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For the first time we systematically discuss the N ¼ 1 supersymmetric SUð12ÞC × SUð2ÞL × SUð2ÞR
models, SUð4ÞC × SUð6ÞL × SUð2ÞR models, and SUð4ÞC × SUð2ÞL × SUð6ÞR models from the type IIA
orientifolds on T6=ðZ2 × Z2Þwith intersecting D6-branes. These gauge symmetries can be broken down to
the Pati-Salam gauge symmetry SUð4ÞC × SUð2ÞL × SUð2ÞR via three SUð12ÞC=SUð6ÞL=SUð6ÞR adjoint
representation Higgs fields, and further down to the Standard Model (SM) via the D-brane splitting and
Higgs mechanism. We obtain three families of the SM fermions, and have the left-handed three-family SM
fermion unification in the SUð4ÞC × SUð6ÞL × SUð2ÞR models, and the right-handed three-family SM
fermion unification in the SUð4ÞC × SUð2ÞL × SUð6ÞR models. Utilizing mathematical analysis, we
exclude the generalized SUð12ÞC × SUð2ÞL × SUð2ÞR models by requiring the conditions for constructing
Minimal Supersymmetric Standard Model models. Moreover, the SUð4ÞC × SUð6ÞL × SUð2ÞR models
and SUð4ÞC × SUð2ÞL × SUð6ÞR models are related by the left and right gauge symmetry exchanging, as
well as a variation of type II T-duality. The hidden sector contains USpðnÞ branes, which are parallel with
the orientifold planes or their Z2 images and might break the supersymmetry via gaugino condensations.

DOI: 10.1103/PhysRevD.104.046018

I. INTRODUCTION

Constructing the N ¼ 1 supersymmetric Standard
Models (SM) or SM from string theories has been the
essential goal of string phenomenology. D-branes as
boundaries of open strings plays an important role in
phenomenologically interesting model building in type I,
type IIA and type IIB string theories [1]. Conformal field
theory provides the consistent constructions of four-dimen-
sional supersymmetric N ¼ 1 chiral models with non-
Abelian gauge symmetry on type II orientifolds for the
open string sectors. The chiral fermions on the world
volume of the D-branes are located at orbifold singularities
[2–8], and/or at the intersections of D-branes in the internal
space [9] with a T-dual description in terms of magnetized
D-branes as shown in [10,11]. Many nonsupersymmetric

three-family SM-like models and generalized unified mod-
els have been constructed [12–25], within the intersecting
D6-brane models on type IIA orientifolds [12–14]. These
models typically suffer from the large Planck scale cor-
rections at the loop level which results in the gauge
hierarchy problem. A large number of the supersymmetric
SM-like models and generalized unified models have been
constructed [26–46], with the above problem solved. For a
pedagogical introduction to phenomenologically interest-
ing string models constructed with intersecting
D-Branes, we refer to [47].
Along this direction, explicit models for the three-family

N ¼ 1 supersymmetric Pati-Salam models with type IIA
orientifolds on T6=ðZ2 × Z2Þ with intersecting D6-branes
have been systematically constructed in [37]. The gauge
symmetries all come from UðnÞ branes, while the Pati-
Salamgauge symmetriesSUð4ÞC×SUð2ÞL×SUð2ÞR break
down to SUð3ÞC × SUð2ÞL ×Uð1ÞB−L ×Uð1ÞI3R via D6-
brane splittings. It further breaks down to the SM via four-
dimensional N ¼ 1 supersymmetry via Higgs mechanism.
This provides a way to realize the SMwithout any additional
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anomaly-free Uð1Þ’s around the electroweak scale intro-
duced. Note that there are also hidden sectors containing
USpðnÞ branes paralleling the orientifold planes or their Z2

images. These models normally are constructed with at least
two confining gauge groups in the hidden sector, for which
the gaugino condensation triggers supersymmetry breaking
and (some) moduli stabilization. In particular, one of these
type ofmodels with a realistic phenomenologywas found by
Chen,Mayes, Nanopoulos and one of us (T. L.) in [42,44]. Its
variations are also visited in [43]. Moreover, there are a few
other potentially interesting constructions with possible
massless vectorlike fields that might lead to the SM [37].
These vector fields do not arise from a N ¼ 2 subsector, but
can break the Pati-Salam gauge symmetry down to the SM
or break the Uð1ÞB−L ×Uð1ÞI3R down to Uð1ÞY . For such
construction, large wrapping numbers are required because
of the increased absolute values of the intersection numbers
between Uð4ÞC stack of D-branes and Uð2ÞR stack(or its
orientifold image). Therefore, more powerful scanning
methods reaching largewrapping numbers are also requested
in further investigations.
Employing our improved scanning methods, we system-

atically studied the three-family N ¼ 1 supersymmetric
Pati-Salam model building in type IIA orientifolds on
T6=ðZ2 × Z2Þ with intersecting D6-branes in which the
SUð4ÞC × SUð2ÞL × SUð2ÞR gauge symmetries arise from
UðnÞ branes. In particular, we construct the new models
with large wrapping numbers, and find that the approxi-
mate gauge coupling unification can be achieved at the
string scale. The Pati-Salam gauge symmetries SUð4ÞC ×
SUð2ÞL × SUð2ÞR therein can be broken down to the SM
via D-brane splitting as well as D- and F-flatness preserving
the Higgs mechanism. The hidden sector contains USpðnÞ
branes with n equal to 4 or 2, which are parallel with the
orientifold planes or their Z2 images. We find that the type
II T duality in the previous study [37] is not an equivalent
relation in Pati-Salam model building as most of the models
are not invariant under SUð2ÞL and SUð2ÞR exchange. As
follows, by swapping the b and c stacks of D6-branes,
gauge couplings can be redefined and refine the gauge
unification becomes possible. We systematically construct
explicit new models with three families, which usually do
not have gauge coupling unification at the string scale. We,
for the first time, construct the Pati-Salam model with one
large wrapping number reaching 5. In particular, we find
that these models carry more refined gauge couplings, and
with better approximate gauge coupling unification. Using
the dimension reduction method “Latent Semantic
Analysis”, we show that the three-family N ¼ 1 super-
symmetric Pati-Salam models gather on islands, where
more interesting models can be expected.
Distinct from the scanning methods we employed

in Ref. [48], by explicit solving the conditions of the
generalized version of Pati-Salam models, we for the first
time systematically discuss the N ¼ 1 supersymmetric

SUð12ÞC×SUð2ÞL ×SUð2ÞR models, SUð4ÞC × SUð6ÞL×
SUð2ÞR models, and SUð4ÞC × SUð2ÞL × SUð6ÞR models
from the type IIA orientifolds on T6=ðZ2 × Z2Þ with
intersecting D6-branes. These gauge symmetries can be
broken down to the Pati-Salam gauge symmetry SUð4ÞC ×
SUð2ÞL × SUð2ÞR via three SUð12ÞC=SUð6ÞL=SUð6ÞR
adjoint representation Higgs fields, and further down to
the SM via the D-brane splitting and the Higgs mechanism.
Also, we obtain three families of the SM fermions, and
have the left-handed three-family SM fermion unifica-
tion in the SUð4ÞC × SUð6ÞL × SUð2ÞR models, and the
right-handed three-family SM fermion unification in
the SUð4ÞC × SUð2ÞL × SUð6ÞR models. Moreover, the
SUð4ÞC × SUð6ÞL × SUð2ÞR models and SUð4ÞC ×
SUð2ÞL × SUð6ÞR models are related by the left and right
gauge symmetry exchanging, as well as a variation of type
II T-duality n Ref. [48], but the Uð1ÞY gauge coupling are
different. Furthermore, the hidden sector contains USpðnÞ
branes, which are parallel with the orientifold planes or
their Z2 images and might break the supersymmetry via
gaugino condensations.
This paper is organized as follows: We will first review

the basic rules for supersymmetric intersecting D6-brane
model building on type IIA T6=ðZ2 × Z2Þ orientifolds in
Sec. II, as well as the tadpole cancellation conditions and
the conditions for D6-brane configurations which preserve
four-dimensional N ¼ 1 supersymmetry in Sec. III. We
present the generalized supersymmetric Pati-Salam model
building in Sec. IV. We discuss the preliminary phenom-
enological consequences in Sec. V. The discussions and
conclusion are in Sec. VI.

II. T6=ðZ2 × Z2Þ ORIENTIFOLDS WITH
INTERSECTING D6-BRANES

Before we construct the generalized verison of Pati-
Salam models, let us briefly review the basic rules
to construct the supersymmetric models on type IIA
T6=ðZ2 × Z2Þ orientifolds with D6-branes intersecting at
generic angles to obtain the massless open string state
spectra as in [27,29]. In this construction, we consider the
six-torus T6 factorized as three two-tori T6 ¼ T2 × T2 × T2

with complex coordinates for the ith two-torus to be zi,
i ¼ 1, 2, 3 respectively. The θ and ω generators for the
orbifold group Z2 × Z2 are associated with the twist
vectors ð1=2;−1=2; 0Þ and ð0; 1=2;−1=2Þ respectively.
They act on the complex coordinates zi in the form of

θ∶ ðz1; z2; z3Þ → ð−z1;−z2; z3Þ;
ω∶ ðz1; z2; z3Þ → ðz1;−z2;−z3Þ: ð1Þ

Furthermore, we implement the orientifold projection by
gauging the ΩR symmetry. In which, Ω is world-sheet
parity, and R acts on the complex coordinates as
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R∶ ðz1; z2; z3Þ → ðz̄1; z̄2; z̄3Þ: ð2Þ

