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We develop a formalism to calculate the response of a model gravitational wave detector to a quantized
gravitational field. Coupling a detector to a quantum field induces stochastic fluctuations (“noise”) in the
length of the detector arm. The statistical properties of this noise depend on the choice of quantum state
of the gravitational field. We characterize the noise for vacuum, coherent, thermal, and squeezed states.
For coherent states, corresponding to classical gravitational configurations, we find that the effect of
gravitational field quantization is small. However, the standard deviation in the arm length can be
enhanced—possibly significantly—when the gravitational field is in a noncoherent state. The detection of
this fundamental noise could provide direct evidence for the quantization of gravity and for the existence
of gravitons.
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I. INTRODUCTION

The present relationship between general relativity and
quantum mechanics is ironic. On the one hand, a fully
quantum-mechanical treatment of gravity raises deep con-
ceptual issues, which come to a head in the treatment of
black hole evaporation and early Universe cosmology. On
the other hand, general relativity itself can be derived from
consistency conditions on the quantum theory of a massless
helicity-two particle: the graviton [1–4]. Finally, all existing
experiments and observations in physics, including many
in which both gravity and quantum mechanics play central
roles, have been described successfully within a semi-
classical theory, wherein the gravitational field can be
treated classically; experimentally, we have hardly any
evidence at all that gravity is quantized. (The detection of
B-mode polarization in the cosmic microwave background
though would have provided indirect evidence for the
quantization of gravity [5].)
With the discovery of gravitational waves, it is of

paramount interest to examine possible implications of

the quantization of gravity for gravitational wave detectors,
such as LIGO [6] or LISA [7]. Several authors have
proposed that classical treatment of the gravitational field
might not be wholly adequate in this context [8–13], based
on possible inadequacies of general relativity or on intu-
ition about graviton shot noise. In contrast, Dyson [14] has
argued that since one has only barely detected gravitational
waves, and since a typical gravitational wave has of order
1037 gravitons within a cubic wavelength, one would
have to increase detector sensitivity by some 37 orders
of magnitude in order to discern the discrete character
of gravitons. Extending Dyson’s conclusion, tabletop
approaches to detecting gravitons directly have also been
regarded as unpromising [15,16]. These arguments, which
have been largely heuristic, have thus led to inconsistent
predictions about the possible observable signatures of
quantum gravity.
Here we present a formalism for rigorously computing the

effects of the quantization of the gravitational field on
gravitational wave interferometers. We will treat the gravi-
tational field as a quantum-mechanical entity, and bring in its
quantum mechanics perturbatively. This allows us to get
definite equations and assess the quantitative importance of
quantum gravity effects whose existence seems theoretically
secure. Our main finding is that coupling to a quantized
gravitational field induces fluctuations, or noise, in the
length of the arm of a gravitational wave interferometer.
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The noise, which appears to be correlated between nearby
detectors, has statistical properties that depend on the
quantum state of the gravitational field. The quantum state
in turn depends on the sources of gravity. Within this
framework we derive the result that, for a wide range of
gravitational sources, the deviations from classical behavior
are expected to be minuscule, but we also identify some
plausible exceptions. This paper supplements and extends
two shorter works [17,18].
An outline of this paper is as follows. We begin, in

Sec. II, by introducing a simple model of a gravitational
wave detector, or “arm” for short. Our model detector
consists of two free falling masses whose geodesic sepa-
ration is being monitored. Decomposing the gravitational
field into modes leads to an action for each mode, (25),
which describes a simple harmonic oscillator coupled to a
free particle via a Yukawa-type (cubic) derivative inter-
action. In Sec. III, we consider the quantum mechanics of
this system. More specifically, we employ the Feynman-
Vernon influence functional method [19], which enables
one to determine the effect, or influence, of one quantum
subsystem on another. (An alternative approach is consid-
ered in [20].) This technique has been used extensively in
the literature to study dissipation in open systems, the
semiclassical limit of quantum field theories, as well as
within the field of stochastic gravity [21–26]. In our
context, it yields the effect of a single gravitational field
mode on the physics of the detector arm length. The result
of this quantum-mechanical calculation is the influence
functional, (63). We find that the influence functional
generically factorizes into a ground state component and
a piece that depends on the quantum state of the mode. In
Sec. IV, we extend our calculation to quantum field theory
by summing over all gravitational field modes; the sum
depends on the choice of quantum state of the gravitational
field. Several different states are considered: the vacuum
state, a coherent state corresponding to a quantized gravi-
tational wave, a thermal density matrix due to a cosmic
background or an evaporating black hole, and a squeezed
state potentially originating in certain inflationary scenar-
ios. For each gravitational field state, we perform the
mode sum with the goal of obtaining the field-theoretic
influence functional. In Sec. V, we derive our main result:
an effective equation of motion for the length of the
detector arm, (118). This turns out to be a Langevin-like
stochastic differential equation, as one would naturally
expect: coupling a classical system to a quantum system
forces its dynamics to be governed by a stochastic—rather
than a deterministic—equation. Our Langevin equation
contains three different types of source terms. First, there is
a coupling of the arm to any extant classical gravitational
wave. Second, there is a fifth-derivative term that corre-
sponds to the gravitational counterpart of the Abraham-
Lorentz radiation reaction force. Both of these are essen-
tially classical. But it is the third term that is the most

interesting.We find that there are fluctuations in the length of
the detector arm which are due to quantum noise: noise that
originates in the underlying quantum nature of the gravita-
tional field. The statistical characteristics of the noise depend
on the quantum state of the field. In Sec. VI, we estimate
the amplitude of the jitters in the arm length for various states.
For coherent states (which are the quantum counterparts of
classical field configurations, such as gravitational waves),
we find indeed that, although the fluctuations aremany orders
ofmagnitude larger thanDyson’s rough estimate, they are still
unmeasurably small. But the fluctuations can be enhanced
for other states of the gravitational field. In particular, for
squeezed states, the enhancement can be exponentially large
in the squeezing parameter, with the precise magnitude of
the enhancement dependent on details of the squeezing. We
conclude, in Sec. VII, with a brief summary.

II. THE CLASSICAL ACTION

Let us begin by obtaining a classical action for a weak
gravitational field coupled to a model gravitational wave
detector. We will explicitly retain ℏ and G in our expres-
sions; the speed of light is set to one. Our metric convention
is to use mostly plus signature. Consider then a weak
gravitational field. We can find coordinates for which the
metric can be written as

gμν ¼ ημν þ hμν; ð1Þ

where ημν ¼ diagð−1; 1; 1; 1Þ is the usual Minkowski
metric in Cartesian coordinates. To quadratic order in
hμν, the Einstein-Hilbert action is

SEH ¼ 1

64πG

Z
d4xðhμν□hμν þ 2hμν∂μ∂νh

− h□h − 2hμν∂ρ∂μhνρÞ: ð2Þ

Here the linear part of the action in hμν has been discarded
because it is a total derivative. This action inherits two
sets of symmetries from the diffeomorphism invariance
of Einstein’s theory: (i) global Poincaré invariance,
xμ → Λμ

νxν þ aμ of the background, and (ii) gauge sym-
metry of the perturbation, hμν → hμν þ ∂μξν þ ∂νξμ. Going
to the transverse-traceless (TT) gauge, the metric pertur-
bation obeys

∂μh̄μν ¼ 0; ð3Þ

uμh̄μν ¼ 0; ð4Þ

h̄μμ ¼ 0; ð5Þ

where the bar on hμν signifies that we are in TT gauge.
Here uμ is an arbitrary constant timelike vector; we use a
background Lorentz transformation to align the time
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direction so that uμ ¼ δμ0. With these choices, the action in
the TT gauge reads

SEH ¼ −
1

64πG

Z
d4x∂μh̄ij∂μh̄ij; ð6Þ

where Latin indices denote spatial directions.
Next we would like to include an action for a gravita-

tional wave detector. It is easiest to imagine this as a pair of
free falling massive test particles, as might be the case for a
pair of satellites in orbit. The geodesic separation between
the two particles is then a gauge-invariant quantity, and we
have in mind that there is some way of measuring that
separation. Let the (comoving) TT-gauge coordinates of the
two particles be XμðtÞ and YμðtÞ. Then their action is

Sdetector ¼ −M0

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðXÞ _Xμ _Xν

q

−m0

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðYÞ _Yμ _Yν

q
; ð7Þ

where dotted quantities are differentiated with respect to
coordinate time, t. We have taken the particles to have
different test massesM0,m0; since we are interested in their
relative motion, we assume for convenience that M0 ≫ m0

and that the first particle is on shell with worldline Xμ
0ðtÞ.

Furthermore, and without loss of generality, we can place
the first particle at rest at the origin of our coordinate
system, Xμ

0ðtÞ ¼ tδμ0, so that the coordinate time t is the
proper time of the first particle; since h̄0μ ¼ 0 in our gauge
this worldline is indeed a geodesic. In this parametrization
Y0ðtÞ ¼ t. We can then make a change of variables from Yi

to ξi as follows:

Yi − Xi
0 ¼ ξi −

1

2
δijh̄jkðYÞξk: ð8Þ

We also assume that the separation of the two particles is
less than the characteristic scale of variation of h̄ij; this is
analogous to the dipole approximation in electrodynamics.
In our context, this will mean that we will consider only
those wavelengths that are greater than the separation of the
masses. Like radio wave antennae in electromagnetism,
a detector of characteristic size ξ0 is only sensitive to
gravitational waves with wavelength λ ≫ ξ0; indeed for
shorter wavelengths the two ends of an interferometer arm
stop oscillating coherently and the signal is lost. This will
have consequences for phenomenology in Sec. VI. Within
this approximation h̄ijðYÞ ≈ h̄ijðX0Þ, and the change of
variables (8) is now linear. We then take the nonrelativistic
limit so that the action becomes

Sdetector ¼
Z

dt
1

2
m0ðδij þ h̄ijðX0ÞÞ _Yi _Yj; ð9Þ

where we have dropped all nondynamical terms. Inserting
(8), we find to lowest (linear) order in h̄ij, that

Sdetector ¼
Z

dt
1

2
m0ðδij _ξi _ξj − _̄hij _ξ

iξjÞ: ð10Þ

Via an integration by parts, the second term in the
Lagrangian can be written more symmetrically as

þ 1
4
m0

̈h̄ijξiξj. The detector model is now particularly
simple and only involves physically observable (gauge-
invariant) degrees of freedom.
We can think of ðt; ξiÞ as the coordinates of the second

particle in an orthonormal nonrotating Cartesian coordinate
system whose spatial origin moves with the first particle.
Indeed, these are simply Fermi normal coordinates defined
with respect to the worldline of the first particle. With this
observation, we can easily rederive the detector action.
Denoting Fermi normal coordinate indices with hats, we
can write the metric as

g0̂ 0̂ðt; ξÞ ¼ −1 − Rî 0̂ ĵ 0̂ðt; 0Þξîξĵ þOðξ3Þ;

g0̂ îðt; ξÞ ¼ −
2

3
R0̂ ĵ î k̂ðt; 0Þξĵξk̂ þOðξ3Þ;

gî ĵðt; ξÞ ¼ δî ĵ −
1

3
Rî k̂ ĵ l̂ðt; 0Þξk̂ξl̂ þOðξ3Þ; ð11Þ

where the Riemann tensor has been evaluated at
Xμ
0ðtÞ ¼ ðt; 0Þ. We can now use the fact that, to first order

in the metric perturbation, Rî 0̂ ĵ 0̂ðt; 0Þ ¼ Ri0j0ðt; 0Þ, where
the unhatted indices correspond to TT gauge [27]. Then

