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We study the relationship between mixed state entanglement and thermal phase transitions. As a typical
example, we compute the holographic entanglement entropy (HEE), holographic mutual information (MI),
and the holographic entanglement wedge minimum cross section (EWCS) over the superconductivity
phase transition. We find that HEE, MI, and EWCS can all diagnose the superconducting phase transition.
They are continuous at the critical point, but their first derivative with respect to temperature is
discontinuous. MI decreases with increasing temperature and exhibits a convex behavior, while HEE
increases with increasing temperature and exhibits a concave behavior. However, EWCS can exhibit either
the same or the opposite behavior as MI, depending on the size of the specific configuration. These results
show that EWCS captures more abundant information than HEE and MI. We also provide a new algorithm
to compute the EWCS for general configurations.
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I. INTRODUCTION

Quantum entanglement is the main property that dis-
tinguishes quantum systems from classical systems.
Recently, quantum entanglement has become a hot topic
in the fields of holographic gravity, condensed matter
theory, quantum information, and so on. Many quantum
entanglement measures have been found capable of diag-
nosing the quantum phase transition of strong correlation
systems and the topological quantum phase transitions, and
playing a key role in the emergence of spacetime [1–8].
There are many different types of quantum entanglement

measures, such as entanglement entropy (EE), mutual
information (MI), Rényi entanglement entropy, negativity,
and so on. Among these quantum entanglement measures,
EE has been widely accepted as a good measure for pure
state entanglement. However, EE is unsuitable for meas-
uring the entanglement of mixed states, which is way more
common than pure states. Many new entanglement mea-
sures have been proposed to measure mixed state entan-
glement, such as the entanglement of purification (EoP),
negativity, and the entanglement of formation [9,10].

However, entanglement measures are extremely difficult
to calculate.
Gauge/gravity duality provides a powerful tool for

studying strongly correlated systems, and it relates entan-
glement related physical quantities to geometric objects in
dual gravity systems. The holographic entanglement
entropy (HEE) associates the EE of a subregion on the
boundary with the area of the minimum surface in the dual
gravity system [5]. HEE has been shown capable of
diagnosing quantum phase transitions and thermodynamic
phase transitions [11–21]. Recently, the Rényi entropy has
been proposed to be proportional to the minimal area of
cosmic branes [22]. Moreover, the butterfly effect that
reflects the dynamic properties of quantum systems, has
been extensively studied in holographic theory [23–32]. In
addition, holographic duality of quantum complexity, a
new information-related quantity from the EE, was also
proposed [33–42]. More recently, the EoP was associated
with the area of the minimum cross section of the
entanglement wedge [43,44]. Then, the entanglement
wedge minimum cross section (EWCS) has also been
considered the holographic dual of some other mixed state
entanglement measure, such as logarithmic negativity,
reflected entropy and odd entropy [45–47]. The EWCS
provides a novel and powerful tool for studying the mixed
state entanglement [32,48–55].
At present, HEE has been widely studied over many

different holographic phase transition models, but the
research on mixed state entanglement—MI and EWCS,
are still missing. For this purpose, we study the properties
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of HEE, MI, and EWCS in holographic superconductivity
model. We focus on the relationship between these infor-
mation-related physical quantities and phase transitions and
pay special attention to the difference and relationship
between mixed state entanglement measures and HEE.
We organize this paper as follows: we introduce the

holographic superconductivity model in Sec. II A, entan-
glement measures (HEE, MI, EoP) and their holographic
duality in Sec. II B. We discuss the properties of HEE (III),
MI (IV), and EWCS (V) systematically. In Sec. VI we
discussed the critical behavior of these entanglement
related quantities. Finally, we summarize in Sec. VII.

II. HOLOGRAPHIC SUPERCONDUCTIVITY
PHASE TRANSITION AND HOLOGRAPHIC
INFORMATION-RELATED QUANTITIES

First, we introduce the holographic model for super-
conductivity. Next, we introduce the HEE, MI, EoP, and
their holographic dual. After that, we elaborate on the new
algorithms to compute the minimum surfaces and mini-
mum cross sections.

A. Holographic superconductivity phase transition

A thermal phase transition occurs at a finite temperature,
that usually is accompanied by a symmetry breaking and
the emergence of an order parameter. A prominent example
of the holographic thermal phase transition is the super-
conductivity phase transition model. The action of the
holographic superconductor is [56] (see also [57] for a
recent review),

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
−
1

2
FμνFμν

− j∇Ψ − iqAΨj2 −m2jΨ2j
�
; ð1Þ

where L is the AdS length scale, A and F ¼ dA is the gauge
field and the corresponding field strength.Ψ is the complex
scalar field, which we write as Ψ ¼ eiξψ with ψ a real
scalar field and ξ the Stückelberg field. We fix the gauge by
setting ξ ¼ 0, and the corresponding equations of motion
read,