In total, there are four kinds of orientifold 6-planes (O6-
planes) for the actions of ΩR, ΩRθ, ΩRω, and ΩRθω
respectively. In addition, three stacks of Na D6-branes
wrapping on the factorized three-cycles are introduced to
cancel the Ramond-Ramond (RR) charges of these O6-
planes. As discussed in [13,27,29,44], these two-tori have
two kinds of complex structures: rectangular or tilted,
which are consistent with the orientifold projection. The
homology classes of the three cycles which are wrapped by
the D6-brane stack take the form nia½ai� þmi

a½bi� and
nia½a0i� þmi

a½bi� for the rectangular and tilted tori respec-
tively, with ½a0i� ¼ ½ai� þ 1

2
½bi�. Therefore, a generic one

cycle are labeled by ðnia; liaÞ in terms of the wrapping
numbers, lia ≡mi

a and lia ≡ 2m̃i
a ¼ 2mi

a þ nia for a rectan-
gular and tilted two-torus, respectively. Moreover, lia − nia
is even for tilted two-tori.
We note the wrapping number for stack a of D6-branes

along the cycle to be ðnia; liaÞ, and their ΩR images a0 stack
of Na D6-branes have wrapping numbers ðnia;−liaÞ. The
homology three cycles for stack a of D6-branes and its
orientifold image a0 takes the form of

½Πa� ¼
Y3
i¼1

ðnia½ai� þ 2−βi lia½bi�Þ;

½Πa0 � ¼
Y3
i¼1

ðnia½ai� − 2−βi lia½bi�Þ; ð3Þ

where βi ¼ 0 for the rectangular and βi ¼ 1 for the tilted ith
two-torus. The homology three-cycles wrapped by the four
O6-planes are in terms of

ΩR∶ ½ΠΩR� ¼ 23½a1� × ½a2� × ½a3�; ð4Þ
ΩRω∶ ½ΠΩRω� ¼ −23−β2−β3 ½a1� × ½b2� × ½b3�; ð5Þ
ΩRθω∶ ½ΠΩRθω� ¼ −23−β1−β3 ½b1� × ½a2� × ½b3�; ð6Þ
ΩRθ∶ ½ΠΩR� ¼ −23−β1−β2 ½b1� × ½b2� × ½a3�: ð7Þ

The intersection numbers are related with the wrapping
numbers in the term of

Iab ¼ ½Πa�½Πb� ¼ 2−k
Y3
i¼1

ðnialib − nibl
i
aÞ; ð8Þ

Iab0 ¼ ½Πa�½Πb0 � ¼ −2−k
Y3
i¼1

ðnialib þ nibl
i
aÞ; ð9Þ

Iaa0 ¼ ½Πa�½Πa0 � ¼ −23−k
Y3
i¼1

ðnialiaÞ; ð10Þ

IaO6 ¼ ½Πa�½ΠO6�
¼ 23−kð−l1al2al3a þ l1an2an3a þ n1al2an3a þ n1an2al3aÞ; ð11Þ

where k ¼ β1 þ β2 þ β3 is the total number of the tilted
two-tori, while ½ΠO6� ¼ ½ΠΩR� þ ½ΠΩRω� þ ½ΠΩRθω� þ
½ΠΩRθ� is the sum of four O6-plane homology three-cycles.
On the model building side, the massless particle

spectrum for intersecting D6-branes at general angles
can be expressed in terms of the intersection numbers
shown in Table I. The representations refer toUðNa=2Þ, the
gauge symmetry results from Z2 × Z2 orbifold projection
[27]. For Pati-Salam models with type IIA orientifolds on
T6=ðZ2 × Z2Þ, when the intersecting D6-branes are of
numbers Na ¼ 8, Nb ¼ 4, Nc ¼ 4, this gives UðNx=2Þ
gauge groups for x ¼ a, b, c. The chiral supermultiplets
contain both scalars and fermions in the supersymmetric
constructions, while the positive intersection numbers refer
to the left-handed chiral supermultiplets. The two main
constraints on the four-dimensional N ¼ 1 supersymmetric
model built from type IIA orientifolds with intersecting D6-
branes are: RR tadpole cancellation conditions and N ¼ 1
supersymmetry preservation in four dimensions, which we
will discuss in the following section with our generalized
construction.

III. GENERALIZED D6-BRANE
CONSTRUCTIONS

In [48], we observe that new models with three gen-
erations of particles can also be constructed when nix and lix
have the common factor 3, while x refers to a, b, c stacks of
branes and i refers to 1,2,3 for different wrapping direc-
tions. For example, when n1a and l1a have common factor 3,
the intersection numbers consequently will also have
cofactor 3 for Eqs. (8) and (9), and cofactor 9 for
Eq. (10). Dividing by this co-factor 3 for the stack a of
D-brane, the generalized gauge symmetry resulting from
the D6-branes becomes SUð12ÞC × SUð2ÞL × SUð2ÞR.
The a-stack brane’s gauge Uð12Þ can be broken down
to Uð4Þ with proper orientations, i.e., by taking vacuum
expectation values of an adjoint Higgs field with respect to
the Cartan generators of U(12). When the wrapping number
n1b, l

1
b for the b stack of the brane have common factor 3,

dividing out the cofactor 3 results in the gauge symmetry
becoming SUð4ÞC × SUð6ÞL × SUð2ÞR. To break it down
to the Pati-Salam symmetry SUð4ÞC × SUð2ÞL × SUð2ÞR,
similar orientations needed to be performed to break the

TABLE I. General massless particle spectrum for intersecting
D6-branes at generic angles.

Sector Representation

aa UðNa=2Þ vector multiplet 3 adjoint chiral multiplets
abþ ba Iab ð□a; □̄bÞ fermions
ab0 þ b0a Iab0 ð□a;□bÞ fermions
aa0 þ a0a 1

2
ðIaa0 − 1

2
Ia;O6Þ fermions

1
2
ðIaa0 þ 1

2
Ia;O6Þ fermions
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Uð6ÞL gauge to Uð2ÞL; details will be given in Sec. IV.
Also, we obtain three families of the SM fermions, and
have the left-handed three-family SM fermion unifica-
tion in the SUð4ÞC × SUð6ÞL × SUð2ÞR models, and the
right-handed three-family SM fermion unification in the
SUð4ÞC × SUð2ÞL × SUð6ÞR models. As follows, the Pati-
Salam gauge symmetries SUð4ÞC × SUð2ÞL × SUð2ÞR can
be broken down to SM via D-brane splitting as well as
D- and F-flatness preserving the Higgs mechanism.
We will present the two main constraints on the four-

dimensional N ¼ 1 supersymmetric model building from
type IIA orientifolds with intersecting D6-branes, namely
the RR tadpole cancellation conditions, and N ¼ 1 super-
symmetry preservation in four dimensions with our gen-
eralized gauge modifications.

A. The RR tadpole cancellation conditions

In the standard Pati-Salam models, the tadpole cancel-
lation conditions lead to the SUðNaÞ3 cubic non-Abelian

anomaly cancellation as shown in [15,16,27], while
the cancellation of Uð1Þ mixed gauge and gravitational
anomaly (or ½SUðNaÞ�2Uð1Þ gauge anomaly) can be
achieved by the Green-Schwarz mechanism mediated by
the untwisted RR fields as shown in [15,16,27]. The D6-
branes and the orientifold O6-planes are the sources of RR
fields and restricted by the Gauss law in a compact space.
The sum of the RR charges from D6-branes must cancel
with those from the O6-planes due to the conservation of
the RR field flux lines. The conditions for RR tadpole
cancellations take the form of

X
a

Na½Πa� þ
X
a

Na½Πa0 � − 4½ΠO6� ¼ 0; ð12Þ

where the last term arises from the O6-planes have −4 RR
charges in the D6-brane charge unit. To simplify the
discussion of the following tadpole cancellation, we define
the following products of wrapping numbers as

Aa ≡ −n1an2an3a; Ba ≡ n1al2al3a; Ca ≡ l1an2al3a; Da ≡ l1al2an3a;

Ãa ≡ −l1al2al3a; B̃a ≡ l1an2an3a; C̃a ≡ n1al2an3a; D̃a ≡ n1an2al3a: ð13Þ

In order to cancel the RR tadpoles, D6-branes wrapping
cycles along the orientifold planes are introduced as
the so-called “filler branes”. This contributes to the RR
tadpole cancellation conditions, and trivially satisfy the
four-dimensional N ¼ 1 supersymmetry conditions. They
are chosen such that the tadpole conditions are satisfied in
the manner of

− 2kNð1Þ þ
X
a

NaAa ¼ −2kNð2Þ þ
X
a

NaBa

¼ −2kNð3Þ þ
X
a

NaCa ¼ −2kNð4Þ þ
X
a

NaDa ¼ −16;

ð14Þ

where 2NðiÞ is the number of filler branes wrapping along
the ith O6-plane. The filler branes representing the USp
group, carry the wrapping numbers as one of the O6-planes
shown in Table II. The filler branes with nonzero A, B, C or
D refer to the A-, B-,C- orD-typeUSp group, respectively.

Note that for our generalized version of Pati-Salam
models, the wrapping numbers ðnix; lixÞ wrap three times
for one stack of D6-branes in one direction compared to the
standard Pati-Salam model. Therefore, the relevant terms in
the tadpole cancellation condition as shown in Eqs. (12)
and (14) will also get rescaled. To be precise, when the
wrapping numbers ðnix; lixÞ wrap three times, the terms in
Eq. (13) will be rescaled accordingly. And since the number
of brane stacks Na, Nb, Nc appear together with the
wrapping numbers, this corresponds to absorbing a factor
of 3-form the wrapping numbers into the number of D6-
brane stacks. Although N-stacks of brane wrapping 3l
times and 3N-stacks of brane wrapping l times appear same
in the brane picture, it represents gauge construction from
SUð4Þ to SUð12Þ or SUð2Þ to SUð6Þ. It is obvious that
when the first two terms in Eq. (12) got rescaled with 3
factor, to satisfy the tadpole cancellation conditions,
less number of orientifold planes are expected. This will
be confirmed with our precise analysis to obtain the
generalized Pati-Salam models in the next section. We
will discuss their phenomenology aspects after the models
are presented.

