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The causal structure of the recent loop quantum gravity black hole collapse model [J. G. Kelly et al.,
Classical Quant. Grav. 38, 04LTO1 (2021)] is analyzed. As the spacetime is only approximately
diffeomorphism invariant up to powers of 7, it is not straightforwardly possible to find global conformally
compactified coordinates or to construct the Penrose diagram. Therefore, radial ingoing and outgoing light
rays are studied to extract the causal features and sketch a causal diagram. It was found that the eternal
metric [J. G. Kelly et al., Phys. Rev. D 102, 106024 (2020)], which is the vacuum solution of the collapse
model, has a causal horizon. However, in the collapsing case, light rays travel through matter to causally
connect the regions inside and outside the horizon—the causal horizon is not present in the collapsing
scenario. It is worked out that this is related to the shock wave and spacetime discontinuity, which allows
matter traveling superluminally along a spacelike trajectory from the vacuum point of view, but remaining
timelike from the matter perspective. The final causal diagram is a compact patch of a Reissner-Nordstrom
causal diagram. Further, possibilities of a continuous matter collapse with only timelike evolution are
studied. It is found that the time-reversed vacuum metric is also a solution of the dynamical equations, and a
once continuously differentiable matching of the vacuum spacetime across the minimal radius is possible.
This allows an everywhere continuous and timelike collapse process at the cost of an infinite extended
causal diagram. This solution is part of an infinitely extended eternal black hole solution with a bounce,
whose global extension is constructed. Due to the analysis of radial light rays, it is possible to sketch causal

diagrams of these spacetimes.

DOI: 10.1103/PhysRevD.104.046019

I. INTRODUCTION

The collapse of astrophysical stars can lead, under the
right circumstances, to the formation of a black hole. As
was shown in the singularity theorems by Hawking and
Penrose [1,2], general relativity generically predicts the
formation of a spacetime singularity in this black hole
collapse. At this singularity, spacetime curvature diverges,
and general relativity is not further applicable. It is widely
believed that a theory of quantum gravity would allow a
description of matter and spacetime at these regions [3,4].
Therefore, black holes have gained much attention in the
context of quantum gravity. Other fascinating puzzles, like
the information loss paradox and the end of black hole
evaporation, are motivations to study black holes in the
context of quantum gravity.

One candidate for such a theory of quantum gravity is
loop quantum gravity (LQG). After techniques developed
within this framework were successfully applied to cos-
mology, so-called loop quantum cosmology (LQC) [5-8]
(also note recent criticism in Ref. [9]), the ground was set
for efforts to understand better the quantum properties of
black holes. The essential observation here is that the black

johannes.muench@cpt.univ-mrs.fr

2470-0010/2021/104(4)/046019(17)

046019-1

hole interior takes the form of a Kantowski-Sachs cosmo-
logical spacetime, which in principle allows extending the
developed LQC techniques. Although there has been a
great amount of effort in this direction [10-30], there is no
clear answer yet. Furthermore, this framework is mainly
suited for eternal black holes, where the collapse and
formation process is neglected and the system reduces to an
effective point mechanics problem—so-called mini-super-
space models. The collapse process has to take the time
dependence of spacetime into account. The mini-super-
space model becomes a far more complicated proper field
theory, and the adaption of LQC techniques becomes more
involved. Regardless, there are efforts to understand the
more complicated black hole collapse in the context of
effective LQG [31-44], but no consensus has emerged.
Very recently, there was a new effort to address the
problem of a loop quantum gravity black hole [11] and also
its formation [10]. Further, a full quantum theory approach
was investigated independently in Ref. [24], which turns out
to be similar to Ref. [11]. It was possible to derive a regular
black hole spacetime with a minimal radius instead of a
singularity. In addition, it was also possible to derive
equations describing an inhomogeneous dust collapse
[Lemaitre-Tolman-Bondi (LTB) spacetimes [45—47]], which
were solved in the homogeneous Oppenheimer-Snyder (OS)
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[48,49] case. The resulting spacetime describes the forma-
tion and vanishing of black hole horizons and is complete
and regular everywhere. The collapsing matter is stopped by
quantum gravity effects and reexpands outwards again,
which makes the black hole disappear after some time.
This time span, the black hole lifetime, was estimated to be
of order M?.

This model is an interesting candidate for better under-
standing the life of a quantum-corrected black hole and has
many physically exciting properties. However, a global
picture of the causal structure is missing in Refs. [10,11].
Exactly this is addressed in the present paper. An occurring
obstacle is the fact that the models of Refs. [10,11] are not
diffeomorphism invariant, as noted by the authors.
Changing the spacetime according to a diffeomorphism
leads to a different spacetime, which is corrected by
contributions suppressed by Planck-order parameters. Let
us note that this seems to be a common property of this kind
of model, as noted in Refs. [9,16,50-53]. However, this
makes it subtle to find global extensions and Kruskal-
Szekeres-like coordinates, as each change of coordinates
might change the physics due to the breaking of diffeo-
morphism invariance. The strategy applied in this paper is
therefore to keep the coordinates fixed, but study the
ingoing and outgoing radial lightlike geodesics, which
capture the causal structure. This is done for the vacuum
spacetime region point of view and also for the matter
region, which allows us to gain a global picture of the
causal structure. It is then possible to sketch a conformal
diagram based on these computations.

It is shown that the collapsing matter moves super-
luminally along a spacelike trajectory in the reexpanding
branch, which allows us to resolve the trapping horizon
from the vacuum-region point of view. Nonetheless, from
the matter perspective, the matter is at rest, and is thus
moving along a timelike trajectory. These different per-
ceptions can be traced back to a spacetime discontinuity
and a shock wave during the reexpansion [10]. It is
therefore analyzed whether the underlying dynamical
equations for spacetime also admit a solution where the
collapse is continuous everywhere. It turns out that this is
possible, and a global picture of this continuous process is
derived. The two solutions differ dramatically, and
differences among them and relations to previous models
are discussed.

The paper is organized as follows: In Sec. II, a review of
the constructions in Refs. [10,11] is given. Section III
addresses the question of the causal structure of Ref. [10],
discussing the vacuum region in Sec. III IIIB and the
dynamics of the matter region in Sec. III IIT C. The section
closes by putting these results together in the causal
diagram. Finally, in Sec. IV, continuous solutions are
derived and their causal structure analyzed. The paper
closes with the conclusions in Sec. V. In the Appendix, the
full solutions of the eternal equations of Ref. [11] without

fixing a gauge are presented. This allows for an under-
standing of the continuous collapse of Sec. IV from the
vacuum perspective.

II. LOOP QUANTUM GRAVITY
BLACK HOLE COLLAPSE

The model [10], which is an extension of Ref. [11],
describes a quantum-corrected version of a spherically
symmetric dust collapse (LTB spacetimes [45—47]). The
starting point is the spherically symmetric and time-
dependent metric

Eb 2
ds? = —N?dr* + (E—") (dx + N*dt)? + E*dQ?,  (2.1)

with dQ? = d#? + sin (0)2d¢ being the line element of a
two-sphere; N(x, ) and N*(x, ) the lapse and shift; and
E“(x,t), E’(x,t) the densitized triads in the angular and
radial directions. They are canonically conjugate to a(x, t)
and b(x, 1), respectively, which are the components of the
spherically symmetric Ashtekar-Barbero connection

i a 8an
Aar,»dx = m’ldx + bTQ - W‘L@ dc9
+ t(0)7, + O.E" + btz | sin(6)d¢
—cot(0)r) + -7 73 | sin ,
1T 2 3
with 7/ = —ic//2 and the Pauli matrices ¢/.