Rμν þ gμνð3þ ψ2Þ −
�
FμλFν

λ −
1

4
gμνF2

�

− ∂μψ∂νψ − q2ψ2AμAν ¼ 0;

∇μFμ
ν − q2ψ2Aν ¼ 0; ð∇2 − q2A2 þ 2Þψ ¼ 0: ð2Þ

We solve them with ansatz,

ds2 ¼ 1

z2

�
−ð1 − zÞpðzÞUdt2

þ dz2

ð1 − zÞpðzÞU þ Vdx2 þ Vdy2
�
;

A ¼ μð1 − zÞadt; ð3Þ

where μ is the chemical potential of the gauge field A and
pðzÞ≡ 1þ zþ z2 − μ2z3=2. The z is the radial axis, and
z ¼ 0, 1 represents the AdS boundary and the horizon,
respectively. The quantities U, V, a, and ψ are all functions
of z, that can be obtained by solving the equations of
motion (2). The system has a simple solution with
a ¼ U ¼ V ¼ 1;ψ ¼ 0, where the system goes back to
the AdS-RN black brane. The ψ has the following
expansion near the AdS boundary,

ψ ¼ ψ1zþ ψ2z2 þ � � � ; ð4Þ

where ψ1 is the source of the condensate, that we set as 0
such that ψ emerges as spontaneous condensate. ψ2 stands
for the expectation value of an operator O2 dual to ψ ,

hO2i ¼
ffiffiffi
2

p
ψ2; ð5Þ

that represents the condensate.
The Hawking temperature is T̃ ¼ 6−μ2

8π . The system is
invariant under the following rescaling,

ðt; x; yÞ → α−1ðt; x; yÞ; V → α2V;

μ → αμ; T̃ → αT̃: ð6Þ

In this paper, we adopt μ as the scaling unit,1 and the
dimensionless Hawking temperature T ¼ T̃=μ. At first
glance, the expression of T̃ may be contrary to the scaling
relation in (6), but this expression is correct. The reason is
that the more familiar coordinate system is ðt; r; x; yÞ, in
which the background solution should be related to the
radius rh of the black brane horizon. Because the system
has rescaling symmetry, we fix rh ¼ 1 in z≡ rh=r coor-
dinate to facilitate calculation. This method has been
adopted in [16–18], and the results are consistent with
the results of earlier literature [58]. For concreteness, we fix
L ¼ 1; m2 ¼ −2 and q ¼ 10 where the critical temperature
Tc ¼ 0.150296. We show the condensate

ffiffiffiffiffiffiffiffiffiffihO2i
p

=μ vs T in
Fig. 1. There is a scaling relationship

ffiffiffiffiffiffiffiffiffiffihO2i
p

=μ ∼ tαcond ,
between the condensate near the critical point and the
reduced temperature

t≡ 1 −
T
Tc

; ð7Þ

1This is equivalent to choosing the grand canonical ensemble
to describe the system.
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and the critical exponent is αcond ¼ 1=4 [59]. In fact,
the critical exponent is completely determined by the
fundamental symmetry of the model. As shown in the
illustration in Fig. 1, there is an obvious linear relationship
between the logarithm of the condensate and the reduced
temperature near the critical temperature. Moreover, our
numerical results show that the slope is about 0.2499,
which is consistent with the results of holographic
superconductivity.

B. Holographic information-related quantities

One of the most striking features of quantum mechanics
is entanglement. The most famous measure of entangle-
ment is EE, which measures the entanglement between a
subsystem and its complement. Specifically, the EE SA
between A and B in A ∪ B is defined as von Newmann
entropy in terms of the reduced density matrix ρA,

SAðjψiÞ ¼ −Tr½ρA log ρA�; ρA ¼ TrBðjψihψ jÞ: ð8Þ

For pure states we will find that SA ¼ SB [60]. In holo-
graphic duality theory, the HEE was related to the area of
the minimum surface in dual gravity systems [5] (see the
left plot of Fig. 3). HEE usually diverges due to the
existence of asymptotic AdS boundary. The commonly
used regulation is to subtract the common UV divergent
term brought by the asymptotic AdS from HEE to get the
UV finite term. In this paper, we also adopt this scheme and
all HEE labeled by S will be the finite term of HEE.
EE has been widely accepted as a good measure of pure

state entanglement. However, EE is not a good measure of
mixed state entanglement. For instance, A and B in a
system formed by the direct product of density matrix ρA
and ρB does not entangle with each other but can have
nonzero EE. The reason is that EE not only takes into

account the quantum entanglement but also the classical
correlation. Many new measures of the mixed state entan-
glement have been proposed [9,10], among which the most
direct measure of mixed state entanglement is the mutual
information (MI).
For separate A ∪ C separated by B, the MI is defined as

