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A finite-temperature extension of the effective holographic models for QCD (EHQCD), proposed in
Ref. [Ballon-Bayona et al., Phys. Rev. D 97, 046001 (2018).], is investigated in the present work. EHQCD
models are characterized by two parameters, the conformal dimension of the relevant operator that deforms
the conformal field theory and the associated coupling. We find that black hole solutions appear at
temperatures higher than some temperature Tmin and can be categorized into two classes: large and small
black holes. A large black hole is thermally stable and it is therefore interpreted as the gravity dual of a
nonconformal plasma. A small black hole, on the other hand, is thermally unstable. We show that
thermodynamic quantities such as the entropy density s, specific heat CV , and speed of sound cs are sensitive
to the model parameters. We investigate perturbations of the black hole solutions and calculate the viscosity
coefficients of the corresponding dual nonconformal plasma. For the shear viscosity, we confirm that the ratio
η=s is given by the universal result 1=4π. For the bulk viscosity, the ratio ζ=s varies with the temperature,
displaying a rapid growth close to Tmin, and it is sensitive to the model parameters. We compare our results for
the thermodynamic quantities with the lattice SUðNCÞ results and find that they are compatible as long as the
coupling is fixed appropriately as a function of the conformal dimension. We also compare our results for the
viscosity coefficients against the JETSCAPE Collaboration results that are obtained from the analysis of
experimental data on heavy ion collisions.
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I. INTRODUCTION

The emergence of the anti–de Sitter/conformal field
theory (AdS=CFT) correspondence [1–3] about two dec-
ades ago opened a new window to investigate the very
specific properties of the quark-gluon plasma (QGP)
produced for the first time at the Relativistic Heavy
Ion Collider [4–7]. Due to its collective (macroscopic)
behavior, this plasma may be described by relativistic

hydrodynamics. Moreover, the QGP phase lies in the strong
coupling regime of QCD and the perturbative methods of
quantum field theory are not useful. The AdS=CFT corre-
spondence establishes a duality between strongly coupled
conformal field theories in four-dimensional (4D) flat space
and weakly coupled gravitational or string theories in
AdS5 ×M with M being a compact manifold. The most
notable example of this correspondence is the duality
between N ¼ 4 super-Yang-Mills theory in 4D flat space
and type IIB supergravity in AdS5 × S5 (see, for instance,
Refs. [8–10] and the references therein).
Motivated by the initial success of the AdS=CFT

correspondence, phenomenological models were proposed
to investigate QCD-like theories. Since QCD is a non-
conformal theory [except in the extreme ultraviolet (UV)
region], a deformed conformal field theory (CFT) in
which the conformal invariance has been broken by a
scalar operator may be considered as a reasonable approxi-
mation for QCD. This kind of approach can be seen as a
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phenomenological bottom-up model for holographic QCD.
To mention a few previous works, Gubser and Nellore [11]
built a holographic QCD model, where the CFT was
deformed by a relevant operator, constrained by the
equation of state of QCD. Viscosity coefficients were later
obtained in Refs. [12,13]. In turn, Gursoy, Kiritsis, and Nitti
[14] built another holographic QCD model, where the CFT
was deformed by a marginal operator. Moreover, the
authors of [14] found the appropriate infrared (IR) behavior
of the gravitational background that lead to confinement
and to a linear spectrum. As a consequence, the model
of [14], known as improved holographic QCD (IHQCD),
lead to a glueball mass spectrum in agreement with the
results of lattice QCD. The unconfined phase in the IHQCD
model was investigated in Ref. [15] and the viscosity
coefficients were obtained in [16].
The holographic QCD models described above have

specific properties that make them unique. Considering the
UV properties of the Gubser-Nellore model [11] and the
confined IR characteristics of the IHQCD model built
by Gursoy, Kiritsis, and Nitti [14], a simple holographic
(hybrid) model was recently proposed and explored in
Ref. [17]. The model parameters in [17] are the conformal
dimension Δ ¼ 4 − ϵ of the relevant operator that deforms
the CFT and the associated dimensionless coupling ϕ̂0.
The model leads to a glueball mass spectrum in good
agreement with lattice QCD and it was also realized that
the mass spectrum is not sensitive to the variation of the
conformal anomalous dimension ϵ as long as the coupling
ϕ̂0 is fixed as a function of ϵ (for details, see Refs. [17,18]).
In relation to the QGP, its transport coefficients (for

example, the viscosity coefficients) must be finite, even if
the plasma approaches a perfect fluid. Thus, the knowledge
of their viscosity coefficients shall provide a better under-
standing of the properties and the evolution of the QGP.
One way to calculate such coefficients is to consider the
low-energy limit of the real-time spectral functions and
then, using Kubo’s formula, obtain the desired viscosity
coefficients. This procedure is followed by some of the
research groups working on lattice SUðNcÞ theories (see,
for instance, Refs. [19–21]). However, as it is well known,
transport properties are still a very challenging problem in
lattice SUðNcÞ theories and there are large uncertainties
[22] (for a discussion on the bulk viscosity, see for instance
Ref. [23]). Using the holographic QCD approach, based
on the AdS=CFT correspondence, one may be able to
extract the viscosity coefficients of the dual plasma. One of
the methods used is turning on a source for the desired
response; for example, considering metric perturbations
of the dual five-dimensional (5D) asymptotically anti–
de Sitter (AdS) black hole. Imposing incoming boundary
conditions at the black hole horizon and Dirichlet boundary
conditions at the AdS boundary one is able to calculate
the corresponding retarded Green’s functions. Then, using

