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Recently it was proposed that microscopic models of braneworld cosmology could be realized in the
context of anti–de Sitter/conformal field theory (AdS=CFT) correspondence using black hole microstates
containing an end-of-the-world brane. Motivated by a desire to establish the microscopic existence of such
microstates, which so far have been discussed primarily in bottom-up models, we have studied similar
microstates in a simpler version of AdS=CFT. On one side, we define and study boundary states in the
charged Sachdev-Ye-Kitaev model and show that these states typically look thermal with a certain pattern
of symmetry breaking. On the other side, we study the dimensional reduction of microstates in Einstein-
Maxwell theory featuring an end-of-the-world brane and show that they have an equivalent description in
terms of 2D Jackiw-Teitelboim gravity coupled to an end-of-the-world particle. In particular, the same
pattern of symmetry breaking is realized in both sides of the proposed duality. These results give significant
evidence that such black hole microstates have a sensible microscopic realization.
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I. INTRODUCTION

The anti–de Sitter/conformal field theory (AdS=CFT)
correspondence [1–4] is one of the most promising frame-
works for the formulation of a quantum theory of gravity.
As a realization of the holographic principle [5,6], it relates
the degrees of freedom of a quantum gravity theory in
dþ 1 dimensions to those of a d-dimensional conformal
field theory living on the conformal boundary of the
spacetime manifold. However, while AdS=CFT provides
a powerful microscopic description of certain classes of
spacetimes, an important open question in quantum gravity
is how to describe cosmological universes such as the phase
of cosmic expansion we observe in the sky.
Inspired by the AdS/BCFT (boundary conformal field

theory) proposal [7–9], one possible answer was provided
by the holographic braneworld cosmology models recently
proposed in [10,11]. These bottom-up models describe an
asymptotically AdS black hole spacetime with the second

asymptotic region cut off by a spherically symmetric,
constant tension, codimension-1 end-of-the-world (ETW)
brane. The fields satisfy Neumann boundary conditions on
the brane, which emerges from the past horizon and falls into
the future horizon (in Lorentzian signature). From the point
of view of a comoving observer, the radial motion of the
brane is equivalent to the evolution of a closed Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe. When the
brane is far from the black hole horizon, gravity is also
localized on the brane [11] via a Randall-Sundrum mecha-
nism [12–14], and the setup describes, to a good approxi-
mation, a cosmological model with expansion and
contraction. In the Einstein-Maxwell model of [11], this
only happened for large near-extremal charged black holes
and near-critical branes. One possible microscopic realiza-
tion of such models has been recently proposed by Van
Raamsdonk in the context of N ¼ 4 super-Yang-Mills
(SYM) theory [15].
Similar black hole microstates have played an important

role in recent discussions of the black hole information
paradox [16,17]. They also provide toy models of the
physics of nonunitary dynamics, which have recently
received attention in the quantum statistical mechanics
community in the context of quantum dynamics in the
presence of random measurements [18–20]. Here the
nonunitary dynamics is a Euclidean evolution starting at
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an initial state that can be thought of as the outcome of a
random measurement. It is therefore of considerable
interest to better understand the microscopic underpinnings
of such black hole microstates. In particular, we would like
to understand under what conditions various bottom-up
constructions can be realized in a full microscopic model.
With the cosmological motivation foremost in our

thoughts, the goal of the present paper is to use a special
case of AdS=CFT duality to relate the near-horizon physics
of the braneworld cosmology model proposed in [11],
which involves a near-extremal AdS-Reissner Nordström
(AdS-RN) black hole, with specific boundary states in the
charged Sachdev-Ye-Kitaev (cSYK) model. In a similar
fashion to the Majorana SYK construction by Kourkoulou
and Maldacena [21], the boundary states considered are the
fermionic Fock states, evolved for an amount τ0 of Euclidean
time, called the preparation time. The boundary states can be
prepared by a Euclidean path integral with a boundary
condition at Euclidean time τ ¼ −τ0 [7,8,10,11,22,23].
Here we continue to work with Einstein-Maxwell gravity
as in [11], although the braneworld stateswe consider are in a
different parameter regime than the one with good gravity
localization (near the horizon versus far from the black hole,
respectively). The matching we exhibit between braneworld
spacetimes andmicroscopic boundary states is a step towards
exhibiting a complete microscopic description of a cosmo-
logical spacetime.
We work in the context of the recent but already well-

studied example of AdS=CFT duality known as nearly
AdS2=CFT1 duality [24–26]. The particular setup we
consider involves Jackiw-Teitelboim (JT) gravity [27,28]
and the low-energy limit of the Sachdev-Ye-Kitaev (SYK)
model [29,30]. JT gravity is a 1þ 1-dimensional dilaton-
gravity theory whose saddle-point solution involves an
AdS2 bulk spacetime with a dynamical boundary. The
leading order fluctuations above the saddle point are
governed by a boundary Schwarzian effective action
[25]. JT gravity gives a good approximation to the physics
near the horizon of a higher- dimensional, near-extremal
charged black hole [25,26,31–35]. In particular, the
Schwarzian fluctuations account for the deviation of the
near-horizon geometry from AdS2 × Sd−1 [for a (dþ 1)-
dimensional black hole]. For this reason, JT gravity is
sometimes referred to as nearly AdS2 gravity.
The SYK model is a (0þ 1)-dimensional quantum

mechanical model of N interactive Majorana fermions.
In the low-energy limit it develops an emergent conformal
symmetry under arbitrary time diffeomorphisms DiffðRÞ
[or DiffðS1Þ in the thermal case]. Such symmetry is
spontaneously broken down to SLð2;RÞ by the saddle-
point solution, which is exact in the large N limit. This
breaking generates an infinite number of degenerate zero
modes. The symmetry is also explicitly broken down to
SLð2;RÞ by a Schwarzian effective action at low but
nonvanishing temperatures, which lifts the degeneracy of

the zero modes. The residual SLð2;RÞ symmetry can be
regarded as a gauge symmetry [24]. These features mimic
exactly the properties of JT gravity [25], making the duality
between low-energy SYK in the large N limit and JT
gravity manifest (at least near its saddle point; for a
nonperturbative treatment see for example [36–39]). The
SYK model can be generalized to higher dimensions [40]
and to include continuous global symmetries [41–47]. A
model of particular interest for our purposes is the SYK
model with complex fermions (cSYK) [43–47], which
possesses a global Uð1Þ symmetry. This is the correct
model to describe the near-horizon physics of a dimen-
sionally reduced near-extremal black hole. Indeed, unlike
Majorana SYK, it can capture also charge fluctuations and
describe charged bulk fermions [43,44].
The main advantage of this model is that the duality can

be realized explicitly in a simple setup. In particular, the
cSYK boundary states can be constructed and studied. In
analogy with the Majorana SYK case [21], we show that
cSYK boundary states look thermal with inverse temper-
ature β ¼ 2τ0 and with properties analogous to those
described by the canonical ensemble for a fixed-charge
superselection sector (for a treatment of the nearly
AdS2=CFT1 duality in the grand-canonical ensemble,
including charge fluctuations, see for instance [31]). In
particular, at large N and when the preparation time is
sufficiently large, the dynamics is governed by a
Schwarzian effective action for the time reparametrization
mode. Differently from the thermal case, the mode must
satisfy appropriate boundary conditions, which are dictated
by the total occupation number of the Fock state chosen
(i.e., by the charge subsector considered). Such boundary
conditions break two of the three generators of the residual
SLð2;RÞ symmetry.
We also study the other side of the duality by performing

a dimensional reduction of the braneworld cosmology
model [11].1 The near-horizon region is well approximated
by JT gravity with a regularized boundary. We then show
that configurations where the brane is tangent to the
regularized boundary and the Schwarzian fluctuations of
the boundary preserve such intersection point exhibit
exactly the same pattern of symmetry breaking that we
observe in the cSYK boundary states.
These results provide strong evidence for the duality

between asymptotically AdS black holes containing an
ETW brane and pure boundary states in a dual quantum
mechanical theory, thereby realizing explicitly a simplified
version of the holographic braneworld cosmology propos-
als [10,11]. However, we remark that this simple example is
not directly relevant for the description of cosmology.
Indeed, it describes a setup where the brane is in the near-
horizon region of a large AdS-RN black hole, and therefore

1Note that such model is also formulated in the canonical
fixed-charge ensemble.
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gravity is not localized on the brane [11]. The holographic
description of spacetimes with branes that are far from the
black hole horizon and therefore can localize gravity likely
requires more complicated boundary states of higher-
dimensional CFTs such as N ¼ 4 SYM [15].
The paper is organized as follows. In Sec. II the relevant

features of the cSYK model are quickly reviewed. In
Sec. III the boundary states are defined in analogy with
[21]. We study their properties, emphasizing their similar-
ities with the thermal state using both analytic arguments
and numerical evidence. Using the collective field formu-
lation of the path integral, the Schwarzian effective action
governing the dynamics of the time reparametrization mode
is derived, and we find the two boundary conditions that the
mode needs to satisfy, commenting on the resulting
symmetry breaking pattern. In Sec. IV we briefly review
the bottom-up holographic braneworld cosmology model
proposed in [11]. Section V is devoted to the dimensional
reduction of such model. The Schwarzian effective action is
derived along with an equation of motion describing the
trajectory of the brane. We show that when the brane is
tangent to the regularized boundary and such property is
preserved under Schwarzian fluctuations of the boundary,
the system displays a symmetry-breaking pattern analogous
to that found for the cSYK boundary states. In Sec. VI we
discuss our findings and give final remarks. Our choice of
units is ℏ ¼ c ¼ ε0 ¼ kB ¼ 1.

II. REVIEW OF THE CSYK MODEL

We consider the SYK model [41,44,46,47] with N
complex fermions, with Hamiltonian

Ĥ¼
XN

j1<…<jq=2¼1

k1<…<kq=2¼1

Jj1…jq=2;k1…kq=2Aðψ̂†
j1
…ψ̂†

jq=2
ψ̂k1…ψ̂kq=2Þ; ð1Þ

where A denotes the completely antisymmetrized product2

and the fermions satisfy the anticommutation relations
fψ̂ i; ψ̂

†
jg ¼ δij, fψ̂ i; ψ̂ jg ¼ 0 ¼ fψ̂†

i ; ψ̂
†
jg. The couplings

Jj1j2;k1k2 are independently drawn from a complex Gaussian
distribution with zero mean and variance

jJj1…jq=2;k1…kq=2 j2 ¼ J2
ðq=2Þ!ðq=2 − 1Þ!

Nq−1 ð2Þ

and satisfy the symmetry properties Jij;kl ¼ −Jji;kl ¼
−Jij;lk ¼ J�kl;ij.
The cSYK model possesses a globally conserved Uð1Þ

charge Q̂ ¼ P
jAðψ̂†

j ψ̂ jÞ ¼
P

j ψ̂
†
j ψ̂ j − N

2
1̂, with 1̂ the

identity matrix. Since ½Q̂; Ĥ� ¼ 0, it is possible to find a

basis of energy eigenstates that diagonalizes the charge.
The Hilbert space splits into superselection sectors labeled
by their charge Q. For even N, Q is an integer number
satisfying −N=2 < Q < N=2. Each charge subsector
admits a basis of energy eigenstates, and the ground state
is in the Q ¼ 0 subsector [42].
For q ¼ 4, every energy eigenstate with Q ≠ 0 is

twofold degenerate due to the particle-hole symmetry:
for every energy eigenstate in theQ ¼ Q̄ charge subsector,
there is an energy eigenstate with the same energy
eigenvalue in the Q ¼ −Q̄ charge subsector. Energy
eigenstates with Q ¼ 0 are nondegenerate.
The two-point function over a generic state jψi is

defined as

Gðτ1; τ2Þ ¼ −
1

N

XN
i¼1

hψ jT½ψ̂ iðτ1Þψ̂†
i ðτ2Þ�jψi; ð3Þ

where T is the fermionic time-ordered product, and therefore
Gðτ; τ � 0þÞ ¼ hQ̂i=N � 1=2, where hQ̂i is the expectation
value of the charge in the state jψi. In a given charge
subsector, this will be just the charge Q of the subsector.
Note that the two-point function presents an UVasymmetry.
The “off-diagonal” two-point correlators involving the prod-
uct of two different fermions are suppressed by a power of
1=N [24,40], as follows from a diagrammatic calculation of
the variance.
In particular, we can consider a thermal state in the

canonical ensemble at fixed charge.3 Then after averaging
over the random couplings, the partition function is encoded
in an effective action for two bilocal collective fields ðG;ΣÞ
[24,44]. On shell, theG field is the Green function defined in
Eq. (3) with the state taken to be thermal, while Σ is the self-
energy. The Euclidean action is given by

SE
N

¼ − log det½δðτ1 − τ2Þ∂τ1 − Σðτ1; τ2Þ�

−
Z

dτ1dτ2

�
Σðτ1; τ2ÞGðτ2; τ1Þ

þ J2

q
ð−Gðτ1; τ2ÞGðτ2; τ1ÞÞ

q
2

�
: ð4Þ

Note that in the large N limit the saddle-point solution
fully determines the partition function with fluctuations
suppressed by 1=N. In the IR, the first term in the
determinant can be dropped and the action develops a
symmetry under arbitrary time reparametrizations

2The completely antisymmetric definition of the Hamiltonian
implies a particle-hole symmetry [44], which is not important for
our purposes but simplifies the analysis.