The dynamics of LTB spacetimes is described classically
by the Einstein-Hilbert action coupled to a dust field 7. In
Ref. [10], several physically reasonable gauges are chosen
at this point. First, the clock is chosen to be the dust field
itself, i.e., t = T; and second, the areal radius is chosen as
spatial coordinate, which gives the constraint E* = x*. The
action is then completely gauge fixed and depends only on
E’ and b. It is given by

bE?
SGF—/dl/dx<G—y—thys>, (22)
1 [EP yEb  2yx? 3yx
=~ | O (xb?) + OEP =T
thys ZGJ/ |:]/x x(x )+ X +(Eb)2 x Eb:|
(2.3)

where y is the Barbero-Immirzi parameter, G is the gravi-
tational constant, and H, is a physical Hamiltonian. The
t = T dynamics is generated by f dxH s There are no
remaining constraints. The metric takes the simplified
gauge fixed form

(E")

ds? = —dr? + 5
X

(dx + N*dr)? + x2dQ?, (2.4)
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with N* = —b/y. The only nontrivial Poisson bracket is

{b(x17t)7Eb(x27t>} = Gyé(xl _xz)' (25)
The energy density of the dust field is given by
thys
= 2.6
r AnxE" (26)

which closes the classical theory.

Quantum effects are introduced on the effective level
using a LQG argument (see Ref. [10,11] for details). In
summary, the remaining connection component b is
replaced by a holonomy according to

X . \/Zb
b~ —sm< P >,

VA

where A ~ f%, is the smallest nonzero eigenvalue of the area
operator in LQG. The resulting Hamiltonian is

et ——L E—b@ isin VAbY?
Phys = 2Gy yx F\ A X
yE'  2yx?

e PN 5 e
+(Eb)2 x Eb

(2.7)

while the Poisson brackets remain unchanged. The relation
of the canonical variables to the lapse N* is modified
according to [11,24]

- \);K sin (‘/§b> cos <\/§b>. (2.8)

The quantum modified equations of motion are finally
given by

Eb = — 2;—\2@8)( (%) sin (@) cos (@) . (2.9a)

= () (s (ﬂb>> (2:%0)

together with the relation to the dust field [Eq. (2.6)].
These equations are solved in Ref. [10] for the simplest
LTB case of a homogeneous Oppenheimer-Synder dust
collapse [48,49]. The dust is therefore assumed to be
homogeneous in the spacetime region up to an areal radius
L(t), and zero otherwise. Equation (2.9) is obviously
solved for EY = x, leaving two remaining equations:

S U AP AVIN
b——2yAxa <.X N <x>>, (210)

N =

L9 (4 (Vb

The equations decouple then into the region with p # 0 and
p =0 and can be solved interdependently. An important
assumption for this being true is the neglect of edge effects
(see Ref. [10]). Following the steps in Ref. [10] leads to the
complete dynamical spacetime, which is given by

ds? = —(1 = (N*(x,1))?)de> + 2N*(x, t)dedx + dx? + x2dQ?,
(2.12)

with N* = Ny, for x < L(t) and N* = N}, for x > L(1),
given by

L
Npalx, 1) = =Fx  x<L(r),  (2.13)
R, Y?AR,
Nie(x) =4 /=(1-=—==). x>L(). (2.13b)
X X
Here, R, =2GM, with the mass of the black

hole M. The dynamics of the outermost dust shell is

given by1
972 3
L(t) =[x |[—S—+1 ,
( ) |:xm1n <47/2A + >:|

with xn, = (Y2AR,)5. Note that L(7) satisfies

22:87[_(;'0 l_ﬁ :& l_xgnin :(Niac)z
L 3 Pe L3 L3 L2 s

(2.15)

(2.14)

with p =3M/4zL? and p. =3R,/8zGx>. ., which is
simply the LQC effective equation. The vacuum region
of the spacetime was independently found in Ref. [11].
The spacetime consists of a shock wave [10], in which
the matter does reexpand—i.e., t > 0. This causes a
discontinuity in the metric across the surface x = L(¢),

as can be straightforwardly seen:

dstaleer () = —d + L(1)?dQ*,  (2.16a)
-1, t<0
dstacleor() = { C114i2 >0 }dt2 + L(1)%dQ2.
(2.16b)

"This expression is assumed to hold only in the absence of
edge effects. As stated in Ref. [10], edge effects are relevant in the
reexpanding branch, where the metric is discontinuous and the
shock wave develops. As also noted in Ref. [10], edge effects
might not cure the discontinuity, but eventually they change the
expansion rate and the exact values in the equation L(¢) for ¢ > 0.
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The induced metrics match obviously for ¢ < 0, but not for
the reexpansion. The reason for this is that N3,. > 0 for all
times, while N}, changes its sign across the bounce.

III. CAUSAL STRUCTURE

We would like to analyze the causal structure of this
LQG black hole collapse model. The main obstacle here is
the fact that the model is not classically diffeomorphism
invariant, as was noted by the authors of Ref. [11]. The
symmetry is violated—by corrections suppressed by
Planck-order contributions, though. Therefore, it is not
possible to find Kruskal-Szekeres-like global coordinates
and perform a conformal compactification, as this would
change the spacetime. As shown in Ref. [11], if the
fundamental equations are solved in different coordinates,
then using different lapse functions N leads to physically
different spacetimes (see also the Appendix).> However, the
model is valid as long as we use the same Painlevé-
Gullstrand-like coordinates. It is then possible to simply
study lightlike radial geodesics to extract the causal
structure. It is not clear if this is really compatible with
the quantum diffeomorphism braking, but on the effective
level, it is a minimal requirement for well defining a causal
structure and is in fact a valid spacetime description. In
general, the discussion on diffeomorphism invariance at the
quantum level is ongoing [9,16,50-53].

A. Asymptotic structure and horizons

Let us first recall the main features of the vacuum-region
spacetime—i.e., x > L(¢). In the limit x> x;, and
x > L(t), the metric simplifies to

R o
Niacz\/—3<1+o<x—“gn>>,
X X

and thus the asymptotic vacuum spacetime

Ry R, 3
dsToe = — <1 ——“)dt2 + 24/ —drdx + x*dQ? + (9("%"1)
X X X

(3.2)

(3.1)

?As shown in the Appendix, choosing the lapse appropriately
leads to the same metric as in Ref. [24], neglecting discreteness
effects. However, Ref. [24] derives this metric from a quantum
theory rather than being an effective level consideration and
contains further corrections. The two models share similar
features: e.g., the dependence on the choice of lapse and shift,
and thus the analysis of this section, can be straightforwardly
applied to the effective metric [24], and similar results are
expected. Nevertheless, here the collapse process, as in Ref. [10],
is not included. The causal structure of Ref. [24] needs a separate
examination using the same techniques as discussed in Sec. IIT 1T
B. As the main interest of the present paper is the understanding
of the global structure of the collapse and Ref. [24] does not
include it, this analysis is reported elsewhere.

becomes the Schwarzschild metric in Painlevé-Gullstrand
coordinates. As the spacetime is asymptotically
Schwarzschild, it is clear that it is asymptotically flat
for x/R, > 1.

Let us note that there are two horizons, which would
correspond to Killing horizons (ignoring the matter) in the
static case—i.e., g(&,,&,) =0 with & = 9/9t. These are
given by

Nﬁac(xin/out) =1, (33)

Xout = Rw Xin = Xmin-
Note that for both solutions of —g,, = 1 — (N%,.)?> = 0, the
shift is positive: Ny, (Xin/our) > 0. Obviously, there is also
the solution N¥,.(x) = —1, but this is never reached, as
Nyac(x) is defined as a positive square root; see Eq. (2.13b).