B. Conditions for four-dimensional N = 1
supersymmetric D6-brane

For the four-dimensional N ¼ 1 supersymmetric mod-
els, the 1=4 supercharges are required to be preserved
from the ten-dimensional type I T-dual. Namely, under the
orientation projection of the intersecting D6-branes and the

TABLE II. The wrapping numbers for four O6-planes.

Orientifold Action O6-Plane ðn1; l1Þ × ðn2; l2Þ × ðn3; l3Þ
ΩR 1 ð2β1 ; 0Þ × ð2β2 ; 0Þ × ð2β3 ; 0Þ
ΩRω 2 ð2β1 ; 0Þ × ð0;−2β2Þ × ð0; 2β3Þ
ΩRθω 3 ð0;−2β1Þ × ð2β2 ; 0Þ × ð0; 2β3Þ
ΩRθ 4 ð0;−2β1Þ × ð0; 2β2Þ × ð2β3 ; 0Þ
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Z2 × Z2 orbifold projection on the background manifold
these 1=4 supercharges have the same value. It was shown
in [9] that the four-dimensional N ¼ 1 supersymmetry can
be preserved after the orientation projection if and only if
the rotation angle of any D6-brane with respect to the
orientifold plane is an element of SUð3Þ. Namely, θ1 þ
θ2 þ θ3 ¼ 0mod 2π, where θi is the angle between theD6-
brane and the orientifold-plane in the ith two-torus. The
four-dimensional N ¼ 1 supersymmetry will automatically
survive theZ2 × Z2 orbifold projection [29], and the SUSY
conditions can therefore be written as

xAÃa þ xBB̃a þ xCC̃a þ xDD̃a ¼ 0;

Aa=xA þ Ba=xB þ Ca=xC þDa=xD < 0; ð15Þ

where xA ¼ λ, xB ¼ λ2β2þβ3=χ2χ3, xC ¼ λ2β1þβ3=χ1χ3,
xD ¼ λ2β1þβ2=χ1χ2, in which χi ¼ R2

i =R
1
i represent the

complex structure moduli for the ith two-torus. More-
over, the positive parameter λ is introduced to put all the

variables A, B, C, D on an equal footing. All the possible
D6-brane configurations preserving four-dimensional
N ¼ 1 supersymmetry can be classified into three types:
(1) Filler brane with the same wrapping numbers as

one of the O6-planes from Table II. The gauge
symmetry reveals to be USp group. When there is
only one of the wrapping number products A, B, C
or D has nonzero and negative value and we refer to
the USp group as A-, B-, C- or D-type USp group
accordingly.

(2) When there is one zero wrapping number, two
negative and two zero values in A, B, C and D
we refer to it as the Z-type D6-brane.

(3) When there are three negative value and one positive
value in A, B, C and D we refer to this case as NZ-
type D6-brane. Depending on which one is positive,
we note the NZ-type branes as A-, B-, C- andD-type
NZ branes. Each type has two forms of wrapping
numbers which are noted as follows:

A1∶ ð−;−Þ × ðþ;þÞ × ðþ;þÞ; A2∶ ð−;þÞ × ð−;þÞ × ð−;þÞ; ð16Þ

B1∶ ðþ;−Þ × ðþ;þÞ × ðþ;þÞ; B2∶ ðþ;þÞ × ð−;þÞ × ð−;þÞ; ð17Þ

C1∶ ðþ;þÞ × ðþ;−Þ × ðþ;þÞ; C2∶ ð−;þÞ × ðþ;þÞ × ð−;þÞ; ð18Þ

D1∶ ðþ;þÞ × ðþ;þÞ × ðþ;−Þ; D2∶ ð−;þÞ × ð−;þÞ × ðþ;þÞ: ð19Þ

For our generalized construction, the wrapping number
ðnix; lixÞ will rescale the relevant terms in Eq. (15), and thus
the supersymmetry condition will need to be checked in
the scaled manner. Moreover, although T-duality is not the
focus of our work, we would like to note that if the three
two-tori of the two models and their corresponding wrap-
ping numbers for all the D6-branes are correlated by an
element of the permutation group S3 acting on three two-
tori, we consider these two models to be equivalent. This
applies to our generalized Pati-Salam models in the same
way. For more details about T-duality, D6-brane sign
equivalent principle and the equivalence of dual models,
we refer to [37,48].

IV. GENERALIZED SUPERSYMMETRIC
PATI-SALAM MODEL BUILDING

A. Construction of generalized supersymmetric
Pati-Salam models

In the standard Pati-Salam models, to construct the
SM or SM-like models from the intersecting D6-brane
scenarios (besides the Uð3ÞC and Uð2ÞL gauge symmetries
from stacks of D6-branes) we construct two extra Uð1Þ
gauge groups for both supersymmetric and nonsupersym-
metric models to have the correct quantum number for

right-handed charged leptons as shown in [16,27–29]. One
Uð1ÞL represents the lepton number symmetry, while the
other Uð1ÞI3R behaves as the third component of right-
handed weak isospin. The hypercharge is then given by

QY ¼ QI3R þ
QB −QL

2
; ð20Þ

where Uð1ÞB arises from the overall Uð1Þ in Uð3ÞC. The
Uð1Þ gauge symmetry (coming from a non-Abelian
symmetry) is anomaly free and its gauge field is massless.
Thus, to stop the gauge field of Uð1ÞI3R from obtaining a
mass via B ∧ F couplings, Uð1ÞI3R can only arise from the
non-Abelian part of Uð2ÞR or USp gauge symmetry.
Similarly, to obtain an anomaly-free Uð1ÞB−L gauge
symmetry, the Uð1ÞL gauge symmetry should come from
a non-Abelian group as well. Note that the Uð1ÞL stack
should be parallel to the Uð3ÞC stack on at least one two-
torus (we can obtain it by splitting oneUð4Þ stack of branes
into Uð1ÞL and Uð3ÞC stacks). The Uð3ÞC gauge symmetry
is also generated in the mean time. When Uð1ÞI3R gauge
arises from the stack of D6-branes on top of orientifold,
there exist at least 8 pairs of SM Higgs doublets, and two
extra anomaly-free Uð1Þ gauge symmetries from the USp
group [27,28]. These Uð1Þ gauge symmetries could be
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spontaneously broken by the Higgs mechanism via
the scalar components of the chiral superfields with the
quantum numbers of the right-handed neutrinos. However,
they also break the D-flatness conditions and thus break
supersymmetry. Therefore, the symmetry breaking scale is
around the electroweak scale. We typically do not have any
other candidates, which can preserve the D-flatness and
F-flatness conditions, and break these gauge symmetries at
an intermediate scale.
Distinguished from the model building in Ref. [37,48],

we for the first time construct a generalized version of
Pati-Salam models with three times of wrapping for one
stack of D6-branes construction, then realize standard
Pati-Salam models via the Higgs mechanism. As follows,
we can concentrate on the deriving Pati-Salam models in
whichUð1ÞI3R arises from theUð2ÞR symmetry as usual. As
it is difficult to construct phenomenology interesting models
withSUð2ÞL from theD6-branes on the top ofO6-plane [37],
we instead discuss the gauge symmetries SUð12ÞC ×
SUð2ÞL×SUð2ÞR, SUð4ÞC×SUð6ÞL×SUð2ÞR, SUð4ÞC ×
SUð2ÞL × SUð6ÞR from three time of wrapping respectively
on a; b or c stacks of D6-branes, which are not on the top of
orientifold planes in a generalized construction. Namely, we
introduce three stacks of D6-branes, a, b, c with D6-brane
numbers 24, 4, 4; 8, 12, 4; and 8, 4, 12 which respectively
give us the gauge symmetries as above. Then it can break
down to three stacks of D6-branes, a, b, c with D6-brane
numbers 8,4,4 with gauge symmetry SUð4ÞC × SUð2ÞL×
SUð2ÞR, and break the resulting Pati-Salam gauge symmetry
down to SUð3ÞC × SUð2ÞL × Uð1ÞB−L × Uð1ÞI3R from
D6-brane splitting. The SM gauge symmetry can be realized
via the Higgs mechanism with Higgs particles from aN ¼ 2
subsector as for standard Pati-Salam models [37].
Moreover, the gauge anomalies from three Uð1Þs are

cancelled by the generalized Green-Schwarz mechanism,
and these Uð1Þ gauge fields obtain masses via the linear
B ∧ F couplings. Furthermore, to obtain three families of the
SM fermions, we require the intersection numbers to satisfy

Iab þ Iab0 ¼ 3;

Iac ¼ −3; Iac0 ¼ 0; ð21Þ
where the conditions Iab þ Iab0 ¼ 3 and Iac ¼ −3 give us
three generations of the SM fermions, whose quantum
numbers under SUð4ÞC × SUð2ÞL × SUð2ÞR (for example
with gauge symmetries) are ð4; 2; 1Þ and ð4̄; 1; 2Þ in our
generalized construction. Moreover, in our generalized
construction, to have three families of the SM fermions
for whose quantum numbers under SUð4ÞC × SUð2ÞL ×
SUð6ÞR are ð4; 2; 1Þ and ð4̄; 1; 6Þ, we require the intersection
numbers to satisfy

Iab þ Iab0 ¼ 3;

Iac ¼ −1; Iac0 ¼ 0; ð22Þ

where the conditions Iab þ Iab0 ¼ 3 and Iac ¼ −1 give
us three generations of the SM fermions. Similarly, to
have three families of the SM fermions for whose
quantum numbers under SUð4ÞC × SUð6ÞL × SUð2ÞR are
ð4; 6; 1Þ and ð4̄; 1; 2Þ, we require the intersection numbers
to satisfy

Iab þ Iab0 ¼ 1;