IðA;CÞ ≔ SðAÞ þ CðBÞ −minðSðA ∪ CÞÞ; ð9Þ

which measures the entanglement between A and C. It is
easy to verify that IðA;CÞ ¼ 0 when ρAC ¼ ρA ⊗ ρC.
Therefore, MI exhibits the important property that the
direct product state has zero entanglement. However, MI is
also not a perfect measure for mixed state entanglement.
Since MI is defined by EE in essence, [48] points out that
the properties of MI in some cases are completely domi-
nated by EE or even thermal entropy. This shows that we
need to resort to other mixed state entanglement measures.
Since SðA ∪ CÞ can have two different configurations, the
connected case (blue curves) and the disconnected case (red
curves) are shown in Fig. 2. The ða; b; cÞ and C# are the
width of the A, B, C and the minimum surface associated
with them, respectively. Apparently, when the area of the
disconnected case is smaller than the area of the connected
case, the MI vanishes. The critical point across which the
MI starts to vanishes is called the disentangling phase
transition.
The EoP, which involves the purification of mixed states,

is a new mixed state entanglement measure that is currently
being extensively studied. The density matrix ρ of a mixed
state onHA ⊗ HB can be purified by introducing two extra
systems A0 (entangled with A) and B0 (entangled with B)
such that ρ emerges as the reduced matrix from a pure state
jψi ∈ HAA0 ⊗ HBB0 . There are infinite ways to purify the ρ,
and the EoP EpðρÞ is defined as the minimum EE between
AA0 and BB0 [61]

EpðρÞ ≔ min
jψi∶ρ¼TrA0B0 jψihψ j

SAA0 ðjψiÞ: ð10Þ

EoP has been shown to satisfy several important in-
equalities [61]. Therefore, a reliable holographic dual must
also satisfy these inequalities [43,62]. Takayanagi et al.

FIG. 2. The illustration of the mutual information.

FIG. 1. The condensate at q ¼ 10. The critical temperature
Tc ¼ 0.150296, below which the system is in the superconduct-
ing phase. The inset plot is the logarithm of the condensate vs the
logarithm of the reduced temperature t.
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proposed a holographic dual of the EoP EWðρABÞ as the area
of theminimumcross sectionΣAB in connected entanglement
wedge [43], i.e., the configurations with nonzeroMI (see the
right plot in Fig. 3),

EWðρABÞ ¼ min
ΣAB

�
AreaðΣABÞ

4GN

�
: ð11Þ

For a biparty system A ∪ C separated by B (see Fig. 2),
the entanglement wedge is defined as the region surrounded
by the minimum surfaces and A ∪ C. It is worth noting
that the EoP, i.e., the minimum cross section can only
exist in the connected entanglementwedge. For disconnected
cases where MI vanishes, the EoP also vanishes. Recently,
EWCS has also been considered as a holographic dual of
logarithmic negativity, reflected entropy and odd entropy
[45–47].
The EWCS lives in the entanglement wedge that relates

to the minimum surfaces. Therefore, we provide new
algorithms to obtain the minimum surfaces and the EWCS.

C. Computations of holographic EWCS

For the convenience of numerics, we study the EWCS of
infinite strips in homogeneous background. For a generic
homogeneous background

ds2 ¼ gttdt2 þ gzzdz2 þ gxxdx2 þ gyydy2; ð12Þ

with z ¼ 0 denoting the asymptotic AdS boundary, the left
plot in Fig. 3 is the cartoon of the minimum surface for an
infinite strip along y-axis. The homogeneity requires that
all metric components gμν are functions of z only. HEE, MI,
and EWCS all have the same scaling dimension, and we
divide them by μ to obtain the dimensionless quantities.
The scaling dimension comes from the area obtained by
integrating over y-direction

R
dy ¼ Ly, which we omit for

convenience. Therefore, HEE, MI, and EWCS all have the
same scaling dimension as that of μ.
In previous work [51], we used NDSolve with

Mathematica to develop an algorithm to solve the mini-
mum surface and the corresponding asymmetric EWCS.

We adopted the arc-length parameter and took full advantage
of homogeneity to accelerate the solution of EWCS, and
applied this algorithm to calculate asymmetric EWCS in
AdS4 space-time and AdS-RN black hole systems.
However, we encountered some limitations with this algo-
rithm. First of all, choosing the arc-length parameter will
make it difficult to solve the minimum surface in the
asymptotic AdS region. Second, NDSolve method fails
easily in the near horizon region due to the coordinate
singularity. As a result, this algorithm can only offer reliable
numerical EWCS results in a relatively narrow range of
parameters. In this paper, we propose new algorithms to
calculate the minimum surface and asymmetric EWCS, that
will render the numerical computationmuchmore stable and
reliable.