This equation can be written out to give

1—&<1 —ﬁ) _ 0o Rt R

X X3 x* X

(3.4)
The second rewriting of the equation will later be of use. As
this equation is a fourth-order polynomial, it is possible to
construct analytic solutions, but their expression will be
very complicated. We see immediately that this equation is
solved for x,, =~ R (1 —O(x}. /R})), and also for x, =
Xmin(1 + O(xmin/Ry)) (cf. Ref. [11]).

The notion of a Killing horizon is not present in the
present dynamical setting, where dynamical matter is
included and the Killing symmetry does not exist globally.
A better suited notion is therefore a trapping horizon, also
called an apparent horizon. These horizons are defined as
the boundaries of trapped regions, and in a static setting the
notions of Killing and trapping horizons coincide. As was
computed in Ref. [11], such horizons are indeed apparent
horizons, as the expansions are given by

6+:%(1 _N/\fac)v 9—:_%(1 _N/\fac)' (35)
X X
Figure 1(a) shows a plot of N3,., which makes it clear that
both expansions have negative sign in the region
Xin < X < Xy, While they have different signs for x >
Xout and x < x;,. Consequently, the region x;, < x < X 18
trapped, and as x = x;, and x,,, are the boundaries of this
region, these hypersurfaces are apparent or trapping

horizons.

B. Radial lightlike geodesics in the vacuum region

Let us now study radial lightlike geodesics. At first, we
ignore the presence of matter, which places us in the setup
of Ref. [11]. Nevertheless, we should keep in mind that
there is matter in this spacetime. The correct treatment
considers that if the geodesic evolves into x = L(f)—i.e., it
hits the matter surface—the continuing evolution is
described by the geodesic equation following from the
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FIG. 1. (a) Plot of the function N}, (x) and (b) the phase-space plot % vs x for both ingoing (red) and outgoing (blue) lightlike
geodesics. Green, yellow, and red dashed vertical lines correspond to X, Xy, and X, respectively. The black dashed line in
(a) indicates N7, (x) = 1; i.e., where dx™/dr = 1 — N¥,.(x) < 0. The parameters are chosen as R, =6,y = A = 1.

matter metric [Eq. (2.12)]. Exactly this is ignored for the
geodesic evolution in this section, but it is corrected in the
following section. Still, we will comment on the influence
of matter.

The main question arising is whether these apparent
horizons of the previous sections are also causal horizons—
i.e., if there exist light rays, which can still reach x — o0
once the horizon is passed. To address this question, we can
solve the lightlike radial ingoing and outgoing geodesic
equations in the exterior—i.e., assuming that the light was
emitted at any point (¢, x) with x > L(r). Radial lightlike
geodesics satisfy

ds? =0 = —(1 = (N3, (x))?)dr? 4+ 2N%, (x)drdx,  (3.6)
thus giving the differential equations
dx
= _N¥ +1, 3.7
= Niw®) (37)

where the + sign corresponds to outgoing radial geodesics,
and the — sign to ingoing ones. Consistently, we have for
X > Xou thatdx/dt = —N¥,. + 1 > 0.1t is possible to draw
a phase-space plot for the outgoing geodesics; see Fig. 1.
From the plot, it is evident that

dxt
dr

>0, x> Xy

= _N)\sac(x) +1= { ’
<0, X <x <Xy

(3.8)

while it is indefinite for x < x;,. This is no problem, as
there is no instance of time for which L(z) < xp,-

When staying outside the outer horizon, dx*/ds > 0—
i.e., light rays will always try to escape to infinity. They will
also reach infinity unless they first hit the surface (z, L(7)).

The geodesic equation cannot be solved analytically.
However, it is instructive to perform a stability analysis to
determine the first-order evolution close to the horizon.
Consider a light ray starting very close to the horizon—i.e.,
x(t) = xou + €(2), with €(7) < 1. The geodesic equation
reads in this case

det _de_
dr — dr
~1- Néac (xout) - Nilac (xOUt)e(t) + O<€2)

= _Nill(:(xout)e(t) + 0(62)’

I- Nic/ac(xout + €(t))

(3.9)
as N (xou) = 1. We abbreviate % oy = Npe (Xout)-
Evaluating the derivative of Ny, leads to

1 N* )2 3R sX ?nin
2xN%,. vae x4

x::xom _ 1 (1 _ 3Rsxf’nin) ‘
2'xoul xéut

Using Eq. (3.4), this gives

Nty (x) =

(3.10)

, 1 R,
Ml = =5 (1-3(F2-1) ) <0 @)
out out

which is always negative, as x,, /R, =1 —O(x}. /R}).
We can therefore write
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Ni;c(xout) = —Ky, K

1 R
0____(1_3( s_l))>o.
2xout Xout

(3.12)

The approximate geodesic equation (3.9) in the outer
vicinity of the outer horizon is therefore solved by
€(t) =~ ege’. (3.13)
For large 7, this grows exponentially, which makes the
approximation invalid already after a short period of time.
The lightlike geodesic, therefore, escapes quickly to larger
radii where it can in principle escape to infinity. On the
other hand, for negative ¢, it approaches the horizon only
asymptotically.
We can repeat the above computation for x(z) =
Xout — €(2); i.e., for a position slightly behind the outer
horizon. In this case, we find

dx* de ,
S E = Nilae) + 0@). (314)
which is equivalently rewritten as
d
d_i =—k, <0 = e(t) 2ege™". (3.15)

This shows that the geodesic behind the outer horizon
exponentially grows towards smaller x values, where the
approximation of € <« 1 is quickly broken. Checking the
phase-space plot in Fig. 1, the light ray continues to move
towards smaller radii until the inner horizon is reached.
This shows that once it is behind the outer horizon, there is
no way to exit it anymore from a purely exterior point of
view. Already at this stage, we see a causal structure, which
is similar to a charged Reissner-Nordstrom black hole. Let
us also note that for + - —oo, the outer horizon is again
approached exponentially.

To gain a full picture of the causal structure, the above
steps are repeated for the inner horizon. We assume
x(1) = xip + e(t)—i.e., the light ray is emitted in the
trapped region between the horizons, but close to the inner
horizon. Similarly to before, we find

d ,
= o N (xi)e + O(e).

5 (3.16)

Evaluating the derivative [cf. Eq. (3.10)] yields
, 1 3R,x3,
N)\iac(xin) = _2xin <1 _x—fnmn)

_ 1 <4_3&>==_Ki, (3.17)

2x in Xin

where again Eq. (3.4) is used in the last step. As
R,/x;, > 1, k; is always negative. The approximate solu-
tion is thus

e(t) ~ egelil, (3.18)

which shows that for positive #, the inner horizon is
approached exponentially, while in the past (¢ < 0), the
geodesic tends exponentially to larger radii. From the
phase-space plot in Fig. 1, it is evident that the light ray
came from x,;.

Analogous to before, we find for x(1) = x;, — ¢ the
solution

e(t) ~ ege kil (3.19)

Therefore, in the future, light rays approach the inner
horizon exponentially, and in the past, they tend to smaller
radii—i.e., x;,, as can again be read from Fig. 1(b).

This closes the stability analysis of the outgoing light
rays. In summary, x,, is an unstable fixed point of the
outgoing radial geodesic equation, while x;, is a stable
fixed point.

The analysis of the ingoing light rays becomes trivial. As
No(x) > 0, for all x, we find dx™/df = =N, (x) =1 < 0
everywhere. Therefore, ingoing light rays are simply
moving towards x.,. The horizons are crossed in finite
coordinate time ¢.