Iac ¼ −3; Iac0 ¼ 0; ð23Þ

where the conditions Iab þ Iab0 ¼ 1 and Iac ¼ −3 give us
three generations of the SM fermions. To have three families
of the SM fermions for whose quantum numbers under
SUð12ÞC × SUð2ÞL × SUð2ÞR are ð12; 2; 1Þ and ð12; 1; 2Þ,
we require the intersection numbers to satisfy

Iab þ Iab0 ¼ 1;

Iac ¼ −1; Iac0 ¼ 0; ð24Þ

where the conditions Iab þ Iab0 ¼ 1 and Iac ¼ −1 give us
three generations of the SM fermions.
Since the intersection numbers are in terms of the

wrapping numbers as shown in Eqs. (8), (9), (10), and
our generalized Pati-Salam models are involved with
common factor 3 in ðnix; lixÞ, it is expected that there exists
much less generalized Pati-Salam models with three
families of SM fermions than the standard Pati-Salam
models. However, in our model building, the common
factor is 3, rather than another number, it is natural
to be understood because of the three family condi-
tions have factor 3 also. This discussion for model building
with a three family of SM fermions not only applies to the
generalized gauge symmetries SUð12ÞC ×
SUð2ÞL×SUð2ÞR, but also applies to the generalized gauge
symmetries SUð4ÞC×SUð6ÞL×SUð2ÞR and SUð4ÞC ×
SUð2ÞL × SUð6ÞR. Furthermore, a more concrete influence
of the generalized factor 3 to the three families of SM
fermions condition can be found in the next section with
concrete models presented.
Similarly, as for the standard D-brane construction, to

satisfy the Iac0 ¼ 0 condition, the stack a D6-branes are
constructed to be parallel to the orientifold (ΩR) image c0 of
the c stack of D6-branes along at least one two-torus. We
choose this to be the third two-torus in our convention and
the open strings stretch between the a and c0 stacks of
D6-branes. When the minimal distance square Z2

ðac0Þ (in

1=Ms units) between these two stacks on the third two-
torus is small, the minimal length squared of the stretched
string is small. The light scalars with squared-masses
Z2
ðab0Þ=ð4π2α0Þ arise from the Neveu-Schwarz sector, while

the light fermions with the same masses arise from R sector
as discussed in [15,16,36]. These scalars and fermions form

four-dimensional N ¼ 2 hypermultiplets. One obtains Ið2Þac0
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number of vectorlike pairs for the chiral superfields with
quantum numbers ð4̄; 1; 2Þ and ð4; 1; 2Þ. These vectorlike
particles contribute as the Higgs fields breaking the Pati-
Salam gauge symmetry down to the SM gauge symmetry,
with four-dimensional N ¼ 1 supersymmetry preserved. In
particular, these fields are massless under the condition
Z2
ðac0Þ ¼ 0. Note that the model with intersection numbers

Iac ¼ 0 and Iac0 ¼ −3 are equivalent to the models with
Iac ¼ −3 and Iac0 ¼ 0 under the symmetry transforma-
tion c ↔ c0.
From the phenomenology aspect, we now briefly

review the procedures to break our generalized Pati-
Salam gauge symmetry to the SM via realizing the
Pati-Salam models. Firstly, we take models with gauge
symmetry Uð4Þ ×Uð6ÞL ×Uð2ÞR ×USpð2Þ and Uð4Þ ×
Uð2ÞL ×Uð6ÞR ×USpð2Þ as an example to discuss using
the Higgs mechanism to break the Uð6Þ gauge to Uð2Þ
and thus to discuss the resulting Pati-Salam models’
phenomenology. Consider a Uð6Þ gauge theory with a
scalar field in the adjoint representation. By taking proper
orientations which commute with the Uð6Þ generators,
we can break Uð6Þ spontaneously to Uð2Þ ×Uð2Þ×
Uð2Þ, and then to Uð2Þ ×Uð2Þ and in the end to
Uð2Þ. In the following, we will show the orientation
matrix and the masses of the massive bosons. Firstly, we
take the orientation for the Uð6Þ scalar field to act on the
vacuum expectation value Φ0 as

Φ0 ¼ ϕUð6Þ:

0
BBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 −3 0

0 0 0 0 0 −3

1
CCCCCCCCCA
; ð25Þ

we found that the Uð6Þ gauge symmetry spontaneously
breaks to Uð2Þ ×Uð2Þ ×Uð2Þ by checking the commu-
tator of the orientation and the Uð6Þ generators. As
follows, to simplify the following discussion, we con-
struct the Uð2Þ ×Uð2Þ ×Uð2Þ generators with the Pauli
matrix for each Uð2Þ and apply the orientation matrix in
the manner of

Φ0 ¼ ϕUð2Þ×Uð2Þ×Uð2Þ:

0
BBBBBBBBB@

0 0 V12 0 0 0

0 0 0 V12 0 0

V12 0 0 0 0 0

0 V12 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
;

ð26Þ

we found that the above expectation value breaks Uð2Þ ×
Uð2Þ ×Uð2Þ to Uð2Þ ×Uð2Þ and leaves the gauge
bosons corresponding to the Uð2Þ ×Uð2Þ generators
massless. By taking a third orientation to the Uð2Þ ×
Uð2Þ gauge field

Φ0 ¼ ϕUð2Þ×Uð2Þ:

0
BBBBBBBBB@

0 0 0 0 V13 0

0 0 0 0 0 V13

0 0 0 0 0 0

0 0 0 0 0 0

V13 0 0 0 0 0

0 V13 0 0 0 0

1
CCCCCCCCCA
;

ð27Þ

we break the Uð2Þ × Uð2Þ gauge symmetry to the Uð2Þ
and acquire the masses

m2 ¼ ð4gjϕjÞ2
�
V2
12 þ V2

13 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V4
12 − V2

12V
2
13 þ V4

13

q �
:

ð28Þ

For the models with gauge symmetry SUð12ÞC ×
SUð2ÞL × SUð2ÞR, the Higgs mechanism for breaking
Uð12Þ → Uð4Þ ×Uð4Þ ×Uð4Þ → Uð4Þ ×Uð4Þ → Uð4Þ
will follow the same procedure also. By splitting the a
stack of D6-branes into a1 and a2 stacks with 6 and 2
D6-branes, the Uð4ÞC gauge symmetry breaks in to
Uð3ÞC ×Uð1Þ as shown in [44]. The gauge fields and
three chiral multiplets in the adjoint representation of
SUð4ÞC will be broken down to the adjoint representa-
tions of SUð3ÞC as well as the gauge field and three
singlets of Uð1ÞB−L. We note the number of symmetric
representations for SUð4ÞC as , while the antisym-

metric representations noted as . Similar convention

applies to SUð3ÞC, SUð2ÞL, and SUð2ÞR. These chiral
multiplets for SUð4ÞC are broken down to the and

chiral multiplets in symmetric and antisymmetric

representations for SUð3ÞC, and chiral multiplets
with Uð1ÞB−L charge �2. Moreover, we have Ia1a02 new
fields with quantum number ð3;−1Þ under SUð3ÞC ×
Uð1ÞB−L from the open strings at the intersections of a1
and a02 stacks of D6-branes, while the other particles
spectrum stay the same. The anomaly free gauge sym-
metries SUð3ÞC ×Uð1ÞB−L arise from a1 and a2 stacks of
D6-branes as the SUð4ÞC subgroup. To break the Uð2ÞR
gauge symmetry, we split the c stack of D6-branes into
c1 and c2 stacks, and each with two D6-branes. The
gauge fields and three chiral multiplets in the adjoint
representation of SUð2ÞR break down to the gauge field
and three singlets of Uð1ÞI3R . The chiral multiplets
in the symmetric representation of SUð2ÞR break down to
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the chiral multiplets with Uð1ÞI3R charge, while the

chiral multiplets in antisymmetric representation

SUð2ÞR vanish. Arising from the open strings at the
intersections of c1 and c02 stacks of D6-brane, there are
Ic1c02 new fields that are neutral under Uð1ÞI3R. As
follows, the anomaly free gauge symmetry from c1
and c2 stacks of D6-branes is Uð1ÞI3R (the SUð2ÞR
Cartan subgroup). One obtains the SUð3ÞC × SUð2ÞL ×
Uð1ÞB−L ×Uð1ÞI3R gauge symmetry as in the above D6-
brane splittings. To break the gauge symmetry further to
SM gauge symmetry, we consider the minimal distance

square Z2
ða2c01Þ to be small, and obtain Ið2Þa2c01

pairs of chiral

multiplets with quantum numbers ð1; 1;−1; 1=2Þ and
ð1; 1; 1;−1=2Þ under SUð3ÞC × SUð2ÞL ×Uð1ÞB−L×
Uð1ÞI3R . Light open string stretches between the a2
and c01 stacks of D6-branes, and produces vectorlike
particles that can then break the SUð3ÞC × SUð2ÞL ×
Uð1ÞB−L ×Uð1ÞI3R gauge symmetry down to the SM. In
the meantime, D- and F-flatness is kept, as their quantum
numbers are the same as those of the right-handed
neutrino and its complex conjugate. In summary, the
complete chains for symmetry breaking of our general-
ized Pati-Salam models read

SUð12Þ × SUð2ÞL × SUð2ÞR
SUð4Þ × SUð6ÞL × SUð2ÞR
SUð4Þ × SUð2ÞL × SUð6ÞR

9>>=
>>;