Rî 0̂ ĵ 0̂ðt; 0Þ ¼ −
1

2
̈h̄ijðt; 0Þ: ð12Þ

Picking Yμ ¼ ðt; ξîÞ and inserting into (7), we recover (10)
in the appropriate limit. We see that, technically, the indices
on ξ in (8) and (10) should be hatted; the change of
variables (8) can be interpreted as a switch from the
coordinate separation Yi to the physical separation ξî.
Next, we decompose h̄ij into discrete modes:

h̄ijðt; x⃗Þ ¼
1ffiffiffiffiffiffiffi
ℏG

p
X
k⃗;s

qk⃗;sðtÞeik⃗·x⃗ϵsijðk⃗Þ: ð13Þ

Here qk⃗;s is the mode amplitude. The discreteness of the
decomposition (13) can be achieved, for example, by
working in a cubic box of side L, so that the wave vectors
are k⃗ ¼ 2πn⃗=L with n⃗ ∈ Z3. The label s ¼ þ;× indicates
the polarization, and ϵsij is the polarization tensor, satisfying
normalization, transversality, and tracelessness conditions:

ϵsijðk⃗Þϵijs0 ðk⃗Þ ¼ 2δss0 ; ð14Þ
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kiϵsijðk⃗Þ ¼ 0; ð15Þ

δijϵsijðk⃗Þ ¼ 0: ð16Þ

In finite volume, the orthonormality of the Fourier modes
means Z

d3xeiðk⃗−k⃗
0Þ·x⃗ ¼ L3δk⃗;k⃗0 ; ð17Þ

where δk⃗;k⃗0 is a Kronecker delta. Inserting (13) into (6)
and (10), we find

S ¼ L3

32πℏG2

Z
dt
X
k⃗;s

ðj _qk⃗;sj2 − k⃗2jqk⃗;sj2Þ

þ
Z

dt
1

2
m0

�
δij _ξ

i _ξj −
1ffiffiffiffiffiffiffi
ℏG

p
X
k⃗;s

_qk⃗;sϵ
s
ijðk⃗Þ_ξiξj

�
:

ð18Þ

The reality of h̄ij implies that

q�
k⃗;s
ϵsijðk⃗Þ ¼ q−k⃗;sϵ

s
ijð−k⃗Þ: ð19Þ

Using this reality condition, we have

X
k⃗;s

_qk⃗;sϵ
s
ijðk⃗Þ_ξiξj ¼

1

2

X
k⃗;s

ð _qk⃗;s þ _q�
k⃗;s
Þϵsijðk⃗Þ_ξiξj

¼
X
k⃗;s

ðRe _qk⃗;sÞϵsijðk⃗Þ_ξiξj: ð20Þ

Evidently, only the real part of the mode amplitude couples
to the detector; we therefore discard the imaginary part and
take qk⃗;s hereafter to be real. Defining

m≡ L3

16πℏG2
; ð21Þ

we obtain

S¼
Z

dt
X
k⃗;s

1

2
mð _q2

k⃗;s
− k⃗ 2q2

k⃗;s
Þ

þ
Z

dt
1

2
m0

�
δij _ξ

i _ξj−
1ffiffiffiffiffiffiffi
ℏG

p
X
k⃗;s

_qk⃗;sϵ
s
ijðk⃗Þ_ξiξj

�
: ð22Þ

Now consider a single mode with wave vector k⃗ directed
along the positive z axis and with magnitude ω ¼ jk⃗j.
Restricting to the þ polarization for simplicity, and
dropping the subscripts on qk⃗;s, the action for this mode
reduces to

Sω ¼
Z

dt

�
1

2
mð _q2 − ω2q2Þ þ 1

2
m0

�
_ξ2x þ _ξ2y þ _ξ2z

−
1ffiffiffiffiffiffiffi
ℏG

p _qð_ξxξx − _ξyξyÞ
��

: ð23Þ

Let us orient the x axis to coincide with the line joining the
two test masses at time t ¼ 0 so that ξyð0Þ ¼ ξzð0Þ ¼ 0.
Since the masses are initially at rest with respect to each
other, we have _ξxð0Þ ¼ _ξyð0Þ ¼ _ξzð0Þ ¼ 0. With this initial
condition, we see that ξy and ξz are not excited by the
gravitational wave mode at all and hence ξyðtÞ ¼ ξzðtÞ ¼ 0

on shell. (Quantum mechanically, ξy and ξz could still
fluctuate but we ignore this for simplicity.) Dropping the
subscript on ξx, and defining

g≡ m0

2
ffiffiffiffiffiffiffi
ℏG

p ; ð24Þ

we finally arrive at

Sω ¼
Z

dt

�
1

2
mð _q2 − ω2q2Þ þ 1

2
m0

_ξ2 − g _q _ξ ξ

�
: ð25Þ

We have found an action for a gravitational field mode of
energy ℏω, with amplitude proportional to q, interacting
with a free falling mass m0 whose geodesic separation
(“arm length”) from a heavier fixed mass is given by ξ. This
action corresponds to a simple harmonic oscillator coupled
to a free particle via a cubic derivative interaction. Let us
quantize it.

III. QUANTUM MECHANICS OF THE
MODE-DETECTOR SYSTEM

Our aim is to investigate the effect of the quantization of
the gravitational field on the arm length ξ of a model
gravitational wave detector. Given a specified initial state of
the gravitational field, and summing over its unknown final
states, the most general quantity one can calculate is the
transition probability between two states of ξ, ϕA and ϕB,
within a finite time interval T. We hasten to add, however,
that we will ultimately regard the detector arm as classical,
and we will use our formula for the transition probability
mainly to extract the quantum-corrected equation of motion
for ξ. Determining the transition probability calls for a
quantum field theory calculation with the action given by
the continuum limit of (22). In this section, as a stepping
stone, we shall consider the quantum mechanics of just a
single mode. Later, in Sec. IV, we will extend our results to
field theory by summing over a continuum of modes.
The calculation of transition probabilities for ξ in the

presence of a single mode of the gravitational field in some
specified initial state is a problem in ordinary quantum
mechanics. It can be solved analytically. Nonetheless, the
derivation is lengthy and brings in several subtleties which
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involve aspects of quantum mechanics that may be unfa-
miliar to many physicists.
The primary object of interest is the Feynman-Vernon

influence functional [19], which is a powerful tool for
determining the complete dynamics of a quantum system
interacting with another unobserved quantum system. The
final expressions for this are (63), (64), and (65).
The classical dynamics of the single mode is given by

(25), which describes a quantum harmonic oscillator, qðtÞ,
coupled to a free particle, ξðtÞ. [Recall that ξðtÞ is the length
of the detector arm.] We will quantize both q and ξ but we
expect that ξ will ultimately be well approximated as
classical. Let us introduce the canonical momenta

p ¼ m _q − g_ξξ; ð26Þ

π ¼ m0
_ξ − g _qξ; ð27Þ

conjugate to the variables q and ξ, respectively. The
Hamiltonian then reads

Hðq; p; ξ; πÞ ¼
�
p2

2m
þ π2

2m0

þ gpπξ
mm0

��
1 −

g2ξ2

mm0

�−1

þ 1

2
mω2q2: ð28Þ

This Hamiltonian contains a cubic interaction term cou-
pling two momenta and a position, as well as an overall
nonpolynomial position-dependent factor multiplying the
momentum-dependent terms. Nevertheless, as we will see,
we will be able to obtain some exact expressions. Notice
that, for g ¼ 0, the Hamiltonian reduces to that of two
decoupled degrees of freedom:

H →
p2

2m
þ 1

2
mω2q2 þ π2

2m0

: ð29Þ

To quantize (28) we promote the positions and momenta to
operators. There is formally an ordering ambiguity which
we circumvent by assuming Weyl ordering. We will also
assume that the coupling g is adiabatically switched on
and off, g → fðtÞg, where fðtÞ is a function satisfying
fðt ≤ −ΔÞ ¼ fðt ≥ T þ ΔÞ ¼ 0 and fðT ≥ t ≥ 0Þ ¼ 1,
and Δ is some timescale that will play no role (see Fig. 1).
We assume that, at t ¼ −∞, the combined state of the

harmonic oscillator and particle system is a tensor product
state. The justification for this is that the gravitational field
is created before the interaction is switched on and there-
fore the detector and mode are initially uncoupled. Then, in

the Schrödinger picture, the Hamiltonian evolves the
harmonic oscillator and particle states independently until
the interaction is switched on at time t ¼ −Δ. This means
that, at time t ¼ −Δ, the combined state is still a tensor
product state. We switch to the Heisenberg picture at time
t ¼ −Δ, when we define the harmonic oscillator state to be
jψωi and the particle state to be jϕAi. The subscript ω on
the harmonic oscillator state reminds us that it is the state of
the gravitational field mode of energy ℏω. Technically,
other quantities should also have an ω subscript to indicate
that they pertain to this particular mode, but we will omit
such subscripts to reduce clutter.
We are interested in calculating the transition probability

for the particle to be found in a state jϕBi at time t ¼ T þ Δ
with an interaction that takes place between t ¼ 0 and
t ¼ T. We are not interested in the final state jfi of the
harmonic oscillator, which generically will be different
from its initial state jψωi. Indeed, in terms of the original
gravitational problem, the detector masses will typically
both absorb and emit gravitons (through spontaneous as
well as stimulated emission). Thus the goal of this section is
to calculate

Pψω
ðϕA → ϕBÞ ¼

X
jfi

jhf;ϕBjÛðT þ Δ;−ΔÞjψω;ϕAij2

ð30Þ

for a given initial state, jψωi, of the harmonic oscillator.
Here, our notation for tensor product states of the joint
Hilbert space is

ja; bi≡ jai ⊗ jbi; ð31Þ

and Û is the unitary time-evolution operator associated
with the Hamiltonian (28).
We now insert several complete bases of joint position

eigenstates,
R
dqdξjq; ξihq; ξj. Then

FIG. 1. Switching on and off function.
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Pψω
ðϕA → ϕBÞ ¼

X
jfi

hψω;ϕAjÛ†ðT þ Δ;−ΔÞjf;ϕBihf;ϕBjÛðT þ Δ;−ΔÞjψω;ϕAi

¼
X
jfi

Z
dqidq0idqfdq

0
fdξidξ

0
idξfdξ

0
fhψω;ϕAjq0i; ξ0iihq0i; ξ0ijÛ†ðT þ Δ;−ΔÞjq0f; ξ0fihq0f; ξ0fjf;ϕBi

× hf;ϕBjqf; ξfihqf; ξfjÛðT þ Δ;−ΔÞjqi; ξiihqi; ξijψω;ϕAi

¼
Z

dqidq0idqfdξidξ
0
idξfdξ

0
fψ

�
ωðq0iÞϕ�

Aðξ0iÞϕBðξ0fÞϕ�
BðξfÞψωðqiÞϕAðξiÞ

× hq0i; ξ0ijÛ†ðT þ Δ;−ΔÞjqf; ξ0fihqf; ξfjÛðT þ Δ;−ΔÞjqi; ξii: ð32Þ

Here ψωðxÞ, ϕAðxÞ, ϕBðxÞ are the wave functions for the harmonic oscillator and the free particle in position representation
in the states jψωi, jϕAi, jϕBi, respectively. Next we can express each of the amplitudes in canonical path-integral form:

hqf; ξfjÛðT þ Δ;−ΔÞjqi; ξii ¼
Z

DπDξDpDq exp

�
i
ℏ

Z
TþΔ

−Δ
dtðπ _ξþ p _q −Hðq; p; ξ; πÞÞ

�
: ð33Þ

Performing the path integral over π (which has the same effect as the partial Legendre transform used to obtain the
Routhian), we find

hqf; ξfjÛðT þ Δ;−ΔÞjqi; ξii ¼
Z

D̃ξe
i
ℏ

R
dt1

2
m0

_ξ2
Z

DpDq exp

�
i
ℏ

Z
TþΔ

−Δ
dtðp _q −Hξðq; pÞÞ

�
; ð34Þ

where

Hξðq; pÞ≡ ðpþ gξ_ξÞ2
2m

þ 1

2
mω2q2: ð35Þ

In (34), D̃ξ is a measure in which a g- and ξ-dependent
piece has been absorbed; since ultimately we will only be
interested in a saddle point of the ξ path integral, we can
safely disregard the details of this modified measure.
Indeed if the measure were to be regarded as a logarithm
in the path integral exponent, it would only contribute a
real term.
Now, the path integrals over p and q can themselves be

thought of as giving an amplitude for the harmonic
oscillator coupled to an external field, ξðtÞ, and evolved
via the Hamiltonian (35). Thus

