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We explore the chaotic behavior of particle motion in a black hole with quasitopological electromag-
netism. The chaos bound is found to be violated in the higher order expansion of the metric function and the
electric potential near the horizon. We draw the Poincaré sections of particle motion corresponding to the
chaos bound violated and nonviolated cases, respectively. Then we study the relationship between
the “maximal” Lyapunov exponent λs defined by the static equilibrium and the Lyapunov exponent of the
particle geodesic motion near the Reissner-Nordström black hole and the black hole with quasitopological
electromagnetism. We find an interesting relationship between the Lyapunov exponent λph of photon’s
radial falling into the black hole and the maximal Lyapunov exponent λs. For the black holes whose metric
function increases monotonically with radius outside horizon, this leads to λph ≥ 2λs.
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I. INTRODUCTION

Chaos is an important nonlinear phenomenon that
describes the violent response of the dynamic system to
perturbations. Chaos of particle motion near the black hole
has been studied for a long time, such as using the
Melnikov method to find the chaotic orbit [1], distinguish-
ing the chaotic orbits of particles or strings from periodic
orbits [2–14], and probing the instability of particles
motion [15–19]. Recently, much attention has been paid
to the quantum chaos originating from the AdS=CFT
correspondence [20]. In 2015, Maldacena, Shenker, and
Stanford pointed out in quantum field theory that for a
quantum system like a black hole, its Lyapunov exponent λ
should have an upper bound [20]

λ ≤ 2πT; ð1Þ
where T is the Hawking temperature of the black hole in the
natural unit ℏ ¼ 1. Note that the Hawking temperature T is
related to the surface gravity κ via κ ¼ 2πT. In turn, the
chaos bound can be recast as λ ≤ κ. The chaos bound is
closely related to the chaotic behavior in the strongly
correlated system and the physics of black holes.

The chaos bound can also be studied through examining
the geodesic motion of probing particles near black holes.
Susskind proposed that for a neutral particle falling radially
toward a black hole, its Rindler momentum will increase
exponentially with the exponent equaling to the surface
gravity κ [21], indicating the chaos bound is saturated. On
the other hand, when a particle in its static equilibrium near
the horizon with an external potential, the “maximal”
Lyapunov exponent λs can be obtained [22] with the
relation λs ¼ κ at the horizon. However, the chaos bound
could be violated for charged particles outside charged
black holes [23] by studying the near-horizon expansion.
Our motivations of this paper are to study the Poincaré

section and the chaos of particle motion for a very special
black hole solution with quasitopological electromagnetism
obtained in [24]. We hope to study the Lyapunov exponent
of particle motion near this black hole to understand the
chaos bound and black hole chaos more. Interestingly, we
find that the chaos bound can be violated for this special
black hole. And in the systemwhere the chaos bound can be
violated, the chaos is indeed strengthened.
Subsequently, we calculate the Lyapunov exponent λc of

the circular geodesic motion of natural particles near black
hole, and find that λc is not constrained by the maximal
Lyapunov exponent λs. Meanwhile, we are inspired by [25–
27] in which the authors pointed out that as the speed of the
particle cannot reach the speed of light, the growth rate of
the particle Rindler momentum will not saturate the chaos
bound, or even increase exponentially. There may be a
connection between particles’ radial falling, the speed of
light, and chaos bound. So, we study the radial falling of
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particles and find an interesting relation between the
Lyapunov exponent λph of the photon’s radial falling
and the maximal Lyapunov exponent λs. For the black
hole whose metric function increases monotonically out-
side the horizon, we can see there is λph ≥ 2λs.
This paper is organized as follows. In Sec. II, we briefly

review the black hole chaos and examine why the study of
black hole chaos is interesting. In Sec. III, we provide some
information about the black hole with quasitopolopical
electromagnetism [24]. In Sec. IV, we discuss the static
equilibrium of charged particles near the special dyonic
black holes to check whether the chaos bound λ ≤ κ will be
violated and perform a numerical analysis of a toy model.
In Sec. V, we study the geodesic motion of neutral particles,
including circular geodesic motion and radially falling. In
Sec. VI, we briefly summarize the main results. In
Appendix A, the static equilibrium of a charged particle
outside the Reissner-Nordström (RN) black hole is studied
by the fast Lyapunov indicator. In Appendix B, we discuss
the static equilibrium with only gravity. In Appendix C, we
calculate the maximal Lyapunov exponent λs by the
Jacobian matrix method. In Appendix D, we consider
some details about the maximal Lyapunov exponent λs
outside these black holes. In Appendix E, we discuss in
detail the parameters for the Poincaré section in a
toy model.

II. BLACK HOLE CHAOS: A BRIEF REVIEW

Gravity theory is a nonlinear theory, and chaos should
naturally exist in it. As the black hole is an important
research object in gravity theory, the chaos near the black
hole has high research value. Especially after the AdS=CFT
duality is proposed, studying the connection between black
hole theory and quantum chaos can help us further under-
stand gravity theory and the essence of chaos. In this
section, we briefly review and discuss black hole and the
related issues.

A. Some indicators for chaos around black holes

In the early studies on black hole chaos, searching for the
behavior of chaos is the main task. The nonintegrability of a
dynamical equation in black holes was studied by some
analysis methods [1]. Some indicators such as the
Lyapunov exponent, the fast Lyapunov indicator, and the
Poincaré section were also proposed to check the existence
of chaos near the black hole.

1. Lyapunov exponent

The Lyapunov exponent describes the average rates of
expansion and contraction of two adjacent orbits in the
classical phase space, which can be defined by

λ ¼ lim
t→∞

�
1

t

�
ln

�
△xðtÞ
△xð0Þ

�
; ð2Þ

where △x is the distance between the two orbits. The
Lyapunov exponent can be used to describe the perturba-
tion’s exponential increase in chaotic motion. The positive
Lyapunov exponent means the existence of chaos.
For the equilibrium of particles outside the black hole,

the Lyapunov exponent can be obtained by the Jacobian
matrix [15–19]. The equation of motion of particles can be
schematically written as

dXi

dt
¼ FiðXjÞ; ð3Þ

where Xi is the coordinates and FiðXjÞ is a function to be
determined. Considering a certain orbit, we can linearize
the equation of perturbation

dδXiðtÞ
dt

¼ KijðtÞδXjðtÞ; ð4Þ

where

KijðtÞ ¼
∂Fi

∂Xj

����
XiðtÞ

ð5Þ

is the Jacobian matrix. When the equilibrium of particles
outside black holes is considered, the Lyapunov exponent
can be given by λ ¼ detðKijÞ.

2. The fast Lyapunov indicator

The fast Lyapunov indicator (FLI) is a more effective
tool to search for chaos [28]. FLI is usually defined by
considering the difference between two nearby trajectories
of particles, which is the so-called two-particle method or
two-nearby-trajectory method. For chaotic motion, even for
weak chaotic case, FLI will grow at an exponential ratio. In
general relativity, FLIðτÞ can be described as [29,30]

FLIðτÞ ¼ −k½1þ log10dð0Þ� þ log10

���� dðτÞdð0Þ
����; ð6Þ

where dðτÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgμν△xμ△xνjp
; △xμ is the deviation vector

between two nearby trajectories at proper time τ. To avoid
two orbits from expanding too fast, the sequential number k
of renormalization is considered (the value of k can take
0,1,2...). In this paper, we use FLI to analyze the perturba-
tion’s growth in the static equilibrium of charged particles
in Appendix A.

3. Poincaré section

The Poincaré section is the most commonly used tool to
analyze dynamical systems, which automatically follows
the nonintegrability analysis in examining the existence of
chaos. It can be defined as the intersection of a given
hypersurface and motion trajectory in high-dimensional
phase space (d ≥ 3). Using the Poincaré section, the
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periodic orbits, quasiperiodic orbits, and chaotic orbits can
be clearly distinguished in dynamic systems. Using these
indicators, many chaotic phenomena in black holes have
been studied, such as the motion of a spinning particle [8],
scalar particle [11], and even strings [12–14] and the chaos
in the background of a massive magnetic dipole [9],
rotating black holes [5,10], the black holes with halo
[5,6]. However, there was only the chaotic phenomenon
near the black hole shown. The essential characteristics of
black hole chaos are still to be discovered.

B. More on black hole chaos

Black hole chaos is an important subject in the study of
black hole theory, which can be related to many physical
problems. Actually, there are many physical problems
related to black hole chaos. There are many phenomena
related to black hole observation that has attracted much
attention, such as photon sphere [31] and shadow and
gravitational lensing [32]. It is natural to discuss black hole
chaos in these problems. The quasinormal modes (QNMs)
of black holes describe the damping and oscillation of the
gravitational waves emitted by the perturbation of black
hole [33–39]. In [15–19], the Lyapunov exponent of
circular null geodesic motion was related to QNMs, which
gives an easier method to calculate the QNMs.
From the momentum-size duality proposed in [21], we

can see that the black hole chaos is a bridge between gravity
and quantum theory. Following this duality, the connec-
tions between momentum and quantum complexity were
explored in [40–43], where the quantum complexity [44] is
a very meaningful concept that can be related to many
physical topics such as the action of black holes [45,46], the
shock wave geometry [47], the accelerated expansion of the
Universe [48], and the partition function [49]. There are
also many more problems related to black hole chaos, such
as black hole thermodynamics [50,51], acoustic black holes
[52], and gauge/gravity correspondence [53]. Therefore, it
is worthwhile to study the chaos of particles near the black
hole with quasitopological electromagnetism.

