS5-Schwarzschild black
hole at a corresponding value of K

T2
p
, and increase

m2

T2 from zero to (2.14)—in both ways we land at
an identical geometry.

(8) The hydrodynamic QNM of theN ¼ 2� black brane
in the thermodynamically unstable state (2.14)
reported in Fig. 5 is in excellent agreement with
the prediction (1.4), using the appropriate equilib-
rium transport coefficients (2.19).

FIG. 16. Verification of the first law of thermodynamics (3.22) for the N ¼ 2� black brane, K
m2 ¼ 0 (the left panel), and for a sample

N ¼ 2� black hole, K
m2 ¼ 1 (the right panel). The vertical purple line identifies the thermodynamically unstable state of interest (2.14),

further used in the QNM analysis.

13Our current numerical algorithms are more precise. 14See however [27].
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