3Since the braneworld cosmologies we consider are saddle-
point solutions that dominate in the gravitational canonical
ensemble at fixed charge, the canonical partition function is the
one relevant for our simple model. But in general charge fluctua-
tions can be included in the analysis by considering the grand-
canonical partition function for a fixed chemical potential μ [44].
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τ → fðτÞ, analogously to the Majorana SYK model. In the
complex SYK case, there is an additional emergent local
Uð1Þ symmetry. The IR saddle-point solutions for the
collective fields transform conformally under time repar-
ametrization. The general transformation law also includes
a local phase shift:

Gf;λðτ1; τ2Þ ¼ ½f0ðτ1Þf0ðτ2Þ�Δei½λðτ1Þ−λðτ2Þ�Gðfðτ1Þ; fðτ2ÞÞ;
Σf;λðτ1; τ2Þ ¼ ½f0ðτ1Þf0ðτ2Þ�1−Δei½λðτ1Þ−λðτ2Þ�Σðfðτ1Þ; fðτ2ÞÞ:

ð5Þ

The conformal IR (zero temperature) solution for the Green
function G is given by

Gβ¼∞ð�τÞ ¼∓ e�πEbΔτ−2Δ; N ≫ Jτ ≫ 1; ð6Þ

where τ ¼ τ1 − τ2, β is the inverse temperature and E is the
asymmetry parameter, which is related to the average
charge density [44]. The finite temperature solution in
the N ≫ βJ > τJ ≫ 1, ðβ − τÞJ ≫ 1 limit can be found by
a time reparametrization τ → tanðπτ=βÞ and an appropriate
local phase shift iλðτÞ ¼ −2πEτ=β:

Gcð�τÞ ¼∓ bΔ
e�2πEð1

2
−τ
βÞ

½βπ sinðπτβ Þ�2Δ
; 0 < τ < β: ð7Þ

Note that this solution is correctly antiperiodic with
period β.
The saddle-point solutions are not invariant under the

transformation (5), meaning that both the symmetries are
spontaneously broken. In particular, the DiffðRÞ [or
DiffðS1Þ at finite temperature] time reparametrization
symmetry is spontaneously broken down to SLð2;RÞ,4
and the local Uð1Þ symmetry is completely broken to
global Uð1Þ, which is an exact symmetry of the theory (see
Appendix A and [45] for additional details).
The symmetries are also explicitly broken when includ-

ing corrections away from the IR action. This means that,
given the true saddle-point solution ðG�;Σ�Þ, the solutions
obtained by the transformation (5) have now an action
which is lifted by a term of order 1=ðβJÞ. They are
“quasisolutions” that dominate the fluctuations around
the saddle point at leading order in the temperature.
Such dynamics is encoded at large N in a Schwarzian
effective action for the time reparametrization mode and an
additional action for the phase field λðτÞ [44], which is

conjugate to charge-density fluctuations in the grand-
canonical ensemble [47].
The twomodes can be decoupled by a change of variables:

λðτÞ → λðτÞ þ i2πE
τ − ϕðτÞ

β
: ð8Þ

In the fixed-charge ensemble we are interested in, the
dynamics at low temperature and large N is then governed
only by the Schwarzian action for the reparametrization
mode:

Ieff ½f� ¼ −
Nγ

4π2

Z
β

0

dτ

�
tan

�
πfðτÞ
β

�
; τ

�
; ð9Þ

where now fðτÞ is a monotonic function obeying
fðτ þ βÞ ¼ fðτÞ þ β, γ is the coefficient of the linear term
of the specific heat at fixed charge, and ffðτÞ; τg is the
Schwarzian derivative

ffðtÞ; tg≡ f000ðtÞ
f0ðtÞ −

3

2

�
f00ðtÞ
f0ðtÞ

�
2

: ð10Þ

The Schwarzian action is SLð2;RÞ invariant. Therefore, the
diffeomorphism invariance is both spontaneously and explic-
itly brokendown toSLð2;RÞ. The residual symmetrymust be
regarded as an unphysical gauge symmetry [24]: modes that
are SLð2;RÞ equivalent correspond to the same physical
configuration andmust be accounted for only once in the path
integral. In other words, the path integral for the reparamet-
rizationmode is carried overmodesfðτÞ in the left quotient of
DiffðS1Þ by SLð2;RÞ. We will show that when the path
integral computes amplitudes in a given boundary state, the
reparametrization mode must satisfy specific boundary con-
ditions that further break the residual SLð2;RÞ symmetry,
leaving only one unbroken generator. In the next section we
will take q ¼ 4 in the Hamiltonian (1) for simplicity. Our
results should however generalize immediately to any q
integer multiple of 4. The generalization to other values of
qmight present some differences due to the different spectral
structure [42].

III. CSYK BOUNDARY STATES AND SYMMETRY
BREAKING

A. Definition of the boundary states

Consider the Fock basis of the cSYK Hilbert space. A
Jordan-Wigner transformation allows us to map the fer-
mions ψ̂ i to spin operators. We can then denote a generic
state of the Fock basis as

jSii ¼ j↑1↓2…↑N−1↑Ni: ð11Þ

These states are evidently eigenstates of both the occupa-
tion number operator for a single fermion n̂k ¼ ψ̂†

kψ̂k with

4Considering only bosonic fields (like G), we are not able to
tell whether the residual symmetry group is SLð2;RÞ or
PSLð2;RÞ ¼ SLð2;RÞ=f�1̂g. Since we are interested in general
in a bulk theory that contains also fermions, we will consider the
residual gauge group to be SLð2;RÞ, which is the appropriate one
for a theory with fermions [48]; see Appendix A.
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eigenvalue 0 or 1, and of the total charge operator Q̂ with
eigenvalue Q ¼ n↑;Q − N=2, where n↑;Q is the total num-
ber of fermions in the j↑i state. However they are clearly
not energy eigenstates, and therefore their dynamics is
nontrivial.
The Euclidean time evolution under the interaction

Hamiltonian (1) maps any given Fock state jSii with
charge Q to a superposition of all the Fock states in the
same charge subsector, whose dimension is DQ ¼
N!=½n↑;Q!ðN − n↑;QÞ!�. Since the Hamiltonian can be
diagonalized in each charge subsector, we can write a
given Fock state with charge Q as a linear superposition of
all the energy eigenstates in the same charge subsector:

jSii ¼
XDQ

k¼1

cikjEki: ð12Þ

From now on, we will assume to be working within a
charge subsector with chargeQ. The complex coefficients cik
must satisfy the normalization condition

PDQ
k¼1 jcikj2 ¼ 1.

But given the structure of the Hamiltonian (1), we can say
something more. As we reviewed in the previous section, the
couplings Jj1j2;k1k2 governing the all-to-all interactions
between the fermions are all drawn from the same distribu-
tion with zero mean and fixed 1=N3-suppressed variance.
Given an energy eigenstate jEki ¼

PDQ
i¼1 c

k
i jSii, we then

expect the coefficients cki ¼ ðcikÞ� (where � indicates the
complex conjugate) weighting the contribution of each Fock
state jSii in the superposition to be randomly distributed.
In particular, we expect5:

(i) Their phases to be uniformly distributed in ½−π; π�;
(ii) After averaging over disorder, their squared norm

to have mean jcki j2 ¼ 1=DQ and variance
varðjcki j2Þ ¼ a=D2

Q þOðD−3
Q Þ, where a > 1 is an

order 1 c number;
(iii) The covariance covðjcki j2; jckj j2Þ to be suppressed at

least by a power D−3
Q . Note that it cannot vanish

exactly due to the normalization constraint;
(iv) The correlation between the coefficients and the

energy eigenvalues to be also strongly suppressed.
We emphasize that whenever the charge per particle differs
by a nonvanishing amount from�1=2 at largeN, the quantity
DQ is exponential in N and much greater than N at large N.
These assumptions are reasonable in part because the

model enjoys an enhanced UðNÞ symmetry at large N
arising from the suppressed variance of the random
couplings. In particular, such symmetry permutes the
various Fock states in a given charge subsector. Note that
this is the analog of the emergentOðNÞ symmetry in the N-
fermion Majorana SYK model [21]. The presence of the

UðNÞ symmetry simplifies the analysis of the physics in the
boundary states, especially when considering collective
operators (see Appendixes B 1 and B 3).
Given the relation (12) and the properties of the

coefficients cik that we have described, we expect Fock
states to have energy of order zero. Since the ground-state
energy of the cSYK model satisfies E0 ∝ −N [44], these
are relatively high-energy states in the middle of the
spectrum (for a given charge). In order to study the
properties of boundary states in the well-understood and
analytically treatable IR limit of the cSYK model, we can
define our boundary states by evolving Fock states for an
amount τ0 of Euclidean time, called the preparation time:

jBii ¼
e−τ0ĤjSiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSije−2τ0ĤjSii

q ¼
PDQ

k¼1 c
i
ke

−τ0Ek jEkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPDQ
k¼1 jcikj2e−2τ0Ek

q : ð13Þ

If τ0 is sufficiently large, higher-energy eigenstates in the
superposition are strongly suppressed and jBii is a low-
energy state. We remark that, in the large N limit we are
interested in, N is the largest parameter in the theory and
the spacing between energy eigenvalues is exponentially
suppressed inN. The typical level spacing at a given energy
density and charge is of order e−entropy which is 1=DQ in the
middle of the spectrum. Therefore, the dynamics of the
boundary state jBii remains substantially different from
the one of the ground state, even for large preparation times
τ0 (provided τ0 does not scale with N).

B. Single-fermion two-point function

We can now study the behavior of the “diagonal” two-
point correlator of one specific fermion over a boundary
state:

G̃i;kðτ1; τ2Þ ¼ −hBijT½ψ̂kðτ1Þψ̂†
kðτ2Þ�jBii ð14Þ

with τ1;2 ∈ ½−τ0; τ0�. Using the definition (13), this can be
rewritten as

G̃i;kðτ1; τ2Þ ¼ −
hSije−τ0ĤT½ψ̂kðτ1Þψ̂†

kðτ2Þ�e−τ0ĤjSii
hSije−2τ0ĤjSii

: ð15Þ

Let us analyze the denominator first. Since the Fock states
jSii form a basis of the charge subsector, summing over all
the Fock states in the subsector we obtain the partition
function at fixed charge Q and temperature β ¼ 2τ0:

XDQ

i¼1

hSije−2τ0ĤjSii ¼ TrQðe−2τ0ĤÞ ¼ ZQ½2τ0�: ð16Þ

But given the properties of the coefficients outlined in the
previous section, after averaging over the couplings we
expect the value of the denominator to be independent of the

5Physical intuitions and numerical evidence motivating these
claims are reported in Appendix B 1.
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specific Fock state chosen. Additionally, since the distribu-
tion of the norms of the coefficients is peaked around their
mean value, we expect this property to be approximately
self-averaging. Therefore we get

hSije−2τ0ĤjSii ¼
1

DQ
ZQ½2τ0� þOðD−1

Q Þ: ð17Þ

Note that the first term is of order D0
Q. The analysis of the

numerator of Eq. (15) is similar in fashion but slightly
subtler, and is reported in Appendix B 2. We can expect that
if one of the two fermion operators is inserted at time
τ ≈�τ0, or if the preparation time τ0 is not long enough, the
correlator appearing in the numerator is strongly dependent
on the occupation number of the kth fermion (but not on the
occupation number of all the other fermions). Conversely, if
the preparation time is long enough (τ0J ≫ 1) and the
fermions are both inserted far from the Fock states
[ðτ0 − jτ1;2jÞJ ≫ 1], the correlator is approximately inde-
pendent of all the occupation numbers, up to corrections of
order expð−ðτ0 − jτ1;2jÞJÞ. A self-averaging property analo-
gous to the one described for the denominator holds also for
the numerator.
In general, the correlation function (15) takes the form

(up to 1=DQ-suppressed corrections)

G̃↑
i;kðτ1; τ2Þ ¼ −

2N
2Qþ N

CQ;2τ0;kðτ1;−τ0;−τ0 þ 0þ; τ2Þ;

G̃↓
i;kðτ1; τ2Þ ¼ −

2N
N − 2Q

CQ;2τ0;kðτ1;−τ0 þ 0þ;−τ0; τ2Þ;
ð18Þ

where the superscripts ↑ and ↓ indicate whether the kth
fermion is in the j↑i or j↓i state in the initial Fock state
chosen and CQ;β;kðτ1; τ2; τ3; τ4Þ is the thermal four-point
function at inverse temperature β, defined as [49]

1

ZQ½β�
TrQðe−βĤT½ψ̂kðτ1Þψ̂kðτ2Þψ̂†

kðτ3Þψ̂†
kðτ4Þ�Þ: ð19Þ

The result (18) is valid at leading order in 1=DQ for any
value of τ0, τ1, and τ2.
The properties of the coefficients cki outlined in the

previous subsection guarantee that the value of the thermal
correlator (19) is independent of k up to corrections
suppressed by an inverse power of DQ. Therefore, we
can substitute CQ;2τ0;k → CQ;2τ0 , where CQ;2τ0 is averaged
over all the fermions. Applying Wick’s theorem at finite
temperature [49] to the four-point function, and in the limit
τ0J ≫ 1, ðτ0 − jτ1;2jÞJ ≫ 1, we find

G̃↑
i;kðτ1; τ2Þ ≈ G̃↓

i;kðτ1; τ2Þ ≈GQ;βðτ1; τ2Þ; ð20Þ

where GQ;βðτ1; τ2Þ is the thermal two-point function at
temperature β ¼ 2τ0 averaged over all the fermions [which
reduces to Eq. (7) in the large N and τJ ≫ 1 limit]. As
expected, in the appropriate limit the two-point correlator
on the boundary state is independent of the specific Fock
state chosen. Note that this result holds for any fermion k.
The exact diagonalization numerical results reported in
Fig. 1 confirm the predicted behavior.6 Equation (20)
suggests that if the preparation time τ0 is large and if we
measure observables not involving the insertion of a single
fermion near the original Fock state, the dynamics in a
generic boundary state with charge Q can be well approxi-
mated using the canonical ensemble at fixed charge Q and
temperature β ¼ 2τ0. In the next section we will show how
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FIG. 1. Single-fermion two-point functions. The left-hand sides and right-hand sides of Eq. (18) are plotted along with the thermal
two-point function in the corresponding charge subsector for N ¼ 8, k ¼ 1 and a single realization of the Hamiltonian. The expectations
outlined in Sec. III B are matched to good accuracy. Note that for τ1 ≈ τ2 ¼ 0 the thermal two-point function correctly takes the value
Gð0�; 0Þ ≈Q=N ∓ 1=2. (a) Q ¼ 0, β ¼ 2τ0 ¼ 1. (b) Q ¼ −2, β ¼ 2τ0 ¼ 1. (c) Q ¼ 0, β ¼ 2τ0 ¼ 100.

6Note that for the N ¼ 8 case we consider in our exact
diagonalization results, evolving for a large amount of Euclidean
time [for instance in the β ¼ 100 case of Fig. 1(c)] means to
effectively end up in the ground state of the corresponding charge
subsector. Additional details on this point are reported in
Appendix B 2.
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this property becomes even stronger by considering a
collective two-point correlator, and in Sec. III D we will
give a more general argument to link the dynamics in a
boundary state to that one in the canonical ensemble.