1. The minimum surface

The minimum surface near the AdS boundary is
perpendicular to the boundary, which renders the spatial
direction x an unsuitable parameter for solving the mini-
mum surface. References [54,63] adopted the angle θ with
tan θ ¼ z=x, as the parameter of the minimum surface (see
Fig. 4). As shown in Fig. 4, the homogeneity of the
background ensures that the minimum curve is symmetrical
about the middle vertical line, which renders θ, the angle
between the line from the origin to the point on the curve
and the x-axis, a good parametrization of the curve. The
angle θ ranges between ½0; π=2�, and the full solution on
½0; π� can be obtained by mirroring the solution on ½0; π=2�
to ½π=2; π�. We follow this method, and a surface can be
parametrized as ðxðθÞ; zðθÞÞ with area A given by

A ¼ 2

Z
π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðθÞ2gxxgyy þ z0ðθÞ2gyygzz

q
dθ: ð13Þ

The resultant equations of motion read,

x0ðθÞz0ðθÞ2
�
g0xx
2gxx

þ g0yy
gyy

−
g0zz
2gzz

�
þ x0ðθÞ3ðgyyg0xxþ gxxg0yyÞ

2gxxgzz

þ x00ðθÞz0ðθÞ− x0ðθÞz00ðθÞ ¼ 0; zðθÞ− tanðθÞxðθÞ ¼ 0;

ð14Þ

FIG. 3. The left plot: The minimum surface for a given width w. The right plot: The minimum cross section (green surface) of the
entanglement wedge.
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where g0## ≡ g0##ðzÞ. However, it seems that the second
equation in (14) can be substituted into the first equation to
eliminate xðθÞ or zðθÞ. This is feasible in principle.
However, the singularity of tanðπ=2Þ and possible tanð0Þ
in the denominator will plague the numerics. Therefore, we
adopt the seemingly redundant formalism in order to obtain
a precise enough solution. The boundary conditions are

zð0Þ¼0; xð0Þ¼w; z0ðπ=2Þ¼0; xðπ=2Þ¼0; ð15Þ

where w is the width of the infinite strip. Also, xðπ=2Þ ¼ 0
constraint the origin x ¼ 0 as the middle of the minimum
surface, and z0ðπ=2Þ ¼ 0 reflects the fact that the mini-
mum surface symmetry about the middle of the minimum
surface.
In order to solve (14) with first order boundary condition

(15), we discretize the θ with finite difference method2 and
attack the nonlinearity with the Newton-Raphson iteration
method. These methods are also used in [16–18] to solve
numerical holographic systems. Compared with the built-in
NDSolve, this method is insensitive to the coordinate
singularity of the near-horizon geometry, thus improving
the accuracy of the minimum surface solution. Based on the
minimum surfaces, we use the Newton-Raphson iteration
method again to solve the area of the minimum cross
section between the two minimum surfaces, i.e., the EoP.

2. The EWCS

In [51], we transform the solution of EWCS into a
problem of solving the minimum value in two-dimensional
space. In fact, the globally minimum cross section must be
orthogonal to the minimum surface at the intersections,
since a global minimum must also be a local minimum.
This local constraint can be used to accelerate the search of
the minimum cross section since it does not need to
compute the arc length.

Given a biparty subsystem with minimum surfaces
C1ðθ1Þ; C2ðθ2Þ, we solve the minimum surface Cp1;p2

connecting p1 ∈ C1 and p2 ∈ C2. We parametrize Cp1;p2

with z, then the area of Cp1;p2
reads,

A ¼
Z
Cp1 ;p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxgyyx0ðzÞ2 þ gzzgyy

q
dz: ð16Þ

The resultant equation of motion becomes,

x0ðzÞ3
�
gxxg0yy
2gyygzz

þ g0xx
2gzz

�

þ x0ðzÞ
�
g0xx
gxx

þ g0yy
2gyy

−
g0zz
2gzz

�
þ x00ðzÞ ¼ 0; ð17Þ

with boundary condition,

xðzðθ1ÞÞ ¼ xðθ1Þ; xðzðθ2ÞÞ ¼ xðθ2Þ: ð18Þ

We show in Fig. 5 the methods for solving the EWCS.
The perpendicular conditions at the endpoints read,

gab

� ∂
∂z

�
a
� ∂
∂θ1

�
b
����
p1

¼ 0; gab

� ∂
∂z

�
a
� ∂
∂θ2

�
b
����
p2

¼ 0:

ð19Þ

Now, solving the EWCS is to find the minimum surface
ending at ðθ1; θ2Þ where (19) is satisfied. Notice that
vectors ∂

∂z ;
∂
∂θ1 ;

∂
∂θ2 are not normalized, for numerical sta-

bility it is better to implement the perpendicular conditions
with normalized vectors as,

Q1ðθ1; θ2Þ≡
gabð ∂∂zÞað ∂

∂θ1Þbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gcdð ∂∂zÞcð ∂∂zÞd

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gmnð ∂

∂θ1Þmð ∂
∂θ1Þn

q
������
p1

¼ 0;

Q2ðθ1; θ2Þ≡
gabð ∂∂zÞað ∂

∂θ2Þbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gcdð ∂∂zÞcð ∂∂zÞd

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gmnð ∂

∂θ2Þmð ∂
∂θ2Þn

q
������
p2

¼ 0:

ð20Þ

FIG. 4. The angle as the parameter of the minimum surface. The horizontal black line is the horizon (z ¼ 1).