III. A SPECIAL DYONIC BLACK HOLE

Let us consider a black hole with quasitopological
electromagnetism proposed by [24]. The authors in [24]
considered a four-dimensional gravitational theory includ-
ing the pure cosmological constant Λ0 and the minimum
coupling electromagnetic interaction. Its Lagrangian is
given by [24]

L ¼ ffiffiffiffiffiffi
−g

p ½R − 2Λ0 − α1F2 − α2ððF2Þ2 − 2Fð4ÞÞ�; ð7Þ

where α1 and α2 are coupling constants and F2 ¼ FμνFμν,
Fð2Þ ¼ Fμ

νFν
μ ¼ −F2, and Fð4Þ ¼ Fμ

νFν
ρF

ρ
σFσ

μ. The corre-
sponding Maxwell’s field equation is

∇μF̃μν ¼ 0; ð8Þ

where F̃μν ¼ 4α1Fμν þ 8α2ðF2Fμν − 2FμρFσ
ρFσ

νÞ. The
Einstein’s field equation can be written as

Rμν −
1

2
Rgμν þ Λ0gμν ¼ Tμν: ð9Þ

This theory yields a static dyonic black hole solution

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
2;ϵ; ð10Þ

where the metric dΩ2
2;ϵ corresponds to a two-dimensional

hyperbolic, torus and sphere, respectively, where ϵ
takes values −1, 0, 1. The metric function can be expressed
as [24]

fðrÞ ¼ −
1

3
Λ0r2 þ ϵ −

2M
r

þ α1p2

r2

þ q2

α1r2
2F1

�
1

4
; 1;

5

4
;−

4p2α2
r4α1

�
; ð11Þ

where M is the mass of black hole, Λ0 is the cosmological
constant, q is the electric charge, p is the magnetic

charge, and 2F1ð14 ; 1; 54 ;− 4p2α2
r4α1

Þ is a hypergeometric

function.
The electric and magnetic charges can be obtained from

electromagnetic tensor F̃μν which is defined by Maxwell’s
field equation (8)

Qe ¼
1

4π

Z
F̃0r ¼ q; Qm ¼ 1

4α1π

Z
F ¼ p

α1
: ð12Þ

So the electric and magnetic potential functions are given
by [24]

ΦeðrÞ ¼
q2F1ð14 ; 1; 54 ;− 4p2α2

r4α1
Þ

α1r
;

ΦmðrÞ ¼ −
q22F1ð14 ; 1; 54 ;− 4p2α2

r4α1
Þ

4pr

þ α1q2r3

4pð4α2p2 þ α1r4Þ
þ α21p

r
: ð13Þ

When the constant parameters (M;p; q;Λ0;α1; α2) take
proper values, different types of black hole solutions can be
obtained.
Setting α1 ¼ 1, Λ0 ¼ 0, and ϵ ¼ 1, two types of dyonic

black holes can be obtained as the constants ðα2; q; pÞ in
the general solution Eq. (11) take appropriate values. Note
that in these black hole solutions, as M takes different
values, the black hole will also have different properties.
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A. Case 1: Black holes with at most two horizons

Consider a special condition of Eq. (11) with the
parameters

ðq2; p2; α2Þ ¼
�
5

2
;
1

2
; 2
�
:

The corresponding function and electric potential functions
become

fðrÞ ¼ 1 −
2M
r

þ 1

2r2

�
1þ 52F1

�
1

4
; 1;

5

4
;−

4

r4

��
;

ΦeðrÞ ¼
1

2r

�
1þ 52F1

�
1

4
; 1;

5

4
;−

4

r4

��
: ð14Þ

It is one of the first types black hole solutions with a
constantM0 (its value is related to the value of q, p, α2, and
the concrete definition of M0 can be found in [24]). When
the black hole mass M takes different values, different
situations can be found8>><

>>:
M > M0 black holes with two horizons;

M ¼ M0 extremal black hole;

M < M0 there is a naked singularity at r ¼ 0.

For Eq. (14), the corresponding constantM0 ¼ 1.6372384.
In the subsequent calculation process, for the first
type of black hole solutions, we will consider an example

with two horizons. In particular, M ¼ 1.996, two horizons
locate at

r− ¼ 0.28617; rþ ¼ 3.00002:

For this black hole, the metric function fðrÞ is monoton-
ically increasing outside the outer horizon and the rate dfðrÞ

dr
is monotonically decreasing.

B. Case 2: Black holes with at most four horizons

There is another special case for Eq. (11) with
parameters:

ðq2; p2; α2Þ ¼
�
20868

443
;
396

443
;
196249

1584

�
:

The corresponding metric and electric potential functions
can be given by

fðrÞ¼1−
2M
r

þ 12

443r2

�
33þ17392F1

�
1

4
;1;

5

4
;−

443

r4

��
;

ΦeðrÞ¼
12

443r

�
33þ17392F1

�
1

4
;1;

5

4
;−

443

r4

��
: ð15Þ

For the second type of black hole solutions, there are three
constants: M−;Mþ;M0 (their values depend on the values
of q, p, α2 and the concrete definition of them can be found
in [24]). Similarly, different situations depend on the value
of M:

8>>>>><
>>>>>:

M < M− There is no horizon here but a naked singularity atr ¼ 0;

M− < M < Mþ black holes with two horizons and the equilibrium of Newton0s potential;

Mþ < M < M0 black holes with four horizons;

M > M0 black holes with two horizons;

where the corresponding M−;Mþ, and M0 are given by

M− ¼ 6.6316; Mþ ¼ 6.7730; M0 ¼ 6.9135:

In the subsequent calculations, we will choose the values of
M ¼ 6.7, 6.8, 7.0 as concrete examples.

Case 2-1: Black hole with Newtonian
potential equilibrium

M ¼ 6.7; r− ¼ 0.66823; rþ ¼ 1.54979:

For this black hole, the metric function fðrÞ is not
monotonically increasing outside the outer horizon, and
the Newton potential has equilibriums at r ¼ 2.8480 and
r ¼ 6.1421. So it is possible for particles to maintain a

static equilibrium at these positions without any external
forces, where the Lyapunov exponent is discussed in
Appendix B.

Case 2-2: Black hole with cosmological horizons

M ¼ 6.8; r− ¼ 0.53736; rþ ¼ 2.07702;

r1 ¼ 5.16615; r2 ¼ 6.79477;

where r−, rþ are the two horizons of this black hole, and r1,
r2 are the so-called cosmological horizons. The metric
function fðrÞ increases first and then decreases between the
outer event horizon and the inner cosmology horizon. This
black hole also has an equilibrium of the Newton potential
at r ¼ 3.06723.
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Case 2-3: Black hole with two horizons and
nonmonotonic metric function increase rate

M ¼ 7.0; r− ¼ 0.40827; rþ ¼ 8.34842:

For this black hole, the metric function fðrÞ is monoton-

ically increasing outside the outer horizon, but the rate dfðrÞ
dr

increases first and then decreases outside the outer horizon.
Actually, when the parameters of black holes satisfy

different constraint equations, the black holes can be
classified into these different types. For the same types
of black holes, they have same properties. It is reasonable to
follow the parameter values in [24].