C. Collective two-point function

We are ultimately interested in formulating the cSYK
dynamics in a boundary state jBii in terms of the collective
fields introduced in Sec. II. Indeed, in the large N and large
βJ limit, they are suitable to make the connection to the
dual JT gravity picture. The first natural step towards a
collective field formulation is to study the behavior of the
collective two-point function over a boundary state:

Giðτ1; τ2Þ ¼ −hBijT
�
1

N

XN
k¼1

ψ̂kðτ1Þψ̂†
kðτ2Þ

�
jBii: ð21Þ

We have already pointed out that, up to corrections sup-
pressed by powers of 1=DQ, the value of the single-fermion
correlators is independent of the specific fermion k chosen,
as long as all the fermions considered have the same
occupation number in the initial Fock state (or τ0J ≫ 1).
Therefore at large N we can drop the subscript k from the
single-fermion correlator G̃i. Since a Fock state with a
given charge Q has N=2þQ fermions in the j↑i state and
N=2 −Q fermions in the j↓i state, the collective two-point
function (21) then takes the form

Giðτ1; τ2Þ ≈
�
1

2
þQ

N

�
G̃↑

i ðτ1; τ2Þ þ
�
1

2
−
Q
N

�
G̃↓

i ðτ1; τ2Þ:

ð22Þ

Using Eq. (18) and Wick’s theorem at finite temperature,
we immediately obtain

Giðτ1; τ2Þ ≈GQ;βðτ1; τ2Þ ð23Þ

for τ1;2 ∈ ½−τ0; τ0�. Note that, unlike the single-fermion
correlator case, for the collective two-point function this
result holds regardless of the value of the preparation time
τ0 and of whether the fermions are inserted next to the Fock
state. The numerical evidence reported in Fig. 2 confirms
the result (23). When both fermions are inserted right next
to the bra or the ket, the boundary value of the collective
two-point functions is completely determined by its charge:

Gið−τ0;−τ−0 Þ ¼ Giðτ−0 ; τ0Þ ¼
N þ 2Q;

2N

Gið−τ−0 ;−τ0Þ ¼ Giðτ0; τ−0 Þ ¼ −
N − 2Q;

2N
ð24Þ

where τ−0 ¼ τ0 − 0þ. In general, if the two fermions are
inserted at the same time τ, we obtain Giðτ; τ þ 0þÞ ¼
ðN þ 2QÞ=ð2NÞ and Giðτ þ 0þ; τÞ ¼ −ðN − 2QÞ=ð2NÞ.
When the two fermions are inserted one next to the bra
and one next to the ket, at leading order the collective field
takes the form

Gið−τ0; τ0Þ ¼
N þ 2Q

2N
DQ

ZQ½2τ0�
ZQ−1½2τ0�
DQ−1

≡ Cð1Þ;
Q

Giðτ0;−τ0Þ ¼ −
N − 2Q
2N

DQ

ZQ½2τ0�
ZQþ1½2τ0�
DQþ1

≡ Cð2Þ
Q : ð25Þ

An important remark is in order here. Equations (23),
(24), and (25) are independent of the specific boundary
state jBii. Therefore at large N the collective two-point
function provides information about the charge subsector,
but is not able to distinguish between two boundary states
within the same charge subsector. In principle, at leading
order in 1=N it also cannot distinguish a boundary state of
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FIG. 2. Collective two-point functions. The left-hand side and right-hand side of Eq. (23) are plotted for N ¼ 8, k ¼ 1, and a single
realization of the Hamiltonian. The expectations outlined in Sec. III C are matched to good accuracy. Note that for τ1 ≈ τ2 ¼ 0 the
collective and the thermal two-point functions correctly take the value Gð0�; 0Þ ≈Q=N ∓ 1=2. (a) Q ¼ 0, β ¼ 2τ0 ¼ 1. (b) Q ¼ −2,
β ¼ 2τ0 ¼ 1. (c) Q ¼ 0, β ¼ 2τ0 ¼ 100.
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the form described above from a boundary state obtained
by evolving in Euclidean time a generic superposition of
Fock states. Conversely, knowledge about the boundary
value of all the single-fermion correlators introduced in the
previous subsection is enough to identify the boundary
state uniquely. The Schwarzian effective action will be
derived in the collective field formulation. Therefore, the
Schwarzian sector of our theory describes the physics in
any boundary state in a given charge subsector, or in a
boundary state built from a generic superposition of Fock
states. This implies that the Schwarzian sector of our
gravitational bulk theory will be dual to any boundary
state of such class in a given charge subsector. From a bulk
perspective, in order to tell apart two different boundary
states in the same charge subsector we would need to take
into account bulk fermions and provide a set of boundary
conditions for them on the dimensionally reduced ETW
brane. Note thatN such fields are naturally present in a bulk
model dual to the low-energy limit of the cSYK model, and
their limiting value on the regularized boundary represents
the source for the cSYK fermions, according to the HKLL
dictionary [50]. Additional remarks on this point will be
made at the end of Sec. V. Although interesting, the
question of how to implement such boundary conditions
is beyond the goals of the present paper.

D. Boundary states look thermal

In this subsection we generalize the results obtained for
two-point functions to generic operators Ô. In particular,
we show that in the large N limit the expectation value of
generic operators in a boundary state approaches the
thermal expectation value computed by the canonical
ensemble at inverse temperature β ¼ 2τ0. We will make
use of the following assumptions:
(1) The distribution of the coefficients cki satisfies the

properties outlined in Sec. III A, i.e., the phases are
uniformly distributed in ½−π; π�, the norms of the

coefficients satisfy jcki j2 ¼ 1=DQ, varðjcki j2Þ ¼
a=D2

Q þOðD−3
Q Þ, covðjcki j2; jckj j2Þ ¼ OðD−3

Q Þ, and
the correlationbetween the coefficients and the energy
eigenvalues is strongly suppressed.

(2) The matrix elements hEijÔjEji of the operator Ô,
which in general is a nonlocal operator in time, are
weakly correlated with the coefficients cki . This
implies that the matrix elements hBijÔjBii depend
weakly on the choice of the initial Fock state jSii.

(3) The off-diagonal matrix elements are suppressed in
the large N limit: hEijÔjEji ¼ Oðe−entropy=2Þ, which
is Oð1= ffiffiffiffiffiffiffi

DQ
p Þ in the center of the spectrum.

Assumption 1 has been already motivated, and is confirmed
by the numerical results reported in Appendix B 1.
Assumption 2 holds up to 1=N corrections for any operator
Ô which is invariant under permutations of the fermions, or
is inserted far from the Fock state at τ ¼ �τ0. This excludes

operators involving the insertion of single fermions at time
�τ0. In fact, that would cause hBijÔjBii to vanish
identically for some boundary states. Such operators can
clearly distinguish a boundary state from the thermal state
(see Appendix B 3 for further discussion on this point).
Assumption 3 is a standard form of the eigenstate thermal-
ization hypothesis (ETH) [51–53].
Let us now study the behavior of the expectation value of

an operator Ô over a boundary state with charge Q:
hÔii ≡ hBijÔjBii. We outline here the reasoning and
results of our analysis, while the details of the proof are
reported in Appendix B 3. All the results are true in the
large N limit at leading order in 1=DQ. Using the definition
of the boundary states (13), the average over disorder of the
expectation value hÔii is equal to the expectation value of
the operator Ô in the canonical ensemble at fixed chargeQ
and inverse temperature β ¼ 2τ0:

hOii ¼
1

ZQ½2τ0�
TrQðe−2τ0ĤÔÞ þO

�
1

DQ

�
; ð26Þ

where we used a double overline to indicate that we
averaged over both the phases and the norms of the
coefficients cik (see Appendix B 3). Therefore, after aver-
aging over the random couplings, every boundary state jBii
“looks” thermal in the large N limit. It is then natural to ask
to what extent this property remains valid for a single
realization of the Hamiltonian (1). The answer to this
question can be found in the size of the fluctuations around
the average value (26):

hOi2i − hOii
2 ¼ O

�
1

DQ

�
: ð27Þ

Equation (27) shows that fluctuations around the average
value (26) are suppressed in the large N limit. This implies
that even for a single realization of the Hamiltonian the
expectation value of a generic operator Ô over a boundary
state approaches the thermal expectation value computed in
the canonical ensemble, up to 1=N-suppressed corrections.
The takeaway is clear: unless measurements of very

specific operators involving the insertion of single fermions
at time τ ≈�τ0 are performed, at leading order in the 1=N
expansion it is impossible to discriminate between a
boundary state jBii and the thermal state. In other words,
boundary states look thermal.

E. Path integral, Schwarzian action,
and symmetry breaking

Euclidean correlators in a boundary state jBii can be
computed using the Euclidean path integral with boundary
conditions at Euclidean time τ ¼ �τ0:
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hBijÔjBii ¼
Z
jϕð�τ0Þi¼jSii

DψDψ̄Oe−SSYK ½ψ ;ψ̄ �; ð28Þ

where we denoted with ψ̄ the Grassmann variables asso-
ciated with the fermion creation operators ψ†. The boun-
dary condition jϕð�τ0Þ ¼ jSii means that the occupation
number of each fermion at time τ ¼ �τ0 is fixed.
It is then possible to average over the random couplings,

introduce the collective fields ðG;ΣÞ, and integrate out the
fermions in complete analogy with the usual collective field
formulation of the SYK model we reviewed in Sec. II. We
arrive then at a path integral over the collective fields,
where the action is given by Eq. (4) and now the boundary
conditions jϕð�τ0Þi ¼ jSii become a set of boundary
conditions on the collective field G, which is completely
analogous to the one in Eqs. (24) and (25).
When the preparation time is large, τ0J ≫ 1, all the IR

analysis carried out in Sec. II is still valid. In particular, the
action develops an emergent time reparametrization sym-
metry which is spontaneously and explicitly broken down
to SLð2;RÞ. The leading-order fluctuations around the
saddle point are still dominated at large N by Schwarzian
fluctuations of the reparametrization mode, governed by
the effective action (9) with β ¼ 2τ0. Under time repar-
ametrization τ → fðτÞ [with fðτÞ monotonic] the ðG;ΣÞ
fields transform according to Eq. (5), where we can ignore
the phase field7 after decoupling it from the reparametriza-
tion mode using the transformation (8).
There are two differences from the thermal case. The first

one is that now the collective fields are defined only for
τ1;2 ∈ ½−τ0; τ0�. Therefore, given the transformation law
(5), every time diffeomorphism τ → fðτÞ should map the
interval ½−τ0; τ0� to itself. The second one is that the
collective field G must satisfy the boundary conditions
(24) and (25). Given the true saddle-point solution G�,
which satisfies by definition Eqs. (24) and (25), we can use
the transformation law (5) to derive two boundary con-
ditions for the time reparametrization mode fðτÞ. Time
reparametrizations satisfying such boundary conditions
will map the true saddle to quasisolutions Gf that also
satisfy Eqs. (24) and (25).
We will use only the first lines of Eqs. (24) and (25). It is

immediate to check that the boundary conditions for the
reparametrization mode we find guarantee that the second
lines of Eqs. (24) and (25) are satisfied as well. First, we
can impose the boundary condition

N þ 2Q
2N

¼ Gfðτ−0 ; τ0Þ ¼ ½f0ðτ0Þ�2ΔG�ðfðτ−0 Þ; fðτ0ÞÞ: ð29Þ

Using the monotonicity of fðτÞ and the fact that the true
saddle satisfies G�ðτ; τ þ 0þÞ ¼ ðN þ 2QÞ=ð2NÞ for any

τ ∈ ½−τ0; τ0�, we get G�ðfðτ−0 Þ; fðτ0ÞÞ ¼ ðN þ 2QÞ=ð2NÞ
and therefore f0ðτ0Þ ¼ 1. Repeating the same argument for
Gfð−τ0;−τ−0 Þ we also obtain f0ð−τ0Þ ¼ 1. Let us now
impose the third boundary condition:

Cð1Þ
Q ¼ Gfð−τ0; τ0Þ ¼ ½f0ð−τ0Þf0ðτ0Þ�ΔG�ðfð−τ0Þ; fðτ0ÞÞ:

ð30Þ

Using the first boundary condition f0ð�τ0Þ ¼ 1, this

reduces to G�ðfð−τ0Þ; fðτ0ÞÞ ¼ Cð1Þ
Q . Since fðτ0Þ ≠

fð−τ0Þ and we know that G�ð−τ0; τ0Þ ¼ Cð1Þ
Q , the only

way to satisfy this condition is to impose fð�τ0Þ ¼ �τ0.
Therefore we arrived at a set of boundary conditions for the
time reparametrization mode:

fð�τ0Þ ¼ �τ0; f0ð�τ0Þ ¼ 1: ð31Þ

The same result was achieved by Kourkoulou and
Maldacena in the context of the Majorana SYK model.
Note that, given a time diffeomorphism fðτÞ that does

not satisfy the boundary conditions (31), it is always
possible to perform a SLð2;RÞ transformation to a f̃ðτÞ
that satisfies (31) (see Appendix A). In Sec. II we
emphasized that SLð2;RÞ-equivalent modes must be
accounted for only once in the path integral. Therefore,
the boundary conditions (31) do not exclude any repar-
ametrization mode from the path integral. They rather
further break two out of the three generators of the residual
SLð2;RÞ symmetry. Note that the same pattern of sym-
metry breaking is obtained, as we have pointed out, by
starting with a generic superposition of Fock states instead
of a single one.
A simple calculation yields the only unbroken gener-

ator.8 Consider a SLð2;RÞ transformation mapping the
circle of length 2τ0 to itself:

ei
π
τ0
fðτÞ ¼ eiθ

ei
π
τ0
τ þ α

α�ei
π
τ0
τ þ 1

; jαj ≤ 1; ð32Þ

where � denotes the complex conjugate, α is a complex
number, and θ ∈ ½0; 2π�. The infinitesimal transformation
(jαj ≪ 1) is

fðτÞ ≈ τ þ aþ b cos

�
πτ

τ0

�
þ c sin

�
πτ

τ0

�
; ð33Þ

with a ¼ τ0θ=π, b ¼ 2τ0ImðαÞ=π, c ¼ −2τ0ReðαÞ=π. The
three generators of the transformation are then
ð1; cosðπτ=τ0Þ; sinðπτ=τ0ÞÞ. Imposing the boundary con-
ditions (31) in Eq. (33) we find a ¼ b, c ¼ 0: the only
SLð2;RÞ generator unbroken by the boundary conditions is7We ignore the phase field because it is conjugate to charge-

density fluctuations in the grand-canonical ensemble, and we are
working at fixed charge Q. 8We thank Rodrigo A. Silva for pointing this out.
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the combination 1þ cosðπτ=τ0Þ. Note that this generator
correctly maps the points �τ0 to themselves.
Finally, an intuitive picture that will be useful to guide us

in the analysis of the gravity dual is that the physics in a
boundary state jBii is analogous to the physics in the
thermal state, but we have a fixed, special point on the
thermal circle (which has length β ¼ 2τ0) at the identified
Euclidean times τ ¼ �τ0, where the boundary conditions
for the collective fields in the path integral must be imposed
(see Fig. 3).

IV. REVIEW OF HOLOGRAPHIC BRANEWORLD
COSMOLOGIES

In this section we briefly review the main features of the
bottom-up holographic braneworld cosmology model built
in [11]. The model is a generalization to the AdS-RN case
of the AdS-Schwarzschild model originally proposed
in [10].
The full (dþ 1)-dimensional gravitational Euclidean

action (reported in Appendix C) is given by Sg ¼ Sbulkþ
SETW. Sbulk is the Einstein-Maxwell action with a negative
cosmological constant, and includes a Gibbons-Hawking-
York (GHY) term and an electromagnetic boundary term
for the asymptotic boundary, needed when considering the
gravitational ensemble at fixed charge [54,55]. SETW is the
d-dimensional action for the constant tension ETW brane,
also involving an electromagnetic boundary term.
According to the AdS/BCFT prescription [7,8], all the
bulk fields satisfy Neumann boundary conditions on the
brane, which possesses a dynamical metric and cuts off the
Euclidean geometry (see Fig. 4).