2One should choose the Gauss-Lobatto allocation for better
numerical convergence. The full-order finite difference method
on the Gauss-Lobatto allocation is essentially equivalent to the
pseudo-spectral method using Chebyshev basis [64]. For prob-
lems with moving endpoints, the finite difference method is more
flexible.
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Note that Q1 and Q2 are both functions of the θ1 and θ2.
Now, the search of the EWCS is equivalent to finding the
minimum surface ending at ðθ1; θ2Þ where (20) is satisfied.
To find the EWCS, we implement the Newton-Raphson

method, that we describe below.
(1) Prepare initial values of the angles ðθð0Þ1 ; θð0Þ1 Þ, and

solve the minimum surface connecting p1 and p2,
and compute the Q1 and Q2.

(2) To find the ðθ1; θ2Þ such that Q1 ¼ Q2 ¼ 0, we
deduce the correction δθ1; δθ2 using the Newton-
Raphson method as,

�
Q1

Q2

�
þ
� ∂θ1Q1 ∂θ2Q1

∂θ1Q2 ∂θ2Q2

��
δθ1

δθ2

�
¼ 0: ð21Þ

The Jacobian element can be approximated with

∂θiQj ≃
QjðθiþδθiÞ−QjðθiÞ

δθi
, which requires solving the

minimum surface at least three times.
(3) Solve the linear equation (21), and obtain the

corrections ðδθ1; δθ2Þ. Update θ1, θ2 with ðθ1; θ2Þ ¼
ðθ1; θ2Þ þ ðδθ1; δθ2Þ.

(4) Iterate the above three steps, until Q1 ¼ 0 and
Q2 ¼ 0 is satisfied within the error bound. In this
paper, we set the error bound as 10−6, where only
solutions with jQij < 10−6 are accepted.

A careful choice of the initial values ðθ1; θ2Þ is needed
for the iterations to converge. The numerical reliability is
guaranteed by the convergence of the results when setting
different initial values or increasing the density of discre-
tization (see [64] for more technical details). Compared
with the previous method, the current method is more
advanced in the following aspects,
(1) The iteration is fast as long as we iterate a solution

with a good initial value. A good strategy is to use a
solution as the initial solution when solving a
problem with parameters nearby.

(2) The solution is more precise compared with the
previous method. In this paper, we can obtain results
with jQij ∼ 10−7.

(3) It does not suffer from the coordinate singularity like
the previous method, and hence the results are much
more stable. This means that it can obtain solutions
in a larger range of parameters.

In principle, there may be multiple local minimums
when searching for the minimum cross section, thus
different initial values need to be assigned to test this
point. In this paper, we obtained the same results for
many different initial values, which shows that the area
of the cross section should be globally convex in the
parameter space ðθ1; θ2Þ. Next, the endpoint on the inner
curve (see the blue curve C1ðθ1Þ in Fig. 5) should end
on the regions near the top. Otherwise, the area of
the minimum cross section will be very large due to the
dilation from the AdS boundary. This ruled out the
possibility for densely distributed local minimums. It is
also not possible for sparsely distributed local mini-
mums, because the endpoint on the inner curve is
unique, and the local perpendicular condition will
dictate the minimum cross section. In addition, a differ-
ent algorithm that searches the whole parameter space of
the cross sections shows that the area of the cross
section is indeed a globally convex function for AdS-
RN black branes, Gubser-Rocha model and Lifshitz
black branes [49–51]. However, for double holography
[65–67] or AdS/BCFT [68] where multiple boundaries
may exist, the minimum cross section may end on
multiple alternative minimum surfaces instead of the
outer curve C2ðθ2Þ in Fig. 5. Our algorithms can be
generalized to compute the correct EWCS by dealing
with the various candidates separately, and choosing the
global minimum from them.
Next, based on the above techniques, we explore the

relationship between HEE, MI, EWCS and phase transi-
tion, as well as the comparison between them.