IV. STATIC EQUILIBRIUM OF CHARGED
PARTICLES OUTSIDE THE BLACK HOLE

In this section, we consider the general discussion of
charged particles outside the black hole and derive the
Lyapunov exponent. We consider a four-dimensional static
spherically symmetric black hole

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ dΩ2: ð16Þ

At the horizon, the surface gravity κ is

κ ¼ −
1ffiffiffiffiffiffi
grr

p d
ffiffiffiffiffi
gtt

p
dr

����
horizon

¼ 1

2
f0ðrÞ

����
horizon

; ð17Þ

where the prime “ 0 ” denotes derivative with respect to r.
The Lagrangian of a particle near this black hole can be
written as1

L ¼ −m
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμν _xμ _xν
q

þ VðrÞ
�
; ð18Þ

where m is the mass of the particle and VðrÞ is the external
potential in the radial direction. When V 0ðrÞ < 0, the
potential VðrÞ can provide the particle with a repulsive
force away from the black hole, so that the particle may not
fall into the black hole and maintain static equilibrium near
the horizon. In this section, we take the static gauge τ ¼ t,
so the dot “·” denotes derivative with respect to the proper
time “t ” in this section.
When the particle stays in its static equilibrium near the

horizon, the particle’s Lagrangian equation (18) describing
its radial motion can be reduced to

L ¼ −m
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ − _r2

fðrÞ

s
þ VðrÞ

�
: ð19Þ

Note that when the particle maintains static equilibrium, we
have _r ≪ 1. After expanding the Lagrangian in terms of _r,
we can obtain the effective Lagrangian

Leff ¼
_r2

2fðrÞ ffiffiffiffiffiffiffiffiffi
fðrÞp −VeffðrÞ; VeffðrÞ¼

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
þVðrÞ;

ð20Þ

where Veff is the effective potential and at the particle’s
equilibrium position there is V 0

eff ¼ 0. After expanding Veff

at the particle’s static equilibrium position r ¼ r0, we have
the effective Lagrangian satisfying the relation

Leff ∼
1

2fðrÞ ffiffiffiffiffiffiffiffiffi
fðrÞp ½_r2 þ λ2ðr − r0Þ2�; ð21Þ

where λ is the Lyapunov exponent obeying

λ2 ¼ −fðrÞ
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
½ð

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ00 þ V 00ðrÞ�: ð22Þ

In the equilibrium position r ¼ r0, V 0
eff ¼ 0. If Veff

has the maximum V 00
eff < 0, the static equilibrium is

unstable and λ2 > 0. If Veff has the minimum as
V 00
eff > 0, the static equilibrium is stable and λ2 < 0.
From the effective Lagrangian (21), we can see that the

particle should follow the equation of motion at the
equilibrium position

̈r ¼ λ2ðr − r0Þ: ð23Þ

This equation of motion tells us the particle’s trajectory in
the radial direction, that is to say

r ¼ r0 þ Aeλt þ Be−λt: ð24Þ

If λ is real, the exponential increase of r may imply the
existence of chaos.Actually,when there is no perturbation in
other directions, the position r ¼ r0 (where Veff has the
maximum)will be a separatrix of the phase space, which can
provide a maximal Lyapunov exponent here [22,54–56].
When the external potential is strong enough, the position
where Veff has the maximum can be near the horizon.

A. Chaos bound at the horizon

Returning to the black hole solution equation (11), we
calculate the Lyapunov exponent when a charged particle
maintains its static equilibrium near the horizon of these
black holes and further verify the chaos bound λ ≤ κ. Here,
the external potential we are considering is provided by the
electric field, and its form is

1There is another form of Lagrangian L ¼ mð1
2
gμν _xμ _xνþ

VðrÞÞ, which is often used to calculate particle motion. In
Appendix C, we use the Jacobian matrix method to calculate
the maximal Lyapunov exponent λs in these two forms of
Lagrangian, and the results are the same as the expression of
λs in [22,23].

CHAOS OF PARTICLE MOTION NEAR A BLACK HOLE WITH … PHYS. REV. D 104, 046020 (2021)

046020-5



VðrÞ ¼ e
m
ΦeðrÞ; ð25Þ

where e and m are the charge and mass of the particle, and
ΦeðrÞ is the electric potential function.
For the particle’s static equilibrium at r ¼ r0, the

Lyapunov exponent λ satisfies the expression [23]

λ2 ¼ fðrÞ
ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
Φ00

eðrÞ
Φ0

eðrÞ
ð

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ0 − ð

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ00
�����

r¼r0

:

ð26Þ

When the static equilibrium position is infinitely close to
the black hole outer horizon r ¼ rþ, the Lyapunov expo-
nent λ should have an upper bound, that is, the chaos bound

λ ≤ κ. The content of this section is mainly to calculate the
Lyapunov exponent λ of the charged particle near the outer
horizon of these black holes and to check whether they
satisfy the chaos bound.
Some interesting phenomena would occur when we pay

attention to the near-horizon behavior shown in [23]. The
metric function and potential function of the black hole can
be expanded to the second order on the black hole horizon
r ¼ rþ:

fðrÞ ¼ f1ðr − rþÞ þ f2ðr − rþÞ2…
ΦeðrÞ ¼ Φe0 þΦe1ðr − rþÞ þΦe2ðr − rþÞ2… ð27Þ

Then, substitute Eq. (27) into Eq. (17) and Eq. (26)

κ ¼ 1

2
f1;

λ2 ¼ 12f1f2ðr − rþÞ2Φe2 þ 8f22ðr − rþÞ3Φe2 þ f21ðΦe1 þ 6ðr − rþÞΦe2Þ
4ðΦe1 þ 2ðr − rþÞΦe2Þ

����
r¼r0

: ð28Þ

Expanding λ2 in Eq. (28) at the horizon r ¼ rþ, we can
obtain

λ2 ¼ f21
4
þ f21Φe2

Φe1
ðr0 − rþÞ þOððr0 − rþÞ2Þ; ð29Þ

which can be rewritten as [23]

λ2 ¼ κ2 þ γðr0 − rþÞ þOððr0 − rþÞ2Þ; γ ¼ 4κ2
Φe2

Φe1
:

ð30Þ

From Eq. (30), it can be seen that when γ > 0, the chaos
bound λ ≤ κ could be violated.
The main reason we consider this dyonic black hole here

is that it can provide some special conditions. Since the
calculation is very complicated, here we only show the
main results of the calculations in the tabular form as shown
in Tables I and II.

1. Case 1

We consider the black hole solution given in Eq. (14) and
substitute it into Eq. (17) and Eq. (26) to calculate the

TABLE I. The results λ2, κ2, and γ of case 1 at the outer horizon rþ. As shown, λ ¼ κ and γ < 0 mean the chaos bound is satisfied.

Black hole M Horizon λ2 κ2 γ

Case 1 1.996 r− ¼ 0.28617 rþ ¼ 3.00002 0.01283 0.01283 −0.03156

TABLE II. The results λ2, κ2, and γ of three black hole solutions in case 2 at their outer horizon rþ. There is always λ ¼ κ at the outer
horizon rþ for every case. But as we see, γ is positive for the black hole in case 2-2, which means that there may be a violation of the
chaos bound λ ≤ κ.

Black hole M Horizon λ2 κ2 γ

Case 2-1 6.7 r− ¼ 0.66823, rþ ¼ 1.54979 0.01469 0.01469 −0.01537
Case 2-2 6.8 r− ¼ 0.53736, rþ ¼ 2.07702 0.00720 0.00720 0.00846

r1 ¼ 5.16615, r2 ¼ 6.79477
Case 2-3 7.0 r− ¼ 0.40827, rþ ¼ 8.34842 0.00049 0.00049 −0.00039
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surface gravity of the particles at the black hole horizon and
the Lyapunov exponent λ. Then, the parameter γ was
calculated through Eq. (30). The calculation results are
shown in Table I.

2. Case 2

Similarly, we also calculate the black hole solution given
in Eq. (15), and show the results in Table II.
The above are the results of all our calculations about λ,

κ, and γ for these dyonic black holes in Eq. (14) and
Eq. (15). These calculations show that λ ¼ κ is universally
established on the black hole outside horizon, which means
that the chaos bound of λ ≤ κ is satisfied.
However, when considering the near-horizon behavior of

the black hole and expanding the correlation function to the
second order, we find the case of γ > 0, which indicates
that there is a violation of the chaos bound. In order to
examine this situation, we need to do more general
study about the second-order expansion of these
black holes.

B. More discussion on the expansion

To more clearly show the anomalous behavior of γ in the
second-order expansion, we will discuss these two sets of
metric functions and their corresponding potential func-
tions above [Eq. (14) and Eq. (15)], and then plot γ as a
function of M in Fig. 1.
There is always γ < 0 in Fig. 1(a), which means the

chaos bound λ ≤ κ is not violated for case 1. However, as
shown in Fig. 1(b), for the black holes with M ∈
ð6.73442; 6.9135Þ in case 2, the chaos bound can be
violated in the near-horizon region.

C. Numerical analysis

To study the effect of the violation of the chaos bound
more, we consider a toy model that describes the near-
horizon geometry with external potentials and study the

Poincaré section of the particle motion in this model. The
Lagrangian of particles can be written as

L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞ − _x2

fðxÞ − _y2

s
− ωðAðxÞ þ BðyÞÞ; ð31Þ

where “·” denotes derivative with respect to the coordinate
time t, the metric function fðxÞ ¼ 2κðx − xhÞ, κ is the
surface gravity, and xh is the radius of black hole horizon.
[Note that the near-horizon expansion of the metric
Eq. (11) yields the form fðxÞ ¼ 2κðx − xhÞ.] AðxÞ
and BðyÞ are external potentials and ω is the coupling
coefficient of particle with external potential.2

From the Lagrangian equation (31), we can derive the
generalized momentum

Px ¼
_x

fðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞ − _x2

fðxÞ − _y2
q ;

Py ¼
_yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðxÞ − _x2
fðxÞ − _y2

q : ð32Þ

The Hamiltonian of the particle (that is, the energy E) is

E ¼ Px _xþ Py _y − L

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞðP2

xfðxÞ þ P2
y þ 1Þ

q
þ ωðAðxÞ þ BðyÞÞ: ð33Þ

Correspondingly, the equation of motion can be
written as

2 4 6 8 10
M

�0.04

�0.03

�0.02

�0.01

0.01

0.02

(a)

6.7 6.8 6.9 7.0 7.1
M

�0.04

�0.03

�0.02

�0.01

0.01

(b)

FIG. 1. The parameter γ as a function of the black hole massM. (a) shows no causality violation for the black holes in case 1. In (b), γ
can be positive in the range M ∈ ð6.73442; 6.9135Þ, which implies that the chaos bound λ ≤ κ is violated in case 2.