The saddle-point solution of the bulk action is given by
the Euclidean AdS-RN wormhole, whose metric is

ds2 ¼ FðrÞdτ2 þ dr2

FðrÞ þ r2dΩ2
d−1; ð34Þ

where dΩ2
d−1 is the line element of the (d − 1)-dimensional

unit sphere and

FðrÞ ¼ 1þ r2

L2
AdS

−
2μ

rd−2
þ Q2

r2ðd−2Þ:
ð35Þ

with LAdS AdS radius and μ and Q mass and charge
parameters of the black hole, respectively. The metric has
two horizons: an outer event horizon at r ¼ rþ, and an
inner Cauchy horizon at r ¼ r−. Varying the brane action
(or, equivalently, imposing Israel junction conditions)
yields an equation of motion for the brane

dr
dτ

¼ � FðrÞ
TETWr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞ − T2

ETWr
2;

q
ð36Þ

whereTETW ∈ ð0; 1=LAdSÞ is the tension of the brane and the
� signs correspond to the expanding and contracting phases
of the brane, which reaches its minimum radius r ¼ r0 at
τ ¼ �β=2, where β is the inverse temperature of the black
hole. The preparation time τ0 of the dual CFT state can then
be computed in terms of bulk parameters by subtracting from
the total Euclidean periodicity β the total time2Δτ needed for
the brane to complete its trajectory from and back to the
asymptotic boundary: τ0 ¼ ðβ − 2ΔτÞ=2.
The τ ¼ 0;�β=2 slice is taken as initial condition for the

evolution in Lorentzian time. In other words, the state on
the τ ¼ 0;�β=2 slice is prepared by the gravitational
Euclidean path integral with appropriate boundary con-
ditions at τ ¼ −τ0, and the resulting state is further evolved
in Lorentzian time. The corresponding Lorentzian geom-
etry is given by the maximally extended AdS-RN black
hole, where the left asymptotic region is cut off by the ETW
brane. The minimum radius r0 in Euclidean signature
becomes a maximum radius in Lorentzian signature, and
the brane emerges from the past event horizon in the left
asymptotic region and collapses into the future event
horizon. In principle, we can glue multiple patches of
the AdS-RN spacetime, and extend farther the brane
trajectory. It would then cross the inner horizon, reach a
minimum value radius r−0 , and then start expanding again,
emerging in a new patch of the universe (see Fig. 5).
However, the evolution of the brane trajectory after it
crosses the Cauchy horizon is not reliable due to the
instability of the latter [56]. Since gravity localization is
also efficient only when the brane is far from the black hole
horizon [11], we will focus our attention on the portion of
trajectory that resides in the exterior region of the black
hole. In this picture, the whole geometry is dual to a single
BCFT with a Uð1Þ global symmetry living on the right

FIG. 3. Boundary states and canonical ensemble. The sym-
metry-breaking pattern we encountered when evaluating corre-
lators over a boundary state can be visualized by considering the
thermal circle with length β ¼ 2τ0 with a fixed, special point at
τ ¼ �τ0. The physics in a boundary state will then be equivalent
to the one described by the canonical ensemble at fixed charge in
the same charge subsector, except the collective fields must
satisfy the appropriate boundary conditions at the special point.
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asymptotic boundary. The Euclidean version of the CFT
lives on Sd−1 × ½−τ0; τ0�. From the point of view of an
observer comoving with the brane, the Lorentzian trajec-
tory of the brane in the black hole spacetime looks like the
expansion and contraction of a closed FLRW universe,
where the brane radius plays the role of the scale factor and
satisfies the Friedmann equation:

�
_r
r

�
2

¼ −
1

r2
þ 2μ

rd
−

Q2

r2d−2
þ
�
T2
ETW −

1

L2
AdS

�
; ð37Þ

where _r denotes a derivative with respect to the brane
proper time. Although for d ¼ 4 the motion of the brane
resembles the evolution of a cosmological universe, we
obtain an effective four-dimensional braneworld cosmol-
ogy only if an observer living on the brane perceives
gravity as effectively four dimensional and localized on the
brane. Gravity localization can be achieved via a Randall-
Sundrum II mechanism [12,13] (see [14,57] for general-
izations relevant to our discussion). In the presence of a
bulk black hole, it is localized only locally and when the
brane is far from the black hole horizon [11,57]. Therefore,
in order to have a portion of the brane trajectory where
gravity is localized, we need the maximum radius of the
brane r0 (i.e., the minimum radius in Euclidean signature) to
be much larger than the black hole event horizon r0 ≫ rþ.
This can be obtained by considering a near-critical brane
(TETW ≲ 1=LAdS) and a large black hole (rþ ≫ LAdS).
In order for this gravitational model to describe a

braneworld cosmology and have a BCFT dual, we need
two conditions to be satisfied at the same time:
(1) The preparation time computed in terms of bulk

parameters must be positive: τ0 > 0;
(2) For part of its trajectory the brane must sit far from

the black hole horizon, i.e., r0 ≫ rþ.
As we have already pointed out, condition 2 guarantees that
gravity can be localized on the brane and that we can
properly consider the evolution of the brane as the one of a
cosmological universe. Condition 1 on the other hand
guarantees the existence of a portion Sd−1 × ½−τ0; τ0� of
the asymptotic Euclidean AdS boundary where to define
the dual CFT, and therefore the existence of a CFT dual to
our bulk construction. Intuitively, if τ0 < 0, the brane in
Fig. 4 would overlap itself, leaving no portion of the
asymptotic boundary in the geometry.
When both the conditions are satisfied, the properties of

the resulting braneworld cosmology are encoded in the dual
BCFT state, and can be extracted in principle by measuring
appropriate observables. For example, at early times the
Ryu-Takayanagi surface [58,59] associated with large
regions of the CFT ends on the ETW brane, and therefore
the entanglement entropy of such regions has a time
dependence that probes the brane evolution [10]. This is
analogous to what happens in doubly holographic setups

involving an evaporating black hole on the brane [60], and
suggests a connection between the braneworld models
studied here and the physics of entanglement islands
[15–17,61,62].
The models reviewed in this section provide a framework

to describe cosmology in AdS=CFT correspondence and
therefore study quantum gravity in a cosmological universe.
However, it is worth noting that in the simplest possible
realization of this bottom-up proposal, involving an AdS-
Schwarzschild black hole and no matter in the bulk, con-
ditions 1 and 2 cannot be simultaneously satisfied: when the
brane is far enough to allow gravity localization, it also
overlaps itself, violating condition 1 [10]. Including a bulk
gauge field, and therefore considering an AdS-RN black
hole, the two conditions can be satisfied at the same time,
provided that the black hole is large and near extremal
(r− ≲ rþ). The corresponding saddle-point solution is also
the dominant one in the thermodynamical ensemble [11]. An
alternative possible solution to the “overlap problem” was
recently proposed in [15], where the bulk theory involves
additional fields associated with the dual CFT, which is
constructed by coupling two three-dimensional CFTs (which
are joined in the bulk IR by a connected brane) using a four-
dimensional CFT with many less degrees of freedom
(c4D << c3D, with c central charge).
An explicit realization of a model similar to the one

described in this section was provided in [22] in the context
of the AdS3=CFT2 duality. A first attempt to build a top-
bottom model of the present braneworld construction
appeared recently in [15]. The CFT is taken to be
N ¼ 4 SYM theory on a three-dimensional manifold times
an interval, coupled to two superconformal three-

FIG. 4. Trajectory of the brane in the Euclidean wormhole. The
angular coordinate is the Euclidean time τ and the radial
coordinate is the radius r. The central point represents the outer
horizon r ¼ rþ and the circumference is the asymptotic AdS
boundary. Each point in the diagram is a (d − 1)-dimensional
sphere. The ETW brane contracts from the boundary to a
minimum radius r0 at τ ¼ �β=2, and then expands back to
the boundary. The red region is outside the ETW brane and
therefore is not part of the geometry.
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dimensional CFTs with many more degrees of freedom,
living at the boundaries of the interval. The bulk dual
picture is described by a specific configuration involving
brane/antibrane pairs in type IIB string theory.
In the present paper, we are interested in a specific region

of the parameter space of the AdS-RN bottom-up brane-
world cosmology model [11]. In particular, we are inter-
ested in studying configurations where the minimum brane
radius r0 (in Euclidean signature) is just outside the horizon
of a large, near-extremal black hole r0 ≳ rþ ≳ r− ≫ LAdS.
This setup, which we analyze in detail in the next section, is
clearly not relevant for cosmology, since local gravity
localization can be achieved only when r0 ≫ rþ.
However, it is well known [25,26,31–34] that the physics
of the near-horizon region of a near-extremal AdS-RN
black hole is well captured by 2D JT gravity, whose
semiclassical description is in turn dual to the low-energy
limit of the SYK (or cSYK) model. Therefore, when the

brane enters the near-horizon region of the higher-dimen-
sional black hole, we will be able to obtain by dimensional
reduction an effective two-dimensional description involv-
ing an “end-of-the-world particle” (a one-dimensional
ETW brane) cutting off part of the hyperbolic disk (i.e.,
Euclidean AdS2). The dynamics in such geometry is
governed by JT gravity, and the dual description of specific
configurations is given by the cSYK boundary states
described in Sec. III.
Although this construction does not provide an example

of braneworld cosmology in AdS=CFT correspondence,
the simplicity of our setup allows us to gain insight about
the structure of the duality between black hole spacetimes
involving an ETW brane and specific boundary states in a
dual holographic quantum mechanical theory.

V. BULK DUAL OF CSYK BOUNDARY STATES

The geometry of the near-horizon region of a (dþ 1)-
dimensional near-extremal AdS-RN black hole approaches
AdS2 × Sd−1 [25,26,31–34]. At the low-energy scales we
are interested in in our analysis, spherical perturbations are
dominant [31] and the dynamics is well captured by an
effective two-dimensional theory obtained by dimensional
reduction. As usual when performing dimensional reduc-
tion, a dilaton field ϕðτ; rÞ is introduced, which plays the
role of the radius of the (d − 1)-dimensional sphere Sd−1 on
shell. Away from the black hole horizon r ¼ rþ, there are
deviations from the product geometry AdS2 × Sd−1, and the
dimensionally reduced model describes nearly AdS2 grav-
ity. At leading order (which is near to the black hole
horizon) such deviations are encoded in the fluctuations of
a regularized boundary, and the physics is well approxi-
mated by JT gravity [25,26,31,63].
In this section, we report the results9 of the dimensional

reduction of the bottom-up holographic braneworld cos-
mology model reviewed in Sec. IV. We will find that, under
appropriate conditions, the resulting theory mimics the
properties of the cSYK boundary states we described in
Sec. III, providing evidence for the duality between such
boundary states and JT gravity setups involving an
ETW particle.10

A. Dimensional reduction of braneworld cosmologies

We focus our attention on a fixed-charge canonical
ensemble with charge Q [11]. Before dimensionally reduc-
ing the corresponding braneworld cosmology action, it is
useful to perform a change of coordinates:

FIG. 5. Trajectory of the brane in Lorentzian signature. The
brane emerges from the past horizon in the left asymptotic region
and collapses into the future horizon. The red region, including
the left asymptotic boundary, is cut off by the ETW brane and is
not part of the geometry. We glued here more patches of the AdS-
RN spacetime, extending the trajectory of the brane. However,
the trajectory is reliable only between the intersection points of
the brane with the (inner) Cauchy horizon.

9Detailed calculations and additional considerations are re-
ported in Appendix C

10In the late development stages of this work Ref. [64]
appeared, where the authors explore the semiclassical and
quantum properties of JT gravity setups involving ETW branes
in Lorentzian signature. The results obtained there are comple-
mentary to the ones achieved in the present paper.
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r → re þ
R2
2

z;
ð38Þ

where re is the horizon radius of the extremal black hole
with charge Q [11] and we conveniently introduced the
quantity

R2 ¼
reLAdSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd − 1Þr2e þ ðd − 2Þ2L2
AdS;

q ð39Þ

which will be the AdS2 radius of the dimensionally reduced
theory. The near-horizon region is then identified by the
condition z ≫ R2

2=re. For the near-extremal case of our
interest rþ ≳ re, after a Weyl rescaling the metric of the
near-horizon region reads

ds2 ≈
R2
2

z2

�
ð1 − 4πT2z2Þdt2 þ dz2

ð1 − 4πT2z2Þ
�
þ r2edΩ2

d−1;

ð40Þ

where T ¼ 1=β is the Hawking temperature of the black
hole and the horizon is at zH ¼ 1=ð2πTÞ. In the extremal
limit T → 0 the two-dimensional metric reduces to
Poincaré AdS.11 The two-dimensional metric in the near-

extremal case (40) is still AdS2, and can be mapped to
Poincaré AdS by a change of coordinates [31].
As we have already mentioned, the asymptotic AdS2

boundary must be regularized to the near-horizon region to
cut off any large deviation from the AdS2 × Sd−1 geometry.
When the black hole is large, rþ ≳ re ≫ LAdS, it is possible
to place the regularized boundary in the near-horizon
region z ≫ R2

2=re and at the same time deep in the
asymptotic AdS2 region z ≪ R2 ≈ LAdS [33]. In this
region, corrections above extremality are also small if
the temperature satisfies 2πT ≲ 1=R2. The region where
the regularized boundary sits is then defined by the
conditions

2πTR2
2 ≲ R2 ≈ LAdS ≪

R2
2

z
≪ re: ð41Þ

We can now perform the dimensional reduction of the
holographic braneworld cosmology action ([11], and
reported in Appendix C). Working at fixed charge, we can
further integrate out the bulk gauge field [32] to obtain the
following dimensionally reduced effective action describing
the physics inside the regularized boundary (the expressions
of S0 and SETW0 are reported in Appendix C):

Stot ¼ S0 þ SETW0 −
Vd−1

16πG

Z
M

d2x
ffiffiffi
g

p
Φ1

�
Rþ 2

R2
2

�
−
Vd−1

8πG

Z
∂M∞

du
ffiffiffiffiffiffiffi
γuu

p
Φ1K∞

−
Vd−1

8πG

Z
ETW

dv
ffiffiffiffiffiffiffi
hvv

p
Φ1½KETW −

d
2
Φ

− d−2
2ðd−1Þ

0 TETW� þ � � � : ð42Þ

S0 is a topological term, Setw0 is a term proportional to the
proper length of the trajectory of the ETW particle, Vd−1 is
the volume of the (d − 1)-dimensional unit sphere, G is the
(dþ 1)-dimensional Newton constant, M is the two-
dimensional spacetime manifold, gij is the two-dimensional
Weyl-rescaled metric, Φ1 is a redefined dynamical dilaton,
R is the two-dimensional Ricci scalar. ∂M∞ is the
regularized boundary, γuu the metric induced on it, and
K∞ its extrinsic curvature. Finally, hvv is the metric induced
on the ETW particle, KETW its extrinsic curvature, and
Φ0 ¼ rd−1e . The last two terms of the first line are the JT
gravity action, while the second line is the ETW particle
action, and the dots account for higher-order corrections
away from the near-horizon region.
From the action (42) it is clear that the bulk geometry is

fixed on shell to be AdS2, with AdS radius R2. Euclidean
AdS2 possesses an asymptotic DiffðS1Þ boundary time
reparametrization symmetry. Being an emergent

asymptotic symmetry, it is spontaneously broken by
AdS2, and only a SLð2;RÞ subgroup remains unbroken
[25]. As we will see in the next section, all the dynamics is
encoded in the fluctuations of the boundary ∂M∞. The
leading-order fluctuations are described by a Schwarzian
action that explicitly breaks the DiffðS1Þ symmetry down
to SLð2;RÞ.