We can also solve the geodesic equations fully numeri-
cally. The above analysis then supports the numerical
results in the regions close to the horizons, where numerical
uncertainties are large. Plotting the solutions for several
initial conditions in the ¢ — x chart leads to Fig. 2. The
qualitative features worked out analytically are nicely
visible in this plot.’ Geodesics starting outside the outer
horizon tend to infinity, while those behind the outer
horizon approach either x;,.

Completely neglecting the matter leads finally to the
conclusion that x,, is a causal horizon. There are no
lightlike geodesics that can start behind this horizon and
still escape to infinity. This result is rather trivial, as
neglecting the matter, the spacetime is static where usually
all these notions of horizons coincide. However, the
spacetime in fact is dynamic and contains matter. It might
be possible that a light ray hits the matter surface, travels
inside the matter, and then exits the matter again at x > x,.
In this case, the region x < x,, is actually not causally
disconnected from x > x,,, and there is no causal horizon.
This might be possible, as we see from Eq. (2.14) that
L(t - o0) — oo and thus becomes arbitrarily large at large

3Solving the outgoing equations for x,;, < x < x;, is numeri-
cally more challenging, as x;, ~ x;, for the chosen parameters.
The geodesics can nonetheless qualitatively be well understood
from the analytical discussion above.
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(a) Plot of ingoing and outgoing radial lightlike geodesics. (b) The same, with the region that has to be replaced by matter

shaded gray. Blue curves are ingoing light rays, which travel in finite coordinate time to x,;,. Green curves are outgoing light rays,
showing nicely the features worked out in the main text. The red curve is the surface of the matter L(¢). The vertical lines are x,i,, X,

and x,,. Parameters are again Ry, =6,y = A = 1.

times. However, the important question remains of how the
matter surface itself can exit the outer horizon if not even
light is able to do so.

C. Matter region

So far, we have ignored the matter part of the metric and
the fact that there are dynamical boundary conditions.
Exactly this is addressed in this subsection. As just
discussed, light cannot exit the region x < x,, via a
geodesic lying purely in x > L(z). It still could be that a
light ray exits this region by moving through the matter
spacetime. As argued, this might be possible, as L(¢) again
becomes arbitrarily large after a bounce. Usually, this
happens in a parallel universe [41-44,54].

The surface of matter evolves according to Eq. (2.15),
which can equivalently be written as

(N — L()).
L= {—Nzacoc — L(1).

The solution L(t) is given by Eq. (2.14). The spacetime
trajectory of the matter surface is thus given by
y = (¢, L(¢), 6y, ¢bo), where ¢y and 6, indicate an arbitrary
point on S?, which is irrelevant for the following. Consider
Nnow an observer, sitting at x = Xgp,, > Xoy at 1 = —Zps ON
the matter surface. Obviously, x,,s = L(—typs) is required
to satisfy this condition. The observer stays at this radius
and watches the matter collapsing. We can now ask: Does
he touch the matter surface ever again? To answer this
question, we need to solve the equation

L(t) = Xobs>» re [_tobs’ 00),

972 5
3 _
|:xmin <4)/2A + 1>:| = Xobs-

expansion
P (3.20)
collapse

(3.21)

As we define ., by the condition L(—t,ps) = Xgps, this is
certainly one solution of this equation. As further L(—t) =
L(1), the value t, also satisfies this equation, which then
gives the second and last possible solutions. For complete-
ness, it is

- 2rvVA X 1= 2rvVA X _1
obs 3 x3 3 Y’AR,

min

Thus, the observer meets the matter surface again after the
finite time 2t.,,, which translates into a finite observer

eigentime 7 = 2zgp\/1 — (N (Xops))?. As the observer
and matter meet each other after finite time, this is different
from most other proposals for loop quantum-gravity-
inspired black hole models where a causal horizon is
present [10-19,21-26,28,54]. A generalization to a col-
lapse model as in Refs. [41-44,54] would always lead to
the result that the observer and matter never meet again as
the matter bounces out of a parallel universe—at least if
black hole evaporation is neglected. Here instead, the
matter is crossing the outer horizon, then the inner one,
bouncing out again at x,;,, crossing first the same inner
horizon and then the same outer horizon to arrive in the
same exterior again. On the one hand, this gives the
opportunity for a causal horizon to be avoided, as light
rays could enter the matter region and exit the matter once it
has again passed x,,. On the other hand, this raises the
question of how this is possible when we have argued that
Xout causally disconnects the inner and outer spacetime
regions from a vacuum point of view. The only possible
solution is that the matter moves superluminally—i.e.,
along a spacelike trajectory in some time interval. This
way, it would be possible to come out of the outer
horizon again.
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It is easy to check this property. First, the tangent to the
trajectory y is given by

V_é Lé

r =Ll (3.22)

Its norm allows us to track the causality of this curve.
Consequently, it is

9(V,.V,) = =(1= (Nt (L(1)))?) +2N% (L(1) L (1) + L(1)?
= —142(sign(L) + 1) (N¥, (L(1)))?

-1, L<0
= { . . (3.23)
—14+4L°, L>0
Here we use the equation for L in the form of Eq. (3.20).
Obviously, in the collapsing branch, i.e., L < 0, this is
constant at —1; i.e., the tangent is normalized and timelike
for the full collapsing branch. This is not the case for the
reexpanding branch, i.e., L > 0. We know that at the
horizons Ny,e(Xinjou) = 1, and further Ny, (x) > 1 for

X € (Xin, Xour). Therefore, the tangent is spacelike at least
within the inner and outer horizons, as there

9g(V,.V,) = =1 + 4(N3e)* > 3, for xy, < L(1) < Xy
As N}, (x = o0) — 0, this becomes again timelike far
enough from the outer horizon. The full plot of g(V,,V,) is
shown in Fig. 3, which verifies this result.

This spacetime picture concerns only the point of view of
an exterior observer and how light rays propagate in the

log(x)

1

FIG. 3. Plot of g(V,,V,) against the position x. It is clearly
visible that on the collapsing branch, the norm of the tangent is
constant at —1. On the reexpanding branch, the norm changes in
time and becomes spacelike in between the horizons, and even
stays spacelike for some time once the outer horizon is again
passed. Dashed lines indicate (from left to right) x,;,, x;,, and
Xout- The parameters are R, =6,y = A = 1.

vacuum part of the metric. Let us emphasize that the
superluminal motion of the matter surface is not present
from the matter point of view. It is easy to compute
the norm of the tangent for the metric (2.13). This simply
leads to

g(V,.V,) = =(1 = (NEa)?) + 2N L + L2

=—(1-L%=20>+L*=-1. (3.24)

Therefore, for all times, the tangents remain timelike with
respect to the interior point of view. This is only possible
due to the spacetime discontinuity caused by the shock
wave.

It remains a question if light can actually leave the matter
region once it is caught by it. From the matter metric point
of view, the outgoing lightlike geodesic equation reads

o e L o 1dx L+1>L
_ = - = —X s _—— = — — —
dr mat L xdt L x L

(

3.25)

This implies that first of all, ‘3]—’; is always positive—i.e., light
moves really outwards—and second, it moves faster than
the outermost matter. Thus, the surface of the matter is
always reached sooner or later. In conclusion, light can
enter the matter region at some point x < X.;,, moves
outward with the matter, and exits at x > x,,. Therefore,
the static setting of Sec. III III B is misleading, and taking
the dynamical matter into account, the regions x > x,, and
X < Xy are not causally disconnected, and there is no
causal horizon in the spacetime.