FIG. 5. The demonstration of the EWCS. The p1 and p2 are the intersection points of the minimum surface connecting those two
minimum surfaces. The solid blue curve (parametrized with θ1) and solid orange curve (parametrized with θ2) are minimum surfaces.
The thick red curve is the minimum surface connecting p1 and p2. The blue arrows at the p1 and p2 are the tangent vector ð ∂∂zÞajp1

and

ð ∂∂zÞajp2
along the Cp1;p2

, while the purple arrows are the tangent vectors ð ∂
∂θ1Þajp1

and ð ∂
∂θ2Þajp2

along C1, C2, respectively. The dark

dashed horizontal line is the horizon.
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III. THE HOLOGRAPHIC ENTANGLEMENT
ENTROPY

Figure 6 shows the relationship between HEE and temper-
ature in the critical region. As can be seen fromFig. 6, HEE is
continuous at the critical point, but its first derivative with
respect toT is discontinuous. In addition,HEE increaseswith
increasing temperature in the critical region. These phenom-
ena do not depend on the width l of the infinite strip. It has
been shown that the larger the width of the infinite band, the
greater the contribution of thermodynamic entropy in HEE
[29]. Therefore the thermodynamic entropy, as a quantity
which only depends on the near horizon geometry, should
also diagnose the superconducting phase transition. This is
certified in Fig. 7, where the thermal entropy density s indeed
show similar phenomena as the HEE.
The above phenomena show that both HEE and the

thermal entropy are good diagnoses of the thermal phase
transition. This is as expected since the thermal phase
transition is always accompanied by the emergence of
condensate. Such condensate will introduce new degrees of

freedom to the system, and hence radically change the
thermal entropy properties, as well as the EE. Similar
phenomena of the HEE over superconductivity phase
transition have been obtained in [69–72].
With the HEE, the MI is readily computed.

IV. THE HOLOGRAPHIC MUTUAL
INFORMATION

The MI, originated from the EE, should also reflect the
thermal phase transition. Figure 8 shows the relationship
between MI and temperature in the critical region. First, MI
decreases with increasing temperature, which is opposite to
the relationship between HEE and temperature. Second,
similar to HEE, MI can diagnose phase transitions indeed.
MI is continuous at the critical point, but its first derivative
with temperature is discontinuous. In addition, when the
temperature increases, the MI may decrease to zero, which
is called the disentangling phase transition. This can be
understood as that thermal effects may destroy the quantum
entanglement. Also, the system disentangles more easily
for smaller values of c when fixing the a, b.
An interesting quantity related to the disentangling phase

transition is the critical size of the configurations. We
demonstrate the critical c (labeled as cc) in Fig. 9, in which
we see that the critical c increases with the increasing

FIG. 6. The HEE vs T at different values of l specified by the
plot legends. The black vertical line labels the critical temper-
ature. Below the critical temperature, the segments with deeper
and lighter colors correspond to the HEE of the solutions with
superconductivity condensate, and the AdS-RN background,
respectively.

FIG. 7. The entropy density s vs T. The black vertical line
labels the critical temperature. Below the critical temperature, the
segment with deeper and lighter color correspond to the entropy
density of the solutions with superconductivity condensate, and
the AdS-RN background, respectively.

FIG. 8. The MI vs T. The black vertical line labels the critical
temperature. Below the critical temperature, the segment with
deeper and lighter color correspond to the MI of the solutions
with superconductivity condensate, and the AdS-RN back-
ground, respectively.
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temperature. This is in accordance with the phenomena
observed in Fig. 8.
Another notable feature is that MI is always convex in

the critical region. In contrast, HEE is concave. The
opposite behavior of MI and HEE is essentially due to
their association on definition. EWCS is different from MI
and HEE by definition, thus its behavior in the critical
region is worth exploring.

V. THE ENTANGLEMENT WEDGE MINIMUM
CROSS SECTION

In this section, we first explore the EWCS behavior in the
critical region to reveal the relationship between EWCS and
phase transition. Subsequently, wewill verify that the EWCS
in this paper still satisfies some important inequalities.

A. EWCS and thermal phase transition

Similar to HEE and MI, EWCS also shows obvious
unsmoothness at the critical point. As shown in Fig. 10,
EWCS is continuous, but its first derivative is

discontinuous at the critical point. Moreover, EWCS
decreases with increasing temperature, which is consistent
with MI. In addition, it can exhibit convex behavior in the
critical region like MI. Intriguingly, EWCS can also exhibit
concave behavior (as shown in Fig. 11). This is a key
difference between EWCS and MI.
Whether the EWCS is convex or concave depends on

specific configurations. By comparing the Fig. 10 and
Fig. 11 where the configurations of ða; b; cÞ have
been chosen as the same as that of MI in Fig. 8, we
can find that when the configuration is relatively small
and the minimum cross section is far away from the
horizon, the EWCS exhibits a convex behavior similar to
that of MI. However, when the configuration is relatively
large, where the minimum cross section is close to the
event horizon of the black hole, the EWCS will show a
concave behavior.
The difference between EWCS and MI shows that

EWCS, as a measure of mixed state entanglement, char-
acterizes different information of a quantum system.
Moreover, the configuration-dependent properties of
EWCS show that EWCS exhibits more abundant phenom-
ena than MI, which may reveal the properties of quantum
entanglement more comprehensively.
Another interesting phenomenon is the angle (endpoint)

behavior in the critical region. From Fig. 12 we find that the
angle parameter can work as a good diagnose of the phase
transition by showing a rapid turn in the space of the
ðθ1; θ2Þ. Also, the typical change of θ when variating the T
is of order 10−4, which has been well captured by our
numerics that is precise up to 10−7. When changing T, the
θm1 changes very slowly, while the θm2 changes relatively
more rapidly. This is as expected, since the point p1

parametrized by θm1 locates at the regions near the
boundary, where the major contribution to EWCS lies.
Therefore, it will change less than that of the p2 (para-
metrized by θm2) region, which is relatively far away from
the boundary.