B. Boundary conditions and Schwarzian action

The action (42) must be supported by a set of boundary
conditions for the metric and the dilaton at the regularized
boundary and at the location of the ETW particle. At the
regularized boundary, we impose the Dirichlet-Dirichlet
(DD) boundary conditions usually implemented in JT
gravity (see [65] for an analysis of the possible boundary
conditions in JT gravity):

γuu ¼
1

ε2
; Φ1j∂M∞

¼ ϕb

ε;
ð43Þ

where ε is a small cutoff parameter determining the location
of the regularized boundary (whose total proper length is

11Note that in Euclidean signature Poincaré coordinates cover
the whole hyperbolic disk [26].
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set to be L ¼ β=ε) and ϕb is a constant. On the other hand,
according to the AdS/BCFT prescription [7,8] and to the
higher-dimensional braneworld cosmology model
reviewed in Sec. IV, we must impose Neumann-
Neumann (NN) boundary conditions on the ETW particle.
They are given by (a derivation of these boundary con-
ditions is given in Appendix D)

KETW −
d
2
r
−d−2

2
e TETW ¼ 0 ð44Þ

niETW∂iΦ1 −Φ1KETW − ðd − 1Þrd2eTETW ¼ 0: ð45Þ

We can now obtain an effective action governing the
dynamics of the gravitational theory by integrating out
the dilaton field Φ1, evaluating the action on shell, and
imposing the boundary conditions (43), (44), and (45). This
fixes the bulk geometry to be AdS2, with the metric given
by the two-dimensional part of Eq. (40).
The only dynamical term left in the effective action

comes from the GHY term for the regularized boundary
∂M∞. Parametrizing the boundary with the boundary
proper time u, the location of the boundary in the fixed
Euclidean AdS2 bulk is given by ðτðuÞ; zðuÞÞ, with τ bulk
time coordinate. Up to third order in ε, the boundary
conditions (43) impose

zðuÞ≈ εR2τ
0ðuÞþ ε3R3

2

� ðτ00ðuÞÞ2
2ðτ0ðuÞÞ2 − 2π2T2ðτ0ðuÞÞ3

�
; ð46Þ

where a prime indicates a derivative with respect to the
boundary proper time u. The shape of the regularized
boundary is then completely determined by the time
reparametrization mode τðuÞ, and the dynamics is encoded
in its fluctuations, which are described at leading order in
1=ε by a Schwarzian action:

Ieff ≈ −
Vd−1R2ϕb

8πG

Z
duftan ðπTτðuÞÞ; ug: ð47Þ

In the absence of the ETW particle, the integral over u runs
from −β=2 to β=2 and τðuÞ is a monotonic function
satisfying τðuþ βÞ ¼ τðuÞ þ β. The action (47) explicitly
breaks the asymptotic DiffðS1Þ symmetry down to
SLð2;RÞ. This pattern of symmetry breaking is completely
analogous to the one found in the SYK model, and makes
the duality between low-energy limit of the SYKmodel and
JT gravity manifest. In particular, the gravitational
Schwarzian sector can be described either by the
Majorana SYK model, or by a fixed-charge subsector of
the cSYK model. The picture emerging from the analysis so
far is that one of a rigid AdS2 bulk cutoff by a regularized
boundary whose shape is determined by the function τðuÞ
(see Fig. 6). The Schwarzian action (47) takes different
values on “chunks” of AdS2 with different shapes,12 which

are then weighted differently in the gravitational path
integral. The saddle-point solution is given by τðuÞ ¼ u,
which represents a circular boundary sitting at z ¼ εR2 ≡ zb.

C. ETW particle trajectory

So far we have focused on the dynamics of the
regularized boundary. Imposing the boundary conditions
(44) and (45) the action for the ETW particle clearly
vanishes on shell. Therefore, in the resulting effective
description the ETW particle follows a trajectory (fixed
by the boundary conditions) in the rigid AdS2 bulk, and its
evolution is independent of the regularized boundary
fluctuations, i.e., of the dynamics. Parametrizing the
ETW particle worldline by the bulk time τ [i.e., picking
v ¼ τ in the action (42)], the equation of motion for the
brane particle is given by

z0ðτÞ ¼ � 1 − 4π2T2z2

TETWðdR2

2
þ re

R2
zÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4π2T2z2 −

�
dR2

2
þ re
R2

z

�
2

T2
ETW;

s
ð48Þ

where the þ (−) sign corresponds to the contraction
(expansion) phase of the ETW particle. As described in
Sec. IV, we are interested in time-reflection symmetric

FIG. 6. Time reparametrization and AdS2 chunks. Different
time reparametrizations τðuÞ correspond to different shapes of the
regularized boundary in the rigid AdS2 bulk. The spacetime
region described by our effective action is the one enclosed by the
regularized boundary, and shaded in green. Chunks of AdS2 of
different shapes are weighted differently by the Schwarzian
action in the path integral.

12Up to an SLð2;RÞ transformation connecting physically
equivalent configurations.
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states. Therefore, the brane reaches its minimum radius
(i.e., maximum value of z) z ¼ zmax for τ ¼ �β=2. z ¼
zmax is the inversion point z0ð�β=2Þ ¼ 0, and is determined
by imposing the argument of the square root in Eq. (48) to
vanish. If we could trust this trajectory all the way to the
asymptotic AdS2 boundary, it would describe a particle
hitting the asymptotic boundary at times τ ¼ �τ̄, and
reaching its minimum radius at the inversion point zmax.
However, we remark that the trajectory described by
Eq. (48) is reliable only inside the regularized boundary,
where the physics is well described by the dimensionally
reduced action (42).
Since our effective two-dimensional description is cut off

at the regularized boundary, the ETW particle is present in
our model only if it crosses the boundary and enters the
near-horizon region. At leading order in ε this implies

zmax ≥ εR2τ
0ðuÞ ¼ zbτ0ðuÞ: ð49Þ

For τðuÞ ¼ u, condition (49) imposes a bound on the
tension TETW:

0 < TETW ≤ Tmax
ETW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4π2T2z2b

q
dR2

2
þ re

R2
zb

: ð50Þ

Using the conditions (41) determining the region where the
regularized boundary sits, we immediately find that
Eq. (50) implies 0 < TETW ≪ 1=LAdS, which means that
the tension of the higher-dimensional ETW brane must be
far from its critical value. This result was to be expected
because in the higher-dimensional picture we want the
ETW brane to enter the near-horizon region.
The near-horizon condition also guarantees that in the

portion of trajectory we are interested in (i.e., when the
ETW particle is inside the regularized boundary) zðτÞ ≫
R2
2=re holds. In this limit, the equation of motion (48) can

be solved analytically, obtaining

zðτÞ ≈ R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2R2

2 þ r2eTETW

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2eTETW

4π2T2R2
2

tan2
�
2π

β

�
τ ∓ β

2

��
;

s
ð51Þ

and now zmax ≈ R2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2R2

2 þ r2eT2
ETW

p
, while the maxi-

mum brane tension is Tmax
ETW ≈ R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4π2T2z2b

q
=ðzbreÞ.

D. Tangent trajectory and symmetry breaking

Let us initially focus on the Schwarzian saddle point
τðuÞ ¼ u. In this case the regularized boundary is circular
and sits at z ¼ zb. When the condition (49) is satisfied, the
brane will in general intersect the boundary in two points, at

times τ ¼ u ¼ �u0, with u0 < β=2. The AdS/BCFT pre-
scription suggests that the quantity u0 represents the
preparation time of the state dual to the spacetime geom-
etry. Although this solution is completely meaningful on
the gravity side, it is not clear at the moment what the dual
cSYK state would look like. Indeed, the preparation time of
the boundary states introduced in Sec. III is by construc-
tion u0 ¼ β=2.
One possibility is that the geometry with two intersection

points is dual to some different kind of cSYK boundary
state, one with a different structure at the microscopic scale.
This is perfectly reasonable since the brane intersection
with the regularized boundary is by definition at the cutoff
scale in the dimensionally reduced theory.
It is also conceivable that only holographic boundary

states with preparation time u0 ¼ β=2 can be built in the
cSYK model, and that the two-intersection solutions are
only an indication that the bulk theory is richer than the
boundary one. This would not come as a surprise for two
reasons. First, the analogy with the AdS3=CFT2 case,
where only holographic boundary states with preparation
time u0 ¼ β=4 (and therefore the brane anchored at
antipodal points) can be constructed using conformal
boundary conditions [22]. Second, the fact that the bulk
theory described in the present section comes from the
dimensional reduction of a higher-dimensional theory, and
is therefore expected to be richer than the (0þ 1)-dimen-
sional boundary theory. This is made explicit by the
presence of an additional bulk parameter, the tension
TETW, which has no known counterpart in our cSYK
description. In higher-dimensional braneworld cosmolo-
gies, the bulk tension parameter has a counterpart in the
boundary dual theory, with a precise physical meaning: it
accounts for additional CFT degrees of freedom living on
the (d − 1)-dimensional boundary of the d-dimensional
manifold where the BCFT is defined [10,15]. But the dual
theory considered in the present paper is (0þ 1)-dimen-
sional quantum mechanics, and therefore there can be no
additional CFT boundary degrees of freedom. The tension
is then just a bulk free parameter inherited from the higher-
dimensional description.
To make contact with the boundary states defined in

Sec. III, we therefore impose u0 ¼ β=2, which implies that
the two intersection points reduce to a single one at bulk
coordinates τ ¼ �u0 ¼ �β=2 and z ¼ zmax ¼ zb (see
Fig. 7). This condition can be met for a brane trajectory
sufficiently close to the horizon provided we choose the
cutoff surface zb such that TETW ¼ Tmax

ETWðzbÞ. In other
words, the trajectory of the particle is tangent to the
regularized boundary. One then has a special point on
the regularized boundary where Neumann boundary con-
ditions for all the bulk fields are imposed, which is
reminiscent of the cSYK thermal circle with a special
point. If we took into account the presence of bulk fermions
in our description, appropriate boundary conditions for the
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fermions should also be specified at the special point. Let
us now consider dynamical fluctuations of the regularized
boundary, governed by the effective action (47). From a
bulk point of view, we could consider arbitrary boundary
reparametrizations u → τðuÞ, i.e., arbitrary shapes for the
regularized boundary in the rigid AdS2 bulk (see Fig. 6).
The single intersection point at τ ¼ u ¼ �β=2 can then be
mapped to a different single intersection point at an
arbitrary τðβ=2Þ ¼ τð−β=2Þ þ β, and it would not reside
on the time-reflection symmetric line τ ¼ �β=2 anymore.
Or there could be more than one intersection point, or no
intersection points at all. We know of no principle restricting
such configurations from the bulk point of view, and this is
again a sign of the additional freedom present in the higher-
dimensional bulk theory relative to the lower-dimensional
boundary dual. But since our goal is to build a geometry
which can be described by the cSYKboundary states defined
in Sec. III, a necessary condition for our construction towork
is that both the time-reflection symmetry of the ETWparticle
trajectory in the bulk and the tangent condition must be
preserved under reparametrizations of the boundary. In other
words, the intersection of the ETWparticle trajectory and the
boundary must remain a single point on the time-reflection
symmetric line τ ¼ �β=2.
The time-reflection symmetry condition immediately

implies that the intersection point u ¼ �β=2 is mapped
by an admissible boundary reparametrization to
τð�β=2Þ ¼ �β=2. Since the trajectory of the ETW par-
ticle in the bulk is completely independent of the boun-
dary fluctuations, zETWðτ ¼ �β=2Þ ¼ zmax ¼ zb still

holds after the boundary reparametrization. By means
of Eq. (46), at leading order in ε the tangent condition
implies zðu ¼ �β=2Þ ¼ zbτ0ð�β=2Þ ¼ zb, and therefore
τ0ð�β=2Þ ¼ 1. Note that since the Schwarzian fluctuations
are 1=N suppressed (which is of Planckian size), the
preservation of the tangent condition under time repar-
ametrizations also implies that no additional intersection
points appear in perturbation theory: the special point at
τ ¼ �β=2 remains the only intersection point between the
ETW particle trajectory and the regularized boundary.
After the identification u0 ¼ β=2, we obtain two boundary
conditions for the boundary reparametrization mode:

τð�u0Þ ¼ �u0; τ0ð�u0Þ ¼ 1; ð52Þ

which are completely analogous to the ones obtained for
the cSYK boundary states [see Eq. (31)]. Therefore we
obtained the exact same pattern of symmetry breaking: the
effect of the boundary conditions (52) is to further break
the residual SLð2;RÞ symmetry, with only one generator
left unbroken. This result provides clear evidence of the
duality between the cSYK boundary states constructed in
Sec. III and the dimensionally reduced braneworld cos-
mology model described in the present section.
As we have already explained at the end of Sec. III C, the

boundary states described in Sec. III are not the only ones
to exhibit the properties described in the present analysis:
starting with a generic superposition of Fock states (instead
of a single Fock state) and evolving it for an amount τ0 of
Euclidean time would lead to analogous results.13 Note,
however, that a complete dual description of the low-energy
limit of the cSYK model must necessarily include N bulk
fermions, related to sources of the cSYK fermions by the
HKLL construction [50]. A set of boundary conditions for
such bulk fields must be specified at the intersection point
between the regularized boundary and the ETW particle. A
given set of boundary conditions will then uniquely
identify a specific cSYK boundary state from a bulk
perspective. From this point of view, the construction
described in the present section, where we ignored
the presence of the bulk fermions, can be regarded as the
common dual geometric background associated with the
whole class of cSYKboundary states that break the SLð2;RÞ
symmetry in the specific way we analyzed. It is then a
conceptually straightforward step to specify a set of boun-
dary conditions for theN bulk fields at the intersection point,
and therefore restrict to a single cSYK boundary state.

FIG. 7. Tangent ETW particle at saddle point. At the Schwar-
zian saddle point τ ¼ u the regularized boundary is a circle sitting
at z ¼ zb. When the ETW particle trajectory is tangent to the
regularized boundary, a single special point at τ ¼ �β=2 is
identified, where Neumann boundary conditions for all the bulk
fields must be imposed. This configuration is the one relevant to
the description of the cSYK boundary states analyzed in Sec. III.

13Note that this is not true in general for a highly excited state. As
an example, consider an energy eigenstate. The eigenstate thermal-
ization hypothesis guarantees that correlators of generic operators
would look thermal in such state. However, it is enough to compute
quantum energy fluctuations to tell apart an energy eigenstate (for
which they would exactly vanish) from the thermal state. This is
different from the expectations for our boundary states and could be
a signal that energy eigenstates do not have a smooth interior.
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We emphasize that we only used the intuition provided
by the cSYK boundary states as a guideline to understand
the symmetry properties that a hypothetical bulk dual
should satisfy. The fact that requiring such properties to
hold in our dimensionally reduced braneworld cosmology
model leads to the same symmetry-breaking pattern that we
observed on the cSYK side is nontrivial, and should be
regarded as a key result of the present paper.