Having all this analysis done, it is possible to construct a
causal diagram. First, the plot of ingoing and outgoing
lightlike geodesics, as well the surface of the matter, is
given in Fig. 2. It shows nicely the discussed features. All
light rays behind the outer horizon are caught again by the
matter surface. This is clear, as in the infinite future and past
they approach either the inner or outer horizon. This cures
the missing description of the exterior spacetime at radii
X < Xpmin as already discussed in Refs. [10,11]. Outside the
outer horizon, some of the outgoing light rays are caught by
the matter surface, while others are not. Note that asymp-
totically (¢ - +o0, x - o), the tangent becomes vV, ~ %
i.e., matter loses its kinetic energy and comes to rest.
Therefore, at late times, the light ray is not caught anymore
as the light moves outwards faster than the matter (see also
Fig. 2). We can do form a schematic plot of the light rays
where ingoing and outgoing rays have 45° angles with
respect to the horizontal and vertical axes. Most impor-
tantly, they are orthogonal to each other in this depiction.
Usually, this is automatically done by finding Kruskal-
Szekeres-like coordinates and performing the causal com-
pactification. Due to the Planck-scale breaking of the
diffeomorphism invariance, this is not possible here, and
we can only sketch this. The result is given in Fig. 4. All the
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FIG. 4. Schematic Penrose diagram. Here, ingoing (blue) and
outgoing (green) light rays are drawn orthogonally to each other.
This summarizes all the above derived features qualitatively. The
red curve is a sketch of L(r), which nicely cuts out the all
nonwanted spacetime regions, as the vacuum spacetime is only
valid up to this point. Behind it, the matter metric has to be used.
The Painlevé-Gullstrand coordinates only cover the solid black
region.

features worked out in the previous subsections are nicely
visible. Ingoing light rays originate at infinity and move
towards x,,;,. Outgoing light rays, which lie outside of x,
originate in principle at x,,, which is not the case here, as
they first intersect the curve L(¢). In their future, they
escape to infinity or intersect L(7) again. More interesting is
the region x;, < x < X,,. As was shown in Sec. III III B,
the outgoing light rays all tend (in their future and past) to
X;p- Also, this is faithfully represented by the schematic
Penrose diagram. Nevertheless, they never reach x;,, as
they first intersect the curve L(¢). The case is similar for
light rays with x;, < x < x;,, which ignore intersection
with the matter, originating at x,,;, and terminating at x;,,.
This gives a precise picture of the causal structure of the
model [10].

IV. RESOLVING THE SPACETIME
DISCONTINUITY

It is possible to avoid the superluminal speed of the
matter and the shock wave completely. This can be done by
removing the discontinuity in the metric. The source of the
issue lies in the choice E“ = x> in finding the true
Hamiltonian. This is an excellent gauge in classical general
relativistic systems, but it is tricky in bouncing LQC-like

models. Comparing to other models such as those in
Refs. [10-19,21-26,28], one generically finds that E“(1)
is a noninvertible function with two branches. Here, A is
some parameter choice that appears if the Hamiltonian is
not completely gauge fixed. Deparametrizing the solutions
includes the inversion A(E“), which generically has two
branches, the one before and the other after the bounce.
Therefore, when choosing the gauge E¢ = x?, one has to
track very carefully all appearing signs, as usually, one sign
choice is the prebounce and the other the after-bounce
spacetime branch.

Let us enter the details of the model to point out where
this sign might help to solve the spacetime discontinuity.
Recall that the equations of motion [cf. Egs. (2.10) and
(2.11)] are given by

=g (0 (5)

b ().

where 0,p = 0 forx # L(z) in the OS case (edge effects are
again neglected). From energy conservation, it follows that
M = 4npL3/3 = const. (see Ref. [10]), which relates p
with the radius of the outermost shell L. Equation (4.2) can
easily be integrated, leading to

Sinz(ﬁb) _ {%ﬂ%, p#0.
X XQ}’ p:O

Here, C and D are integration constants. They can be fixed
by suitable matching conditions. Usually, one chooses
D =0, as this contribution diverges at x = 0. As x >
Xmin > 0, this argument does not apply here. Still, we
choose here D = 0, as this does not affect the discussion
and results. We also define p, = 3/(82Gy?A). The solution
in the region p = 0 corresponds to the vacuum metric,
which is the same as the one found in Ref. [11]. However,
in the original work [10], the square root was taken and a
negative sign was fixed. We try to avoid this as long as
possible and see how this can be used to resolve the
discontinuity. Taking the time derivative of Eq. (4.3) and
inserting Eq. (4.1) leads (in fact, even for D # 0) to

)

L 1 f Ab \/Zb  Nia
L y\/_ x ) x
where Eq. (2.8) is used for the last equality. This can be

viewed as the solution for the spacetime coefficient N7,
and thus there is no need to choose a sign here. It is

(4.1)

(4.3)

(4.5)
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obviously needed once the equation for L has to be solved,
but not to determine the spacetime metric in the matter
region. The equation for L in a self-contained* form

becomes
L\?> 8zG p
J— f— _p 1 -,
L 3 Pe

with p =3M/(4xL?). As this expression comes in a
quadratic form, there is also no explicit choice of sign here.

The situation is more subtle in the vacuum region—i.e.,
p = 0—as there are also two sign options. The solution
boils down to the solutions of Ref. [11] simply with the
gauge choice N> = 1, which is implied by the choice of the
matter field as time. Nevertheless, it is instructive to solve
the dynamical equations of Ref. [11] in the most general
sense, as this allows getting an overview of all possible
solutions. This analysis is shifted to the Appendix and
coincides with the following steps. The sign we have to
choose here corresponds to the sign that has to be chosen in
the equations N? = 1. First, we need to fix a sign of

sin(@), which we call s = 1 for @ €[0,7] and s = —1

for the interval [z, 27]. Note that & € (0, o) (for C > 0).

We can then fix x € [xp,, ), and therefore C = x2 . to

keep this expression5 bounded between 0 and 1. Therefore,
VBb

X
branch—i.e., @ € [0,7/2] or @ € [n/2,n]—but the
branch is never crossed. Respectively, for the branch
[7,2x] with the negative sign, the solution remains on a
quarter of the circle, and we can safely write

cos <\/§b) =cy/1—sin? (@) (4.7)

where ¢ = sign(cos), and this sign remains fixed during the
entire evolution.® For the vacuum region, it is then

()= ()

3 3
= —5-C Xin 1= Xnin
7> Ax x> )

*One might wonder how this equation matches Eq. (4.5),
which depends on x explicitly, while Eq. (4.6) does not.
Comparing with the solution in Eq. (4.3) (for D =0), the
expression N3, /x is actually independent of x. Therefore, it is
possible to simply insert any value for x, most suitably x = L(z).

>Note that this does not fix the integration constant C yet, as up
to here x,,;, is just another name, and its relation to M is not
determined.

In writing cos(x) = £+/1 —sin(x)?, there is also a sign
choice needed. This sign remains fixed during the evolution,
which simplifies the analysis.

(4.6)

this restricts sin(¥22) to only one half of the respective

X
Nvac__

(4.8)

which obviously has the same sign for all 7. Therefore,

while the matter region does change the sign of N}, this is

a priori not possible for the vacuum region. However, it is
possible to freely choose sign(Ny,.) = £1.

We have to match the matter and vacuum regions at the
matter surface x = L(¢). For the matter region, this gives
dstial iy = —(1 = 2(Nja)? = 2LNj ) A7 + L7 (1)dQ?