Z
DpDq exp

�
i
ℏ

Z
TþΔ

−Δ
dtðp _q −Hξðq; pÞÞ

�
¼ hqfjÛξðT þ Δ;−ΔÞjqii; ð36Þ

where Ûξ is the unitary time-evolution operator associated
with the Hamiltonian (35). Then, after integration over qf
in (32), we find

Pψω
ðϕA → ϕBÞ

≡
Z

dξidξ0idξfdξ
0
fϕ

�
Aðξ0iÞϕBðξ0fÞϕ�

BðξfÞϕAðξiÞ

×
Z

ξð−ΔÞ¼ξi ;ξ
0ð−ΔÞ¼ξ0

i
ξðTþΔÞ¼ξf ;ξ

0ðTþΔÞ¼ξ0
f

D̃ ξD̃ξ0e
i
ℏ

R
TþΔ
−Δ

dt1
2
m0ð_ξ2−_ξ02ÞFψω

½ξ; ξ0�;

ð37Þ

where

Fψω
½ξ; ξ0� ¼ hψωjÛ†

ξ0 ðT þ Δ;−ΔÞÛξðT þ Δ;−ΔÞjψωi;
ð38Þ

is the Feynman-Vernon influence functional [19]. The
influence functional encodes the entirety of the effect of
the coupling to the harmonic oscillator q on the particle ξ;
indeed, in (37), the only dependence on the harmonic
oscillator state jψωi occurs through the influence functional.
In our context, the influence functional tells us about the
effect of the quantized gravitational field mode on the arm
length of the detector. Significantly, as we shall see later, the
coupling to quantum degrees of freedom induces stochastic
fluctuations in the length of the arm, whose statistical
properties can be extracted from the influence functional.
It will often be useful to work directly with the influence

phase, Φψω
½ξ; ξ0�, defined by
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Fψω
½ξ; ξ0�≡ eiΦψω ½ξ;ξ0�: ð39Þ

To gain some appreciation of the influence phase,
suppose Φψω

½ξ; ξ0� were to decompose additively into parts
that depended separately on ξ and ξ0, say Φψω

½ξ; ξ0� ¼
ðSψω

½ξ� − Sψω
½ξ0�Þ=ℏ. Then, from (37), we see that the sole

effect of the quantized gravitational field mode would be to
add a piece Sψω

½ξ� to the action for ξ. Moreover, the path
integrals for ξ and ξ0 would then decouple. However,
because of the summation over graviton final states jfi
and consequent nonfactorization of path integral kernels,
the influence phase does not decompose in this way in
general.

A. Evaluating the influence functional

Now we would like to obtain a more explicit expression
for the influence functional (38). To do so, we split the
time-evolution operator, ÛξðT þ Δ;−ΔÞ ¼ ÛξðT þ Δ; TÞ
ÛξðT; 0ÞÛξð0;−ΔÞ. During the switching on and off of the
interaction, we invoke the adiabatic theorem to compute
the effect of Ûξð0;−ΔÞ and ÛξðT þ Δ; TÞ on state vectors;
this means that, as the interaction is switched on, eigen-
states of the Hamiltonian remain instantaneous eigenstates.
But notice from the form of (35) that the instantaneous
eigenstates are merely those of a simple harmonic oscillator
shifted in momentum space: p → pþ gξ_ξ. Since shifts in
momentum space are generated by the position operator,
we infer that

Ûξð0;−ΔÞ ¼ e−
i
ℏq̂gξð0Þ_ξð0Þe− i

ℏĤ0Δ; ð40Þ

ÛξðT þ Δ; TÞ ¼ e−
i
ℏĤ0Δeþ i

ℏq̂gξðTÞ_ξðTÞ: ð41Þ

Note that there is no geometric phase here. Further, for
the sake of clarity, we redefine our Heisenberg state via
e−

i
ℏĤ0Δjψωi → jψωi. We therefore have

Fψω
½ξ;ξ0�¼ hψωjei

ℏq̂gξ
0ð0Þ_ξ0ð0ÞÛ†

ξ0 ðT;0Þe−
i
ℏq̂gξ

0ðTÞ_ξ0ðTÞei
ℏq̂gξðTÞ_ξðTÞ

× ÛξðT;0Þe− i
ℏq̂gξð0Þ_ξð0Þjψωi: ð42Þ

In this expression Fψω
½ξ; ξ0� does not depend on ξðtÞ, ξ0ðtÞ

for t < 0 and t > T. Thus the path integrals over ξ and ξ0
in (37) can be reduced to path integrals from 0 to T by
introducing the freely evolved wave functions

ϕ̃Aðξ̃iÞ ¼
Z

dξiϕAðξiÞ
Z

ξð−ΔÞ¼ξi
ξð0Þ¼ξ̃i

D̃ ξe
i
ℏ

R
0

−Δ
dt1

2
m0

_ξ2 ; ð43Þ

ϕ̃Bðξ̃fÞ ¼
Z

dξfϕBðξfÞ
Z

ξðTþΔÞ¼ξf
ξðTÞ¼ξ̃f

D̃ ξe−
i
ℏ

R
TþΔ
T

dt1
2
m0

_ξ2 ; ð44Þ

as well as their ξ0 counterparts. Dropping the tildes we can
therefore write

Pψω
ðϕA → ϕBÞ

≡
Z

dξidξ0idξfdξ
0
fϕ

�
Aðξ0iÞϕBðξ0fÞϕ�

BðξfÞϕAðξiÞ

×
Z

ξð0Þ¼ξi;ξ
0ð0Þ¼ξ0

i
ξðTÞ¼ξf ;ξ

0ðTÞ¼ξ0
f

D̃ ξD̃ξ0e
i
ℏ

R
T

0
dt1

2
m0ð_ξ2−_ξ02ÞFψω

½ξ; ξ0�; ð45Þ

and we see that the arbitrary timescale Δ has disappeared
from the expression; this is now a path integral from 0 to T.
At the expense of introducing additional ordinary integrals,
we can also assume that the values of _ξ, ̈ξ and _ξ0, ξ̈0 are fixed
at t ¼ 0 and t ¼ T, but to reduce clutter we do not make
this explicit in our formulas. (This will be useful in Sec. V
to avoid burdensome boundary terms generated by the
presence of higher derivatives of ξ in the influence phase.)
Putting everything together, we see that the influence
functional now depends explicitly on the boundary con-
ditions in the path integral:

Fψω
½ξ; ξ0� ¼ hψωjei

ℏq̂gξ
0
i
_ξ0i Û†

ξ0 ðT; 0Þe−
i
ℏq̂gξ

0
f
_ξ0fe

i
ℏq̂gξf

_ξf

× ÛξðT; 0Þe− i
ℏq̂gξi

_ξi jψωi: ð46Þ

Our goal is to evaluate this for different harmonic oscillator
states, but before we do that we can manipulate this
expression further.
Let us split the Hamiltonian, (35), into a time-

independent free piece and an interaction piece,
Ĥξ ¼ Ĥ0 þ Ĥint½ξ�, where

Ĥ0 ≡ p̂2

2m
þ 1

2
mω2q̂2; ð47Þ

Ĥint½ξ�≡ gp̂ξ_ξ
m

þ g2ξ2 _ξ2

2m
: ð48Þ

Then the influence functional becomes

Fψω
½ξ; ξ0� ¼ hψωjei

ℏq̂gξ
0
i
_ξ0i Ûint

ξ0
†ðTÞe− i

ℏq̂IðTÞgξ0f _ξ0f ei
ℏq̂IðTÞgξf _ξf

× Ûint
ξ ðTÞe− i

ℏq̂gξi
_ξi jψωi; ð49Þ

where quantities with a label I are understood to be
in the interaction picture [e.g., q̂IðtÞ ¼ eiĤ0t=ℏq̂e−iĤ0t=ℏ]
and

Ûint
ξ ðTÞ≡ T ðe− i

ℏ

R
T

0
ĤI

int½ξ�dtÞ; ð50Þ
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is the interaction-picture time-evolution operator,
expressed as a time-ordered exponential. Since in the
interaction picture, p̂I ¼ m _̂qI, we can write the interaction
Hamiltonian as

ĤI
int½ξ� ¼ g _̂qIξ_ξþ

g2ξ2 _ξ2

2m
: ð51Þ

Then the commutator ½ĤI
int½ξðtÞ�; ĤI

int½ξðt0Þ�� ¼
g2ξðtÞ_ξðtÞξðt0Þ_ξðt0Þ½ _̂qIðtÞ; _̂qIðt0Þ� is seen to be a c number
(as are any commutators involving only the operators q̂I
and p̂I ¼ m _̂qI). Consequently we can eliminate the time-
ordering symbol at the expense of an additional term in the
exponent [28]:

Ûint
ξ ðTÞ ¼ exp

�
−
i
ℏ

Z
T

0

ĤI
int½ξ�dt −

1

2ℏ2

Z
T

0

Z
t

0

dtdt0½ĤI
int½ξðtÞ�; ĤI

int½ξðt0Þ��
�

¼ exp

�
−
ig
ℏ

Z
T

0

_̂qIðtÞξðtÞ_ξðtÞdt
�

× exp

�
−

ig2

2mℏ

Z
T

0

ξ2ðtÞ_ξ2ðtÞdt − g2

2ℏ2

Z
T

0

Z
t

0

dtdt0ξðtÞ_ξðtÞξðt0Þ_ξðt0Þ½ _̂qIðtÞ; _̂qIðt0Þ�
�
: ð52Þ

After repeated use of integration by parts to remove the time derivatives from the q̂I operators this expression becomes

Ûint
ξ ðTÞ ¼ exp

�
ig
2ℏ

Z
T

0

dtq̂IðtÞXðtÞ −
ig
ℏ
q̂IðTÞξf _ξf þ

ig
ℏ
q̂ξi _ξi

�

× exp

�
−

g2

8ℏ2

Z
T

0

Z
t

0

dtdt0½q̂IðtÞ; q̂Iðt0Þ�XðtÞXðt0Þ −
g2

4ℏ2

Z
T

0

dt½q̂IðtÞ; q̂�ξi _ξiXðtÞ

þ g2

4ℏ2

Z
T

0

dt0½q̂IðTÞ; q̂Iðt0Þ�ξf _ξfXðt0Þ þ
g2

2ℏ2
½q̂IðTÞ; q̂�ξi _ξiξf _ξf

�
; ð53Þ

where q̂ ¼ q̂Ið0Þ. Here, to avoid writing cumbersome
second derivatives of ξ2, we have introduced