0.12 0.14 0.16 0.18 0.20
T

0.208

0.210

0.212

0.214

0.216

0.218

0.220

0.222
cc

b=0.2

a=1.00

a=1.08

a=1.16

a=1.24

a=1.32

a=1.39

a=1.47

FIG. 9. The critical c, where the vertical line represents the
critical temperature. Below the critical temperature, the segment
with deeper and lighter color correspond to the critical c of the
solutions with superconductivity condensate, and the AdS-RN
background, respectively.

FIG. 10. The EWCS EW and the first-order temperature derivative with respect to EW vs the temperature. These two plots are obtained
at ðb; cÞ ¼ ð0.2; 1Þ at different values of c specified by the plot legends. Here, the EW is convex. In the left plot, below the critical
temperature, the segment with deeper and lighter color correspond to the EW of the solutions with superconductivity condensate, and the
AdS-RN background, respectively.
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B. Inequalities of EWCS

The EWCS satisfies several important inequalities, that
the correct holographic EWCS expression must satisfy.

The first inequality is

EWðρAðBCÞÞ ≥ EWðρABÞ ð22Þ

which has been shown with the entanglement wedge
nesting property [43]. The inequality (22) can be translated
into

EWða; b; cþ δcÞ ≥ EWða; b; cÞ with δc ≥ 0: ð23Þ

This is readily seen in Fig. 13, where we can find that EW
indeed increases with increasing c at fixed values of a, b
and T.
The second inequality is,

EWðρACÞ ≥
1

2
IðA;CÞ; ð24Þ

which states that EW of any configuration is greater than
half of the MI. This is shown in Fig. 14, where the data ofFIG. 12. The endpoints of the corresponding EWCS for differ-

ent values of temperature. Along the arrow direction, the temper-
ature increases, and the turning point (red point) exactly matches
the critical temperature.

FIG. 13. EWCS vs c. Apparently, the EWCS decreases with the
temperature. Also, EWCS increases as the c increases, this is one
of the inequalities that EWCS has to satisfy.

FIG. 11. The EWCS EW and the first-order temperature derivative with respect to EW vs the temperature. These two plots are obtained
at ðb; cÞ ¼ ð0.3; 2Þ at different values of c specified by the plot legends. Here, the EW is concave. In the left plot, below the critical
temperature, the segment with deeper and lighter color correspond to the EW of the solutions with superconductivity condensate, and the
AdS-RN background, respectively.

FIG. 14. EWCS vs I=2. The solid lines and the dashed lines are
the EWCS and one-half of the MI at different values of c,
respectively. At a fixed value of c, the solid line and the dashed
line are of the same color. It is readily seen that EWCS is always
greater than one-half of the MI. In this plot we fix
ða; bÞ ¼ ð0.6; 0.1Þ.
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the solid curves (EWCS) of a certain color is always larger
than that of the dotted curves (EWCS) of the same color.
The above two phenomena show that the EWCS in this

paper does satisfy the important inequalities. These results
once again enhance the reliability of holographic EWCS
prescription.

VI. THERMAL PHASE TRANSITIONS AND
GEOMETRICAL OBJECTS

In the above three sections, we discussed in detail the
relationship between the three entanglement-related quan-
tities HEE, MI and EWCS and the superconductivity phase
transition. On the one hand, they exhibit very similar
discontinuities on the temperature derivatives. On the other
hand, EWCS has more abundant behaviors than HEE and
MI. Next, we discuss in detail the relationship between
these behaviors and superconducting phase transition.
The critical scaling behavior is a typical characteristic

of most phase transitions. For example, the condensate of
superconducting phase transitions has a critical exponent
of 1=4. Therefore, it is worth discussing whether HEE, MI
and EWCS also have scaling behavior. Our numerical
results show that they not only have perfect scaling
behavior but also have exactly the same critical exponents.
The critical temperature is the bifurcation point of the
system, under which the system has both AdS-RN
solution and superconducting condensate solution. After
the phase transition, its HEE, MI and EWCS will change
obviously. We subtract them from the counterpart of the
AdS-RN branch and study the critical behavior of this
difference (i.e., the difference between the deeper and
lighter curves in previous figures) near the critical point,
as we stated in Eq. (25).