= —dr? + L?(1)d$2?, (4.9)
where Eq. (4.5) and N%,, (L) = —L were used. Instead, for
the vacuum region, this gives
ds%ac|x:L(z) = _(1 - 2(Ni/(ac)2 - 2LN)\gac)dt2 + Lz(t)dgz'

(4.10)

It is now necessary to analyze L and Eq. (4.6) in more
detail. Equation (4.6) can be rewritten as

. R R .Ay?
=% (1-240).
L L

(4.11)

with R, = 2GM.
Demanding continuity across the surface x = L(t) gives

dstatlemr() = d5Taclver

= 0= (N3)? + LN, (4.12)

This can only be solved for
sign(L) = —sign(N¥,), (4.13)
i = RyPA = L = =N (L), (4.14)

which fixes all relevant sign choices and the integration
constant C = x?nin in terms of the mass M.

The crucial point is then that the sign of Ny,. has to be
different in the collapsing phase and the reexpanding one.
As we argued before, the sign of N7, remains fixed during
the whole evolution. This seems to be a contradiction and
might lead to the solution of accepting a discontinuous
shock wave as discussed in Ref. [10]. There exists another
solution avoiding any discontinuity by extending the
spacetime across x;, by a bounce.

We assume first that sign(N¥,.) = 1, as was chosen
before and in Refs. [10,11]. This gives the metric in ingoing
Painlevé-Gullstrand coordinates. The metric is continuous
across the surface x = L(z) in the collapsing phase. To
make it also continuous in the reexpanding phase, we need
the exact same metric but with sign(N?Y,.) = —1. This is
nothing other than the time-reversed metric—i.e., outgoing
Painlevé-Gullstrand coordinates. We can now simply iden-
tify the two spacetime regions with sign(N%,.) = +1 across
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X = Xpmin» Where the sign of N}, changes. This identifica-
tion is then continuous as

= ds?

vac,+ |x:xmin

< (Niac,—)z = (N;C)ac,—)2’

ds?

vac,— |x:xmin

(4.15)

which is satisfied as N*

vac,

- is squared. The spacetime is

even at least once continuously differentiable at x = x,;,,
as the extrinsic curvature

/ dNae
Kx:const. = 1- (Nifcac)zN’\Y/achtz
+ \/ 1 - (N)\iac)zxclgz’

coincides for both signs of NJ,. at x = x;,. Inserting x =
Xmin yields in both cases

(4.16)

3R,

Kb, =—22d7 4 xppd Q2.

min

(4.17)

Therefore, this identification at x = x,;, is valid from a
continuity point of view. The reexpanding branch of the
matter then takes place in the time-reversed region with
sign(N%,.) = —1, which gives a continuous bounce every-
where. Following, therefore, the collapsing matter, N7,
indeed changes its sign. The metric is then continuous, and
b is also continuous. According to the arguments given in
Ref. [10], this shows further that the neglect of edge effects
is a valid approximation here. We can use a new coordinate
A defined by x? = (4%/2 + xpin)?, which allows us to
describe the full spacetime at once. The line element of
the vacuum metric then reads

ds? = —(1 = (N%.c(2))?)de® + 2N, (1) || drdA

/12 2
+ 22dA? + (5 + xmm> dQ?, (4.18)

with

R, X3
NYae = 2 l <1 ) e 3) :
2 + Xmin (7 + xmin)

With 1 € R, we find indeed that g, > 0 for 4 > 0, and
gy < 0for A < 0. This is possible, as the relation of x and 1
is noninvertible, and on one branch one has to choose a
different sign respective to the other.” This again gives rise
to a bounce at a minimal radius and makes a connection
to almost all previous LQG-inspired black hole models
[10-19,21-26,28].

"Note the formal similarity to the areal radius in Ref. [55].

Another cross-check is the continuity along ¢ = const.
surfaces in the vacuum region—i.e., x > L(t), and in fact
t > 0. The induced metric is then simply

ds?|,_cong. = dx? + x2dQ2, (4.19)
which is obviously continuous, even across x = X, as it

is independent of ¢ and also x. More tricky is the extrinsic
curvature, which yields

dNVac

K| —eonst. = = dx? 4 xN%,.dQ?.  (4.20)

The angular part is continuous across X, as Niae (Xmin) = 0,
while the radial part diverges [cf. Eq. (3.10)]. This can simply
be interpreted as a bug of the chart x, which ends at x,,;,.
Changing instead to the coordinate A, which can be extended
across Xp;,, we find

dN¥ e 1-0
—

4.21

K, | t=const. — |’1|

which is straightforward to prove to be continuous across the
bounce.

This identification has a tremendous effect on the global
causal structure. First of all, we find that

9V, V,) = =(1 = Ny (L(1))?)

+ 2N, (L(0)L(2) + L(1)2 = =1, (4.22)
and therefore the evolution of matter is timelike during the
full evolution, even in the reexpanding phase. As the
spacetime region with sign(Ny,.) = —1 is just the time-
reverse of the other sign, all previous analysis of light rays
remains unaltered, except that the ingoing and outgoing
light rays are exchanged. It is therefore again possible to
sketch a Penrose diagram, which is now given in Fig. 5.
The minimal-radius surface x = x,,;, now plays the role of
a transition surface. However, this surface is timelike rather
than spacelike, and also does not transition between a
trapped and an antitrapped region. The areal radius reaches
a minimal value and then continues into a parallel universe,
the second branch of which is usually found in LQC-like
black hole models. Note that the spacetime is now
incomplete. Before, all light rays with x < x,,, were caught
again by the matter surface (cf. Fig. 4). This is not true
anymore; outgoing light rays reach x;,, as is visible from
the sketched Penrose diagram in Fig. 5 and the computa-
tions in Sec. III IIIB. The inner horizon is no longer
covered by the surface x = L(f) as in the original
description.

One is tempted to extend the coordinates (the possibility
of which is not clear due to noncovariance) to “global
Kruskal-Szekeres” coordinates and cover also the regions
behind x;,. This is not needed, as we can match several
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FIG. 5. Schematic Penrose diagram of the continuous collapse
process. The two different vacuum solutions are identified at
X = Xp;,- The matter can travel across this surface and remains in
timelike motion throughout the full process. The region where the
matter solution is relevant is shaded out. The solution is now
incomplete, as outgoing light rays can, e.g., exit via x;,. Some
sample ingoing (blue) and outgoing (green) light rays are drawn.
The A chart and the metric Eq. (4.18) covers the full (vacuum
region) diagram.

|

Lmin

identify
>

Lmin Tmin

H—

Lmin

patches together and identify them appropriately. We
find the two solutions in ingoing and outgoing Painlevé-
Gullstrand coordinates and can now repeatedly cover
shared regions of them. This can be made mathematically
exact. Consider the two solutions

ds? = —(1 = (N%)?)di2 + 2N¥,dr, dx + dx + x2dQ2,

(4.23a)

ds? = —(1 — (N¥,)?)d2 — 2N7¥, dt_dx + dx + x*dQ2.
(4.23b)

It is possible to identify the regions x > x,, by simply
mapping x — x and relating the times according to

X N7,
=1+ 2/ T (4.24)
Xref -

(Mae)?