XðtÞ≡ d2

dt2
ξ2ðtÞ; ð54Þ

X0ðtÞ≡ d2

dt2
ξ02ðtÞ; ð55Þ

the latter definition being included for later convenience.
Next we invoke the relation

eÂeB̂ ¼ eÂþB̂e
1
2
½Â;B̂�; ð56Þ

a variant of the Baker-Campbell-Hausdorff formula
valid when ½Â; B̂� is a c number. This formula allows us
to reduce (53) to

Ûint
ξ ðTÞ ¼ e−

ig
ℏq̂IðTÞξf _ξfe

ig
2ℏ

R
T

0
dtq̂IðtÞXðtÞe

ig
ℏq̂ξi

_ξi

× e−
g2

8ℏ2

R
T

0

R
t

0
dtdt0½q̂IðtÞ;q̂Iðt0Þ�XðtÞXðt0Þ: ð57Þ

With this expression and its ξ0 counterpart at hand, we
can dramatically simplify the form of the influence func-
tional (49). We find

Fψω
½ξ; ξ0� ¼ eShψωje−

ig
2ℏ

R
T

0
dtq̂IðtÞX0ðtÞe

ig
2ℏ

R
T

0
dtq̂IðtÞXðtÞjψωi;

ð58Þ

where

S≡ g2

8ℏ2

Z
T

0

Z
t

0

dtdt0½q̂IðtÞ; q̂Iðt0Þ�ðX0ðtÞX0ðt0Þ−XðtÞXðt0ÞÞ:

ð59Þ

Further simplification can be achieved by defining the
ladder operators â and â† in the usual way:

â≡
ffiffiffiffiffiffiffi
mω

2ℏ

r �
q̂þ i

mω
p̂

�
; ð60Þ

â† ≡
ffiffiffiffiffiffiffi
mω

2ℏ

r �
q̂ −

i
mω

p̂

�
: ð61Þ

Then

q̂IðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ

2mω

r
ðâe−ωt þ â†eiωtÞ; ð62Þ
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and we can repeatedly invoke (56) to bring the matrix
element in (58) into normal order. We arrive, finally, at a
suitable form of the influence functional:

Fψω
½ξ; ξ0� ¼ F0ω

½ξ; ξ0�hψωje−W�â†eWâjψωi: ð63Þ

Here

W ≡ igffiffiffiffiffiffiffiffiffiffiffiffiffi
8mℏω

p
Z

T

0

dtðXðtÞ − X0ðtÞÞe−iωt; ð64Þ

and

F0ω
½ξ; ξ0�≡ exp

�
−

g2

8mℏω

Z
T

0

Z
t

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þe−iωðt−t0Þ − X0ðt0Þeiωðt−t0ÞÞ
�
; ð65Þ

where we remind the reader that XðtÞ ¼ d2

dt2 ξ
2ðtÞ and X0ðtÞ ¼ d2

dt2 ξ
02ðtÞ. Evidently F0ω

½ξ; ξ0� is the influence functional of
the ground state, as can be seen from (63) when jψωi ¼ j0ωi. For future reference, we note the influence phase of the
ground state:

iΦ0ω
½ξ; ξ0� ¼ −

g2

8mℏω

Z
T

0

Z
t

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þe−iωðt−t0Þ − X0ðt0Þeiωðt−t0ÞÞ: ð66Þ

We can now in principle compute the influence functional
for arbitrary states jψωi of the incoming gravitational field
mode. However, we cannot yet evaluate the ground state
contribution F0ω

½ξ; ξ0� itself because it depends on the
unphysical mass m, which in turn depends on the infrared
regulator L that we used in our finite-volume discretization
of the modes. (Actually, m also appears in W, but this
dependence drops out.) We will sort this out in Sec. IV
when we sum over modes.

B. Example: Coherent states

As an illustrative example, consider a gravitational field
mode of energy ℏω in a coherent state: jψωi ¼ jαωi. Here
αω is the eigenvalue of the annihilation operator, â:

âjαωi ¼ αωjαωi: ð67Þ

Since â is not Hermitian, αω can be a complex number.
Physically, coherent states are the quantum states that most
closely resemble solutions of the classical equations of
motion. Consider a classical gravitational wave mode:

qclðtÞ≡Qω cosðωtþ φωÞ: ð68Þ

We can find the corresponding value of αω by noting that

hαωjq̂jαωi ¼ qclðt ¼ 0Þ ¼ Qω cosφω; ð69Þ

hαωjp̂jαωi ¼ m _qclðt ¼ 0Þ ¼ −mωQω sinφω: ð70Þ

Hence

αω ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
Qωe−iφω : ð71Þ

Let us now calculate the influence functional in the state
jαωi. From (63) and (67), we see immediately that

Fαω ½ξ; ξ0� ¼ F0ω
½ξ; ξ0�e−W�α�ωþWαω : ð72Þ

Substituting (64), we find

Fαω ½ξ; ξ0� ¼ F0ω
½ξ; ξ0� exp

�
ig
2ℏ

Z
T

0

dtQω cosðωtþ φωÞðXðtÞ − X0ðtÞÞ
�
: ð73Þ

We have thus calculated the influence functional for a mode in a coherent state, up to evaluation of the ground state
influence functional, F0ω

½ξ; ξ0�. Inserting this expression into the transition probability, (45), we find

PαωðϕA → ϕBÞ≡
Z

dξidξ0idξfdξ
0
fϕ

�
Aðξ0iÞϕBðξ0fÞϕ�

BðξfÞϕAðξiÞ

×
Z

ξð0Þ¼ξi ;ξ
0ð0Þ¼ξ0

i
ξðTÞ¼ξf ;ξ

0ðTÞ¼ξ0
f

D̃ ξD̃ξ0 exp
�
i
ℏ

Z
T

0

dt

�
1

2
m0ð_ξ2 − _ξ02Þ þ 1

2
gQω cosðωtþ φωÞðXðtÞ − X0ðtÞÞ

��
F0ω

½ξ; ξ0�:

ð74Þ
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Let us interpret this result. We see that when the detector
encounters a quantized gravitational wave mode—a coher-
ent state—its transition probability is affected in two ways.
There is, as always, the ground state influence functional
F0ω

½ξ; ξ0�. In addition, the Lagrangian picks up a piece
1
2
gQω cosðωtþ ϕωÞ d2

dξ2 ξ
2ðtÞ. But observe that, after an

integration by parts, this is precisely the interaction
Lagrangian in (25) with q ¼ qcl. In other words, the
dynamics of the detector arm is merely modified to
incorporate the background classical gravitational wave;
the only effect with a purely quantum origin is the ground
state fluctuation encoded in F0ω

½ξ; ξ0�, which would have
been present even in the absence of the coherent state. Put
another way, there is no way to discern the gravitons that
specifically comprise a classical gravitational wave.

More generally, one can “add” a classical configuration
to any other state vector jχωi through the action of the
unitary displacement operator

D̂ðαωÞ≡ eαωâ
†−α�ωâ: ð75Þ

Suppose then that jψωi ¼ D̂ðαωÞjχωi. This generalizes our
earlier coherent state jαωiwhich could have been written as
D̂ðαωÞj0ωi. The displacement operator has the properties

D̂ðαωÞ†âD̂ðαωÞ ¼ âþ αω; ð76Þ

D̂ðαωÞ†â†D̂ðαωÞ ¼ â† þ α�ω: ð77Þ

Then the corresponding influence functional is

Fψω
½ξ; ξ0� ¼ F0ω

½ξ; ξ0�hχωjD̂ðαωÞ†e−W�â†eWâD̂ðαωÞjχωi
¼ F0ω

½ξ; ξ0�hχωje−W�D̂ðαωÞ†â†D̂ðαωÞeWD̂ðαωÞ†â D̂ðαωÞjχωi
¼ Fχω ½ξ; ξ0�e−W

�α�ωþWαω

¼ Fχω ½ξ; ξ0� exp
�
ig
2ℏ

Z
T

0

dtQω cosðωtþ φωÞðXðtÞ − X0ðtÞÞ
�
: ð78Þ

As before, the overall effect of a displacement operator is
simply to modify the classical action; any intrinsically
quantum contributions to the influence functional must
originate from the state jχωi.

IV. QUANTIZED GRAVITATIONAL FIELD
COUPLED TO THE DETECTOR

Having computed the influence functional for a single
gravitational field mode, we are now ready to tackle the
general problem of a continuum of modes—a quantum
field—interacting with the detector. The quantum state of
the gravitational field jΨi can be written as a tensor product
of the Hilbert states of the individual gravitational field
modes:

jΨi ¼ ⊗
k⃗
jψωðk⃗Þi: ð79Þ

Since the action for the field, (22), involves a sum over
modes, the field influence functional is a product of the
mode influence functionals:

FΨ½ξ; ξ0� ¼
Y
k⃗

Fψωðk⃗Þ
½ξ; ξ0�: ð80Þ

Correspondingly, the field influence phase is a sum over the
influence phases for each mode:

ΦΨ½ξ; ξ0� ¼
X
k⃗

Φψωðk⃗Þ
½ξ; ξ0�: ð81Þ

Note that when summing over modes our choice of the
mode action (25) (motivated by simplicity) breaks down in
a number of ways. For a given arm orientation, the cross
(×) polarization cannot be neglected for all k⃗. Moreover, a
mode with a generic wave vector k⃗ will excite all three
degrees of freedom of the detector arm (22). Last, a more
careful treatment of the spatial integration over modes with
wave vectors nonparallel to the z axis will yield additional
trigonometric factors of order one. We leave all such
refinements to future work. In the rest of this section,
we evaluate this mode sum for different field states. This
will allow us in Sec. V to determine the quantum-
influenced dynamics of the arm length.

A. Vacuum state

When the gravitational field is in its vacuum state,
jΨi ¼ j0i, all the modes are in their corresponding ground
states. The vacuum influence function,

F0½ξ; ξ0� ¼ eiΦ0½ξ;ξ0�; ð82Þ

can therefore be written as a product of the ground state
influence functionals. Correspondingly, the vacuum influ-
ence phase is a mode sum over the ground state influence
phases (66):
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iΦ0½ξ; ξ0� ¼
X
k⃗

iΦ0ωðk⃗Þ
½ξ; ξ0�

¼ −
X
k⃗

g2

8mℏω

Z
T

0

Z
t

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þe−iωðt−t0Þ − X0ðt0Þeiωðt−t0ÞÞ

¼ −
m2

0G
16π2ℏ

ð2πÞ3
L3

X
k⃗

1

ω

Z
T

0

Z
t

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þe−iωðt−t0Þ − X0ðt0Þeiωðt−t0ÞÞ

¼ −
m2

0G
4πℏ

Z
∞

0

ωdω
Z

T

0

Z
t

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þe−iωðt−t0Þ − X0ðt0Þeiωðt−t0ÞÞ

¼ −
m2

0G
4πℏ

Z
T

0

Z
t

0

dtdt0
Z

∞

0

dωω cosðωðt − t0ÞÞðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ

þ im2
0G

4πℏ

Z
T

0

Z
t

0

dtdt0
Z

∞

0

dωω sinðωðt − t0ÞÞðXðtÞ − X0ðtÞÞðXðt0Þ þ X0ðt0ÞÞ: ð83Þ

Here we have taken the continuum limit of the mode sum
and replaced m and g by their values in terms of physical
constants via (21) and (24); the unphysical volume of space
L3 has thereby dropped out.
Notice, however, that the ω integrals are divergent.

Nevertheless, as we shall see in Sec. V, this expression
enables us to calculate physically meaningful (and finite)
effects on the dynamics of the arm length. In particular, the
real and imaginary parts of the last line of (83) will have an
interpretation, in the context of the fluctuation-dissipation
theorem, as Gaussian noise and radiation loss.