Higgs Mechanism
⟶

SUð4Þ × SUð2ÞL × SUð2ÞR
a → a1 þ a2
⟶

SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1ÞB−L

c → c1 þ c2
⟶

SUð3ÞC × SUð2ÞL ×Uð1ÞI3R ×Uð1ÞB−L
Higgs Mechanism
⟶

SUð3ÞC × SUð2ÞL × Uð1ÞY: ð29Þ

For more details of the dynamical supersymmetry breaking
of type IIA orientifolds with intersecting D6-branes, we
refer to [33]. In the D6-brane models, the filler branes
carrying USp gauge symmetries which are confining, and
thus could allow for supersymmetry breaking via gaugino
condensation. However, in our construction, we generalize
this to supersymmetry breaking via other mechanisms and
not restricting it to confining filler branes. The gauge
kinetic function for a generic stack x of D6-branes takes the
form of [33]

fx ¼
1
4

�
n1xn2xn3xS −

�X3
i¼1

2−βj−βknixl
j
xlkxUi

��
; ð30Þ

in which the real parts of dilaton S and moduli Ui are

ReðSÞ ¼ M3
sR1

1R
2
1R

3
1

2πgs
; ð31Þ

ReðUiÞ ¼ ReðSÞχjχk; ð32Þ

where i ≠ j ≠ k, and gs to be the string coupling. We note
the gauge coupling constant associated with a stack x is

g−2D6x
¼ jReðfxÞj: ð33Þ

In our generalized construction, the holomorphic gauge
kinetic functions for SUð12ÞC, SUð2ÞL and SUð2ÞR are
associated with stacks a, b, and c, respectively. Recall that
the holomorphic gauge kinetic function before our gener-
alization is shown in [13,44,48,49], we have our holomor-
phic gauge kinetic function forUð1ÞY as linear combination
of these for SUð4Þ and SUð2ÞR in the form

fY ¼ 2

3
fSUð4Þa þ fc: ð34Þ

Due to the pair of ðnix; lixÞ in the gauge kinetic function
Eq. (30), the kinetic function fa will have an overall factor
of 3, and rescale the value of Uð1ÞY gauge kinetic functions
in Eq. (34) for gauge couplings of Minimal Supersym-
metric Standard Model (MSSM). By taking care of the
common factor of 3 between the kinetic function of SUð12Þ
and SUð4Þ, SUð6ÞL and SUð2ÞL, SUð6ÞR and SUð2ÞR, the
tree-level MSSM gauge couplings take the form of

g2SUð4Þa ¼ αg2SUð2Þb ¼ β
5

3
g2Y ¼ γ½πeϕ4 �;

g2SUð12Þa ¼ 3g2SUð4Þa ; g2SUð6ÞLb ¼ 3g2SUð2ÞLb ; g2SUð6ÞRc ¼ 3g2SUð2ÞRc
ð35Þ
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where g2SUð4Þa , g
2
SUð2Þb , and

5
3
g2Y are the strong, weak and

hypercharge gauge couplings respectively, and α, β, γ are
the ratios between them.1 Moreover, the Kähler potential
reads

K ¼ − lnðSþ S̄Þ −
X3
I¼1

lnðUI þ ŪIÞ: ð36Þ

Three stacks of D6-branes (carrying Uð4ÞC ×Uð2ÞL ×
Uð2ÞR gauge symmetry) determine the complex structure
moduli χ1, χ2, and χ3 due to the four-dimensional N ¼ 1
supersymmetry conditions, with only one independent
modulus field. To stabilize the moduli, one usually con-
structs the models with at least two USp groups with
negative β functions which can be confined and then allow
for gaugino condensations as was discussed in [50–52].
However, we will later present models not only with two
and more USp groups, but also with only one USp group
having a negative β function and still realize three family
of particles. In general, the one-loop beta function for the
2NðiÞ filler branes which are constructed on top of ith
O6-plane and carry the USpðNðiÞÞ group are represented
by [37]

βgi ¼ −3
�
NðiÞ

2
þ 1

�
þ 2jIaij þ jIbij þ jIcij þ 3

�
NðiÞ

2
− 1

�

¼ −6þ 2jIaij þ jIbij þ jIcij: ð37Þ

When supersymmetry is broken via gaugino condensations
on the condition of at least two confining gauge groups
in the hidden sector, we may need to consider gauge
mediation since gravity mediation is much smaller. Thus,
the supersymmetry CP problem may be solved as well. In
the models with only one confining USp gauge groups, the
supersymmetry need to be broken with alternative mech-
anisms rather than gaugino condensations.
As we found in [48] that for a three-family super-

symmetric Pati-Salam model, the corresponding new three-
family supersymmetric Pati-Salam models by exchanging
b and c stacks of D6-branes is not an equivalent model but
leads to new gauge coupling behaviors. We will show that
in the same way, one can improve the gauge couplings in
our new model buildings and present the new models in the
next subsection.

B. Generalized supersymmetric Pati-Salam models

Based on the generalized construction as we presented
above, we now show the new generalized Pati-Salam
models with their exact wrapping numbers. Distinct from
the standard constructed Pati-Salam models such as in

Ref. [37,48], we introduce three stacks of D6-branes,
a, b, and c with three times the wrapping numbers of
D6-brane for one of the stacks. Thus the corresponding
gauge symmetries will be Uð12ÞC ×Uð2ÞL ×Uð2ÞR,
Uð4ÞC ×Uð6ÞL ×Uð2ÞR, or Uð4ÞC ×Uð2ÞL ×Uð6ÞR.
To obtain the particle spectra with odd generations of the

SM fermions, and satisfying the RR tadpole cancellation
conditions, we again focus on the construction with only
one tilted torus as was discussed in Ref. [37,48]. In our
convention, we choose the third two-torus to be tilted and
study the generalized Pati-Salam models in the following.

1. Mathematical search for generalized
Pati-Salam models

Now we present the mathematical analysis behind the
search for generalized supersymmetric Pati-Salam models.
We take the construction with gauge group Uð12ÞC ×
Uð2ÞL ×Uð2ÞR as example for detailed discussion. The
aim is to search for the solution of the physical conditions,
i.e., common solutions of the RR tadpole cancellation
conditions, supersymmetry conditions, and three genera-
tion conditions. The same ideas can be used to reduce
the search space to a finite set when searching for models
with the factor 3 at the b stack or the c stack, namely
for gauge group Uð4ÞC ×Uð6ÞL ×Uð2ÞR, or Uð4ÞC ×
Uð2ÞL ×Uð6ÞR. Such systematic search leads to the
physical solution of models IV, V, VI, VII.
When the factor 3 appears at the a stack with gauge

group Uð12Þ, the tadpole conditions become

8>>><
>>>:

4þ 6Aa þ Ab þ Ac ≥ 0;

4þ 6Ba þ Bb þ Bc ≥ 0;

4þ 6Ca þ Cb þ Cc ≥ 0;

4þ 6Da þDb þDc ≥ 0.

ð38Þ

As we discussed in Sec. III B, because of the SUSY
condition, there are only three possibilities for the choice of
signs of Aa, Ba, Ca, Da:

1. three numbers of Aa, Ba, Ca, Da are zero and the
other one is negative.

2. there are 2 negative values and 2 zero values among
Aa, Ba, Ca, Da.

3. there are 3 negative values and 1 positive values
among Aa, Ba, Ca, Da.

The first option is impossible since in this case (see
Table II), Ãa ¼ B̃a ¼ C̃a ¼ D̃a ¼ 0, which contradicts
with the three generation condition,

Iab þ Iab0 ¼ −ðÃaAb þ B̃aBb þ C̃aCb þ D̃aDbÞ: ð39Þ

The third possibility can be quickly ruled out via
applying the tadpole condition Eq. (38). Without loss of
generality, we may assume that Aa, Ba, Ca have negative
values which implies that

1Note that in the following discussion on the specified models,
we use g2a, g2b, g

2
c to denote the strong, weak and hypercharge

gauge couplings respectively.
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8<
:

Ab þ Ac ≥ 2;

Bb þ Bc ≥ 2;

Cb þ Cc ≥ 2:

However this is impossible because there is at most one
positive value among Ab, Bb,Cb and at most one among Ac,
Bc, Cc.
For the second possibility, we assume without loss of

generality that

Aa < 0; Ba < 0 and Ca ¼ Da ¼ 0; ð40Þ
which corresponds to l1a ¼ 0, and hence Ãa ¼ B̃a ¼ 0.
Then the tadpole condition Eq. (38) implies

	
Ab þ Ac ≥ 2;

Bb þ Bc ≥ 2;
ð41Þ

which requires at least one positive value among Ab and Ac
and at least another one among Bb and Bc. Hence, there is
exactly one positive value among Ab and Bb and exactly
one positive value among Ac and Bc, implying

Cb < 0; Db < 0; Cc < 0; Dc < 0: ð42Þ
Now recall the SUSY equality condition Eq. (15),
ðxA; xB; xC; xDÞ is solution to the linear system

8>><
>>:

xAÃa þ xBB̃a þ xCC̃a þ xDD̃a ¼ 0;

xAÃb þ xBB̃b þ xCC̃b þ xDD̃b ¼ 0;

xAÃc þ xBB̃c þ xCC̃c þ xDD̃c ¼ 0.