This is a coordinate transformation, but it leaves the
spacetime scalars unaltered, as the lapse function is only
mapped from N =1+ N = —1. (See the Appendix for
details. N* « N, and the sign change in N changes the sign
of N*.) This is therefore effectively a time-reverse in a static
spacetime. Note that this transformation diverges if x,.; and
x lie on different sides of the horizon, which is expected, as
the two charts only coincide for the regions x > x,,., or
Xip < X < Xgus, OF Xpin < X < Xj,. Regardless, this is
enough to glue sufficiently many of these patches together

—

Lmin

identify
 E—

Lmin Tmin

Lmin

FIG. 6. Schematic Penrose diagram of the vacuum solution without matter. This can be achieved by identifying shared regions of the
spacetime solutions with sign(N*) = +1 and additionally identifying them across x = x,,;,. The global structure is infinitely extended
and similar to a Reissner-Nordstrom black hole, but also infinitely extended in the vertical direction.
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to extend all geodesics and gain a global extension of the
spacetime. This procedure is exact and always possible,
though it carries some ambiguity regarding the chosen
topology of spacetime. This allows one to construct the full
vacuum solution given by the equations of Ref. [11]
(without matter) and gives an extension of the sketched
Penrose diagram, which has now a Reissner-Nordstrom-
like structure, but is infinitely extended across all x = x;,
surfaces (see Fig. 6). The Penrose diagram would therefore
be infinitely extended in both time and space directions.
The overall picture of the collapse is then very similar to
what was found in Ref. [44]. The cost of this continuous
spacetime metric is the fact that the Penrose diagram
is, even including matter, not cut down to a finite
diagram. This gives the hint that important global effects
are missing—e.g., Hawking evaporation, which potentially
merges all vacuum regions after the black hole evaporation
[36,38,39,56-59].

V. CONCLUSIONS

In this paper, the causal structure of the LQG OS collapse
model [10], related to Ref. [11], has been analyzed. A
speciality of this model is that the spacetime is not
diffeomorphism invariant at the Planck regime; it depends
on the choice of lapse function, although it is suppressed by
factors of the area gap A. Then, as the metric is not
independent of the choice of coordinates, it is not straight-
forwardly possible to construct global conformally com-
pactified coordinates and derive a Penrose diagram.
Nevertheless, it is possible to study lightlike radial geo-
desics, which capture the main causal features. Note that
this strategy could also be applied to other models, which
break diffeomorphism invariance at the quantum level as in
Refs. [24,30]. This was first done for the vacuum region of
the spacetime, which coincides with the eternal description
of Ref. [11]. It turns out that there are two apparent
horizons, x;, and x,,, which in the eternal case are
Killing and causal horizons. As in the collapse model
[10], spacetime is dynamical due to the presence of matter,
so the presence of this causal horizon has to be rediscussed.
It was found that it is not present in the collapsing case.
Radial ingoing light rays move inwards and pass both
horizons until they hit the minimal radius surface x;,,
where the vacuum spacetime ends. This is no problem, as
the light rays are captured by the collapsing matter surface
before reaching this point and then propagate regularly in
the matter region of spacetime. Outgoing light rays emitted
outside of x,, reach out to infinity, and in their past
originate at the outer horizon x,,, both within infinite
coordinate time. Instead, light rays starting between the
inner and outer horizons, x;, < x < X, arrive in the future
always at x;, and in their past at x,,, also in infinite
coordinate time. Again, before reaching these horizons,
they are captured by the matter surface and continue their
propagation according to the matter region metric. The last

case are outgoing light rays starting at x;, < x < Xi,,
which in the past originate at x,;, and evolve towards x;, in
infinite time. The fact that these horizons are reached
only within infinite coordinate time indicates that the chart
does not cover regions beyond these points. This can be
understood as interpreting the eternal metric as a part of a
Reissner-Nordstrom-like causal structure.

In the next step, the matter trajectory was analyzed.
There is a conceptional mismatch, since x,, is a causal
horizon for the eternal black hole but not for the collapsing
spacetime. It was shown that it is possible that light rays can
enter the matter region at x < x,,, expand together with the
matter, and exit at x > x,,, thus causally connecting the
black hole interior and exterior. The causal horizon dis-
appears in the collapsing model. The question remains of
how this can happen, and it was worked out that the matter
is reexpanding faster than light out of the black hole
interior. The norm of its tangent becomes spacelike for a
relevant part of the evolution and thus can move out of the
outer horizon. This happens at the reexpanding branch,
where a shock wave [10] appears and the spacetime metric
is discontinuous across the matter surface. Note that this is
the perception of a vacuum-region observer only. From an
observer inside the collapsing matter, the surface would
travel along a timelike path, which gives no contradictions
due to the discontinuity of the spacetime across the matter
surface in the reexpanding branch. This is consistent with
earlier work [41-44,54], which all conclude that a bounce
has to happen outside of a causal horizon of the eternal
metric, or it will leave in a parallel universe if one insists on
a continuous and timelike collapse. Both of these assump-
tions are violated in Ref. [10], which gives rise to this shock
wave solution.

Finally, it was shown that the dynamical equations of
Refs. [10,11] also allow continuous solutions, where the
matter does follow a timelike trajectory everywhere.
Therefore, it was shown that the time-reversed vacuum
metric is also a solution of these equations and a once
continuously differentiable matching between these two
vacuum metrics at the minimal radius surface x = x;, is
possible. The collapsing matter can therefore continuously
follow its collapse across the surface x = x,;;, and reexpand
in the parallel universe. The process is then continuous
everywhere and justifies the neglect of edge effects.
However, the cost of this is an enormously more compli-
cated causal structure. The collapsing matter surface is not
cutting out additional regions, and light and matter can,
e.g., escape across x;, and the parallel universe. This picture
is again very familiar to other LQG-inspired black hole
modes [10-19,21-26,28,54] and the collapse model [44],
where an infinite tower of repeating Penrose diagrams
appears and the matter does not cut out all irrelevant
regions. This allows the speculation that there is something
very essential missing to determine a physically reasonable
black hole spacetime, which most likely is black hole
evaporation [36,38,39,56-59].
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Further, having all these patches of spacetimes in ingoing
and outgoing Painlevé-Gullstrand coordinates allows for
the complete eternal and vacuum metric. The resulting
spacetime has a causal structure that is similar to a
Reissner-Nordstrom black hole, although the singularity
is resolved and instead replaced by x,,;,, where a minimal
radius is reached and the spacetime is regular [11]. The
different Reissner-Nordstrom patches can be identified at
X = Xpmin» leading to an infinite extended causal structure in
the time and space directions. All this is supplemented by
the computations in the Appendix, where the eternal
equations of Ref. [11] were solved for any gauge choice
of N, which shows that the time-reversed metric is a valid
solution. It also allows us to make the breaking of the
diffeomorphism invariance explicit, as spacetime scalars,
(such as, e.g., RﬂmﬁR""“ﬁ) depend now on the lapse
function N, although the dependence is suppressed by
A. It should be emphasized that this seems to be a general
issue in LQG-related black hole models [51]. A first
attempt to understand this in terms of quantum discreteness
was discussed in Ref. [30]. This also allows us to find
different coordinate solutions discussed in Refs. [11,24] as
special cases of this general solution. Further, it is possible
to make contact with Ref. [21] and analyze the number of
physically relevant integration constants. Consistent with
the observations in Ref. [21], there exists only one physical
integration constant, related to the mass, as there are no
fiducial-cell-dependent polymerization scales.® There is a
second integration constant that can always be absorbed in
the lapse N and does not appear in spacetime scalars. This
allows for speculation that N itself might be a full function
of “initial conditions,” which might be fixed due to
reasonable physical conditions and avoids then the break-
ing of diffeomorphism invariance due to the choice of
physically preferred situations. This certainly should be
understood in future work.

In general, we saw that the model in Ref. [10] allows two
pictures of black hole collapse. On the one hand, there is the
shock wave solution, which has the drawback of spacetime
discontinuity and spacelike matter evolution. Nevertheless,
it has promising features, such as a nice compact causal
structure without any causal horizon. Besides this, it is then
possible to compute the lifetime of a black hole without the
need of including black hole evaporation, which is propor-
tional to M? [10] and makes contact with Ref. [57], which
is significantly smaller than the evaporation time scale M>
and the Page time [60]. One might therefore argue that
Hawking evaporation effects are subdominant and negli-
gible. Due to the avoidance of Cauchy horizons, which are
all cut out by the matter, stability issues as discussed in

¥ Although this is not a good notion in this setting, which is free
of fiducial cell issues, rephrased in the language of the static
spacetimes of Ref. [21], this would correspond to a fiducial-cell-
independent polymerization—if it is possible to relate these.