B. Coherent states

In quantum field theory, coherent states are the quantum
states that most closely resemble classical solutions of the
field equations. Specifically, the expectation value of a field
operator in a coherent state is precisely the classical value
of the field; indeed, we used just this property when we
considered coherent states in a quantum-mechanical con-
text, (70). These states arise naturally when dealing with
classical gravitational waves: since signal templates are
obtained by solving Einstein’s equations, they all corre-
spond quantum mechanically to coherent states of the
gravitational field.
Consider, then, a gravitational plane wave propagating

along the z axis with þ polarization. Its wave profile, also
known as the strain, can be written as

h̄ðtÞ≡ 1ffiffiffiffiffiffiffi
ℏG

p
X
ω

Qω cosðωtþ φωÞ: ð84Þ

Of course gravitational waves emitted by a localized source
situated at a finite distance r are more appropriately

described by spherical waves. For sufficiently distant
sources, however, the plane wave approximation is excel-
lent and the appropriate 1=r decay factor is built into the
amplitudeQω. As seen in Sec. III, each of the modes in (84)
is described by a quantum-mechanical coherent state jαωi
with

αω ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
Qωe−iφω : ð85Þ

Thus the field-theoretic coherent state corresponding to h̄ is
given by

jh̄i ¼ ⨂
ω
jαωi: ð86Þ

When the gravitational field is in this state, jΨi ¼ jh̄i, the
influence functional,

Fh̄½ξ; ξ0� ¼ F0½ξ; ξ0�eiΦh̄½ξ;ξ0�; ð87Þ

is a product of the quantum-mechanical coherent state
influence functionals, (73), for wave vectors parallel to the
z axis, and a product of ground state influence functionals
for all other wave vectors. For the coherent part of the
influence phase we then have

iΦh̄½ξ; ξ0� ¼
i
ℏ

Z
T

0

dt
1

4
m0h̄ðtÞðXðtÞ − X0ðtÞÞ; ð88Þ

and the total influence phase is Φ0 þΦh̄. The transition
probability between states A and B of the detector is
therefore
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Ph̄ðϕA → ϕBÞ≡
Z

dξidξ0idξfdξ
0
fϕ

�
Aðξ0iÞϕBðξ0fÞϕ�

BðξfÞϕAðξiÞ

×
Z

ξð0Þ¼ξi ;ξ
0ð0Þ¼ξ0

i
ξðTÞ¼ξf ;ξ

0ðTÞ¼ξ0
f

D̃ ξD̃ξ0 exp
�
i
ℏ

Z
T

0

dt

�
1

2
m0ð_ξ2 − _ξ02Þ þ 1

4
m0h̄ðtÞðXðtÞ − X0ðtÞÞ

��
F0½ξ; ξ0�: ð89Þ

As we saw with individual gravitational field modes in
coherent states, (74), the only effect on a detector interact-
ing with a quantized gravitational wave—besides the
omnipresent vacuum fluctuations encoded in F0—is to
contribute to the action a piece that corresponds to an
interaction with a classical gravitational wave, h̄ðtÞ.
Although one might perhaps have expected quantum
effects akin to graviton shot noise, we see that (other than
vacuum fluctuations) there is no specific signature of the
quantization of gravitational waves emitted by a classical
source.

C. Thermal states

Now let us consider a slightly different example for
which the gravitational field is in a thermal state. In practice
this could describe a cosmic gravitational wave back-
ground: although each gravitational wave is described by
a coherent state, their incoherent superposition is not.
Alternatively, a thermal gravitational field state can also
be sourced by an evaporating black hole.

Thermal states are mixed states and as such are described
by density matrices; the extension of the influence func-
tional formalism to this setting is straightforward. For a
single-mode density matrix ρω, the generalization of (63) is

Fρω ½ξ; ξ0� ¼ F0ω
½ξ; ξ0�Tr½ρωe−W�â†eWâ�; ð90Þ

whereW is given by (64). For a thermal state at temperature
T, the density matrix for a mode of energy ℏω is

ρthω ¼ 1

Z

X∞
n¼0

e−
ℏωðnþ1=2Þ

kBT jnihnj; ð91Þ

where Z ¼ P∞
n¼0 exp ð− ℏωðnþ1=2Þ

kBT
Þ is the partition function,

kB is Boltzmann’s constant, and jni is an energy eigenstate.
Then the quantum-mechanical single-mode influence func-
tional reads

Fth
ω ½ξ; ξ0� ¼ ð1 − e−

ℏω
kBTÞF0ω

½ξ; ξ0�
X∞
n¼0

e−
ℏωn
kBThnje−W�â†eWâjni

¼ ð1 − e−
ℏω
kBTÞF0ω

½ξ; ξ0�
X∞
n¼0

X∞
p¼0

X∞
q¼0

ð−1ÞpW�pWq

p!q!
e−

ℏωn
kBThnjâ†pâqjni

¼ ð1 − e−
ℏω
kBTÞF0ω

½ξ; ξ0�
X∞
p¼0

ð−1ÞpjWj2p
p!2

e−
ℏωp
kBT

X∞
n¼p

nðn − 1Þ…ðn − pþ 1Þe−ℏωðn−pÞ
kBT

¼ ð1 − e−
ℏω
kBTÞF0ω

½ξ; ξ0�
X∞
p¼0

ð−1ÞpjWj2p
p!2

e−
ℏωp
kBT

dp

dxp

�
1

1 − x

�
x¼e

− ℏω
kBT

¼ F0ω
½ξ; ξ0�

X∞
p¼0

ð−1ÞpjWj2p
p!

�
e−

ℏω
kBT

1 − e−
ℏω
kBT

�p

¼ F0ω
½ξ; ξ0� exp

�
−jWj2

�
1

e
ℏω
kBT − 1

��
: ð92Þ

We see that the thermal influence functional features an
exponential factor multiplying the ground state influence
functional.
Now let us extend this result to a thermal gravitational

field state. The thermal field density matrix is a tensor
product of the mode density matrices:

ρth ¼ ⨂
k⃗

ρth
ωðk⃗Þ: ð93Þ

We can sum over all modes to obtain

Fth½ξ; ξ0� ¼ F0½ξ; ξ0�eiΦth½ξ;ξ0�; ð94Þ
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where, using (92), we have

iΦth½ξ; ξ0� ¼ −
m2

0G
4πℏ

Z
∞

0

ωdω

e
ℏω
kBT − 1

Z
T

0

Z
T

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞe−iωðt−t0Þ

¼ −
m2

0G
4πℏ

Z
∞

0

ωdω

e
ℏω
kBT − 1

Z
T

0

Z
T

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ cosðωðt − t0ÞÞ: ð95Þ

Symmetry under t ↔ t0 ensures that the sine part of the
complex exponential does not contribute; that the result is
real can also be seen from (92). Note that in performing the
mode sum we have integrated over all wave vectors k⃗; this
would be appropriate for an isotropic cosmic background.
However, for a localized, evaporating black hole, the state
is thermal only for those wave vectors k⃗ that point within
the solid angle subtended by the black hole. This would
result in the thermal part of the influence phase being
multiplied by a minuscule factor of 1

2
ð1 − cos θ0Þ ∼ 1

4
ðrSr Þ2

where θ0 is the half-angle subtended by the black hole, rS is
its Schwarzschild radius, and r ≫ rS its distance from the
detector.

D. Squeezed vacua

So far we have considered quantum states of the
gravitational field that have a straightforward classical
interpretation. We will now examine squeezed states
which exhibit more distinctly quantum-mechanical fea-
tures. Physically, such states are conjectured to arise in

postinflationary scenarios [29–31]; they will also presum-
ably be created by classical sources through the non-
linearities of gravity. In quantum mechanics, squeezed
states have the characteristic property that uncertainties
in certain operators, say q̂ or p̂, are smaller than ℏ=2. They
are constructed with the help of the unitary squeezing
operator

ŜðzÞ≡ e
1
2
ðz�â2−zâ†2Þ; ð96Þ

where z is a complex number known as the squeezing
parameter. A squeezed ground state for instance is ŜðzÞj0i
and one can also define squeezed coherent states,
ŜðzÞD̂ðαÞj0i, which combine the squeezing operator with
the displacement operator (75).
Let us consider the gravitational field to be in a squeezed

vacuum, for which each mode of energy ℏω is in a
squeezed ground state ŜðzωÞj0ωi. Then the single-mode
influence functional is

Fzω ½ξ; ξ0� ¼ F0ω
½ξ; ξ0�h0ωjŜðzωÞ†e−W�â†eWâŜðzωÞj0ωi

¼ F0ω
½ξ; ξ0�h0ωje−W�ŜðzωÞ†â†ŜðzωÞeWŜðzωÞ†â ŜðzωÞj0ωi

¼ F0ω
½ξ; ξ0� exp

�
−
1

4
ðW�2e−iϕω þW2eiϕωÞ sinh 2rω −

1

2
jWj2ðcosh 2rω − 1Þ

�
: ð97Þ

Here we have defined zω ≡ rωeiϕω and we have invoked (56) as well as

SðzωÞ†âSðzωÞ ¼ cosh rωâ − eiϕω sinh rωâ†; ð98Þ

SðzωÞ†â†SðzωÞ ¼ cosh rωâ† − e−iϕω sinh rωâ: ð99Þ

We can rewrite (97) as Fzω ½ξ; ξ0� ¼ F0ω
½ξ; ξ0�eiΦzω ½ξ;ξ0�, where

iΦzω ½ξ; ξ0� ¼ −
g2

16mℏω

Z
T

0

Z
T

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ cosðωðt − t0ÞÞðcosh 2rω − 1Þ

þ g2

16mℏω

Z
T

0

Z
T

0

dtdt0ðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ cosðωðtþ t0Þ − ϕωÞ sinh 2rω: ð100Þ

Before we can sum over all modes we need to specify the amount of squeezing per mode zω. An analysis of realistic
squeezing parameters is beyond the scope of the current work; for the sake of simplicity, we will choose rω to be
independent of ω and ϕω to be zero. Summing over all modes then yields the field-theoretic influence functional
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Fz½ξ; ξ0� ¼ F0½ξ; ξ0�eiΦz½ξ;ξ0�; ð101Þ

where

iΦz½ξ; ξ0� ¼ −
m2

0G
8πℏ

ðcosh 2r − 1Þ
Z

T

0

Z
T

0

dtdt0
Z

∞

0

dωω cosðωðt − t0ÞÞðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ

þm2
0G

8πℏ
sinh 2r

Z
T

0

Z
T

0

dtdt0
Z

∞

0

dωω cosðωðtþ t0ÞÞðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ: ð102Þ

Notice that the first term in this expression is proportional
to the real part of iΦ0½ξ; ξ0�, as seen from (83). The second
term breaks the time-translation symmetry t → tþ δ,
t0 → t0 þ δ. We will analyze the effects of these properties
in the following section.