ð43Þ

Crámer’s rule tells us, provided that the linear system has
rank 3, ðxA; xB; xC; xDÞ is proportional to ðyA; yB; yC; yDÞ
where

yA ¼







B̃a C̃a D̃a

B̃b C̃b D̃b

B̃c C̃c D̃c







; yB ¼ −








Ãa C̃a D̃a

Ãb C̃b D̃b

Ãc C̃c D̃c







; yC ¼







Ãa B̃a D̃a

Ãb B̃b D̃b

Ãc B̃c D̃c







; yD ¼ −








Ãa B̃a C̃a

Ãb B̃b C̃b

Ãc B̃c C̃c







:

More precisely, the solution of the SUSY equality condition in terms of the linear system Eq. (43) can be solved by
8>>><
>>>:

xA ¼ λ;

xB ¼ λyB=yA;

xC ¼ λyC=yA;

xD ¼ λyD=yA:

ð44Þ

Recall that l1a ¼ 0, one can check that

yAyC ¼ ðAaBaCbDbCc þ D̃2
aCbDbDc þ AaBaCbCcDc þ D̃2

aDbCcDcÞðAb þ AcÞ
þ ðAaBaB̃2

bCc þ D̃2
aB̃2

bDc þ AaBaB̃2
cCb þ D̃2

aB̃2
cDbÞðBb þ BcÞ:

Combined with Eqs. (40), (41), and (42), we find yAyC < 0.
Hence the linear system Eq. (43) has indeed rank 3 and xA
and xC have opposite signs. This contradicts the supersym-
metry conditionEq. (15), where xA ¼ λ, xB ¼ λ2β2þβ3=χ2χ3,
xC ¼ λ2β1þβ3=χ1χ3, xD ¼ λ2β1þβ2=χ1χ2, in which χi ¼
R2
i =R

1
i represent the complex structure moduli for the ith

two-torus, the values of xA, xB, xC, xD are required to be all
positive. Therefore, the construction with gauge group
Uð12ÞC × Uð2ÞL × Uð2ÞR collapses with all the physical
conditions satisfied.
When the factor 3 appears at the b stack with gauge

group Uð6ÞL, the tadpole conditions become

8>>><
>>>:

4þ 2Aa þ 3Ab þ Ac ≥ 0;

4þ 2Ba þ 3Bb þ Bc ≥ 0;

4þ 2Ca þ 3Cb þ Cc ≥ 0;

4þ 2Da þ 3Db þDc ≥ 0.

ð45Þ

In this case, like the previous one, we start by discussing the
signs of the wrapping number products Ai, Bi, Ci, Di;
i ¼ a, b, c. Recall that each Ai, Bi, Ci, Di falls into one of
the three categories presented in Sec. IV B 1. Taking into
consideration the tadpole conditions Eq. (45), we can easily
list all the seven possibilities for the signs of the 12
wrapping number products, up to permutations of the A,
B, C, D. We treat each possibilities one by one. For
example, one of the possibilities is

Aa; Ac; Bc; Ca; Cb;Db;Dc < 0;

and Ba ¼ Da ¼ Ab ¼ Bb ¼ 0; Cc > 0; ð46Þ

This implies l2a ¼ n1b ¼ 0 and Ãa ¼ C̃a ¼ C̃b ¼ D̃b ¼ 0.
This combined with Eq. (45) implies Aa ¼ −1,

Ac ∈ f−1;−2g, Bc ∈ f−1;−2;−3;−4g, Db ¼ −1 and
Dc ¼ −1. Hence the factor wrapping numbers of Aa, Ac,
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Bc, Db, Dc can be restricted to a finite set. To have
three families of the SM fermions with quantum numbers
under SUð4ÞC × SUð6ÞL × SUð2ÞR, the intersection num-
bers need to satisfy the three generation conditions
Eqs. (23). This equation will then determine the value
of l1a and l3a. At this stage, all the wrapping numbers
except n2b and l3b are determined. To bound the last two
wrapping numbers, notice that we know already the value
of Ca and Cc and therefore −4 − 2Ca − Cc ≤ 3Db < 0

restricts Db and hence n2b and l3b to a finite set. To
summarize, we have reduced the search space to a finite
set. A computer program will quickly find all the
solutions under the condition Eq. (46). The other pos-
sibilities can either be treated similarly or ruled out
using the argument in the discussion about Uð12ÞC ×
Uð2ÞL ×Uð2ÞR.
In this way, we can significantly reduce the search

space to a finite set while searching for models
with gauge group Uð4ÞC ×Uð6ÞL ×Uð2ÞR, or Uð4ÞC ×
Uð2ÞL ×Uð6ÞR and we obtain the solutions as shown in
models IV, V, VI, VII. This mathematical analysis method
could also be utilized for other generalized Pati-Salam
odmels or MSSM models constructed from other grand
gauge groups.

2. Examples of generalized Pati-Salam models

In the following, we discuss the construction for
gauge group Uð12Þ ×Uð2ÞL ×Uð2ÞR in Table III. We
show that although this model satisfies all the construct-
ing conditions such as the RR tadpole cancellation
conditions, supersymmetry conditions, and three gener-
ation conditions, the solution for xA, xB, xC, xD appear
to be negative values which are in conflict with the
requirement in Eq. (15). While when we require the
mathematical solutions to be satisfied with xA, xB, xC, xD
positive, this will violate the RR tadpole cancellation
conditions as we mathematically ruled out. For the
models with gauge symmetries Uð4ÞC ×Uð6ÞL×
Uð2ÞR, and Uð4ÞC ×Uð2ÞL ×Uð6ÞR, we present the

complete solutions of our generalized version of Pati-
Salam models in Tables IV–VII.2
In the first column for each table, we denote the gauge

constructions of D6-branes as a, b, and c stacks, and 1, 2, 3,
and 4 stacks for the filler branes along ΩR, ΩRω, ΩRθω,
ΩRθ orientifold planes representing the USpðNÞ gauge
symmetries. In the second column, N represents the
number of D6-branes for each stack. When 24, 12, 12
appear here, it means there are three times of wrapping than
the standard Pati-Salam models. Moreover, in the
third column we present the wrapping numbers of all the
D6-branes and specify the third set of wrapping numbers
as for the tilted two-torus. In the remaining right columns,
we show the intersection numbers between different stacks,
with b0 and c0 denote the ΩR images of b and c,
respectively. In the last columns (denoted with number
1,2,3,4), we list the intersection numbers for the a, b, c
stacks of branes intersecting with the 1,2,3,4 stacks of filler
branes. In addition, we also present the relation among the
moduli parameters imposed by the four-dimensionalN ¼ 1
supersymmetry conditions, and the one-loop β functions
(βgi ) for the hidden sector gauge symmetries in the table.
In particular, we also give the MSSM gauge couplings
in the caption of each model for checking the gauge
coupling unification. Note that here the MSSM gauge
coupling refers to the gauge coupling after generalized
gauge construction breaking, i.e.,Uð12Þ→Uð4Þ,Uð6ÞL →
Uð2ÞL, Uð6ÞR → Uð2ÞR.
The Higgs particles in models V, VII arise from N ¼ 2

subsectors at the intersections of b and c0 stacks of
D6-branes, while the Higgs particles in models IV, VI
arise from N ¼ 2 subsectors at the intersections of b and c
stacks of D6-branes. For example, there exist 5 exotic
Higgs-like particles in model IV from N ¼ 2 subsectors at
the intersections of b and c stacks of D6-branes. We show
that while there are 24 D6-branes constructed in stack a, the

TABLE III. D6-brane configurations and intersection numbers in model III, and its MSSM gauge coupling
relation is g2a ¼ 671

30
g2b ¼ 631

50
g2c ¼ 3155

1412
ð5
3
g2YÞ ¼ 8×21=4×7033=4

75
πeϕ

4

.

Model III Uð12Þ × Uð2ÞL × Uð2ÞR × USpð2Þ
Stack N ðn1; l1Þ × ðn2; l2Þ × ðn3; l3Þ b b0 c c0 1

a 24 ð1; 1Þ × ð1; 0Þ × ð1;−1Þ 0 0 0 1 0 −1 0
b 4 ð3;−2Þ × ð2;−1Þ × ð−1; 1Þ 13 35 … … … −8 −2
c 4 ð−1; 2Þ × ð−3;−1Þ × ð1;−1Þ −2 −22 … … 0 … −2

1 2 ð1; 0Þ × ð1; 0Þ × ð2; 0Þ xA ¼ 37
4
xB ¼ 37

38
xC ¼ 37

4
xD

βg2 ¼ −2

χ1 ¼
ffiffiffiffi
37
38

q
, χ2 ¼

ffiffiffiffiffiffiffi
1406

p
4

, χ3 ¼
ffiffiffiffi
74
19

q

2To be precise, we consider the models dual to these models
via T-dualities and with the same value of gauge couplings as
equivalent model, and thus will not present them anymore.
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TABLE IV. D6-brane configurations and intersection numbers in model IV, and its MSSM gauge coupling relation
is g2a ¼ 10g2b ¼ 2g2c ¼ 10

7
ð5
3
g2YÞ ¼ 24

ffiffi
3

p
5

πeϕ
4

.

Model IV Uð4Þ × Uð2ÞL × Uð6ÞR × USpð8Þ
Stack N ðn1; l1Þ × ðn2; l2Þ × ðn3; l3Þ b b0 c c0 3

a 8 ð−1;−1Þ × ð−1; 0Þ × ð1;−1Þ 0 0 0 3 0 −1 0
b 4 ð−1;−1Þ × ð2;−1Þ × ð−1;−4Þ 3 29 … … 0 6 −1
c 12 ð0;−1Þ × ð2;−1Þ × ð−1; 1Þ −1 1 … … … … 0

3 8 ð0;−1Þ × ð1; 0Þ × ð0; 2Þ xA ¼ 2xB ¼ 1
9
xC ¼ 2xD

βg3 ¼ −5
χ1 ¼ 1

3
, χ2 ¼ 6, χ3 ¼ 2

3

TABLE V. D6-brane configurations and intersection numbers in model V, and its MSSM gauge coupling relation
is g2a ¼ 2g2b ¼ 10g2c ¼ 50

23
ð5
3
g2YÞ ¼ 24

ffiffi
3

p
5

πeϕ
4

.

Model V Uð4Þ × Uð6ÞL ×Uð2ÞR × USpð8Þ
Stack N ðn1; l1Þ × ðn2; l2Þ × ðn3; l3Þ b b0 c c0 4

a 8 ð1;−1Þ × ð1; 1Þ × ð1; 0Þ 0 0 0 1 −3 0 0
b 12 ð0; 1Þ × ð−1;−1Þ × ð2; 1Þ 1 −1 … … −6 0 0
c 4 ð1; 1Þ × ð−1;−4Þ × ð−2; 1Þ 3 29 … … … … −1

4 8 ð0;−1Þ × ð0; 1Þ × ð2; 0Þ xA ¼ 2xB ¼ 2xC ¼ 1
9
xD

βg4 ¼ −5
χ1 ¼ 1

3
, χ2 ¼ 1

3
, χ3 ¼ 12

TABLE VI. D6-brane configurations and intersection numbers in model VI, and its MSSM gauge coupling
relation is g2a ¼ 5g2b ¼ g2c ¼ 5

3
g2Y ¼ 12

ffiffi
6

p
5

πeϕ
4

.