Ref. [61] do not apply. These features were not achieved in
any LQG black hole model so far, at least when Hawking
evaporation is neglected. Therefore, it still might be
possible to insist on the discontinuous metric and the
shock wave. However, it would require us to physically
justify this discontinuity and the superliminal reexpansion
from the vacuum-region perspective.

On the other hand, there is the continuous solution.
This solution has the advantage of being continuous
and admitting a timelike matter evolution everywhere.
Nevertheless, this is at the cost of an infinite extended
causal structure, but also makes nice contact with previous
bouncing black hole models, where two branches appear
[10-19,21-26,28]. The main difference between these
approaches is that the transition surface is spacelike and
does not transition a trapped region into an antitrapped
region. It remains to say that in this case, there is still hope
that Hawking radiation will allow us to avoid the infinite
exteriors discussed by Refs. [36,38,39,56-59]. Black hole
evaporation is therefore a necessary ingredient to gain a full
understanding of a black hole life cycle.

The physical question remains: Does the matter bounce
out of a black hole as a shock wave with superluminal speed,
or does it not bounce out at the cost of an infinite tower of
exterior regions? For this, the physical consequences should
be worked out in the future, and the breaking of diffeo-
morphism invariance should be understood better.
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APPENDIX: FULL SPACE OF VACUUM
SOLUTIONS

We come back to the more general setting of Ref. [11],
where no matter is included. Consequently, there is no
natural time gauge fixing coming from the matter field.
This makes the equations of motion more general, as the
lapse N is not fixed. There is still the gauge E* = x>
applied, and the quantization scheme is exactly the one
described in Sec. II. The spacetime metric still has the form
of Eq. (2.1), but the expression in Eq. (2.8) for the shift N*
has an additional factor of N—i.e.,

N* = —]j:]/%sin <\/§b) cos <\/§b> (A1)
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Spacetime dynamics is generated by H = [dxNHT,
where H® is given by Eq. (2.7), which now is not a true
Hamiltonian, but rather a constraint H" ~ 0. The equa-
tions of motion Eq. (2.9) are modified by a factor N and
thus read

C o x? <NE”> , <\/Zb) <\/Kb>
E’=—- 0, sin cos
2rVA x X
o (NE?
— N, ( : )

. yNx 0,
= 1+2
b= 2(E1’) < + 2x

(A2a)

_N
2x
ZyAx <_ sin

) ) (A2b)
but still have a very similar form.
We are interested in static solutions of these equations—
i.e., when E? = b = 0. The first condition, E” = 0, is due
to Eq. (A2a) satisfied for either

Eb
=0 or 0, <N7> =0, (A3)

which gives two classes of possible solutions. As it turns
out, the class of N* = 0 is contained in the second one, and
thus it is not considered here. The second equation implies

= (Ad)

where D is an arbitrary integration constant which can be
fixed later on. Demanding that b also be static leads,
according to Eq. (A2b), to

2 b 2
0% 0.E N 3x 11 o, (+sin VADb
(EP)*  2(E®)? 2x 2p%Ax x

= (@) 2w (e ()

(AS)
This can easily be integrated with the result
x3 2 [VAb\? ~ (VAb\?
x—C=-r(s5——>-sin = sin
(E”)* yA X X
2A (N? C
=T |=-14+=), A6
x2 <D2 x) (A6)

where Eq. (A4) was used in the last step. This leads
immediately to the shift, given by

N T P Y
N D? X x> \D? x))

(A7)

Note that here we have a sign choice, as the root of Eq. (A6)
has to be taken. This sign choice was absorbed in N
Exactly this sign is important to construct the continuous
extension in the main text. The Hamiltonian constraint
HT = 0 is trivially satisfied as it can be rewritten as a
derivative of Eq. (A6). Therefore, the spacetime is fully
determined up to the free gauge choice N. The general
metric then reads

N xDZ
ds2:—N2<1 (D))d2+2 drdx

D2
+ m dx2 + deQZ,

(A8)

with N* given by Eq. (A7) and only dependent on the lapse
N and the integration constants D and C.

Note that it is possible to choose another time coordinate
7 = t/D, which makes the metric only dependent on the
combination N/D. Thus, also redefining the lapse N =
N/D makes the line element independent of D. The
freedom in choosing D is thus absorbed in the freedom
to choose N. This family of solutions, once the function N
is fixed, depends on only one integration constant, which
can be related to the mass. Its precise dependence on the
mass might depend on the choice of N. This fits perfectly
into the picture of Ref. [21], where the number of Dirac
observables—i.e., integration constants with physical
effects—for several black hole models were studied. The
main difference is that the setting of Ref. [21] is static from
the beginning. As argued there, performing a polymeriza-
tion, which is independent under fiducial cell rescalings
(only present in the static case), leads to a quantum theory
with only one free parameter—i.e., the black hole mass.
Indeed, in the models [10,11] a polymerization of b takes
place, which is in the static case independent of the fiducial
cell. This comparison is very vague, as the basic underlying
formulations are very different, but in this sense, the
observation that Eq. (A8) only depends on C perfectly
agrees with the results in Ref. [21].

It is also easily possible to rediscover the Planck-scale
braking of diffeomorphism invariance noted in Ref. [11]
from this point of view. Computing spacetime scalars—
e.g., RﬂmﬁR"”“/’—should not depend on the lapse N, as this
is usually a pure gauge degree of freedom. Nevertheless,
performing this computation for Eq. (A8) gives terms
proportional to N and its first and second derivatives
(for Rﬂy(lﬂR””(‘ﬂ), which are all suppressed by factors
of A. As spacetime scalars depend now on N—i.e.,
the specific time coordinate—the spacetime is only
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diffeomorphism invariant up to corrections of order O(A).
This certainly has to be understood better in the future, but
it seems so far to be a feature (or bug) of most of the LQG-
inspired black hole models [51]. A possible interpretation
of this in the context of the quantum theory was provided in
Ref. [30]. The authors conclude that the breaking of
diffeomorphisms can be related to the quantum discreteness
of spacetime and different realizable observers, whose
observations coincide in the regime where the discreteness
can be neglected.

It would be interesting to view N not as a lapse, but
rather as a Dirac observable, which has to be fixed by
suitable initial or boundary conditions and physical input.
To address this problem, it would be important to work out
the physical role of N with the most general solution
[Eq. (A8)]. Reversely, it might also be that the presence of a
second Dirac observable in Ref. [21] indicates a

dependence on the lapse if embedded to a dynamical
theory. This second observable would then indicate the
noncovariance of these polymer models, which would be
consistent with Ref. [51].

Obviously, the results of Ref. [11] can be reproduced.
For N=N/D =1 and C = R,, the vacuum metric in
Eq. (2.13b) is recovered. Also, the metric like that of
Ref. [24], which is discussed in Ref. [11], can be repro-
duced by choosing N=N/D=1/y/1+R,/x and
C = R,. These are now simply special cases of the more
general metric (A8). Particularly important is the case
where N = N/D = —1 and C = R,, which is exactly the
vacuum metric of the main text, only time-reversed. This
metric plays a crucial role in Sec. IV to remove the
discontinuity. The sign choice of Ni,. in Eq. (4.8) corre-
sponds, then, simply to the choice sign(N) = +1.
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