V. EFFECTIVE EQUATION OF MOTION
OF THE DETECTOR

Let us now use our results to derive an effective,
quantum-corrected equation of motion for the arm length
ξ. The equation of motion in the presence of a purely
classical gravitational perturbation is the Euler-Lagrange
equation, which follows from the classical action:

ξ̈ −
1

2
̈h̄ξ ¼ 0: ð103Þ

The source term here is the usual tidal acceleration in the
presence of a gravitational perturbation. The question
we are now finally in a position to address is this: how
does this equation change when the gravitational field is
quantized?
We know that the effect on ξ is encoded in the Feynman-

Vernon influence functional, which in the previous sections
we have painstakingly evaluated for several classes of
quantum states of the gravitational field. The transition
probability for the detector in the presence of a gravitational

field state jΨi ¼⊗k⃗ jψωðk⃗Þi is the natural extension

of (45):

PΨðϕA → ϕBÞ

¼
Z

dξidξ0idξfdξ
0
fϕ

�
Aðξ0iÞϕBðξ0fÞϕ�

BðξfÞϕAðξiÞ

×
Z

ξð0Þ¼ξi;ξ
0ð0Þ¼ξ0

i
ξðTÞ¼ξf ;ξ

0ðTÞ¼ξ0
f

D̃ ξD̃ξ0e
i
ℏ

R
T

0
dt1

2
m0ð_ξ2−_ξ02ÞFΨ½ξ; ξ0�: ð104Þ

This equation is readily understood. The four ordinary
integrals encode the initial and final states of ξ; however, as
we are interested in the effective equation of motion for ξ—
which will arise from taking a saddle point of the path
integrals—they will play no role. The double path integrals
reflect the fact that we are calculating probabilities rather
than probability amplitudes. The exponent is seen to be of
the form i

ℏ ðS0½ξ� − S0½ξ0�Þ where S0 is the free particle
action. Crucially, the gravitational field has been integrated
out and its effect is now fully captured by the influence
functional FΨ½ξ; ξ0� ¼ eiΦΨ½ξ;ξ0�.
To see how the equation of motion (103) becomes

modified, let us start by considering a gravitational field
in a coherent state, jΨi ¼ jh̄i. Then the transition proba-
bility is given by (89):

Ph̄ðϕA → ϕBÞ≡
Z

dξidξ0idξfdξ
0
fϕ

�
Aðξ0iÞϕBðξ0fÞϕ�

BðξfÞϕAðξiÞ

×
Z

D̃ξD̃ξ0 exp
�
i
ℏ

Z
T

0

dt

�
1

2
m0ð_ξ2 − _ξ02Þ þ 1

4
m0h̄ðtÞðXðtÞ − X0ðtÞÞ

�

−
m2

0G
4πℏ

Z
T

0

Z
t

0

dtdt0
Z

∞

0

dωω cosðωðt − t0ÞÞðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ

þ im2
0G

4πℏ

Z
T

0

Z
t

0

dtdt0
Z

∞

0

dωω sinðωðt − t0ÞÞðXðtÞ − X0ðtÞÞðXðt0Þ þ X0ðt0ÞÞ
�
: ð105Þ

Here we have inserted the vacuum influence phase (83).
Recall that XðtÞ ¼ d2

dt2 ξ
2ðtÞ and X0ðtÞ ¼ d2

dt2 ξ
02ðtÞ. We again

observe that, in a coherent state, the action for ξ acquires a

piece corresponding to the interaction with a classical
gravitational wave h̄. The last two terms arise from F0

and encode the vacuum fluctuations of the gravitational
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field. We now analyze these two terms in further detail; we
shall see that they are related to fluctuation and dissipation.

A. Dissipation

Consider the last term in the exponent in (105). The
integral over ω can be evaluated by using the distributional
identity

1

π

Z
∞

0

dωω sinðωðt − t0ÞÞ ¼ −δ0ðt − t0Þ; ð106Þ

where δ0 is the derivative of the Dirac delta function with
respect to its argument. Then

im2
0G

4πℏ

Z
T

0

Z
t

0

dtdt0
Z

∞

0

dωω sinðωðt − t0ÞÞðXðtÞ − X0ðtÞÞðXðt0Þ þ X0ðt0ÞÞ

¼ −
im2

0G
4ℏ

Z
T

0

Z
t

0

dtdt0δ0ðt − t0ÞðXðtÞ − X0ðtÞÞðXðt0Þ þ X0ðt0ÞÞ

¼ −
im2

0G
8ℏ

Z
T

0

dtðXðtÞ − X0ðtÞÞð _XðtÞ þ _X0ðtÞÞ þ im2
0G

4ℏ

Z
T

0

dtδð0ÞðXðtÞ2 − X0ðtÞ2Þ − im2
0G

8ℏ
ðXð0Þ2 − X0ð0Þ2Þ: ð107Þ

The last term vanishes as a consequence of the boundary
conditions in the path integral, as mentioned after (45).
The penultimate term, while divergent, takes the form of a
difference of actions and can therefore be canceled through
the addition of an appropriate counterterm to the free
particle action. This leaves us with the first term, which
contains third-order derivatives of ξ and ξ0. This remaining
term cannot be expressed as a difference of actions and,
consistent with this, we will see shortly that it leads to
dissipative dynamics for ξ.

B. Fluctuation

Let us turn now to the second-last term in the exponent
in (105). Using its symmetry to change the limits on the
integrals, we can write it as

−
m2

0

32ℏ2

Z
T

0

Z
T

0

dtdt0A0ðt; t0ÞðXðtÞ−X0ðtÞÞðXðt0Þ−X0ðt0ÞÞ;

ð108Þ

where we have defined

A0ðt; t0Þ≡ 4ℏG
π

Z
∞

0

dωω cosðωðt − t0ÞÞ: ð109Þ

Although A0 is formally divergent, we can imagine that it is
regulated in some manner; for example one could impose a
hard cutoff because our formalism surely does not hold for
frequencies higher than the Planck scale. Alternatively we
can also view A0 as a distribution

A0ðt − t0Þ ¼ −
4ℏG
π

H
1

ðt − t0Þ2 ; ð110Þ

where the Hadamard finite-part distribution H 1
x2 is defined

when integrated against a test function ϕðxÞ by

Z
∞

−∞
dxϕðxÞH 1

x2
≡

Z
∞

−∞
dx

ϕðxÞ − ϕð0Þ − xϕ0ð0Þ
x2

: ð111Þ

To proceed, we employ a clever trick due to Feynman
and Vernon. We note that the exponential term involving A0

can be expressed as a Gaussian path integral over an
auxiliary function N 0ðtÞ:

exp

�
−

m2
0

32ℏ2

Z
T

0

Z
T

0

dtdt0A0ðt; t0ÞðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ
�

¼
Z

DN 0 exp
�
−
1

2

Z
T

0

Z
T

0

dtdt0A−1
0 ðt; t0ÞN 0ðtÞN 0ðt0Þ þ

i
ℏ

Z
T

0

dt
m0

4
N 0ðtÞðXðtÞ − X0ðtÞÞ

�
: ð112Þ

Here A−1
0 is the operator inverse of A0, formally obeying

R
T
0 dsA0ðt; sÞA−1

0 ðs; t0Þ ¼ R
T
0 dsA−1

0 ðt; sÞA0ðs; t0Þ ¼ δðt − t0Þ.
Equation (112) has an elegant interpretation. The function N 0ðtÞ is evidently a stochastic (random) function with a
Gaussian probability density. (An overall normalization factor has been absorbed in the measure.) Moreover the stochastic
average of N 0ðtÞ clearly vanishes:
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hN 0ðtÞi≡
Z

DN 0 exp

�
−
1

2

Z
T

0

Z
T

0

dtdt0A−1
0 ðt; t0ÞN 0ðtÞN 0ðt0Þ

�
N 0ðtÞ ¼ 0: ð113Þ

Thus N 0ðtÞ is naturally interpreted as noise. We can also then see that A0 is the autocorrelation function of N 0ðtÞ since

hN 0ðtÞN 0ðt0Þi≡
Z

DN 0 exp

�
−
1

2

Z
T

0

Z
T

0

dtdt0A−1
0 ðt; t0ÞN 0ðtÞN 0ðt0Þ

�
N 0ðtÞN 0ðt0Þ ¼ A0ðt; t0Þ: ð114Þ

The autocorrelation function A0 fully describes the proper-
ties of the noise N 0ðtÞ as, by Wick’s theorem, any higher
moment is expressible in terms of sums of products of A0.
The upshot of the Feynman-Vernon trick is that we are

able to transform a term that coupled ξ and ξ0 into one that
can be written as a difference of two actions. Furthermore,
the new actions now contain an external function N 0ðtÞ
which, as we have seen, has the interpretation of noise. We
can analyze this noise further by examining the autocorre-
lation function. First note from (109) that, because A0ðt; t0Þ
depends only on τ ¼ t − t0, the noise must be stationary.
Observe also that A0 is symmetric under τ → −τ. Then
taking the Fourier transform of the autocorrelation function
yields the power spectrum of the noise:

SðωÞ≡
Z

∞

−∞
dτe−iωτA0ðτÞ ¼ 4Gℏω: ð115Þ

As is manifest from the presence of ℏ, this is a fundamental
noise of quantum origin. Moreover, the ω dependence
indicates that it is not white noise but rather correlated noise
with a characteristic spectrum.

C. Effective dynamics of the arm length

Putting all this together, we find that the transition
probability (105) can be written as

Ph̄ðϕA → ϕBÞ≡
Z

dξidξ0idξfdξ
0
fϕ

�
Aðξ0iÞϕBðξ0fÞϕ�

BðξfÞϕAðξiÞ

×
Z

D̃ξD̃ξ0DN 0 exp

�
−
1

2

Z
T

0

Z
T

0

dtdt0A−1
0 ðt − t0ÞN 0ðtÞN 0ðt0Þ

�

× exp

�
i
ℏ

Z
T

0

dt

�
1

2
m0ð_ξ2 − _ξ02Þ þ 1

4
m0ðh̄ðtÞ þN 0ðtÞÞðXðtÞ − X0ðtÞÞ

�

−
im2

0G
8ℏ

Z
T

0

dtðXðtÞ − X0ðtÞÞð _XðtÞ þ _X0ðtÞÞ
�
: ð116Þ

We now have a triple path integral as the noise function
N 0ðtÞ comes with its own Gaussian probability measure;
indeed we can view the path integral over N 0ðtÞ as a
stochastic average of the last exponent. Notice also that the
noise N 0ðtÞ adds to the classical gravitational wave h̄ðtÞ.
Finally the term in the last line precludes us from regarding
the quantum effects of the vacuum fluctuations as arising
from an effective action; as mentioned earlier that term does
not separate into the form i

ℏ ðS½ξ� − S½ξ0�Þ.
We have calculated the exact transition probability for

the arm length to go from an initial quantum state jϕAi to a
final one jϕBi. But we expect that the arm length ξ—which
can also be regarded as the position of a macroscopic mass
m0—will essentially behave as a classical degree of free-
dom. Consequently, the ξ and ξ0 path integrals in (116)
should be dominated by the contribution of their saddle
points. These are determined by paths ξðtÞ, ξ0ðtÞ obeying
two coupled differential equations:

̈ξ −
1

2

�
̈h̄þ N̈ 0 −

m0G
2

ð ⃛X þ ⃛X0 − Ẍ þ Ẍ0Þ
�
ξ ¼ 0; ð117Þ

as well as its counterpart obtained by interchanging ξ and
ξ0. Generically there are solutions of this system of coupled
differential equations for which ξðtÞ and ξ0ðtÞ are different.
We will discuss this interesting phenomenon of asymmetric
semiclassical paths, which is not specific to gravitational
radiation, in a separate publication. Here we make the
simplifying ansatz that ξðtÞ ¼ ξ0ðtÞ. (Equivalently, we can
express the influence phase in terms of ξ̄≡ ξþξ0

2
and Δξ≡

ξ − ξ0 and retain only the leading order term in Δξ.) With
this ansatz, we have XðtÞ ¼ X0ðtÞ and (117) reduces to the
Langevin-like equation