2The relation between ω and the external potentials [AðxÞ and
BðyÞ] can be regarded as the relation between the charge of the
charged particle for the electrical potential.
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dx
dt

¼ ∂E
∂Px

¼ PxfðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðxÞ
P2
xfðxÞ þ P2

y þ 1

s

dPx

dt
¼ −

∂E
∂x ¼ −P2

x∂xfðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðxÞ
P2
xfðxÞ þ P2

y þ 1

s

−
P2
y∂xfðxÞ
2fðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞ

P2
xfðxÞ þ P2

y þ 1

s

−
∂xfðxÞ
2fðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞ

P2
xfðxÞ þ P2

y þ 1

s
− ω∂xAðxÞ

dy
dt

¼ ∂E
∂Py

¼ Py

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞ

P2
xfðxÞ þ P2

y þ 1

s

dPy

dt
¼ −

∂E
∂y ¼ −ω∂yBðyÞ: ð34Þ

Similarly as in [3,22], we consider the external potential
similar to the harmonic oscillator potential

AðxÞ ¼ aðx − xcÞ2 þ bðx − xcÞ4;
BðyÞ ¼ y2; ð35Þ

where xc is the center position of AðxÞ. We set xh ¼ 0 and
xc ¼ 1; then, two cases in which the chaos bound is
violated or not can be decided by adjusting the parameters
a and b. To avoid the particle falling into horizon, the
particle energy E should have an upper bound Emax (See
Appendix E for the detailed derivation of a, b, and Emax).
Here, we consider the values of a and b as follows:

1. Chaos bound can be violated

a ¼ 1.3; b ¼ −0.3:

2. Chaos bound cannot be violated

a ¼ 1.1; b ¼ −0.1:

The other parameters are chosen as κ ¼ 1
2

and
ω ¼ Emax ¼ 30.
The equation of motion (34) can be solved numerically.

About the initial condition, we set yð0Þ ¼ 0, Pxð0Þ ¼ 0,
and the same xð0Þ for two cases, and the corresponding
Pyð0Þ can be obtained by Eq. (33). Then we can define
the Poincaré section in the ðx; PxÞ plane with y ¼ 0
and Py < 0. In the following figures, we put the
Poincaré section of the system (a ¼ 1.3, b ¼ −0.3)
where the chaos bound can be violated on the left,
and the nonviolation system (a ¼ 1.1, b ¼ −0.1) on
the right.
In Fig. 2, we set E ¼ 18 and show the Poincaré section.

The particle motion seems to be closer to chaos in the
system where the chaos bound cannot be violated since the
section in Fig. 2(b) is more irregular than in Fig. 2(a). We
should point out that the reason for this difference may be
that the system(a ¼ 1.3, b ¼ −0.3) has a bigger potential
AðxÞ than the other. For the same E, the particle will have
smaller kinetic energy which may weaken the chaos in
particle motion. As for why the chaos is not strengthened in
the system where the chaos bound can be violated, we
speculate that the low energy results in it. The greater the
energy E, the closer the particle can approach the horizon

(a) (b)

FIG. 2. E ¼ 18: The Poincaré section in the ðx; PxÞ plane with y ¼ 0 and Py < 0. In panel (a), there are many closed rings which
means these orbits are quasiperiodic. Many closed curves can be found in panel (b) too, but they are more irregular.
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until it falls into the black hole. The violation of the chaos
bound we studied is a near-horizon behavior, so its
reinforcement of chaos will work when the particles are
close to horizon. To verify this, we examined the Poincaré
section with higher energy. The situation of E ¼ 25 is
shown in Fig. 3. In this figure, we can see the chaos is
strengthened in the system with a ¼ 1.3 and b ¼ −0.3. The
points of xð0Þ ¼ 0.5 and xð0Þ ¼ 1.25 form closed curves in
Fig. 3(a) which indicates quasiperiodic orbits, and in
Fig. 3(b) they are single points which represent periodic
orbits. As we expected, the chaos in the system (a ¼ 1.3,
b ¼ −0.3) has been strengthened because of the bigger E
results in particle motion approaching the horizon.
Meanwhile, there is an opposite result of points with
xð0Þ ¼ 1.5, as with the system (a ¼ 1.3, b ¼ −0.3) with
stronger AðxÞ. These points in Fig. 3(a) form a closed curve,
and they are dispersed, which means it is a chaotic orbit in
the system (a ¼ 1.1, b ¼ −0.1).
To further examine our intuition, we set E ¼ 29.9 in

Fig. 4, which will make the particles move close enough to
the horizon to make the enhancement of chaos in system
(a ¼ 1.3, b ¼ −0.3) more obvious. At the same time, we
calculated more data. As shown in Fig. 4, there are many
chaotic orbits in Fig. 4(a), and the points with same values
of xð0Þ in Fig. 4(b) are regular which means these orbits are
not chaotic. The chaos in the system (a ¼ 1.3, b ¼ −0.3)
has been significantly strengthened. Although the stronger
potential AðxÞ in the system (a ¼ 1.3, b ¼ −0.3) will
weaken the chaos, we still see that the chaos is strengthened
in Fig. 4, which undoubtedly shows that in a system where
the chaos bound can be violated, chaos can indeed be
strengthened.

V. GEODESIC MOTION OF NEUTRAL
PARTICLES

In this section, we study the Lyapunov exponent of the
geodesic motion of neutral particles near the black hole,
including circular geodesic motion and radial falling. We
extend the static equilibrium of charged particles in Sec. IV
beyond the horizon, and take the maximal Lyapunov
exponent as λs, which can be obtained from the static
equilibrium. From Eq. (26), we obtain the formula of λs for
charged black holes

λs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
Φ00

eðrÞ
Φ0

eðrÞ
ð

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ0 − ð

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ00
�s
: ð36Þ

The arbitrary location outside the horizon where the
effective potential Veff has a maximum, the Lyapunov
exponent λs obtained from static equilibrium is at its
maximal value. When we consider λs at the horizon, the
value of λs will return to the surface gravity κ. We propose a
hypothesis here: the maximal Lyapunov exponent λs is an
inherent property determined by the nature of the black
hole.3 It is worthwhile to explore the connection between
the maximal Lyapunov exponent λs with the Lyapunov
exponent of particle geodesic motion.

(a) (b)

FIG. 3. E ¼ 25: The Poincaré section in the ðx; PxÞ plane with y ¼ 0 and Py < 0. In both figures, the points of xð0Þ ¼ 1.0 are
dispersed, which means the orbits are chaotic. When xð0Þ ¼ 0.5 and xð0Þ ¼ 1.25, the points form rings in panel (a), and they are single
points in panel (b). In (a), the points of xð0Þ ¼ 1.5 form a closed curve. There is a chaotic trajectory of xð0Þ ¼ 1.5 in (b).

3This is our assumption that Eq. (36) is maximal at any
position outside the black hole. In other words, we assume there
is a renormalization group flow of λs outside the black hole. It can
flow to λs ¼ κ at the event horizon. We will compare Eq. (36)
with the Lyapunov exponents obtained from particle circular
geodesic motion [15,16,19] and radial falling.
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A. Circular geodesic motion of neutral particles

A four-dimensional spherically symmetric black hole is
considered here. Its metric is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ dΩ2
2: ð37Þ

When we focus on a neutral test particle moving on the
equatorial plane of this black hole (θ ¼ π

2
, _θ ¼ 0), its

Lagrangian can be written as

L ¼ 1

2
½gtt_t2 þ grr _r2 þ gϕϕ _ϕ

2�; ð38Þ

where the dot “.” denotes derivative with respect to the
proper time “τ”.
According to the generalized momentum expression

pq ¼ ∂L
∂ _q, we can obtain its generalized momentum as

pt ¼ −fðrÞ_t ¼ −E ¼ Const;

pϕ ¼ r2 _ϕ ¼ L ¼ Const;

pr ¼
_r

fðrÞ ; ð39Þ

where E is the particle’s energy and L is the angular
momentum of the particle. Using the normalization with
four-velocity gμνuμuν ¼ η