VI. DISCUSSION

In this paper we built an explicit example of the duality
between asymptotically AdS spacetimes with an end-of-
the-world brane and boundary states of a dual CFT. In
particular, we considered specific boundary states in the
cSYK model and showed that, under appropriate condi-
tions, the dimensional reduction of the holographic brane-
world cosmology model proposed in [11] is dual to such
boundary states. Although the range of bulk parameters
where the duality holds does not allow gravity localization
on the ETW brane (and therefore the model is not suitable
to properly describe a braneworld cosmology), our result
confirms the possibility to describe similar spacetimes
using BCFTs and sheds light on how to explicitly realize
similar constructions. It also has the merit to provide a
novel, simple framework to explore the properties of the
AdS/BCFT correspondence.
A direction calling for further development is to under-

stand which observables in the cSYK model can probe the
bulk trajectory of the ETW particle. In a Lorentzian picture
corresponding to our Euclidean model, the ETW particle
worldline would sit in the left asymptotic region, cutting off
the left asymptotic boundary, analogously to what happens
in the higher-dimensional model depicted in Fig. 5 (see [64]
for a recent analysis). The duality between the cSYK
boundary states and such geometries implies that the
trajectory of the ETW particle in the left asymptotic region
can be probed by measuring expectation values of appro-
priate observables in the boundary state of the cSYK model
living on the right asymptotic boundary, which is dual to
the whole spacetime. In particular, the expectation values
should acquire some time dependence, which would
necessarily be related to the evolution of the ETW particle
in the bulk. Natural candidates to probe such behind-the-
horizon physics are the entanglement entropy and the
holographic complexity [10]. Our construction allows us
to further extend this list of possible observables by
working within a well-understood, controlled framework.
We also remark one more time that in the present paper

we explored only the Schwarzian sector of the dimension-
ally reduced theory, and in particular we did not explicitly
take into account bulk fermions, which are necessarily
present in a bulk dual of the low-energy sector of the cSYK
model. Therefore, the geometries we obtained can be
equivalently described at this level by either the cSYK
boundary states in a specific charge subsector constructed

in Sec. III (or analogous states built by starting with a
generic superposition of Fock states instead of a single
Fock state), or the Majorana SYK boundary states studied
by Kourkoulou and Maldacena [21]. Additionally, our
purely Schwarzian bulk construction is incapable of dis-
tinguishing between two different boundary states in the
same cSYK charge subsector (or any two boundary states
in the Majorana SYK model). However, when the presence
of bulk fermions (which are related to sources of the cSYK
fermions by the HKLL construction [50]) is taken into
account, the cSYK boundary states are uniquely identified
by the specific set of boundary conditions imposed on the
bulk fields at the intersection point between the ETW
particle and the regularized boundary. Our bulk construc-
tion is then dual to a whole class of boundary states, which
are distinguished by the boundary conditions imposed on
bulk fermions propagating on such geometric background.
One advantage of considering cSYK boundary states
instead of Majorana SYKones is that it allows an immediate
generalization of our setup to more complicated configura-
tions. For example, it would be possible to study the higher-
dimensional holographic braneworld cosmologies in the
gravitational grand-canonical ensemble, allowing small
charge fluctuations. The corresponding cSYK effective
action would then also include a term governing the
dynamics of the phase field λðτÞ and encoding small
charge-density fluctuations [31]. Alternatively, we could
include in our description N bulk fermions charged under
the Uð1Þ bulk gauge symmetry. These would be naturally
described within the cSYK model [44,50] and would
determine the specific cSYK boundary state dual to the
spacetime geometry, as we have already pointed out.
Another interesting open question is whether or not it is

possible to build a dual description of bulk setups where the
brane intersects the regularized boundary in two distinct
points. If the answer is yes, the corresponding boundary
states should look quite different from the ones built in
Sec. III, whose preparation time is by construction equal to
half the Euclidean periodicity. It is also possible that such
bulk setups are just a manifestation of the additional bulk
degrees of freedom inherited from the higher-dimensional
theory. If this is the case, they might not have a dual
representation in the cSYK model.
Finally, a fascinating open question is how the holo-

graphic braneworld cosmology models originally intro-
duced in [10,11] relate to the physics of entanglement
islands. The dimensionally reduced model presented in this
paper could be a useful building block to explore the
answer to this question in a simplified setup analogous to
the ones where entanglement islands were originally
introduced.
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APPENDIX A: cSYK MODEL AND SYMMETRY
BREAKING

As we have pointed out in Sec. II, in general the saddle-
point solution (7) for G is not invariant under the trans-
formation (5), meaning that the time reparametrization
symmetry DiffðS1Þ and the local Uð1Þ symmetry are
spontaneously broken. However, there is a subgroup of
time reparametrizations under which the thermal solution is
invariant provided that we also perform an appropriate
phase shift [45]. Let us start by considering the zero-
temperature solution (6) when the asymmetry parameter
vanishes E ¼ 0 (i.e., for the Q ¼ 0 charge subsector). We
can perform a time reparametrization

τ → FðτÞ ¼ tan

�
πfðτÞ
β

�
ðA1Þ

without performing any local phase shift. Then, from
Eq. (5) we obtain

Gfðτ1; τ2Þ ∝
�

F0ðτ1ÞF0ðτ2Þ
½Fðτ1Þ − Fðτ2Þ�2

�
Δ
: ðA2Þ

For fðτÞ ¼ τ, this is the saddle-point thermal solution (7) at
E ¼ 0 [and it is correctly antiperiodic: Gβð−β=2Þ ¼
Gβðβ=2Þ], while for generic fðτÞ we get a generic repar-
ametrization of the thermal solution. But note that Eq. (A2)
is invariant under any reparametrization of the form

F̃ ¼ aF þ b
cF þ d;

ðA3Þ

with ad − bc ¼ 1, i.e., the thermal solution is invariant
under global SLð2;RÞ transformations.14 Note that the
Möbius transformation (A3) does not distinguish elements
in the center of SLð2;RÞ. In other words, it does not
distinguish the transformation with a ¼ d ¼ 1, b ¼ c ¼ 0

(i.e., the identity transformation 1̂) from the one with
a ¼ d ¼ −1, b ¼ c ¼ 0 (i.e., the transformation −1̂).
Therefore, looking only at the bosonic sector we are
considering, the residual symmetry group is
PSLð2;RÞ ¼ SLð2;RÞ=f�1̂g. However, since in general
we are interested in a bulk theory with fermions and

fermions are sensitive to the cover of PSLð2;RÞ, we will
consider SLð2;RÞ to be the residual symmetry group [48].
Therefore, the DiffðS1Þ symmetry is spontaneously broken
down to SLð2;RÞ, and the corresponding pseudo-Nambu-
Goldstone boson fðτÞ, whose dynamics is governed by the
Schwarzian action, belongs to the left quotient of DiffðS1Þ
by SLð2;RÞ. Note that the SLð2;RÞ symmetry is preserved
by both the spontaneous and the explicit symmetry break-
ing, and must be regarded as a gauge symmetry as we
explained in Sec. II. Indeed, the effective action (9) is
invariant under the SLð2;RÞ transformation (A3). If we did
not exclude the redundant SLð2;RÞ-equivalent configura-
tions when performing the path integral, we would have an
infinite degeneracy leading to a diverging Euclidean path
integral, as it always happens when we do not deal with
gauge symmetries properly.
We also remark that any local phase shift does not leave

either the thermal two-point or the effective action invari-
ant: the emergent local Uð1Þ symmetry is completely
broken, both spontaneously and explicitly, leading to a
second pseudo-Nambu-Goldstone boson λðτÞ, whose effec-
tive action governs charge fluctuations in the grand-
canonical ensemble and is given by [44]

Ieff ½λ; f� ¼
NK
2

Z
β

0

dτ

�
λ0ðτÞ þ i

2πE
β

f0ðτÞ
�
2

; ðA4Þ

where K is the charge compressibility at zero temperature
[44]. On the other hand, a global phase shift is an exact
symmetry of the theory.
Let us now generalize our analysis to the case E ≠ 0.

Now, due to the spectral asymmetry, we cannot obtain the
thermal solution (7) from Eq. (6) by simply performing the
time reparametrization (A1). Indeed, at the saddle point
fðτÞ ¼ τ we would not obtain an antiperiodic result with
period β, as we would expect since τ and τ þ β are
identified. To restore the periodicity, we must also perform
a local phase shift as in Eq. (5) with

iλðτÞ ¼ −
2πE
β

τ; −β < τ < β; ðA5Þ

which leads to the thermal two-point function (7). We see
immediately that for E ≠ 0 such saddle-point solution,
which transforms as in Eq. (5), is not invariant if we only
perform a SLð2;RÞ transformation as defined by Eq. (A3).
Indeed, the time reparametrization affects also the local
phase shift (A5). However, the thermal two-point function
is still invariant under the combined action of a SLð2;RÞ
transformation and a local phase shift given by [45]

iλ̄ðτÞ ¼ 2πE
β

ðfðτÞ − τÞ: ðA6Þ

Note that the total effective action [given by the sum of the
Schwarzian action (9) and the phase field action (A4)] is

14It is a global SLð2;RÞ group because the transformation (A3)
does not depend on τ.
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invariant under the combined SLð2;RÞ ⊗ Uð1Þ transfor-
mation. This is indeed equivalent to performing the change
of variables

λðτÞ → λðτÞ þ i
2πE
β

ðτ − fðτÞÞ; ðA7Þ

which decouples the Uð1Þ mode from the time reparamet-
rization mode, and then perform a SLð2;RÞ time repar-
ametrization, which leaves invariant the actions for both
modes. Substituting the change of variable (A7) into the
transformation law (5) of the two-point function, we
immediately see how a time reparametrization of the
conformal thermal solution implies also a (imaginary)
phase shift:

Gβ
f;λðτ1; τ2Þ ¼ ½f0ðτ1Þ�Δ½f0ðτ2Þ�Δei½λðτ1Þ−λðτ2Þ�

× e
2πE
β ½fðτ1Þ−fðτ2Þ−ðτ1−τ2Þ�Gβðfðτ1Þ; fðτ2ÞÞ:

ðA8Þ

The transformation law (A8) leaves the (anti)periodicity
of the thermal two-point function unchanged. Moreover, it
ensures that a time reparametrization satisfying (A3) leaves
the thermal solution invariant, making the SLð2;RÞ sym-
metry explicit again without the need of a local phase shift.
Now all the considerations made in the E ¼ 0 case apply
here too, and the system displays the same pattern of
symmetry breaking. In particular, the time reparametriza-
tion symmetry is both spontaneously and explicitly broken
down to SLð2;RÞ, which is a residual and nonphysical
“gauge” symmetry, while the local Uð1Þ symmetry is
completely broken both spontaneously and explicitly to
global Uð1Þ. Note indeed that a global phase shift still
leaves the thermal two-point function invariant, i.e., there is
still correctly an unbroken Uð1Þ global symmetry. Such
global phase shift clearly also leaves the total effective
action invariant: it represents an exact physical symmetry
of the theory.
Finally, we would like to remark one more time that the

boundary conditions (31) do not imply the exclusion of any
physical configuration from the path integral. Indeed, we
have seen that their effect is to further break two out of the
three SLð2;RÞ generators. This implies that in general a
SLð2;RÞ transformation (A3) maps modes that satisfy the
boundary conditions (31) to modes that do not, and vice
versa. In particular, for any given reparametrization mode
f̄ðτÞ which does not satisfy the boundary conditions, it is
always possible to perform an appropriate SLð2;RÞ trans-
formation to a mode f̃ðτÞ which satisfies (31). Since time
reparametrization modes connected by the SLð2;RÞ trans-
formation (A3) are accounted for only once in the path
integral, the effect of the boundary conditions (31) is to

select a one-parameter family of admissible reparametriza-
tion modes for each class of SLð2;RÞ-equivalent modes.

APPENDIX B: BOUNDARY STATES DYNAMICS

1. Probability distribution of coefficients

In Sec. III we made use of the properties (outlined in
Sec. III A) of the probability distribution of the coefficients
cik defined by jSii ¼

PDQ
k¼1 c

i
kjEki. We report here physical

motivations and numerical results supporting the features
claimed in Sec. III A.
An intuitive way to understand this is by focusing on the

contribution of each Fock state to the superposition jEki ¼PDQ
i¼1 c

k
i jSii [with cki ¼ ðcikÞ�] for multiple realizations of

the random Hamiltonian. The emergent UðNÞ symmetry at
large N, arising from the properties of the random cou-
plings and mentioned in Sec. III A, implies that the roles of
the different Fock states are “shuffled” from one realization
to another. Therefore, we expect the coefficient to have, on
average, the same magnitude and a uniformly distributed
phase. The value of the average magnitude is fixed by the
normalization condition to be 1=DQ (see Figs. 8 and 9).
The simplest model which captures these intuitions takes

the coefficients cik as elements of a normalized Haar
random vector in a DQ-dimensional complex vector space.
Given such a random state jψi, we have the standard
identity

Z
dψ jψihψ j ⊗ jψihψ j ¼ 12 þ F2

DQðDQ þ 1Þ ; ðB1Þ

where 12 is the identity on two copies and F2 is the swap
operator. Based on this formula, a random vector model of
the cik predicts that thevariance of jcikj2 isD−2

Q þOðD−3
Q Þ and

that the covariance of jcikj2 and jcilj2 is −D−3
Q þOðD−4

Q Þ.
Our numerical results, reported in Fig. 10, show that the

variance of the coefficients is indeed close to D−2
Q .

Moreover, the numerical data reported in Fig. 11 show a
covariance close to −D−3

Q . Finally, since all the reasoning
above can be applied indistinctly to any energy eigenstate
in the charge subsector, the correlation between the energy
eigenvalues and the coefficients is also strongly suppressed
(see Fig. 12).
Our numerical results have been obtained using exact

diagonalization for N ¼ 8, and averaging over 5000 real-
izations of the Hamiltonian. Increasing the number of
realizations the points converge to the average values
indicated by the horizontal lines, which are therefore very
close to the true probability distribution’s moments con-
sidered. We report here the results for the Q ¼ 0;−1; 2
charge subsectors.
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FIG. 8. Squared norms of coefficients. jcikj2 for a given Fock state jSii and for every energy eigenstate jEki in the same charge
subsector. The red points are the squared norms for a single realization of the Hamiltonian, while the blue points are averaged over 5000
realizations. The mean of the squared norm is clearly 1=DQ (horizontal line). (a) Q ¼ 0. (b) Q ¼ −1. (c) Q ¼ 2.
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FIG. 9. Phases of coefficients. Phases of cik for a given Fock state jSii and for every energy eigenstate jEki in the same charge
subsector. The red points are the phases for a single realization of the Hamiltonian, while the blue points are averaged over 5000
realizations. The phases are clearly uniformly distributed between −π and π, and therefore their mean vanishes.
(a) Q ¼ 0. (b) Q ¼ −1. (c) Q ¼ 2.
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FIG. 10. Variance of the squared norms of coefficients. Variance of jcikj2 for a given Fock state jSii and for every energy eigenstate jEki
in the same charge subsector, averaged over 5000 realizations. The variance is of order 1=D2

Q (horizontal line).
(a) Q ¼ 0. (b) Q ¼ −1. (c) Q ¼ 2.
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2. Two-point functions

In Sec. III B we showed that the denominator of Eq. (15)
is given by Eq. (17). Let us now focus on the numerator of
Eq. (15). Since we are inserting a specific fermion ψ̂k, if
τ0 − jτ1;2j is not large enough to end up in a generic
superposition of all the Fock states in the charge subsector
before the insertion of the fermion, the numerator of
Eq. (15) depends on the occupation number of the kth
fermion. However, given the properties of the coefficients
cij outlined in Sec. III A and Appendix B 1, it is still
independent of the occupation number of all the
other N − 1 fermions after averaging over disorder.
Given a charge subsector with charge Q, there are

n↑;Q ¼ Qþ N=2 fermions in the j↑i state. Then the DQ ¼
ð N
n↑;Q

Þ states in the Fock basis of the charge subsector are

split up inDQ;k¼↑ ¼ ð N−1
ðn↑;QÞ−1Þ states with the kth fermion in

the j↑i state and DQ;k¼↓ ¼ ðN−1
n↑;Q

Þ states with the kth

fermion in the j↓i state.