δS ¼ Scond − SAdS−RN; δI ¼ Icond − IAdS−RN;

δEW ¼ EWcond − EWAdS−RN: ð25Þ

We label the critical behavior as,

δS ∼ tαHEE ; δI ∼ tαMI ; δS ∼ tαEWCS : ð26Þ

Consequently, the lnðjδSjÞ; lnðjδIjÞ; lnðjδEW jÞ will have
linear dependence on lnðtÞ with the critical exponent
being the slope. Due to the definition of MI (9), we
can directly deduce that αHEE ¼ αMI. Therefore, we only
need to study αHEE and αEWCS.
We show the results in Fig. 15, from which we can see

that HEE and EWCS have obvious scaling behavior near
the critical point. Moreover, the numerical results show that
the critical exponents of HEE and EWCS are extremely
close to 1. That is to say, we will have

αHEE ¼ αMI ¼ αEWCS ¼ 1: ð27Þ

These phenomena indicate that HEE, MI and EWCS all
have the same scaling behavior in the holographic super-
conducting phase transition. Next, we will prove this result
analytically. In fact, we will show that not only HEE, MI
and EWCS, any physical quantity that only depends on the
geometry will have the same critical exponent 1.
At the onset of the phase transition, only the perturbation

of the complex scalar field needs to be turned on. This
method can be used to analyze the critical point of super-
conducting phase transition. The background perturbation
will only appear in the second-order [73]. That is to say, up
to second-order approximation,

δgμν ∼ ðδψÞ2 þ � � � ; ð28Þ

where � � � represents all other possible perturbations. For
any quantity AðgμνÞ that only depend on the geometry, the
perturbation will become,

δA ¼ A0δgμν: ð29Þ

In the critical region, the condensate has
ffiffiffiffiffiffiffiffiffiffihO2i

p
=μ ∼ t1=2,

and hence ψ ∼ t1=2 [59]. Consequently, we will have
δA ∼ t1. Therefore, the HEE, MI and EWCS all have the
same scaling exponent 1. However, for systems with
nonminimal coupling between matter term and the geom-
etry, the HEE, MI and even EWCS will explicitly depend

FIG. 15. The left and right plot are lnðtÞ vs lnðjδSjÞ and lnðtÞ vs lnðjδEW jÞ, respectively.
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on the matter field. In these theories, the critical behavior of
entanglement-related quantities may be different.
From the perspective of quantum many body theory,

similar critical phenomena can also be seen [2,74]. The
explanation from quantum many body theory is that the
correlation between entanglement-related physical quan-
tities and the thermodynamic function of the system leads
to these phenomena. From the perspective of holography,
the entanglement-related physical quantities are mainly
determined by the perturbation relation of the dependence
of geometry and coherent field.

VII. DISCUSSION

We have investigated the HEE, MI and EWCS for
general strip configurations in the superconductivity phase
transition model. We find that HEE, MI and EWCS can all
diagnose the superconducting phase transition. They are
continuous at the critical point, but their first derivative with
respect to temperature is discontinuous. Also, they all
exhibit the same critical behavior due to the perturbation
relationship between the geometry and the condensate. In
addition, as a measure of entanglement of mixed states, MI
exhibits the opposite behavior to HEE. Specifically, MI
decreases with increasing temperature and exhibits a
convex behavior, while HEE increases with increasing
temperature and exhibits a concave behavior. These results
do not depend on the specific configuration. Moreover, as a
new measure of mixed state entanglement, EWCS can
exhibit either the same or the opposite behavior as MI,
depending on the size of the specific configuration. These
results show that EWCS can not only describe the phase
transition but also capture more abundant information than
HEE and MI.
Thermal phase transition is usually accompanied by the

emergence of order parameter [57], which is the main
reason why HEE, MI and EWCS can diagnose it. However,

not all phase transitions occur with the emergence of order
parameters. Quantum phase transition occurs at zero
temperature when changing system parameters. There
are certain quantum phase transitions in which the order
parameter is absent. Therefore, the characterization of
these quantum phases becomes an important topic.
Metal-insulator transition, as one of the most well-known
quantum phase transition, was found intimately related to
the EE [16–18]. However, EE cannot completely exclude
the contribution of thermal entropy. As a new mixed state
entanglement measure independent of the EE, we can
expect that EWCS may play an important role in a quantum
phase transition. This is the direction of our future efforts.
Another major advance of this paper is to provide an

upgraded version of EWCS algorithms. Using these algo-
rithms, the calculation of EWCS can be more stable and
reliable, which can pave the way for further study of
EWCS. For example, the properties of EWCS in Born-
Infeld system, massive gravity and Lovelock gravity theory
are all worth exploring. These studies will lay a foundation
for a more comprehensive understanding of the properties
of mixed state entanglement in more general holographic
models.
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