−E_tþ L _ϕþ _r2

fðrÞ ¼ η; ð40Þ

we can obtain

_r2 ¼ E2 −
�
L2

r2
− η

�
fðrÞ: ð41Þ

Note that η ¼ þ1;−1, 0 corresponds to spacelike, timelike,
and null geodesics, respectively. For the circular geodesic
motion of neutral particles, we have the Euler-Lagrange
equation

dpq

dτ
¼ ∂L

∂q : ð42Þ

Setting the phase space variables XiðtÞ ¼ ðpr; rÞ and
considering the particles moving in a circular orbit with
a radius of r ¼ r0, we have two equations

dpr

dτ
¼ ∂L

∂r and
dr
dτ

¼ pr

grr
: ð43Þ

Then, the Jacobian matrix of particle motion can be
obtained from Eq. (4)

Kij ¼
������
0 d

dr

�
∂L
∂r
	

1
grr

0

������
������
r¼r0

: ð44Þ

The eigenvalues of this matrix can give the expression of
the proper time Lyapunov exponent of circular geodesic
motion λp, and we observe that λp satisfies [16]

(a) (b)

FIG. 4. E ¼ 29.99: The Poincaré section in ðx; PxÞ plane with y ¼ 0 and Py < 0. In panel (a), the points of xð0Þ ¼
ð0.64; 0.72; 0.8; 1.04; 1.6Þ are dispersed, and the other points form closed curves. In (b), there are two single points of xð0Þ ¼
0.48 and xð0Þ ¼ 1.2. The points of xð0Þ ¼ ð0.56; 0.64; 1.04; 1.12; 1.28; 1.6Þ form closed curves, and the other points of xð0Þ ¼
ð0.72; 0.8Þ are dispersed.
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λ2p ¼ 1

grr

d
dr

�∂L
∂r

�����
r¼r0

: ð45Þ

From the Lagrange’s equation of geodesic motion

d
dτ

�∂L
∂ _r

�
−
∂L
∂r ¼ 0; ð46Þ

and the formula

d
dτ

�∂L
∂ _r

�
¼ d

dτ
ð−grr _rÞ ¼ −_r

d
dr

ðgrr _rÞ ¼ −
1

2grr

d
dr

ðg2rr _r2Þ;

ð47Þ

the expression of ∂L
∂r can be written as

∂L
∂r ¼ −

1

2grr

d
dr

ðg2rr _r2Þ: ð48Þ

For the circular geodesic motion, we have the circular
geodesic condition [57]

_r2 ¼ ð_r2Þ0 ¼ 0: ð49Þ

Under this condition, we substitute Eq. (48) into Eq. (45),
then the proper time Lyapunov exponent λp in Eq. (45) can
be reduced to

λp ¼
ffiffiffiffiffiffiffiffiffiffi
ð_r2Þ00
2

r
: ð50Þ

If we consider an alternative form of Eq. (42)

dPq

dt
¼ dτ

dt
∂L
∂q ; ð51Þ

we can express the Lyapunov exponent λc in term of
coordinate time [15]

λc ¼
ffiffiffiffiffiffiffiffiffiffi
ð_r2Þ00
2_t2

s
: ð52Þ

In Eq. (39), _t ¼ E
fðrÞ, so we obtain the relation between

Eq. (50) and Eq. (52)

λc ¼
fðrÞ
E

λp: ð53Þ

Both fðrÞ and E are real, so the properties of λp and λc are
closely related. It is evident that the Lyapunov exponents λp
and λc are the most important parameters directly verifying
the stability of the motion. Only when λp and λc are both
real, will they result in unstable geodesic motion. In
contrast, when one of the λp and λc is imaginary, the

circular geodesic motion is stable; when λp ¼ 0 or λc ¼ 0,
the circular geodesic motion is marginal, which means
the circular geodesic motion can be easily broken. The
Lyapunov exponent is a measure of the deviation in the
time evolution of two adjacent trajectories in phase space,
obviously it depends on the time coordinate. In the
following, we will study the coordinate time Lyapunov
exponent λc of the neutral particle’s geodesic motion.

1. Circular timelike geodesic

For a timelike geodesic with η ¼ −1, we have

_r2 ¼ E2 −
�
L2

r2
þ 1

�
fðrÞ: ð54Þ

The circular geodesic condition _r2 ¼ ð_r2Þ0 ¼ 0 yields [15]

E2 ¼ 2f2ðrÞ
2fðrÞ − rf0ðrÞ ; L2 ¼ r3f0ðrÞ

2fðrÞ − rf0ðrÞ : ð55Þ

After substituting the metric functions of the four black
holes given by Eq. (14) and Eq. (15) into Eq. (55) and
Eq. (54), the coordinate time Lyapunov exponent λc of
these circular timelike geodesic motion can be given
by Eq. [52].
To have a clear picture, we compare the circular geodesic

motion of the RN black hole with the black hole solutions
given by Eq. (14) and Eq. (15). The metric function and the
electrical function of the RN black hole are

fðrÞ ¼ 1 −
2M
r

þQ2

r2
;

ΦeðrÞ ¼
2Q
r

; ð56Þ

whereM is the mass of black hole, andQ is the charge. For
the RN black hole, λ2c and λ2s can be calculated by Eq. (52)
and Eq. (36)

λ2c ¼
−Mr3 þ 6M2r2 − 9MQ2rþ 4Q2

r6
;

λ2s ¼
M2 −Q2

r4
: ð57Þ

We want to explore the relationship between the circular
timelike geodesic motion’s Lyapunov exponent λc and
maximal Lyapunov exponent λs defined from the static
equilibrium, so we plot figures of λ2c and λ2s in the region
where the circular geodesic motion exists.
First, we focus on the stability of the circular motion

which can be expressed by λ2c. For the RN black hole, as we
show in Fig. 5, λ2c decreases monotonically from the
innermost circular orbit until it becomes zero at the inner-
most stable circular orbit; the circular timelike geodesic
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motion can only exist beyond the innermost stable circular
orbit. In Fig. 6, λ2c in case 1 has a similar behavior as in the
RN black hole. For the black hole in case 2-1, the circular
geodesic motion exists in three discontinuous ranges:
2.19387 < r < 2.84801, 6.14209 < r < 6.44301, and
r > 12.4354. As shown in Fig. 7(a), the circular motion
is always unstable. But in Fig. 7(b), there is λ2c < 0
corresponding to the existence of the stable circular time-
like geodesic orbit in the range of 6.14209 < r < 6.44301
which is closer to the horizon than in Fig. 7(c). Compared
with the RN black hole, the black hole given by case 2-1
has a similar evolution trend of λ2c in Fig. 7(c) with
r > 12.4354. From Fig. 7(b) and Fig. 7(c), it seems to
be stable circular orbits closer to the horizon. We guess that
this special property of case 2-1 has a Newtonian potential
equilibrium position that allows it to have a stable circular
timelike geodesic closer to the horizon. For case 2-2 in
Fig. 8, the circular orbits are unstable. In Fig. 9, the
behavior of λ2c is similar to that of the RN black hole.

Then, we discuss the relationship between the circular
motion’s Lyapunov exponent λc and the maximal
Lyapunov exponent λs. In [22], the authors regarded the
innermost circular geodesic motion as an equilibrium with
a repulsive potential given by particle circular motion. But
as shown in Figs. 5,6, and 9, we can see that when the
circular timelike geodesic motion approaches the innermost
circular orbit, λs will not constraint λc any more. The
maximal Lyapunov exponent λs seems to constraint λc in
Fig. 7(a)4 and Fig. 8 with λs ¼ λc at the position where
Newtonian potential has an equilibrium. We think λs
restricts λc in Fig. 7(a) and Fig. 8 because the particle is
close to the equilibrium position of the Newtonian potential
where particle motion is slow. In other words, we speculate
the main reason for λc > λs around the innermost circular
orbit in Figs. 5,6, and 9 may be that when the particle
approaches the innermost circular orbit its speed is close to
the speed of light. There may be another reason, which is
that the movement in other directions makes Lyapunov
exponent growth. To verify our conjecture, we discuss the
particle’s radial falling in Sec. V B.

2. Circular null geodesic and stable photon sphere

To study the motion of the photon outside the black
hole, we set η ¼ 0 in Eq. (41). Then, Eq. (41) can be
reduced to

_r2 ¼ E2 −
L2

r2
fðrÞ: ð58Þ

FIG. 5. λc and λs are defined by Eq. (52) and Eq. (36) as functions of radial coordinate r. For the RN black hole with M ¼ 2 and
Q ¼ 1, λ2c decreases from the radius of the innermost circular orbit (the beginning of the coordinate axis). λ2s decreases too, but λ2s is
always positive in contrast to λ2c. Near the innermost orbital radius, we have λ2c > λ2s . Away from the black hole, λ2c is negative, which
means the circular geodesic motion is stable. (a) 5 : 64575 < r < 16. (b) 10 < r < 36.

10 15 20 25 30 35
r

0.002

0.004

0.006

0.008

FIG. 6. For the case 1, the black hole defined by Eq. (14) with
M ¼ 1.996; λ2c and λ2s are similar in the RN black hole.