Model VI Uð4Þ ×Uð2ÞL ×Uð6ÞR ×USpð2Þ ×USpð6Þ
Stack N ðn1; l1Þ × ðn2; l2Þ × ðn3; l3Þ b b0 c c0 1 3

a 8 ð−1;−1Þ × ð−1; 0Þ × ð1;−1Þ 0 0 0 3 0 −1 0 0
b 4 ð−1;−1Þ × ð1;−1Þ × ð−1;−4Þ 0 16 … … 0 3 4 −1
c 12 ð0;−1Þ × ð1;−1Þ × ð−1; 1Þ 0 0 … … … … −1 0

1 2 ð1; 0Þ × ð1; 0Þ × ð2; 0Þ xA ¼ xB ¼ 1
9
xC ¼ xD

3 6 ð0;−1Þ × ð1; 0Þ × ð0; 2Þ βg1 ¼ −1, βg3 ¼ −5
χ1 ¼ 1

3
, χ2 ¼ 3, χ3 ¼ 2

3

TABLE VII. D6-brane configurations and intersection numbers in model VII, and its MSSM gauge coupling
relation is g2a ¼ g2b ¼ 5g2c ¼ 25

13
ð5
3
g2YÞ ¼ 12

ffiffi
6

p
5

πeϕ
4

.

Model VII Uð4Þ ×Uð6ÞL ×Uð2ÞR × USpð2Þ × USpð6Þ
Stack N ðn1; l1Þ × ðn2; l2Þ × ðn3; l3Þ b b0 c c0 1 4

a 8 ð1;−1Þ × ð1; 1Þ × ð1; 0Þ 0 0 0 1 −3 0 0 0
b 12 ð0; 1Þ × ð−1;−1Þ × ð1; 1Þ 0 0 … … −3 0 1 0
c 4 ð1; 1Þ × ð−1;−4Þ × ð−1; 1Þ 0 16 … … … … 4 −1

1 2 ð1; 0Þ × ð1; 0Þ × ð2; 0Þ xA ¼ xB ¼ xC ¼ 1
9
xD

4 6 ð0;−1Þ × ð0; 1Þ × ð2; 0Þ βg1 ¼ −1, βg4 ¼ −5
χ1 ¼ 1

3
, χ2 ¼ 1

3
, χ3 ¼ 6
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gauge group yields to Uð12Þ ×Uð2ÞL ×Uð2ÞR. With
gauge breaking, Uð12Þ → Uð4Þ, we obtain the standard
Pati-Salam model gauge Uð4Þ ×Uð2ÞL ×Uð2ÞR and its
MSSM gauge couplings after generalized gauge construc-
tion breaking. Models IV and V, and models VI and VII
have their b and c stacks of D6-branes swapped, and as
expected, the gauge coupling gets rescaled and refined. In
particular, model VI has g2a ¼ g2c and model VII has
g2a ¼ g2b. By exchanging the b and c stacks of D6-branes,
the unification of strong and hypercharged gauge couplings
are swapped to the unification of the strong and weak
couplings. Similarly, if the models have their gauge
coupling from the b and c stacks of D6-branes equal,
i.e., g2b ¼ g2c, the b and c stacks swapping would not change
the MSSM gauge couplings.3

Now we continue with the examples of generalized
gauge construction for Uð4Þ ×Uð2ÞL ×Uð6ÞR ×USpð2Þ
and Uð4Þ ×Uð6ÞL ×Uð2ÞR ×USpð2Þ with gauge break-
ing Uð6ÞR → Uð2ÞR and Uð6ÞL → Uð2ÞL as shown in
models IV and V. We observe that the generalized gauge
construction got shifted from Uð6ÞR to Uð6ÞL and the
Uð1ÞY gauge coupling 5

3
g2Y got rescaled from 7

10
g2a to 23

50
g2a

while g2a remain the same. For models VI and VII, the
generalized gauge constructions are Uð4Þ ×Uð2ÞL ×
Uð6ÞR ×USpð2Þ ×USpð6Þ and Uð4Þ×Uð6ÞL×Uð2ÞR ×
USpð2Þ×USpð6Þ, which got shifted from Uð6ÞR to Uð6ÞL
and the Uð1ÞY gauge coupling 5

3
g2Y got rescaled from g2a to

13
25
g2a, while g2a remains the same. Note that this construction

is not simply swapping the b and c stacks of D6-branes, but
nontrivial T-dualities are also performed to obtain models
with three families of particles and tadpole cancellation
conditions fulfilled.
For models with more than one orientifold plane in the

generalized Pati-Salam models, e.g., with two confining
gauge groups, such as models VI and VII, there may exist
stable extrema with moduli stabilization and supersym-
metry breaking via gaugino condensations, which are very
interesting from the phenomenological points of view.

V. PRELIMINARY PHENOMENOLOGICAL
STUDIES

In this section, we discuss the phenomenological fea-
tures of our generalized Pati-Salam models. Among these
models, models IV and V have one confining USpð8Þ
group, while models VI and VII have two confining groups
USpð2Þ ×USpð6Þ. The β functions of these USp groups

are all negative. For these models with two confining USp
groups, one can break supersymmety via gaugino con-
densation, and decouple the exotic particles.
Comparing with the standard Pati-Salam models, we

now discuss the generalized spectrum as we studied in [48]
with gauge symmetry SUð4Þ × SUð2ÞL × SUðRÞ. We start
with models IV and V, which are constructed with gauge
symmetry Uð6Þ ×Uð2ÞL ×Uð6ÞR × USpð8Þ and Uð6Þ×
Uð6ÞL ×Uð2ÞR ×USpð8Þ. Their explicit spectrum are
shown in Table VIII and Table IX respectively. For these
models, it is obvious that for model IV the Higgs multiplets
therein are from the intersection of b and c stacks of D6-
branes, while for model V the Higgs multiplets are from the
intersection of b and c0 stack of branes. Taking the pair of
models VI and VII as example, we show the spectrum with
two confining gauge groups USpð2Þ ×USpð6Þ. The mod-
els VI and VII are constructed with gauge symmetries
Uð4Þ ×Uð6ÞL ×Uð2ÞR ×USpð2Þ ×USpð6Þ and Uð4Þ ×
Uð2ÞL ×Uð6ÞR ×USpð2Þ ×USpð6Þ respectively. We pre-
sent the explicit spectrum for model VI in Table X and the
spectrum for model VII in Table XI. For model VI, it is
obvious that the Higgs multiplets therein are from the
intersection of b and c stacks of D6-branes, while for model
VII the Higgs multiplets therein are from the intersection of
b and c0 stacks of D6-branes. For both of these models,
there are two confining USpðNÞ gauge groups. A general
analysis of the nonperturbative superpotential with tree-
level gauge couplings can be performed. It was shown that
there can exist extrema with the stabilizations of dilaton and
complex structure moduli [33]. However, these extrema of
such model might be saddle points and thus do not break
supersymmetry. For further investigation, if the models
have three or four confining USpðNÞ gauge groups, the
nonperturbative superpotential allows for the moduli stabi-
lization and supersymmetry breaking at the stable
extremum in general [33].
As follows, we show in Table XII and XIII the new

composite states formed due to the strong forces from the
hidden sector for models VI and VII. They have one con-
fining gauge group USpð2Þ with two charged intersections
and USpð6Þ gauge. Therefore, besides self-confinement,
the mixed-confinement between different intersections
is also possible, which yields the chiral supermultiplets
(1,2,6,1,1) or (1,6,2,1,1).
All the models we presented contain exotic particles that

are charged under the hidden gauge groups. The strong
coupling dynamics in the hidden sector at a certain inter-
mediate scale might provide a mechanism for all these
particles to form bound states or composite particles. These
are compatible with anomaly cancellation conditions, such
that we do not have extra anomalies introduced. Moreover,
similar to the quark condensation in QCD, these particles
will only be charged under the SM gauge symmetry [30].
In general, these USp groups have two kinds of neutral

bound states. The first one is the pseudo inner product of

3Note that from Eq. (34), it is easy to check that when one
model has g2Y ¼ g2a, by applying b and c stacks of brane
swapping, the new model has g2a ¼ g2b, and vice versa. This
we have shown with detailed examples in [48]. In principle, by
replacing the holomorphic gauge function fc with fb in Eq. (34),
one can compute and predict all the gauge couplings behaviors
after b and c stacks of D6-branes swapping without reconstruct-
ing the dual model.
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two fundamental representations generated by decompos-
ing the rank two antisymmetric representation. This can be
considered as the reminiscent of a meson formed by the
inner product of one pair of fundamental and antifunda-
mental representations of SUð3ÞC in QCD. This applies to
our modelc IV and V. The second kind has rank 2N

antisymmetric representation of USpð2NÞ group for
N ≥ 2, which is an USpð2NÞ singlet and somewhat similar
to a baryon, as a rank three antisymmetric representation of
SUð3ÞC in QCD. This case appears in models IVand V via
the form of USpð8Þ and in models VI and VII via the form
of USpð6Þ.

TABLE VIII. The chiral spectrum in the open string sector for model IV.