Kubo’s formula it is possible to extract the shear and bulk
viscosities of the dual plasma.
In this paper, we investigate the thermodynamic proper-

ties and viscous coefficients of nonconformal plasma in an
effective holographic QCD (EHQCD) approach, where
the CFT is deformed by a relevant operator dual to a 5D
scalar field (the dilaton). In this approach, the gravity dual
of the nonconformal plasma is given by a 5D asymptoti-
cally AdS black hole arising from Einstein-dilaton gravity
with a specific dilaton profile that matches the conformal
dimension of the 4D operator in the UV and satisfies the
confinement criterion in the IR. An important conse-
quence of the confinement scale, present in the EHQCD
model, will be the emergence of a minimum temperature
Tmin for the existence of black hole solutions. Moreover,
at fixed temperature T > Tmin there will be two types of
black hole solutions, namely the large and small black
holes. The large (small) black hole will be characterized
by the entropy that increases (decreases) as a function of
the temperature. The large black hole will be thermally
stable and therefore interpreted as the gravity dual of the
nonconformal plasma.
We investigate the thermodynamics and the transport

properties of the nonconformal plasma and find that they
are sensitive to the two relevant parameters of the EHQCD
model, namely the conformal dimension Δ ¼ 4 − ϵ of the
scalar operator that deforms the CFTand the corresponding
dimensionless coupling ϕ̂0.
We obtain the entropy of the nonconformal plasma using

the Bekenstein-Hawking formula for the black hole entropy
whereas the plasma-free energy will be obtained by the use
of the first law of thermodynamics. Expanding the action
up to second-order we are able to extract the viscosity
coefficients. For the shear viscosity, we rewrite the pertur-
bations in terms of gauge-invariant variables describing the
transverse and traceless sector. For the bulk viscosity, we
change our strategy and rewrite the metric and equations
of motion using the dilaton field as an independent variable.
In such a procedure the dilaton field plays the role of
the holographic coordinate, allowing us to simplify the
calculations. For the thermodynamics, we compare our
results with those found in lattice SUðNcÞ theories [24].
Interestingly, we find that the thermodynamic quantities
can be fit for any value of the conformal anomalous
dimension ϵ as long as the dimensionless coupling ϕ̂0 is
fixed appropriately as a function of ϵ. This is consistent
with our previous results at zero temperature [17,18], where
fitting the glueball mass spectrum also led to fixing ϕ̂0 as a
function of ϵ. For the viscous coefficients, we compare our
results with the phenomenological constraints found by the
JETSCAPE Collaboration, from a model-to-data analysis
of heavy ion collision experimental data [25].
The present paper is organized as follows. In Sec. II

we describe the extension of the EHQCD models to finite
temperature and the physical interpretation of the model
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parameters. Section III deals with the thermodynamic
properties of the EHQCD models, where we describe the
two black hole solutions appearing at finite temperature
and discuss their stability. In Sec. IV we investigate the
viscosity coefficients considering the metric perturbations
dual to the stress-energy tensor components associated with
shear and expansion. Section V is devoted to comparing our
results for the thermodynamics with the results found in
lattice SUðNCÞ theories and comparing our results for the
viscous coefficients with the phenomenological constraints
found by the JETSCAPE Collaboration. We present our
conclusions in Sec. VI, and the asymptotic analysis of the
EHQCD models in the Appendix A.

II. EFFECTIVE HOLOGRAPHIC QCD MODELS
AT FINITE TEMPERATURE

In this section, we summarize the general properties of
the EHQCD models and present the ansatz for the black
hole solutions that allows for a description of the non-
conformal plasma at finite temperature. In Secs. III and IV
we will describe the thermodynamic and transport proper-
ties of the nonconformal plasma. For more details on
EHQCD models at zero temperature, see the discussion
presented in Refs. [17,18].
EHQCDmodels arise as asymptotically AdS solutions in

5D Einstein-dilaton gravitational theory. These 5D back-
grounds are the gravity duals of 4D deformations of a CFT
by a relevant scalar operator [11]. The Lagrangian of the
deformed CFT is given by

L ¼ LCFT þ ϕ0O; ð1Þ

where ϕ0 is the source, and O is the scalar operator dual to
the dilaton field. The physical motivation behind this
approach is the possibility of interpreting the Lagrangian
(1) in terms of the Yang-Mills Lagrangian in the limit of a
large number of colors, Nc. The profile of the 5D dilaton
field is constrained in the UV (close to the AdS boundary)
and in the IR (far from the AdS boundary). The UV
asymptotics are fixed by the relation m2 ¼ ΔðΔ − 4Þ
between the 5D dilaton mass and the conformal dimension
of the 4D scalar operator. For the IR asymptotics, we follow
[14] where it was found a dilaton field that, far from the
boundary, grows quadratically in the radial direction and
leads to an asymptotically linear spectrum for the scalar
and the tensor glueballs. Moreover, the authors of Ref. [14]
showed that such a quadratic behavior also guarantees
the key requirement for color confinement, namely that
the warp factor in the string frame presents a global
minimum [26].
The starting point in building holographic models for