4The definition of the maximal Lyapunov exponent λs must
satisfy the effective potential V 00

eff , which has a maximum at the
equilibrium position. But for the black hole in case 2-1, there is
no maximum at the equilibrium position in the range
r > 4.37690. See Appendix D for detailed discussion.
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From the circular geodesic condition _r2 ¼ ð_r2Þ0 ¼ 0, we
have constraints on the circular motion of photons

2fðrcnÞ ¼ rcnf0ðrcnÞ; ð59aÞ

E2

L2
¼ fðrcnÞ

r2cn
; ð59bÞ

where rcn is the radius of the circular null geodesic, which
is defined by Eq. (59a). After taking the black hole
solutions we consider Eq. (59a) to obtain rcn, we substitute
the radius rcn, Eq. (59b) and Eq. (58) into Eq. (50) and
Eq. [52] to calculate the Lyapunov exponent. From the
calculation results of the Lyapunov exponent as shown in
Table III, we can judge the stability of the circular null
geodesics and verify the existence of stable photon spheres.
From Table III, we can see there is an unstable photon

sphere at r ¼ 4.72028 for case 1. For case 2-1, there are
three photon spheres at r ¼ 2.19387, r ¼ 6.44301,
r ¼ 12.4354, and the one at r ¼ 6.44301 is stable which
agrees with the result in [24]. For case 2-2 and case 2-3, the
photon spheres are unstable.

B. Radial falling

In this subsection, we study the geodesic motion of
particles falling radially into the black hole. The metric of a
four-dimensional spherically black hole can be written as
Eq. (37). When considering that the particle falls freely
towards the black hole in the radial direction, Eq. (41) can
be reduced to

2.3 2.4 2.5 2.6 2.7 2.8 r
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0.015

(a)

6.20 6.25 6.30 6.35 6.40
r

−0.00035

−0.00030

−0.00025

−0.00020

−0.00015

−0.00010

−0.00005

(b)
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0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

(c)

FIG. 7. For the case 2-1, the black hole defined by Eq. (15) with M ¼ 6.7, the circular timelike geodesic motion exists in three
discontinuous ranges. As shown in (b), there is λ2c < 0 in the range r ∈ ð6.14209; 6.44301Þ near the horizon, which means that in this
range there can be a stable timelike circular geodesic motion. In (c), λ2c has a RN-like behavior. (a) The range 2:19387 < r < 2:84801.
(b) The range 6:14209 < r < 6:44301. λs can't be defined in this range. (c) The range r > 12:4354. λs can't be defined in this range.

20 30 40 50
r

−0.0002

0.0002

0.0004

0.0006

FIG. 9. For the case 2-3, the black hole defined by Eq. (15) with
M ¼ 7, the behavior of λ2c and λ2s is similar to that of RN
black hole.
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r
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0.004
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0.006

FIG. 8. For the case 2-2, the black hole defined by Eq. (15)
with M ¼ 6.8, there is always λ2s > λ2c in the range
2.68843 < r < 3.06723.

TABLE III. Photon sphere radius and stability analysis. For the
black hole of case 2-1, there is λ2 < 0 at r ¼ 6.44301, which
means the photon sphere is stable there.

Black hole Photon sphere radius λ2 Stability

Case 1 r ¼ 4.72028 λ2 > 0 Unstable
Case 2-1 r ¼ 2.19387 λ2 > 0 Unstable

r ¼ 6.44301 λ2 < 0 Stable
r ¼ 12.4354 λ2 > 0 Unstable

Case 2-2 r ¼ 2.68843 λ2 > 0 Unstable
Case 2-3 r ¼ 14.3266 λ2 > 0 Unstable
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_r2 ¼ E2 þ ηf; ð60Þ

then we can obtain

dr
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ η

f3

E2

r
: ð61Þ

When we expand around each point on the particle
trajectory (denoted as rf), there is

dr
dt

∼
2f0 þ 3η

E2 ff0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η f

E2

q ðr − rfÞ: ð62Þ

Similarly, we can get an exponential growth form of the
coordinate r. Here, we discuss the following two cases:

1. Massive particle

For the massive particle falling from infinity, there is
timelike geodesic. Setting η ¼ −1 and E ¼ 1, we can
obtain the Lyapunov exponent λmp from Eq. (62)

λmp ¼ 2f0 − 3ff0

2
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p : ð63Þ

2. Photon

For the photon, there is null geodesic. With η ¼ 0, we
have the Lyapunov exponent λph from Eq. (62)

λph ¼ f0: ð64Þ

We can see that there is λmp ≈ λph ¼ 2κ near the horizon.5

We study the relationship between these two exponents
outside the horizon and the maximal Lyapunov exponent λs
[λs can be calculated via Eq. (26)].

For simplicity, we first study the RN black hole in
Eq. (56); then Eqs. (63), (64), and (26) can be rewritten as

λmp ¼ ðQ2 −MrÞð3Q2 − 6Mrþ r2Þ
r4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mr −Q2

p ;

λph ¼ −
2Q2

r3
þ 2M

r2
; λs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

r4

r
: ð65Þ

In Fig. 10, we show the relationship between λmp, λph,
and λph in the RN black hole and the metric function of the
RN black hole. There are some interesting phenomena in
particle motion near the RN black hole. For massive
particles, in the region near the horizon, the closer to the
horizon, the closer λmp approaches λph. The reason may be
the speed that the massive particle approaches the speed of
light. For a photon which is radial falling into the RN black
hole, there is always

λph ≥ 2λs: ð66Þ

It is similar to λOTOC ≥ 2λchaos, which is a formula about
chaos [58]. Considering the relationship between null
geodesic and shock waves, we speculate that there may
be some relationship between these two formulas, or even
equivalent. To study the property of Eq. (66), we perform
the same calculation for the black holes given by Eq. (14)
and Eq. (15) and show the results in Figs. 11–14. From
Figs. 11 and 14, there is always λph ≥ 2λs. But it is not in
Figs. 12 and 13. We think the reason is that the metric
function fðrÞ is not monotonically increasing outside the
horizon, and we could understand the relationship between
λph ≥ 2λs and λOTOC ≥ 2λchaos by studying more examples.

VI. CONCLUSION AND DISCUSSIONS

In summary, we mainly perform relevant calculations on
the black hole solutions given in [24]. First, we introduce
black hole chaos to show why this is an interesting topic.
Second, we review the definition of λs which is the
maximal Lyapunov exponent obtained from static equilib-
rium [22,23]. We calculate the Lyapunov exponent when
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FIG. 10. λmp, λph, and λs are the function of r. For the RN black hole with M ¼ 2, Q ¼ 1, we can see from (a) that there is
λph > λmp > λs near the horizon, and λ2mp approaches λ2ph. From (b), there is always λph ≥ 2λs.

5Near the horizon rþ, we have f ¼ 0 for Eq. (62), then
Eq. (62) can be rewritten as dr

dt ∼ f0ðr − rþÞ. Because of the
surface gravity κ ¼ 1

2
f0jr¼rþ

, we can obtain r − rþ ¼ e2κt at the
horizon agreeing with [27,52].
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FIG. 11. For the black hole in case 1, we can see from (a) that λ2mp approaches λ2ph near the horizon. From (b), there is always λph ≥ 2λs
outside the horizon. In (c), the metric function fðrÞ increases monotonically.
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FIG. 12. For the black hole in case 2-1, λ2mp approaches λ2ph near the horizon in (a). But there is not always λph ≥ 2λs as shown in (b).
Then we observe from (c) that the metric function fðrÞ does not increase monotonically outside the horizon.
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FIG. 13. For the black hole in case 2-2, there is not always λph ≥ 2λs in (b). At the same time, the metric function fðrÞ does not
increase monotonically outside the horizon.
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FIG. 14. From the black hole in case 2-3, we can see from (a) that λ2mp approaches λ2ph near the horizon. λph ≥ 2λs always exists in (b).
Finally, the metric function fðrÞ increases monotonically outside the horizon.
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the charged particle remains static equilibrium near the
horizon of these black holes given in Sec. III. The results
show that the chaos bound does not seem to be universally
satisfied. When considering the higher-order expansion
term, for black holes with specific parameters, the chaos
bound can be violated. Third, we consider a toy model with
adjustable parameters to examine the difference between
the chaos violated and nonviolated cases. From the analysis
of the Poincaré section, we can see the chaos could be
strengthened in the system where the chaos bound can be
violated, which is a novel study about the black hole chaos.
After studying the static equilibrium of the particles, we

turn to the geodesic motion of the particles. We study two
types of geodesic motion: circular geodesic motion and
radial falling. For circular geodesic motion, we obtain the
Lyapunov exponent λc by the Jacobian matrix and there are
some stable circular orbits. At the same time, we find that
these Lyapunov exponents λc of circular geodesic motion
do not seem to be constrained by the maximal Lyapunov
exponent λs defined from static equilibrium. The reason
may be that the particle speed approaches the speed of light.
This is a topic worth discussing.
Then we study the particle’s radial falling, and find that

the Lyapunov exponent λmp of the mass particle will
approach the Lyapunov exponent λph of the photon in
the region near the horizon. We speculate the reason may be
that the falling speed of the mass particle is close to the
speed of light. Note that the discussions are carried out in
the geodesic dynamics. It would be interesting to include
the backreaction of particle motion to the background
spacetime and study the many-body effect of the chaotic
behavior. We find that for RN-like black holes or black hole
examples where the metric function fðrÞ increases mono-
tonically outside the horizon, the relation λph ≥ 2λs is
established.
Chaos near black holes is an important subject in

contemporary physics research. As far as we know, the
nature of the chaos near the black hole will depend on the
black hole. Therefore, studying as many different black holes
as possible may help us understand chaos more clearly. It
may be worth studying the higher-dimensional black hole
with quasitopological electromagnetism given in [59].
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APPENDIX A: THE FAST LYAPUNOV
INDICATOR OF THE STATIC EQUILIBRIUM