̈ξðtÞ − 1

2

�
̈h̄ðtÞ þ N̈ 0ðtÞ −

m0G
c5

d5

dt5
ξ2ðtÞ

�
ξðtÞ ¼ 0: ð118Þ
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We have restored factors of c and substituted X for its
expression in terms of ξ, (55). This is our main result; let us
discuss it in some detail. The equation describes the
quantum-corrected dynamics of the arm length ξ or,
equivalently, of the position of the second free falling
mass relative to the first; it is the quantum geodesic
deviation equation [18,32]. It contains, within the brackets,
three terms that source the relative acceleration ̈ξ. The first
of these terms is present also in the classical equation (103);
as before it determines the tidal acceleration due to a
background gravitational wave. The remaining two terms
correspond to fluctuation and dissipation, respectively. The
last, nonlinear, fifth derivative term is a gravitational
radiation reaction term. It is analogous to the Abraham-
Lorentz acceleration in electromagnetism. But whereas in
the electromagnetic case the radiation reaction term has
three derivatives, here there are five derivatives [33–35];
this is to be expected from the presence of the extra
derivative in the gravitational field interaction. In contrast
to the electromagnetic case, the gravitational radiation
reaction term is nonlinear in ξ; this nonlinearity can be
traced to the nonlinear interaction term in (25). The
pathologies that ensue when the Abraham-Lorentz equation
of classical electromagnetism is taken literally have been
the subject of much confusion. It has long been anticipated
that quantum effects will somehow remedy the situation.
Here we see that such equations are approximations to path
integrals, (116), that are free of pathologies. Most impor-
tantly, (118) contains a quantum noise N 0ðtÞ as a source;
the presence of this term means that the equation is in fact a

stochastic differential equation. This is intuitively appeal-
ing: it conforms to the expectation that a quantum field will
induce random fluctuations in any classical degree of
freedom it interacts with. This randomness has the effect
of altering the dynamics of the classical degree of freedom
so that it is necessarily described by a stochastic—rather
than a deterministic—equation of motion. Notice that this
noise is present even in the absence of an accompanying
classical gravitational wave. We will discuss the phenom-
enology of this equation in Sec. VI.

D. Extension to thermal and squeezed vacua

In (105) we specialized to the important case of a
coherent gravitational field state, jΨi ¼ jh̄i. Let us now
extend the effective dynamics of ξ to other classes of
gravitational field states, namely thermal and squeezed
states. This is readily done: we have already done the hard
work of computing the influence functional for these cases.
It is now simply a matter of inserting the influence
functional into (104), performing the Feynman-Vernon
trick, and taking a saddle point.
Consider first a gravitational field in a thermal state. We

have already computed the additional influence phase in
this state, (95); this phase adds to the influence phase of the
vacuum which is always present. Comparing the additional
thermal influence phase with that of the vacuum, (83), we
see that it contains only a real (fluctuation) part and no
imaginary (dissipation) part. We can again rewrite the real
part using the Feynman-Vernon trick:

exp

�
−

m2
0

32ℏ2

Z
T

0

Z
T

0

dtdt0Athðt; t0ÞðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ
�

¼
Z

DN th exp

�
−
1

2

Z
T

0

Z
T

0

dtdt0A−1
th ðt; t0ÞN thðtÞN thðt0Þ þ

i
ℏ

Z
T

0

dt
m0

4
N thðtÞðXðtÞ − X0ðtÞÞ

�
: ð119Þ

Here, from (95), we read off

Athðt; t0Þ ¼
8ℏG
π

Z
∞

0

ωdω

e
ℏω
kBT − 1

cosðωðt − t0ÞÞ

¼ 4ℏG
π

�
1

ðt − t0Þ2 −
π2k2BT

2

ℏ2 sinh2ðπkBTðt−t0Þℏ Þ

�
: ð120Þ

Unlike the vacuum autocorrelation function, the thermal
autocorrelation function is finite. We see from (119) that in
the thermal state the arm length is subject to an additional
Gaussian noise source. The power spectrum of this noise is
given by

SthðωÞ ¼
8ℏGω

e
ℏω
kBT − 1

: ð121Þ

After performing the saddle point over the ξ, ξ0 path
integrals, setting ξ ¼ ξ0, and remembering to include the
vacuum contributions, we finally have

̈ξðtÞ − 1

2

�
N̈ 0ðtÞ þ N̈ thðtÞ −

m0G
c5

d5

dt5
ξ2ðtÞ

�
ξðtÞ ¼ 0:

ð122Þ

This is the Langevin equation for the arm length in the
presence of a thermal gravitational field. It contains an
additional correlated noise term with power spectrum (121).
Next consider a gravitational field in a squeezed vacuum.

The additional influence phase in this state was computed
in (102). We again see that there is only a real (fluctuation)
part which will contribute to the noise. Performing the
Feynman-Vernon trick, we find
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Azðt; t0Þ ¼
4ℏG
π

ðcosh 2r − 1Þ
Z

∞

0

dωω cosðωðt − t0ÞÞ

−
4ℏG
π

sinh 2r
Z

∞

0

dωω cosðωðtþ t0ÞÞ: ð123Þ

Unlike our previous examples, the noise in the squeezed
state is not stationary because Azðt; t0Þ does not depend
only on t − t0; indeed, the time modulation of the noise in
squeezed states is a familiar phenomenon in quantum
optics [36]. We can decompose Azðt; t0Þ ¼ Astatðt − t0Þ þ
Anonstatðtþ t0Þ and perform the Feynman-Vernon trick for
these two parts separately. This introduces corresponding
stationary and non-stationary noises, N stat and N nonstat,
and, mutatis mutandi, we find

̈ξðtÞ − 1

2

�
N̈ 0ðtÞ þ N̈ statðtÞ þ N̈ nonstatðtÞ

−
m0G
c5

d5

dt5
ξ2ðtÞ

�
ξðtÞ ¼ 0: ð124Þ

Notice from (123) that, for the idealized uniform squeezing
that we have been considering, Astat is proportional to the
autocorrelation of the vacuum A0ðt; t0Þ, which we had
previously calculated in (109). With suitable redefinitions,
we can therefore combine N 0 and N stat into a single
stationary noise term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2r

p
N 0. Remarkably, the ampli-

tude of the vacuum noise is enhanced by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2r

p
:

̈ξðtÞ − 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2r

p
N̈ 0ðtÞ þ N̈ nonstatðtÞ

−
m0G
c5

d5

dt5
ξ2ðtÞ

�
ξðtÞ ¼ 0: ð125Þ

This means that if r ≫ 1, the squeezed vacuum fluctuations
lead to an exponential enhancement of the quantum noise
in the equation of motion of the arm length; the same
result has also been obtained without using influence
functionals [20]. The possible effect of squeezed gravita-
tional states on the propagation of photons within LIGO
has been discussed recently [13].

VI. PHENOMENOLOGY

Our main result is that the classical geodesic deviation
equation is replaced by the Langevin equation (118), which
is a nonlinear stochastic differential equation. We therefore
predict the existence of a fundamental noise originating in
the quantization of the gravitational field. In order for this
noise to be detectable at gravitational wave interferometers,
two requirements must be met. First, the amplitude of the
noise should not be too small. Second, the noise must be
distinguishable from the many other sources of noise at the
detector.

Let us begin by estimating the noise amplitude. We will
need to make some approximations. The first step is to
discard the fifth-derivative radiation reaction term in the
Langevin equation. We do this mainly for simplicity, but it
seems plausible that if the arm length ξ is measured in some
manner that is coarse-grained in time, then its higher
derivatives could be negligible. With this approximation,
the equation of motion becomes a stochastic Hill equation:

̈ξðtÞ − 1

2
½ ̈h̄ðtÞ þ N̈ ðtÞ�ξðtÞ ¼ 0: ð126Þ

Here N stands for any of the noise terms we have
considered, and we have also allowed for the possible
presence of a classical gravitational wave background, h̄.
Next, the linearity of this equation allows us to write the
approximate solution as

ξðtÞ ≈ ξ0

�
1þ 1

2
ðh̄ðtÞ þN ðtÞÞ

�
; ð127Þ

because the resting arm length ξ0 is many orders of
magnitude larger than its fluctuations. This equation shows
that the fundamental noise N induces random fluctuations
in the arm length ξ. The technology we have developed
allows us to calculate the statistical properties of these
jitters, such as their mean, standard deviation, autocorre-
lation function, power spectrum, etc., with the help of the
autocorrelation function of N , viz. Aðt; t0Þ. Since N
averages to 0, we see from (126) that the average value
of ξ is, as expected, its classical value:

hξðtÞi ≈ ξ0

�
1þ 1

2
h̄ðtÞ

�
: ð128Þ

Then the standard deviation is

σðtÞ≡ hðξðtÞ − hξðtÞiÞ2i12

≈
ξ0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN ðtÞN ðtÞi

q
¼ ξ0

2

ffiffiffiffiffiffiffiffiffiffiffiffi
Aðt; tÞ

p
: ð129Þ

Let us make some estimates.
In the case of vacuum fluctuations, A ¼ A0, this quantity

is formally divergent; see (109). However, the detector is
not sensitive to arbitrarily high frequencies. We can crudely
approximate theω integral appearing in A0 by introducing a
cutoff at the highest frequency ωmax to which the detector
could be sensitive. Now, our derivation [see comments
before (9)] relied on a dipolelike approximation; hence
ωmax can be estimated by 2πc=ξ0, although in practice ωmax
is typically lower. Then

σ0 ≈
ξ0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0ðt; tÞ

p
¼ ξ0ωmax

ffiffiffiffiffiffiffiffiffiffi
ℏG
2πc5

r
∼ 10−35 m: ð130Þ
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This is roughly the scale of the Planck length and about 17
orders of magnitude beyond the technological limits of an
experiment such as LIGO. Evidently, detecting vacuum
fluctuations in the gravitational field with a gravitational
interferometer appears impossible. Nor does including a
background gravitational wave help: a more careful esti-
mate (assuming that the stochastic noise can be approxi-
mated as an Itô process) shows that in the presence of a
gravitational wave, the quantum noise is enhanced only
by a tiny factor of 1þ h̄. This contradicts claims in the
literature [12] according to which graviton shot noise
should already have been detected at LIGO.
Next let us consider the additional fluctuations in a

thermal state. Then A ¼ Ath, (120), and we find a finite
expression for the standard deviation of the arm length:

σthðtÞ ≈
ξ0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Athðt; tÞ

p
¼ ξ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðkBTÞ2G

3ℏc5

s
: ð131Þ

This is a theoretical limit; in practice limits on the detector
sensitivity again require that the integral over ω appearing
in Ath be cut off at the highest frequency to
which the detector is sensitive (which is typically well
below the frequency of the peak of the Planck distribution,
ℏωmax ≪ kBT). The relevant expression should instead
read

σth ≈ ξ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GkBTωmax

πc5

r
: ð132Þ

For LIGO (ξ0 ∼ 1 km, ωmax ∼ 106 rad s−1), the noise
due to the isotropic cosmic gravitational wave background
(T ∼ 1 K) yields a σth of order 10−31 m or about 13 orders
of magnitude beyond its current technological limits. For
LISA (ξ0 ∼ 106 km, ωmax ∼ 1 rad s−1), the situation would
be slightly improved with a noise level of order 10−28 m,
“only” 10 orders of magnitude beyond its projected
sensitivity. Notice that using (131) instead of (132) would
overestimate the noise amplitude by about three orders of
magnitude for LIGO and five for LISA; most of the power
in the thermal noise is concentrated at high frequencies
that are inaccessible to LIGO (and even more so to LISA).
We can also consider gravitational fields due to localized
thermal sources, such as evaporating black holes. Here, in
principle, the temperature can be much higher, as could be
expected for exploding primordial black holes. However, as
discussed earlier, the quantum noise contribution would be
suppressed by a tiny geometric factor of 1

4
ðrSr Þ2 where rS is

the black hole’s Schwarzschild radius and r ≫ rS its
distance from the detector. It might be worthwhile to check
whether there are regions of the parameter space of
primordial black hole density distributions for which the
collective background of evaporating black holes might
allow for a detectable signal.