We can therefore consider the numerator of Eq. (15) and
sum over all the DQ;k¼↑ (correspondingly, DQ;k¼↓) Fock
states with the kth fermion in the j↑i (correspondingly, j↓i)
state. This is equivalent to summing over all the DQ Fock
states in the charge subsector after inserting the projector
Pk¼↑¼ψ̂†

kð−τ0Þψ̂kð−τ0Þ [correspondingly, Pk¼↓¼ψ̂kð−τ0Þ
ψ̂†
kð−τ0Þ]. Using the cyclic property of the trace we obtain

X
fjSi;k¼↑ig

hSije−τ0ĤT½ψ̂kðτ1Þψ̂†
kðτ2Þ�e−τ0ĤjSii

¼ TrQðe−2τ0ĤT½ψ̂kðτ1Þψ̂†
kðτ2Þψ̂†

kð−τ0 þ 0þÞψ̂kð−τ0Þ�Þ;
ðB2Þ

X
fjSi;k¼↓ig

hSije−τ0ĤT½ψ̂kðτ1Þψ̂†
kðτ2Þ�e−τ0ĤjSii

¼ TrQðe−2τ0ĤT½ψ̂kðτ1Þψ̂†
kðτ2Þψ̂kð−τ0 þ 0þÞψ̂†

kð−τ0Þ�Þ:
ðB3Þ
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FIG. 11. Covariance of the squared norms of coefficients. Covariance of jcikj2 and jcijj2 for a given Fock state jSii and for all energy
eigenstates jEki and jEji in the same charge subsector, averaged over 5000 realizations. The covariance is of order 1=D3

Q (horizontal
line). (a) Q ¼ 0. (b) Q ¼ −1. (c) Q ¼ 2.
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FIG. 12. Correlation between squared norms of coefficients and energy eigenvalues. Correlation between jcijj2 and energy eigenvalues
Ek for a given Fock state jSii and for all energy eigenstates jEji and jEki in the same charge subsector, averaged over 5000 realizations.
The correlation is clearly strongly suppressed. (a) Q ¼ 0. (b) Q ¼ −1. (c) Q ¼ 2.
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After averaging over disorder, each element in the sum
on the left-hand sides does not depend on the occupation
number of the remaining N − 1 fermions, and has the same
occupation number for the kth fermion: all the elements of
the sum take the same value. Since the distribution of the

coefficients is sharply peaked, at leading order in 1=DQ the
latter property is still valid for a single drawing of the
couplings. This is the same self-averaging property invoked
in Sec. III B for the denominator of Eq. (15). Therefore we
obtain

hSi;k¼↑je−τ0ĤT½ψ̂kðτ1Þψ̂†
kðτ2Þ�e−τ0ĤjSi;k¼↑i ¼

1

DQ;k¼↑
TrQðe−2τ0ĤT½ψ̂kðτ1Þψ̂†

kðτ2Þψ̂†
kð−τ0 þ 0þÞψ̂kð−τ0Þ�Þ; ðB4Þ

hSi;k¼↓je−τ0ĤT½ψ̂kðτ1Þψ̂†
kðτ2Þ�e−τ0ĤjSi;k¼↓i ¼

1

DQ;k¼↓
TrQðe−2τ0ĤT½ψ̂kðτ1Þψ̂†

kðτ2Þψ̂kð−τ0 þ 0þÞψ̂†
kð−τ0Þ�Þ: ðB5Þ

Note that these expectation values are of order D0
Q.

Finally, dividing Eqs. (B4) and (B5) by Eq. (17), at leading
order in 1=DQ we find the result reported in Eq. (18).

a. Numerical results

We report here for completeness additional numerical
results for the two-point functions. In particular, the single-
fermion and collective two-point functions in the Q ¼ −2
charge subsector for N ¼ 8, τ0 ¼ 50 are plotted in Fig. 13
for a single realization of the Hamiltonian and in Fig. 16
averaged over 200 realizations of the Hamiltonian. Note
that, as we have pointed out in footnote 6, when evolving
for a long amount of Euclidean time we end up in the
ground state of the corresponding charge subsector if N <
βJ like in this case. In particular, in Figs. 13 and 16 we

insert ψ̂† at time τ2 ¼ 0 and ψ̂ at time τ1. Therefore, when
τ1 ≲ τ0, at time τ ¼ 0 the bra is roughly the ground state of
the Q ¼ −1 charge subsector. We then insert ψ̂† and take
the scalar product with the ket (which is roughly the ground
state of the Q ¼ −2 charge subsector), obtaining in the
numerator a result of order exp½−τ0ðE−1 þ E−2Þ�, where
E−1 and E−2 are the energy eigenvalues of the ground states
of the Q ¼ −1 and Q ¼ −2 charge subsectors, respec-
tively. The normalization factor will clearly be of order
exp½−2τ0E−2�. Therefore we obtain a result of order
exp½−τ0ðE−1 − E−2Þ�. The plots in Figs. 13 and 16 suggest
a spacing jE−2 − E−1j ¼ Oð10−1Þ and E−1 < E−2, in
accordance with our numerical result and [44]. On the
other hand, for τ1 ≳ −τ0, we expect a result of order
exp½−τ0ðE−3 − E−2Þ�, which is exponentially suppressed
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FIG. 13. Single-fermion and collective two-point functions. Q ¼ −2, N ¼ 8, k ¼ 1, β ¼ 2τ0 ¼ 100, single realization of the
Hamiltonian. The expectations outlined in Secs. III B and III C are matched to good accuracy. The evident asymmetry is expected and
explained in Appendix B 2. (a) Single-fermion two-point functions. The left-hand sides and right-hand sides of Eq. (18) are plotted
along with the thermal two-point function in the corresponding charge subsector. (b) Collective two-point functions. The left-hand side
and right-hand side of Eq. (23) are plotted.
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since E−3 > E−2, hence the asymmetry observed in
Figs. 13 and 16. For the Q ¼ 0 charge subsector (see
Figs. 1, 2, 14, and 15), this effect is much smaller because
jE0 − E�1j is about one order of magnitude smaller than
jE−2 − E−1j. Note also that the behavior of the single-
fermion two-point function (and the corresponding thermal
four-point function) in Figs. 13 and 16 when inserting the
fermion very close to τ ¼ τ0 depends on the specific
boundary state chosen. In particular, when ψ̂1 is inserted
right next to the bra Fock state (i.e., at τ ¼ τ0) with the first
fermion in the j↑i state, the state is annihilated and the
correlator correctly vanishes.
Finally, we also report in Figs. 14 and 15 the same plots

shown in Figs. 1 and 2, but averaged over 200 realizations
of the Hamiltonian. As expected, the accuracy of the result
(18), which is already consistent for a single realization of
the Hamiltonian, is increased when averaging over
disorder.

3. Expectation values of generic operators

In Sec. III D we claimed that under appropriate assump-
tions, the expectation value hBijÔjBii of a generic operator
Ô over a boundary state is equivalent to the thermal
expectation value computed in the same charge subsector.
In particular, given the properties of the probability dis-
tribution of the coefficients cki , such statement is valid at
leading order in 1=DQ both after averaging over disorder
and for a single realization of the Hamiltonian. Let us now
prove this result, working under the assumptions listed in
Sec. III D.
First, let us clarify assumption 2, concerning the set of

operators for which the claim holds. As a simple example,
consider an operator of the form

Ô ¼ T

�Y
i∈M−

ψ̂ iðτ−i Þ
Y
j∈Mþ

ψ̂†
jðτþj Þ

�
; ðB6Þ
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FIG. 14. Single-fermion two-point functions: average over disorder. The left-hand sides and right-hand sides of Eq. (18) are plotted
along with the thermal two-point function in the corresponding charge subsector for N ¼ 8 and k ¼ 1, averaged over 200 realizations of
the Hamiltonian. The expectations outlined in Sec. III B are matched to good accuracy, and more precisely than for a single realization of
the Hamiltonian, as expected. (a) Q ¼ 0, β ¼ 2τ0 ¼ 1. (b) Q ¼ −2, β ¼ 2τ0 ¼ 1. (c) Q ¼ 0, β ¼ 2τ0 ¼ 100.
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FIG. 15. Collective two-point functions: average over disorder. The left-hand side and right-hand side of Eq. (23) are plotted forN ¼ 8
and k ¼ 1, averaged over 200 realizations of the Hamiltonian. The expectations outlined in Sec. III C are matched to good accuracy, and
more precisely than for a single realization of the Hamiltonian, as expected. (a) Q ¼ 0, β ¼ 2τ0 ¼ 1. (b) Q ¼ −2, β ¼ 2τ0 ¼ 1.
(c) Q ¼ 0, β ¼ 2τ0 ¼ 100.
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where Mþ and M− are index sets of equal size (the case of
nonequal size is trivial since operators with unequal
numbers of creation and annihilation operators have zero
expected value in a fixed-charge subsector). Provided the
number of insertions is much less than N and provided all
the times τ�i are well separated from �τ0, we expect such
operators to have thermal-looking expectation values over a
boundary state, up to corrections suppressed by 1=N and
expð−ðτ0 − jτ�i jÞJÞ. Naturally, this can be the case only if
the preparation time is large enough, i.e., τ0J ≫ 1.
A simple example where assumption 2 fails is when

Ô ¼ eτ0Ĥψ̂†
i ψ̂ ie−τ0Ĥ. In this case, the fermion occupation

number operator is inserted right next to the Fock state and
hence is sensitive to the precise occupation number of the
ith fermion. However, collective fields like

Ôcoll ¼ T

�
1

N

XN
i¼1

ψ̂†
i ðτ1Þψ̂ iðτ2Þ

�
ðB7Þ

are better behaved. Note that the operator (B7) is invariant
under permutations of the fermions. The Hamiltonian
evolution is also effectively permutation invariant at large
N due to the emergent UðNÞ symmetry. It follows that the
expectation value of permutation-invariant collective oper-
ators such as (B7) is independent of the specific boundary
state up to 1=N-suppressed corrections, regardless of the
value of the preparation time τ0 and of the location of the
fermion insertion points. The collective two-point functions
studied in Sec. III C provide a clear example of this
behavior.

Given a generic operator Ô satisfying assumptions 2 and
3, we define αij ≡ hEijÔjEji expð−τ0ðEi þ EjÞÞ and
βi ≡ expð−2τ0EiÞ. Using Eq. (12), we can then write the
expectation value over a boundary state jBii as

hOii≡ hBijÔjBii ¼
PDQ

k;l¼1 jcikjjciljαlkeiðθk−θlÞPDQ
k¼1 jcikj2βk

; ðB8Þ

where θk are the phases of the coefficients cik. Averaging
over the phases, which are uniformly distributed, we get

hOii ¼
PDQ

k¼1 jcikj2αkkPDQ
k¼1 jcikj2βk

: ðB9Þ

(This statement fails for Ô ¼ eτ0Ĥψ̂†
i ψ̂ ie−τ0Ĥ because the

αlk can be correlated with the phases.) We will show at the
end of the present section that the average over the squared
norms of the coefficients can be taken separately in the
numerator and denominator, and the average of the ratio is
equal to the ratio of the averages up to corrections of order
1=DQ. Therefore, we obtain immediately15

hOii ¼
PDQ

k¼1 αkkPDQ
k¼1 βk

þO
�

1

DQ

�
; ðB10Þ

which is the result (26) (a single overline indicates an
average over the phases and a double overline an average
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FIG. 16. Single-fermion and collective two-point functions: average over disorder. Q ¼ −2, N ¼ 8, k ¼ 1, β ¼ 2τ0 ¼ 100, average
over 200 realizations of the Hamiltonian. The expectations outlined in Secs. III B and III C are matched to good accuracy, and more
precisely than for a single realization of the Hamiltonian. The evident asymmetry is expected and explained in Appendix B 2. (a) Single-
fermion two-point functions. The left-hand sides and right-hand sides of Eq. (18) are plotted along with the thermal two-point function
in the corresponding charge subsector. (b) Collective two-point functions. The left-hand side and right-hand side of Eq. (23) are plotted.

15A similar result for the expectation value of the Hamiltonian
in analogous cSYK pure states was found in [53].
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over both the phases and the squared norms of the
coefficients). Therefore, averaging over disorder, generic
correlators over a boundary state are equal, up to correc-
tions suppressed at large N, to the thermal correlators in the
same charge subsector. Note that when averaging over the
coefficients we used assumption 1 to ignore the (small)
correlation between the coefficients and the energy eigen-
values contained in αij and βi.
Let us now analyze the size of fluctuations around the

average value (B10). Taking the square of Eq. (B8) and
averaging over the phases we obtain (all the sums are from
1 to DQ)

hOi2i ¼
P

k≠ljcikj2jcilj2ðαkkαll þ αlkαklÞ þ
P

kjcikj4α2kkP
k;ljcikj2jcilj2βkβl

:

ðB11Þ

Again, at leading order in 1=DQ the average over the
squared norms can be taken separately in the numerator and
denominator. Subtracting the square of Eq. (B10) and
keeping only the leading orders we obtain the following
expression for the variance of the expectation value:

hOi2i − hOi2i

¼
P

k≠l
m;n
αlkαklβmβn þ a

P
k;l;mðα2kkβlβm − αkkαllβ

2
mÞ

ðPk;lβkβlÞ2

þO
�

1

DQ

�
; ðB12Þ

where a ≈ 1 is the variance of the norm of the coefficients.
Let us now evaluate the order of each term in Eq. (B12). For
a generic τ0, βk and αkk are Oð1Þ, while αkl ¼ Oð1= ffiffiffiffiffiffiffi

DQ
p Þ

for k ≠ l by assumption 3. The first sum in the numerator
contains D3

QðDQ − 1Þ ≈D4
Q terms, the second sum in the

numerator contains D3
Q terms, and the sum in the denom-

inator contains D4
Q terms. Therefore we obtain

hOi2i − hOi2i ¼ O
�

1

DQ

�
; ðB13Þ

which is Eq. (27). Note that if we exclude the subsectors
with maximal and minimal charge, DQ ≥ N. Since the size
of the fluctuations of a generic correlator around its
disorder-averaged value is controlled by the square root
of the variance (B13), it is suppressed in the large N limit.
This implies that also for a single realization of the
Hamiltonian the expectation value of a generic operator
Ô over a boundary state approaches in the large N limit the
thermal expectation value in the same charge subsector
computed by the canonical ensemble at fixed charge. In

other words, boundary states look thermal. This result
generalizes the analytic and numerical results for the two-
point functions analyzed in Secs. III B and III C and in
Appendix B 2.
In order to obtain the results (B10) and (B13) we

averaged the numerator and denominator separately over
the norms of the coefficients, and then took the ratio of the
averages. To complete our proof we need to show that, at
leading order in 1=DQ, this procedure is equivalent to
taking the average of the ratio.16 Let us denote by N̄ and D̄
the numerator and denominator of Eqs. (B9) or (B11). Then

we can write N̄ ¼ ¯̄N þ δN and D̄ ¼ ¯̄Dþ δD. Both ¯̄N and
¯̄D areOð1Þ numbers. By construction δN ¼ δD ¼ 0. Using
the properties of the coefficients cik, the size of the fluctua-

tions of δN and δD is controlled by ðN 2 − ¯̄N
2Þ12 ¼ OðD−1

2

Q Þ
and ðD2 − ¯̄D2Þ12 ¼ OðD−1

2

Q Þ, respectively. Therefore, in the

large N limit δN̄ = ¯̄N ≪ 1 and δD̄= ¯̄D ≪ 1 with high prob-
ability. In the same way, it is possible to show that

δN̄ δD̄ ¼ ðNDÞ − ð ¯̄N Þð ¯̄DÞ ¼ OðD−1
Q Þ. We can then

write

�
N
D

�
¼ N̄

D̄
¼

¯̄N
¯̄D

�
1þδN̄

¯̄N
−
δD̄
¯̄D
þ δN̄ δD̄

ð ¯̄N Þð ¯̄DÞ

�
þO

�
1

DQ

�
;

ðB14Þ

which immediately implies

�
N
D

�
¼

¯̄N
¯̄D
þO

�
1

DQ

�
; ðB15Þ

which is the desired result.