OF CHARGED PARTICLES

To study the perturbation of particles at static equilib-
rium more clearly, we use the fast Lyapunov indicator to

analyze the perturbation growth. Taking the parameter k ¼
0 in Eq. (6), we have

FLIðτÞ ¼ log10

���� dðτÞdð0Þ
����; ðA1Þ

where dðτÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgμν△xμ△xνjp
:△xμ is the deviation vector

between two nearby trajectories at proper time τ, and in the
computation, we choose two particle trajectories with the
initial state at the equilibrium position r1 ¼ r0 and the
nonequilibrium position r2 ¼ r0 − ϵ (ϵ is the perturbation).
We consider a 4D RN black hole metric here

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ðA2Þ

where the metric function is fðrÞ ¼ 1 − 2M
r þ Q2

r2 , and the

potential function is AtðrÞ ¼ 2Q
r . The trajectory of particle

motion can be numerically solved from the equation of
motion (C18). For the parameters of the RN black hole here
we simply take the massM ¼ 2 and the charge Q ¼ 1. For
particle 1, which is initial at the equilibrium position
r1 ¼ r0, its initial value condition is ðt; πt; r; πrÞ ¼
ð0; πt1; r1; 0Þ, where πt1¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr1Þþfðr1Þ2π2r

p
−qAtðr1Þ.

For particle 2, which is initial at the non-
equilibrium position r2 ¼ r0 − ϵ, its initial value
condition is ðt;πt;r;πrÞ¼ð0;πt2;r2;0Þ, where πt2 ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr2Þ þ fðr2Þ2π2r

p
− qAtðr2Þ. The charge of the two

particles is the same, as defined by the equilibrium

condition q ¼ − ð
ffiffiffiffiffiffiffiffi
fðr1Þ

p
Þ0

Atðr1Þ0 . The results are shown in Fig. 15.

As shown in Fig. 15, for the perturbation on the static
equilibrium of charged particles, the chaotic behavior can
be found by FLI. The results show that the closer to the
horizon, the faster the FLI increases, which is also con-
sistent with the behavior of the maximal Lyapunov expo-
nent λs outside the black hole.

APPENDIX B: STATIC EQUILIBRIUM WITH
ONLY GRAVITY

Since the metric functions of most black holes are
monotonically increasing outside the horizon, it is
extremely difficult for us to study the situation where
particles maintain static equilibrium only under the action
of gravitational potential. Fortunately, case 2-1 has an
equilibrium position that allows particles to maintain static
equilibrium with only gravity. When only gravitational
potential is considered, the effective potential is

VeffðrÞ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
; ðB1Þ

and (22) reduces to
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λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
fðrÞf00ðrÞ

2

r
: ðB2Þ

From the analysis of the effective potential curve, we can
know that Veff has maximum and minimum values. We will
study λ at the maximum position of Veff shown in Fig. 16.
Since this position is far from the black hole horizon, the
maximal Lyapunov exponent λs should not be given by
surface gravity κ.
We also consider the calculation from the geodesic

motion. For the massive particle making a static equilib-
rium with only gravity, Eq. (41) can be reduced to

_r2 ¼ E2 − fðrÞ: ðB3Þ

With the static condition _r2 ¼ ð_r2Þ0, we can obtain the
coordinate time Lyapunov exponent λc from [57]

λc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
fðrÞf00ðrÞ

2

r
: ðB4Þ

These two calculations have the same result.

APPENDIX C: THE STUDY ON STATIC
EQUILIBRIUM BY JACOBIAN MATRIX

When the free particle motion in curved spacetime is
calculated, there are two different forms of Lagrangian
being often used

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

q
; ðC1aÞ

L ¼ 1

2
gμν _xμ _xν: ðC1bÞ

Equation (C1a) is defined by the principle of least action,
and Eq. (C1b) is an equivalent form of Eq. (C1a) for
simplifying the calculation [60]. These two forms are
equivalent when calculating particle motion. In [22,23],
the authors obtained the maximal Lyapunov exponent from
the Lagrangian defined by the principle of least action, but
the method seems to be unable to so for the other form of
Lagrangian. In this section, we calculate the Lyapunov
exponent of the static equilibrium by the Jacobian matrix
method [15–19], which obtains the same results in two
forms of Lagrangians.
We consider a four-dimensional spherically symmetric

black hole

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ðC2Þ

FIG. 15. Considering the FLI of different equilibrium positions,
the equilibrium positions are taking r0 ¼ 4.5, 5.5, 6.5, 7.5, 8.5,
and the charge and initial conditions of particles are given
accordingly where the perturbation takes ϵ ¼ 0.00001. The lines
of the different colors are FLI, “� ” are the exponential fit to the
corresponding FLI. All FLIs grow exponentially with Log10τ at
late time, which means chaos is present. The closer the equilib-
rium position is to the horizon, the faster the FLI grows, which
means the greater the chaos.
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FIG. 16. When only the gravity is considered, for case 2-1, Veff has the maximum at r ¼ 2.84801, for case 2-1, Veff has the maximum
at r ¼ 3.06723.
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where fðrÞ is the metric function. The potential function of
this black hole is AtðrÞ. When we discuss the static
equilibrium of charged particles, the Lagrangian adds
one additional term representing the electric field force
compared to Eq. (C1a) and Eq. (C1b).

1. The Lagrangian defined by the principle
of least action

The Lagrangian of the charged particle near the black
hole can be written as

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

q
−

q
m
· AtðrÞ · _t; ðC3Þ

where q is the charge of particle, m is the mass of particle
(taking m ¼ 1 for simplify the computation), gμν is the
metric tensor, and AtðrÞ is the potential function. With
the static gauge τ ¼ t and the only radial motion, the
Lagrangian can be rewritten as

L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _r2

fðrÞ

s
− q · AtðrÞ: ðC4Þ

The radial momentum Pr can be defined as

Pr ¼
∂L
∂ _r ¼ _r=fðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ − _r2
fðrÞ

q : ðC5Þ

From the definition H ¼ Pr · _r − L, the Hamilton can be
given as

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

r
_fðrÞ

fðrÞ

s
þ q · AtðrÞ: ðC6Þ

From the Hamiltonian canonical equation, we can obtain
the equation of motion of the particle,

dr
dt

¼ PrfðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ
1þ P2

rfðrÞ

s
;

dPr

dt
¼ −q · AtðrÞ0 −

ð1þ 2P2
rfðrÞÞfðrÞ0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞð1þ P2

rfðrÞÞ
p : ðC7Þ

For the equilibrium of the charged particle, there should be
Pr ¼ dPr

dt ¼ 0. So we can see at the equilibrium, there is

−q · AtðrÞ0 −
fðrÞ0

2
ffiffiffiffiffiffiffiffiffi
fðrÞp ¼ 0: ðC8Þ

There is a static equilibrium condition for the charge of
particle at the equilibrium position r ¼ r0,

q ¼ −
ð ffiffiffiffiffiffiffiffiffi

fðrÞp Þ0
AtðrÞ0

����
r¼r0

: ðC9Þ

Taken ðr; PrÞ as the phase space variables, for the dynamic
system

dr
dt

¼ F1ðr; PrÞ;
dPr

dt
¼ F2ðr; PrÞ; ðC10Þ

the components of the Jacobian matrix Kij can be given

K11 ¼
∂F1

∂r ¼ PrfðrÞ2ð2P2
rfðrÞ þ 3Þf0ðrÞ

2ðfðrÞðP2
rfðrÞ þ 1ÞÞ3=2 ;

K12 ¼
∂F1

∂Pr
¼ fðrÞ3

ðfðrÞðP2
rfðrÞ þ 1ÞÞ3=2 ;

K21 ¼
∂F2

∂r ¼ fðrÞ02 − 2fðrÞðP2
rfðrÞ þ 1Þð2qAtðrÞ00ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðP2

rfðrÞ þ 1Þ
p

þ ð2P2
rfðrÞ þ 1ÞfðrÞ00Þ

4ðfðrÞðP2
rfðrÞ þ 1ÞÞ3=2 ;