Perhaps the most intriguing prospect is the quantum
noise from a squeezed vacuum. In this case, as discussed in
the previous section, the noise has both stationary and time-
dependent components. Focusing on the stationary piece,
we find that

σsqueezed ¼ σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2r

p
: ð133Þ

For large values of r, the squeezing results in exponential
enhancement of the fluctuation of the detector arm length,
as also found in [20]. It would be very interesting to see
whether there are realistic physical sources of the gravita-
tional field that could yield squeezed states with values of r
for which the noise might be detectable.
Finally, it is worth emphasizing that the fundamental

noise arising from the quantization of the gravitational field
has some distinctive characteristics. First, it is typically
nontransient (even stationary in some cases) and does not
require a classical gravitational wave to be present.
Moreover, for many classes of quantum states, the precise
power spectrum is analytically calculable. This could
potentially distinguish the fundamental quantum-
gravitational noise from other, more mundane, sources
of noise such as electronic noise, photon shot noise, seismic
noise, thermal noise, as well as various transient noise
events [37,38]. Furthermore, the noise is likely to be
correlated between nearby detectors. To see this, consider
an additional detector degree of freedom ζðtÞ.
Schematically, this adds a term of the form − 1

2
m0

_̄h _ζ ζ
to the interaction Lagrangian which effectively replaces X
by X þ Y in the influence functional (63), where
YðtÞ ¼ d2

dt2 ζ
2ðtÞ. Then the identity (112) results in a single

stochastic functionN multiplying both X and Y, leading to
correlated noise between the two detectors.

VII. SUMMARY

In this paper we have considered Einstein gravity
coupled to a model gravitational wave detector. We
quantized the resultant theory and integrated out the
gravitational field to obtain the Feynman-Vernon influence
functional. This encompassed the effect on the detector of
its coupling to a quantized gravitational field; we calculated
the influence functional for a variety of quantum states
of the gravitational field. We then arrived at a stochastic
equation of motion for the length of the detector arm which
generically contains a quantum noise term. We identified
the power spectrum of the noise and estimated its amplitude
for various states. For the vacuum, or for sources for which
it is valid to employ deterministic equations and treat the
gravitational field linearly, we found only minuscule
corrections to the classical treatment. But other sources
can produce gravitational field states, including quasither-
mal and squeezed states, that are more promising in this
regard.
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Unlike in electrodynamics, where the linearity of the
theory prevents sources governed by deterministic dynamics
from producing noncoherent states [39], the nonlinearity of
general relativity naturally gives rise to noncoherent states
when strong-field effects become significant, as during the
end stages of binary black hole mergers. The calculation of
these states and their properties is worthy of further attention.
Finally, we also identified interesting issues relating to the
generally asymmetric nature of semiclassical paths in
influence functionals and the formal origin of radiation
reaction. These topics are under active investigation.

ACKNOWLEDGMENTS

We thank Paul Davies, Bei-Lok Hu, Phil Mauskopf, and
Tanmay Vachaspati for conversations. During the course of
this work, M. P. and G. Z. were supported in part by John
Templeton Foundation Grant No. 60253. G. Z. also
acknowledges support by Moogsoft. F. W. is supported
in part by the U.S. Department of Energy under Grant
No. DE-SC0012567, by the European Research Council
under Grant No. 742104, and by the Swedish Research
Council under Contract No. 335-2014-7424.

[1] R. P. Feynman, Quantum theory of gravitation, Acta Phys.
Pol. 24, 697 (1963).

[2] S. Weinberg, Derivation of gauge invariance and the
equivalence principle from Lorentz invariance of the
S-matrix, Phys. Lett. 9, 357 (1964).

[3] S. Deser, Self-interaction and gauge invariance, Gen.
Relativ. Gravit. 1, 9 (1970).

[4] D. G. Boulware and S. Deser, Classical general relativity
derived from quantum gravity, Ann. Phys. (N.Y.) 89, 193
(1975).

[5] L. M. Krauss and F. Wilczek, From B Modes to Quantum
Gravity and Unification of Forces, Int. J. Mod. Phys. D 23,
1441001 (2014).

[6] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102
(2016).

[7] P. Amaro-Seoane et al. (LISA Collaboration), Laser inter-
ferometer space antenna, arXiv:1702.00786.

[8] G. Amelino-Camelia, Gravity-wave interferometers as
quantum-gravity detectors, Nature (London) 398, 216
(1999).

[9] G. Amelino-Camelia, Gravity wave interferometers as
probes of a low-energy effective quantum gravity, Phys.
Rev. D 62, 024015 (2000).

[10] E. P. Verlinde and K. M. Zurek, Observational signatures of
quantum gravity in interferometers, arXiv:1902.08207.

[11] E. Verlinde and K. M. Zurek, Spacetime fluctuations in
AdS/CFT, J. High Energy Phys. 04 (2020) 209.

[12] R. Lieu, Exclusion of standard ℏω gravitons by LIGO
observation, Classical Quantum Gravity 35, 19 (2018).

[13] T. Guerreiro, Quantum effects in gravity waves, Classical
Quantum Gravity 37, 155001 (2020).

[14] F. Dyson, Is a graviton detectable?, Int. J. Mod. Phys. A 28,
1330041 (2013).

[15] T. Rothman and S. Boughn, Can gravitons be detected?,
Found. Phys. 36, 1801 (2006).

[16] S. Boughn and T. Rothman, Aspects of graviton detection:
Graviton emission and absorption by atomic hydrogen,
Classical Quantum Gravity 23, 5839 (2006).

[17] M. Parikh, F. Wilczek, and G. Zahariade, The noise of
gravitons, Int. J. Mod. Phys. D 29, 2042001 (2020).

[18] M. Parikh, F. Wilczek, and G. Zahariade, companion Letter,
Quantum Mechanics of Gravitational Waves, Phys. Rev.
Lett. 127, 081602 (2021).

[19] R. P. Feynman and F. L. Vernon, Jr., The theory of a general
quantum system interacting with a linear dissipative system,
Ann. Phys. (N.Y.) 24, 118 (1963).

[20] S. Kanno, J. Soda, and J. Tokuda, Noise and decoherence
induced by gravitons, Phys. Rev. D 103, 044017 (2021).

[21] B. L. Hu, Stochastic gravity, Int. J. Theor. Phys. 38, 2987
(1999).

[22] B. L. Hu, J. P. Paz, and Y. h. Zhang, Quantum Brownian
motion in a general environment: 1. Exact master equation
with nonlocal dissipation and colored noise, Phys. Rev. D
45, 2843 (1992).

[23] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian
motion in a general environment. 2: Nonlinear coupling and
perturbative approach, Phys. Rev. D 47, 1576 (1993).

[24] E. Calzetta and B. L. Hu, Noise and fluctuations in semi-
classical gravity, Phys. Rev. D 49, 6636 (1994).

[25] P. R. Johnson and B. L. Hu, Stochastic theory of relativistic
particles moving in a quantum field. 1. Influence functional
and Langevin equation, arXiv:quant-ph/0012137.

[26] P. R. Johnson and B. L. Hu, Stochastic theory of relativistic
particles moving in a quantum field. 2. Scalar Abraham-
Lorentz-Dirac-Langevin equation, radiation reaction and
vacuum fluctuations, Phys. Rev. D 65, 065015 (2002).

[27] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman, San Francisco, 1973), Section 35.5.

[28] C. Itzykson and J. B. Zuber, Quantum Field Theory
(McGraw Hill, New York 1980), Section IV.1.4. Note that
a sign error is corrected in the errata.

[29] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec,
Inflation and squeezed quantum states, Phys. Rev. D 50,
4807 (1994).

[30] L. Grishchuk and Y. Sidorov, Squeezed quantum states of
relic gravitons and primordial density fluctuations, Phys.
Rev. D 42, 3413 (1990).

[31] B. L. Hu, G. Kang, and A. Matacz, Squeezed vacua and the
quantum statistics of cosmological particle creation, Int. J.
Mod. Phys. A 09, 991 (1994).

[32] Z. Haba, State-dependent graviton noise in the equation of
geodesic deviation, Eur. Phys. J. C 81, 40 (2021).

PARIKH, WILCZEK, and ZAHARIADE PHYS. REV. D 104, 046021 (2021)

046021-20

https://doi.org/10.1016/0031-9163(64)90396-8
https://doi.org/10.1007/BF00759198
https://doi.org/10.1007/BF00759198
https://doi.org/10.1016/0003-4916(75)90302-4
https://doi.org/10.1016/0003-4916(75)90302-4
https://doi.org/10.1142/S0218271814410016
https://doi.org/10.1142/S0218271814410016
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arXiv.org/abs/1702.00786
https://doi.org/10.1038/18377
https://doi.org/10.1038/18377
https://doi.org/10.1103/PhysRevD.62.024015
https://doi.org/10.1103/PhysRevD.62.024015
https://arXiv.org/abs/1902.08207
https://doi.org/10.1007/JHEP04(2020)209
https://doi.org/10.1088/1361-6382/aadb30
https://doi.org/10.1088/1361-6382/ab9d5d
https://doi.org/10.1088/1361-6382/ab9d5d
https://doi.org/10.1142/S0217751X1330041X
https://doi.org/10.1142/S0217751X1330041X
https://doi.org/10.1007/s10701-006-9081-9
https://doi.org/10.1088/0264-9381/23/20/006
https://doi.org/10.1142/S0218271820420018
https://doi.org/10.1103/PhysRevLett.127.081602
https://doi.org/10.1103/PhysRevLett.127.081602
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1103/PhysRevD.103.044017
https://doi.org/10.1023/A:1026664317157
https://doi.org/10.1023/A:1026664317157
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevD.47.1576
https://doi.org/10.1103/PhysRevD.49.6636
https://arXiv.org/abs/quant-ph/0012137
https://doi.org/10.1103/PhysRevD.65.065015
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.42.3413
https://doi.org/10.1103/PhysRevD.42.3413
https://doi.org/10.1142/S0217751X94000455
https://doi.org/10.1142/S0217751X94000455
https://doi.org/10.1140/epjc/s10052-020-08805-y


[33] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman, San Francisco 1973), Section 36.8.

[34] Y. Mino, M. Sasaki, and T. Tanaka, Gravitational radiation
reaction to a particle motion, Phys. Rev. D 55, 3457 (1997).

[35] T. C. Quinn and R.M. Wald, An axiomatic approach to
electromagnetic and gravitational radiation reaction of par-
ticles in curved space-time, Phys. Rev. D 56, 3381 (1997).

[36] D. F. Walls, Squeezed states of light, Nature (London) 306,
141 (1983).

[37] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), A guide to LIGO–Virgo detector noise and extraction
of transient gravitational-wave signals, Classical Quantum
Gravity 37, 055002 (2020).

[38] J. Aasi et al. (LIGO Scientific Collaboration),
Advanced LIGO, Classical Quantum Gravity 32,
074001 (2015).

[39] R. J. Glauber, Coherent and incoherent states of the radi-
ation field, Phys. Rev. 131, 2766 (1963).

SIGNATURES OF THE QUANTIZATION OF GRAVITY AT … PHYS. REV. D 104, 046021 (2021)

046021-21

https://doi.org/10.1103/PhysRevD.55.3457
https://doi.org/10.1103/PhysRevD.56.3381
https://doi.org/10.1038/306141a0
https://doi.org/10.1038/306141a0
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1103/PhysRev.131.2766