Model IV SUð4Þ × SUð2ÞL × SUð6ÞR × USpð8Þ Q4 Q2L Q6R Qem B − L Field

ab0 3 × ð4; 2; 1; 1Þ 1 1 0 − 1
3
; 2
3
;−1, 0 1

3
;−1 QL, LL

ac0 1 × ð4̄; 1; 6̄; 1Þ −1 0 −1 1
3
;− 2

3
; 1; 0 − 1

3
; 1 QR, LR

bc0 6 × ð1; 2; 6; 1Þ 0 1 1 −1, 0, 0, 1 0 H0
b3 1 × ð1; 2̄; 1; 8Þ 0 −1 0 � 1

2
0

3 × ð1; 3; 1; 1Þ 0 2 0 0;�1 0

29 × ð1; 1; 1; 1Þ 0 2 0 0 0

1 × ð1; 1; 21; 1Þ 0 0 −2 0;�1 0
1 × ð1; 1; 15; 1Þ 0 0 2 0 0

bc 5 × ð1; 2; 6̄; 1Þ 0 1 −1
5 × ð1; 2̄; 6; 1Þ 0 −1 1 −1, 0, 0, 1 0 Hi

u, Hi
d

TABLE IX. The chiral spectrum in the open string sector for model V.

Model V SUð4Þ × SUð6ÞL × SUð2ÞR × USpð8Þ Q4 Q6L Q2R Qem B − L Field

ab0 1 × ð4; 6; 1; 1Þ 1 1 0 − 1
3
; 2
3
;−1, 0 1

3
;−1 QL, LL

ac 3 × ð4̄; 1; 2; 1Þ −1 0 1 1
3
;− 2

3
; 1; 0 − 1

3
; 1 QR, LR

bc 6 × ð1; 6̄; 2; 1Þ 0 −1 1 −1, 0, 0, 1 0 H0

c4 1 × ð1; 1; 2̄; 8Þ 0 0 −1 � 1
2

0
1 × ð1; 3; 1; 1Þ 0 2 0 0;�1 0

1 × ð1; 1; 1; 1Þ 0 −2 0 0 0

3 × ð1; 1; 21; 1Þ 0 0 2 0;�1 0
29 × ð1; 1; 15; 1Þ 0 0 2 0 0

bc0 5 × ð1; 6; 2; 1Þ 0 1 1
5 × ð1; 6̄; 2̄; 1Þ 0 −1 −1 −1, 0, 0, 1 0 Hi

u; Hi
d

TABLE X. The chiral spectrum in the open string sector for model VI.

Model VI SUð4Þ × SUð2ÞL × SUð6ÞR ×USpð2Þ × USpð6Þ Q4 Q2L Q6R Qem B − L Field

ab0 3 × ð4; 2; 1; 1; 1Þ 1 1 0 − 1
3
; 2
3
;−1, 0 1

3
;−1 QL, LL

ac0 1 × ð4̄; 1; 6̄; 1; 1Þ −1 0 −1 1
3
;− 2

3
; 1; 0 − 1

3
; 1 QR, LR

bc0 3 × ð1; 2; 6; 1; 1Þ 0 1 1 −1, 0, 0, 1 0 H0
b1 4 × ð1; 2; 1; 2; 1Þ 0 1 0 � 1

2
0

b3 1 × ð1; 2̄; 1; 1; 6Þ 0 −1 0 � 1
2

0
c1 1 × ð1; 1; 6̄; 2; 1Þ 0 0 −1 � 1

2
0

16 × ð1; 1; 1; 1; 1Þ 0 2 0 0;�1 0

bc 5 × ð1; 2; 6̄; 1; 1Þ 0 1 −1
5 × ð1; 2̄; 6; 1; 1Þ 0 −1 1 −1, 0, 0, 1 0 Hi

u; Hi
d
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VI. DISCUSSIONS AND CONCLUSION

We generalized the construction of three-family N ¼ 1
supersymmetric Pati-Salam models from type IIA orienti-
folds on T6=ðZ2 × Z2Þ with intersecting D6-branes, where
the SUð12ÞC × SUð2ÞL × SUð2ÞR, SUð4ÞC × SUð6ÞL ×
SUð2ÞR or SUð4ÞC × SUð2ÞL × SUð6ÞR gauge symmetries
arise from the stacks of D6-branes with UðnÞ gauge
symmetries. Firstly, via Higgs mechanism we can break
the generalized Pati-Salam gauge symmetry Uð12Þ→
Uð4Þ×Uð4Þ×Uð4Þ→Uð4Þ×Uð4Þ→Uð4Þ and Uð6Þ →
Uð2Þ ×Uð2Þ ×Uð2Þ → Uð2Þ ×Uð2Þ → Uð2Þ, with new
massive bosons obtained in this procedure, and resulting
in the standard Pati-Salam gauge symmetry. Taking the
gauge group Uð6Þ and breaking it to Uð2Þ as an example,
we studied the gauge symmetry breaking in detail from the
generalized models to the standard Pati-Salam models, and
computed the masses of the gauge bosons in this Higgs
mechanism. The Pati-Salam gauge symmetry can then be
broken down to the SUð3ÞC×SUð2ÞL×Uð1ÞB−L×Uð1ÞI3R
via D6-brane splittings, and further down to the SM gauge
symmetry via the D- and F-flatness preserving Higgs

mechanism in which Higgs fields are the massless open
string states from a specific N ¼ 2 subsector. Moreover,
models IV and V, and models VI and VII are constructed
with their b and c stacks of D6-branes swapped respec-
tively. The Uð1ÞY and SUð4ÞC gauge couplings can be
constructed closer to unification at the string scale through
the swapping. Furthermore, for models VI and VII this
swapping leads to strong and hypercharge gauge unifica-
tion shift to weak and hypercharge gauge unification. In the
generalized Pati-Salam model building, we reduced the
search parameter space to a finite set by utilizing math-
ematical analysis, and obtained the models from common
solutions of the RR tadpole cancellation conditions, super-
symmetry conditions, and three generation conditions. It
would be interesting to employ our mathematical analysis
methods to search for the Pati-Salam models, trinification
models, SUð5Þ models, and flipped SUð5Þ ×Uð1ÞX mod-
els. We also would like to address that another interes-
ting scenario worthwhile investigating is constructing
the SUð2ÞL and/or SUð2ÞR gauge symmetries from filler
branes, namely, SUð2ÞL;R ¼ USpð2ÞL;R. As follows, the
number of the SM Higgs doublet pairs might be decreased.

TABLE XII. Composite particle spectrum for model VI.

Model VI SUð4Þ × SUð2ÞL × SUð6ÞR ×USpð2Þ ×USpð6ÞÞ
Confining Force Intersection Exotic Particle Spectrum Confined Particle Spectrum

USpð2Þ1 b1 4 × ð1; 2; 1; 2̄; 6Þ 4 × ð1; 1; 1; 1; 1Þ, 4 × ð1; 3; 1; 1; 1Þ, 4 × ð1; 2; 6; 1; 1Þ
c1 1 × ð1; 1; 6; 2; 1Þ 4 × ð1; 1; 15; 1; 1Þ, 4 × ð1; 1; 21; 1; 1Þ

USpð6Þ3 c1 1 × ð1; 1; 6; 2; 1Þ 1 × ð1; 1; 15; 1; 1Þ, 1 × ð1; 1; 21; 1; 1Þ

TABLE XIII. Composite particle spectrum for model VII.

Model VII SUð4Þ × SUð6ÞL × SUð2ÞR × USpð2Þ × USpð6Þ
Confining Force Intersection Exotic Particle Spectrum Confined Particle Spectrum

USpð2Þ1 b1 1 × ð1; 6; 1; 2̄; 1Þ 4 × ð1; 1; 1; 1; 1Þ, 4 × ð1; 1; 3; 1; 1Þ, 4 × ð1; 6; 2; 1; 1Þ
c1 4 × ð1; 1; 2; 2̄; 6Þ 4 × ð1; 15; 1; 1; 1Þ, 4 × ð1; 21; 1; 1; 1Þ

USpð6Þ4 c1 1 × ð1; 1; 2; 2; 1Þ 1 × ð1; 15; 1; 1; 1Þ, 1 × ð1; 21; 1; 1; 1Þ

TABLE XI. The chiral spectrum in the open string sector for model VII.

Model VII SUð4Þ × SUð6ÞL × SUð2ÞR × USpð2Þ × USpð6Þ Q4 Q2L Q6R Qem B − L Field

ab0 1 × ð4; 6; 1; 1; 1Þ 1 1 0 − 1
3
; 2
3
;−1, 0 1

3
;−1 QL, LL

ac 3 × ð4̄; 1; 2; 1; 1Þ −1 0 1 1
3
;− 2

3
; 1; 0 − 1

3
; 1 QR, LR

bc 3 × ð1; 6̄; 2; 1; 1Þ 0 −1 1 −1, 0, 0, 1 0 H0

b1 1 × ð1; 6; 1; 2; 1Þ 0 1 0 � 1
2

0
c1 4 × ð1; 1; 2; 2; 1Þ 0 0 1 � 1

2
0

c4 1 × ð1; 1; 2̄; 1; 6Þ 0 0 −1 � 1
2

0
16 × ð1; 1; 1; 1; 1Þ 0 0 2 0;�1 0

bc0 5 × ð1; 6; 2; 1; 1Þ 0 1 1
5 × ð1; 6̄; 2̄; 1; 1Þ 0 −1 −1 −1, 0, 0, 1 0 Hi

u; Hi
d

N ¼ 1 SUPERSYMMETRIC SUð12ÞC × SUð2ÞL × SUð2ÞR … PHYS. REV. D 104, 046018 (2021)
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In this case, one usually shall not construct the SUð2ÞL;R
gauge symmetries from the splittings of higher rank
USpðNÞ (N ≥ 4) branes, as it generally leads to an even
number of families, and the absolute value for one
wrapping number of Uð4Þ branes larger than 2 cannot
be avoided. This makes it difficult due to the tadpole
cancellation conditions for model building and calls
for more powerful scanning methods for model buildings.
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