K22 ¼
∂F2

∂Pr
¼ −

PrfðrÞ2ð2P2
rfðrÞ þ 3ÞfðrÞ0

2ðfðrÞðP2
rfðrÞ þ 1ÞÞ3=2 : ðC11Þ

At the equilibrium location r ¼ r0, where Pr ¼ dPr
dt ¼ 0,

the Jacobian matrix Kij can be reduced to

Kij¼
� 0 fðrÞ3=2

fðrÞ02−2fðrÞð2q
ffiffiffiffiffiffi
fðrÞ

p
A00
t ðrÞþfðrÞ00Þ

4fðrÞ3=2 0

�����
r¼r0

: ðC12Þ

Substituting q ¼ −ð
ffiffiffiffiffiffi
fðrÞ

p
Þ0

AtðrÞ0 j
r¼r0

into the Jacobian matrix

Kij, we can obtain the Lyapunov exponent satisfying

λ2¼1

4

�
fðrÞ02þ2fðrÞ

�
A00
t ðrÞfðrÞ0
A0
tðrÞ

−fðrÞ00Þ
�����

r¼r0
; ðC13Þ

which is same as Eq. (36).
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2. The equivalent form of Lagrangian

Considering another form of the Lagrangian

L ¼ 1

2
gμν _xμ _xν − qAt_t; ðC14Þ

when only the radial motion is considered, Eq. (C14) can be
reduced to

L ¼ 1

2

�
−fðrÞ_t2 þ _r2

fðrÞ
�
− qAt_t: ðC15Þ

The generalized momentum can be defined as

πt ¼ −f_t − qAt ¼ −E;

πr ¼
_r
f
: ðC16Þ

Form the definition H ¼ 1
2
gμνðπμ þ qAμÞðπν þ qAνÞ, the

Hamilton can be given

H ¼ −ðπt þ qAtÞ2 þ π2rf2

2f
: ðC17Þ

Then we can write the equation of motion

_t¼ ∂H
∂πt ¼ −

qAt þ πt
f

;

_πt ¼ −
∂H
∂t ¼ 0;

_r¼ ∂H
∂πr ¼ fπr;

_πr ¼ −
∂H
∂r ¼ 1

2

�
2qðπt þ qAtÞA0

t

f
− π2rf0 −

ðπr þ qAtÞ2f0
f2

�
:

ðC18Þ

Rewriting the equation of motion in coordinate time t

dr
dt

¼ _r
_t
¼ −

f2πr
qAt þ πt

¼ F1;

dπr
dt

¼ _πr
_t
¼ −qA0

t þ
ðπt þ qAt þ π2rf2

πtþqAt
Þf0

2f
¼ F2; ðC19Þ

we can obtain the components of the Jacobian matrix Kij

K11 ¼
∂F1

∂r ¼ πrfðqfA0
t − 2ðπt þ qAtÞf0Þ
ðπt þ qAtÞ2

;

K12 ¼
∂F1

∂πr ¼ −
f2

πt þ qAt
;

K21 ¼
∂F2

∂r ¼ 1

2

�
π2rf02

πt þ qAt
−
ðπt þ qAtÞf02

f2
− 2qA00

t þ
π2rfð−qA0

tf0 þ ðπt þ qAtÞf00Þ
ðπt þ qAtÞ2

þ qA0
tf0 þ ðπt þ qAtÞf00

f

�
;

K22 ¼
∂F2

∂πr ¼ πrff0

πt þ qAt
: ðC20Þ

Some constraint conditions should be considered. For the
motion of the charged particle, its orbits should follow the
timelike geodesic, which must satisfy the normalization of
the four-velocity gμν _xμ _xν ¼ −1. We can obtain the relation
between πr and πt

πt ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ f2π2r

q
− qAt: ðC21Þ

Considering Eq. (C21) and the equilibrium condition
πr ¼ dπr

dt ¼ 0, the particle’s charge q at the equilibrium
position r ¼ r0 should satisfy

q ¼ −
ð ffiffiffiffiffiffiffiffiffi

fðrÞp Þ0
AtðrÞ0

����
r¼r0

: ðC22Þ

Then we can see the Lyapunov exponent λ should satisfy

λ2 ¼ 1

4

�
f02ðrÞ þ 2fðrÞ

�
A00
t ðrÞf0ðrÞ
A0
tðrÞ

− f00ðrÞ
������

r¼r0

;

ðC23Þ

which is same as Eq. (36).

APPENDIX D: Veff AND THE MAXIMAL
LYAPUNOV EXPONENT λs

In studying the static equilibrium of particles to obtain
the maximal Lyapunov exponent λs, the most important
point is to ensure that the static equilibrium position is just
at the maximum value of the effective potential Veff . For the
static equilibrium of charged particles, there is

Veff ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
þ e
m
ΦeðrÞ; ðD1Þ
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V 0
eff ¼ 0 can be used to determine the static equilibrium

position, and on the static equilibrium position, there is

e
m

¼ −
ð ffiffiffiffiffiffiffiffiffi

fðrÞp Þ0
Φ0

eðrÞ
: ðD2Þ

When we consider Eq. (D2), we can obtain

V 00
eff ¼ ð

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ00 − ð

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
Þ0Φ

00
eðrÞ

Φ0
eðrÞ

: ðD3Þ

Only when V 00
eff is negative, will the effective potential Veff

have a maximum value at the static equilibrium position,
which corresponds to the maximal Lyapunov exponent λs.
As shown in Fig. 17, for the black hole represented by case
2-1, within a certain range r > 4.37690, there is always a
minimum value for effective potential at the equilibrium
position, where the maximal Lyapunov exponent cannot be
defined.

APPENDIX E: A SIMPLIFIED MODEL

For the toy model we discuss in Sec. IV C, we can study
the static equilibrium of particles as we do for the charged
particles. The Lagrangian of particles which move in the x
direction (y ¼ _y ¼ 0) can be written as

L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞ − _x2

fðxÞ − _y2þ
s

− ωAðxÞ; ðE1Þ

where “·” denotes derivative with respect to the coordinate
time t. We can obtain the Lyapunov exponent λ at the
equilibrium position x ¼ x0, λ satisfies

λ2 ¼ 1

4

�
f02ðxÞ þ 2fðxÞ

�
A00ðxÞf0ðxÞ

A0ðxÞ − f00ðxÞ
������

x¼x0

:

ðE2Þ

When we consider the near-horizon behavior of
the particle, Eq. (E2) can be expanded at the horizon
x ¼ xh as

5 10 15 20 r

−0.008

−0.006

−0.004

−0.002

Veff

(a)

2 4 6 8 10 12 14 16 r

−0.05
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Veff

(b)

2.5 3.0 3.5 4.0 4.5 5.0 r
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Veff

(c)

10 15 20 25 r

− 0.006

− 0.005

− 0.004

− 0.003

− 0.002

− 0.001

Veff

(d)

FIG. 17. V 00
eff as a function of r corresponds to Eq. (14) and Eq. (15).
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λ2 ¼ κ2 þ γðx − xhÞ; ðE3Þ

where κ ¼ f1
2
and γ ¼ 4κ2 A00ðxhÞ

A0ðxhÞ. If γ > 0, there is violation

of the chaos bound, or the chaos bound is not violated when
γ ≤ 0. With AðxÞ ¼ aðx − xcÞ2 þ bðx − xcÞ4, γ can be
rewritten as

γ ¼ 4κ2
2aþ 12bð−xc þ xhÞ2

að−2xc þ 2xhÞ þ 4bð−xc þ xhÞ3
: ðE4Þ

We set xh ¼ 0, xc ¼ 1 as in [22], then whether γ is positive
or not can be decided by adjusting the values of a and b.
Moreover, in order to avoid particles falling into the
horizon, we study the Hamiltonian of particles which
satisfy x ¼ xh, y ¼ 0, dx

dt ¼ 0

H ¼ ωðaþ bÞ: ðE5Þ

For simplifying the calculation, we add an additional
condition aþ b ¼ 1. There is Emax ¼ ω; for the particles

whose energy E satisfies E < Emax, they will not fall into
horizon. From Eq. (E4) and the parameters of xc and xh, we
can find the conditions for parameters corresponding to the
chaos bound can be violated (γ > 0) and the chaos bound
cannot be violated (γ ≤ 0):

1. Chaos bound can be violated (γ > 0) case

aþ 6b
−2a − 4b

> 0:

One of its solutions is −2b < a < −6b while a > 0
and b < 0. With aþ b ¼ 1, we can set
a ¼ 1.3, b ¼ −0.3.

2. Chaos bound not violated (γ ≤ 0) case

aþ 6b
−2a − 4b

< 0:

There is a solution a > −6b while a > 0 and b < 0.
With aþ b ¼ 1, we can set a ¼ 1.1, b ¼ −0.1.
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