APPENDIX C: DIMENSIONAL REDUCTION OF
BRANEWORLD COSMOLOGY

We will give here additional details regarding the dimen-
sional reduction of the braneworld cosmology action S ¼
Sbulk þ SETW proposed in [11]. We will follow mainly the
conventions of [31,33] (see also [25,26,32,63]), to which
we refer for additional details and discussion. The action is
the one for a (dþ 1)-dimensional Einstein-Maxwell theory
at fixed charge with a negative cosmological constant and a
dynamical brane with constant tension TETW:

16Note that this property holds exactly for the average over the
phases.
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Sbulk ¼ −
1

16πG

Z
Mðdþ1Þ

ddþ1x
ffiffiffiffiffiffiffiffiffiffiffiffi
gðdþ1Þ

p ðRðdþ1Þ − 2Λ − 4πGFðdþ1Þ
μν Fμν

ðdþ1ÞÞ þ SGHY þ Sem;
∞

SETW ¼ −
1

8πG

Z
ETWðdÞ

ddy
ffiffiffiffiffi
hd

p
½KETW

d − ðd − 1ÞTETW� þ SemETW; ðC1Þ

whereMðdþ1Þ indicates the spacetimemanifold, gðdþ1Þ is the
determinant of the metric, Rðdþ1Þ is the Ricci scalar, Λ is the
negative cosmological constant [given by Λ ¼ −dðd − 1Þ=
ð2L2

AdSÞ], Fðdþ1Þ
μν is the electromagnetic tensor, hd is the

determinant of the metric induced on the brane, andKETW
d is

the trace of the extrinsic curvature of the brane. We used yA

(with A ¼ 0;…; d − 1) to denote the coordinates on the
brane, and we will use the same notation for the asymptotic
boundary. Greek indices μ, ν run instead from 0 to d. SGHY is
the Gibbons-Hawking-York boundary term, given by

SGHY ¼ −
1

8πG

Z
∂MðdÞ

∞

ddy
ffiffiffiffiffi
γd

p
K∞;

d ðC2Þ

with ∂MðdÞ
∞ denoting the asymptotic boundary, γd the

induced metric on it, and K∞
d the trace of its extrinsic

curvature. The electromagnetic boundary terms Sem∞ and
SemETW are needed to have a well-posed variational problem
when we hold the charge fixed [54]. Their expression is (we
report here only the asymptotic one, but the ETW term is
completely analogous)

Sem∞ ¼ −
Z
∂MðdÞ

∞

ddy
ffiffiffiffiffi
γd

p
Fμν
ðdþ1Þn

∞
μ Aν; ðC3Þ

where n∞μ is the one-form dual to the unit vector normal to
the asymptotic boundary and Aμ is the electromagnetic
potential.
For the sake of dimensional reduction, it is useful to

introduce the following ansatz for the spacetime metric,
including a Weyl rescaling of the two-dimensional
metric:

ds2 ¼ rd−2e

ϕd−2 gijdx
idxj þ ϕ2ðxiÞdΩ2

d−1; ðC4Þ

where gij is a two-dimensional metric and ϕðxiÞ is the
dilaton, which is a generic function of the two-dimensional
coordinates only (indicated by lower case latin indices i,
j ¼ 0; 1). Using the ansatz (C4) in the braneworld cosmol-
ogy action and integrating out the angular part we obtain
the following dimensionally reduced action:

S ¼ −
Vd−1

16πG

Z
M

d2x
ffiffiffi
g

p ½ϕd−1Rþ UðϕÞ − 4πGZðϕÞFijFij� − Vd−1

8πG

Z
∂M∞

du
ffiffiffiffiffiffiffi
γuu

p ½ϕd−1K∞ þ 8πGZðϕÞFijn∞i Aj�

−
Vd−1

8πG

Z
ETW

dv
ffiffiffiffiffiffiffi
hvv

p
½ϕd−1KETW − ðd − 1Þϕd

2r
d
2
−1
e TETW þ 8πGZðϕÞFijnETWi Aj�; ðC5Þ

where we defined

UðϕÞ ¼ rd−2e

�
dðd − 1Þ
L2
AdS

ϕþ ðd − 1Þðd − 2Þ
ϕ

�
;

ZðϕÞ ¼ ϕ2d−3

rd−2e
: ðC6Þ

As we have already discussed, we are not interested in
charge fluctuations, and therefore we can integrate out the
gauge field in the path integral [32]. This sums up to
solving Maxwell’s equations and computing the bulk and
boundary electromagnetic terms on shell. After long
but straightforward calculations, we obtain the effective
action

Seff ¼ −
Vd−1

16πG

Z
M

d2x
ffiffiffi
g

p �
ϕd−1Rþ UðϕÞ − ðd − 1Þðd − 2Þ rd−2e

ϕ2d−3Q
2

�
−
Vd−1

8πG

Z
∂M∞

du
ffiffiffiffiffiffiffi
γuu

p
ϕd−1K∞

−
Vd−1

8πG

Z
ETW

dv
ffiffiffiffiffiffiffi
hvv

p
½ϕd−1KETW − ðd − 1Þϕd

2r
d
2
−1
e TETW�; ðC7Þ

STEFANO ANTONINI and BRIAN SWINGLE PHYS. REV. D 104, 046023 (2021)

046023-26



where the charge parameter Q is uniquely determined by
the extremal horizon radius re (or vice versa) [11].
The dimensionally reduced effective action (C7) is valid

all the way to the asymptotic boundary and for any value of
the charge parameter Q. In order to obtain the JT gravity
action, we must take the near-extremal, near-horizon limit
of Eq. (C7) and regularize the asymptotic boundary to the
region specified by Eq. (41). Note that on shell the dilaton ϕ
plays the role of the radius of the (d − 1)-dimensional
sphere Sd−1. Therefore, in the extremal limit and at the
black hole horizon ϕ ¼ ϕ0 ¼ re, and in the near-extremal,
near-horizon limit it will vary slightly from this value.

It is useful for our purposes to redefine the dilaton as
Φ ¼ ϕd−1. We can then split the redefined dilaton in a
constant piece Φ0 ¼ rd−1e and a dynamical field Φ1, i.e.,
Φ ¼ Φ0 þΦ1. In the near-extremal, near-horizon limit
Φ1 ≪ Φ0 holds, and the on-shell expression for Φ1 (which
will be useful to derive the ETW particle trajectory in
Appendix D) at leading order in R2

2=rez is

Φ1 ≈ ðd − 1Þrd−2e
R2
2

z
: ðC8Þ

We can now expand the effective action (C7) to first order
in Φ1=Φ0, finally obtaining the result (42), where

S0 ¼ −
Vd−1Φ0

16πG

�Z
M

d2x
ffiffiffi
g

p
Rþ 2

Z
∂M∞

du
ffiffiffiffiffiffiffi
γuu

p
K∞ þ 2

Z
ETW

dv
ffiffiffiffiffiffiffi
hvv

p
KETW

�
;

SETW0 ¼ ðd − 1ÞVd−1Φ
d

2ðd−1Þ
0 TETW

8πG

Z
ETW

dv
ffiffiffiffiffiffiffi
hvv

p
: ðC9Þ

S0 is a topological term and it is a constant by Gauss-
Bonnet theorem.17 SETW0 is proportional to the proper length
of the ETW particle trajectory, and will give a contribution
to the equations of motion of the ETW particle, as
discussed in Appendix D.

APPENDIX D: SCHWARZIAN ACTION AND ETW
PARTICLE TRAJECTORY

In this Appendix we will outline the steps needed to
obtain the Schwarzian effective action (47) governing the
gravitational dynamics in the near-horizon region of the
near-extremal black hole, and derive the NN boundary
conditions that must be imposed at the location of the ETW
particle, leading to the trajectory described in Sec. V C.
As we have already pointed out, we must integrate out

the dilaton Φ1 and compute the effective action (42) on
shell. The only nonvanishing and nonconstant term is the
GHY term for the regularized boundary. The metric is fixed
to be the two-dimensional part of Eq. (40), and the induced
metric and the dilaton on the regularized boundary must
satisfy the DD boundary conditions (43). After parametriz-
ing the trajectory of the regularized boundary in the bulk by
ðτðuÞ; zðuÞÞ, the boundary condition for the metric leads to
Eq. (46), while the one-form dual to the outward-pointing
unit vector normal to the regularized boundary is given by
n∞i ¼ Nðz0ðuÞ;−τ0ðuÞÞ, where N is an appropriate nor-
malization factor that can be computed by imposing
gijn∞i n

∞
j ¼ 1. At second order in ε the extrinsic curvature

then reads

K∞ ¼ 1

R2

þ ε2R2ftan ðπTτðuÞÞ; ug þOðε4Þ: ðD1Þ

Using again the DD boundary conditions (43), the GHY
term for the regularized boundary takes the form

IGHY ≈ −
Vd−1ϕb

8πG

Z
∂M∞

du

�
1

R2ε
2
þ R2ftan ðπTτðuÞÞ; ug

�
:

ðD2Þ

Note that the first term is divergent for ε → 0. In order to
cancel such constant divergent term, generally in JT gravity
a counterterm

Ict ¼
Vd−1

8πG

Z
∂M∞

du
ffiffiffiffiffiffiffi
γuu

p
Φ1

1

R2

ðD3Þ

is introduced in the action. We could do the same here.
However, since we are working at small but finite cutoff ε,
the first term in Eq. (D2) is a constant finite term that does
not pose particular problems and does not contribute to the
dynamics, so the introduction of the counterterm is not
necessary. In either case, we can discard such term together
with any other constant term in the on-shell action,
obtaining the effective action (47). Note that in the effective
action u ∈ ½−β=2; β=2� if the ETW particle does not
intersect the regularized boundary, while u ∈ ½−u0; u0� if
the ETW particle intersects the regularized boundary at
u ¼ �u0. In the tangent case of our interest, u0 ¼ β=2 and
therefore the integral in Eq. (47) runs over the whole
thermal circle, i.e., u ∈ ½−β=2; β=2�.
Let us now focus on the ETW particle action. As we have

mentioned, we want to impose NN boundary conditions at
17We remind that the boundary of the manifold M is

∂M ¼ ∂M∞ ∪ ETW.
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the location of the ETW particle. This implies that when the
effective action (42) is varied, the variations δ

ffiffiffiffiffiffiffi
hvv

p
and

δΦ1jetw do not vanish. The total ETW particle term in the

variation of the action (42) is given by the sum of the
variation of the ETW particle action and boundary terms
arising from the variation of the bulk action18 [65]:

δSETWtot ¼ −
Vd−1

8πG

Z
ETW

dv

��
niETW∂iΦ1 −Φ1KETW − ðd − 1ÞΦ

d
2ðd−1Þ
0 TETW

þΦ1

�
KETW −

d
2
Φ

− d−2
2ðd−1Þ

0 TETW

��
δð

ffiffiffiffiffiffiffi
hvv

p
Þ þ

ffiffiffiffiffiffiffi
hvv

p �
KETW −

d
2
Φ

− d−2
2ðd−1Þ

0 TETW

�
δΦ1

�
: ðD4Þ

The NN boundary conditions we are looking for are obtained by imposing δSETWtot ¼ 0, which immediately leads to the
boundary conditions (44) and (45).
The ETW particle trajectory can be obtained from Eq. (45). It is useful to parametrize the ETW particle trajectory using

the bulk time τ [i.e., v ¼ τ, z ¼ zðτÞ], which implies nETWi ¼ Ñðz0ðτÞ;−1Þ, where again Ñ is a normalization factor. By
substituting the expression for the outward-pointing normal unit vector niETW ¼ gijnETWj and the on-shell expression for the
dilaton (C8) into Eq. (45), we obtain the ETW particle equation of motion (48).
Equation (48) cannot be solved analytically. However, the expression of the inversion point can be found explicitly by

requiring the square root to vanish:

zmax ¼
dreR2

2T
2
ETW

2ðr2eT2
ETW þ 4π2T2R2

2Þ

"
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr2eT2

ETW þ 4π2T2R2
2Þð4 − d2R2

2T
2
ETWÞ

d2R2
2r

2
eT4

ETW

s #
: ðD5Þ

Note that zmax → 1=ð2πTÞ as TETW → 0, i.e., the minimum radius of the ETW particle is the black hole horizon radius,
which is in agreement with the higher-dimensional result [11].
In the near-horizon region of our interest, the condition z ≫ R2

2=re holds. Since we are only interested in the case where
the ETW particle crosses the regularized boundary and enters the near-horizon region, we can use the condition zðτÞ ≫
R2
2=re to rewrite Eq. (48) as

z(τ)

τ

z5d(τ)

ζ2d(τ)
z2d(τ)

(a)

z(τ)

τ

z5d(τ)

ζ2d(τ)
z2d(τ)

(b)

FIG. 17. ETW particle and brane trajectories: expansion phase. d ¼ 4, LAdS ¼ 1, rþ ¼ 100, r− ¼ 99.9, TETW ¼ 0.01. The black hole
is near extremal and the tension is low. The brane enters the near-horizon region (zðτÞ ≫ R2

2=r− ≳ R2
2=re). The exact numerical solution

ζ2dðτÞ of Eq. (48) and the approximate analytic solution z2dðτÞ [given by Eq. (51)] are in good agreement with each other, and with the
numerical solution z5dðτÞ of the higher-dimensional ETW brane equation of motion [11]. The agreement is particularly good in the near-
horizon region (larger z), where our dimensionally reduced analysis is sensible, as expected. (a) Expansion phase between z ¼
zmax ≈ 0.28 and the asymptotic boundary at z ¼ 0. (b) Detail of the near-horizon region.

18Note that the last term of the first line arises from the variation of SETW0 .
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z0ðτÞ ≈�R2

1 − 4π2T2z2

TETWrez

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4π2T2z2 −

r2eT2
ETW

R2
2

z2

s
:

ðD6Þ

Note that we could not drop the ð2πTzÞ2 terms, because
even if they are small in the region where the regularized
boundary sits [determined by Eq. (41)] they are of order 1
when the ETW particle is very close to the horizon, i.e.,
when zðτÞ≳ 1=ð2πTÞ. This approximate equation of
motion does have an analytic solution, which is given
by Eq. (51).

We finally report in Fig. 17 a plot of the expansion phase of
the ETWparticle trajectory for low tension in a near-extremal
black hole for d ¼ 4, obtained from the approximate analytic
solution (51) [indicated by z2dðτÞ] and by solving numeri-
cally Eq. (48) [indicated by ζ2dðτÞ]. The trajectory of the
ETW brane obtained by solving numerically the brane
equation of motion in the full higher-dimensional model
[11] is also plotted [indicated by z5dðτÞ). We remark how the
trajectories are all in good agreement with each other, and
particularly so in the near-horizon region where our dimen-
sionally reduced two-dimensional effective action is sensible
and approximately equivalent to the full five-dimensional
braneworld cosmology action.
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