QCD is the five-dimensional action for Einstein-dilaton
theory,

S ¼ σ

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3
∂mΦ∂mΦþ VðΦÞ

�

≡ σ

Z
d5x

ffiffiffiffiffiffi
−g

p ðRþ LΦÞ; ð2Þ

where Φ is the scalar (dilaton) field, VðΦÞ is the associated
potential, and σ ¼ M3

pN2
c is the effective 5D gravitational

coupling.Mp is the effective Planck mass and Nc is a finite
constant parameter associated with the number of colors in
the four-dimensional dual field theory. The Einstein-dilaton
equations of motion obtained from this action are

Gmn ¼
1

2σ
Tmn; ð3Þ

4

3

1ffiffiffiffiffiffi−gp ∂mð
ffiffiffiffiffiffi
−g

p
gmn∂nΦÞ þ 1

2

dV
dΦ

¼ 0; ð4Þ

where Gmn stands for the Einstein tensor and Tmn is the
energy-momentum tensor defined by

Tmn ¼ −
2ffiffiffiffiffiffi−gp δSM

δgmn ¼ σ

�
8

3
∂mΦ∂nΦþ gmnLΦ

�
; ð5Þ

with SM ¼ σ
R
d5xLΦ being the matter action due to the

scalar field.
Let us notice that Eqs. (3) and (4) are expressed in

general forms and then they apply to any spacetime
geometry. However, in order to investigate holographic
QCD models at finite temperature we consider the follow-
ing black hole metric:

ds2 ¼ 1

ζ1ðzÞ2
�
−fðzÞdt2 þ 1

fðzÞ dz
2 þ dxidxi

�
; ð6Þ

where fðzÞ is the horizon function (or blackening function),
and ζ1ðzÞ is a global (inverse) scale factor for the 5D metric
related to the warp factor through the relation ζ1 ¼ e−A1 ,
with A1 being thewarp factor [27]. The black hole solution is
characterized by the presence of an event horizon, zh, where
the horizon function vanishes. With this, the holographic
coordinate z is restricted to the interval 0 ≤ z ≤ zh. A
confining thermal solution can also be investigated by setting
fðzÞ to 1 for 0 < z < ∞. This is the trivial extension of the
zero-temperature solution dual to a confining vacuum. To
describe the physics of a dual nonconformal plasma, in this
work we focus on a black hole solution corresponding to a
nontrivial fðzÞ that interpolates between fð0Þ ¼ 1 at the
AdS boundary and fðzhÞ ¼ 0 at the event horizon.
After plugging (6) into (3), the equations of motion can

be written in the form

ζ001−
4

9
Φ02ζ1¼0; ζ−51 V−ððζ−31 Þ0fÞ0 ¼0; ðζ−31 f0Þ0 ¼0;

ð7Þ
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where the prime indicates the total derivative with respect
to z. The coupled equations (7) may be solved by following
different approaches. The traditional method is to build a
dilaton potential that interpolates between the UV and the
IR regime and then solve the equations for the fields Φ, ζ1,
and f. This is the strategy considered in the pioneer works
of [11,14]. As described in our previous work [17], an
alternative strategy for solving Eq. (7) is to presuppose that
we know either the dilaton field Φ (model A) or the scale
factor ζ1 (model B). One can build simple interpolations in
any of those scenarios that satisfy the UV and IR con-
straints. The potential is then reconstructed by the use of the
second equation in (7). Any of those two scenarios are
usually known as the potential reconstruction method and
have been successfully used in previous works (see for
instance Refs. [28–31]).
In the models of type A, where the dilaton profile is

known, the (inverse) scale factor ζ1 is calculated by solving
numerically the first equation in (7). Then, solving the last
equation in (7), we get an expression for the function fðzÞ
in terms of the warp factor. The two integration constants
arising in the blackening function are fixed by considering
two boundary conditions. Namely, a condition imposed at
the AdS boundary, where fð0Þ ¼ 1, while the other one is
given by the regularity condition at the horizon, where
fðzhÞ ¼ 0. Thus, the blackening function results in

fðzÞ ¼ 1 − Ch

Z
z

0

dz̃ζ31ðz̃Þ; ð8Þ

where the constant Ch, which guarantees the regularity
condition fðzhÞ ¼ 0, is given by

Ch ¼
1R zh

0 dz̃ζ31ðz̃Þ
: ð9Þ

The (inverse) scale factor ζ1 is a non-negative monotonic
function of z and hence the constant Ch is non-negative.
This in turn gives rise to a monotonically decreasing
function fðzÞ that goes from fð0Þ ¼ 1 at the AdS boundary
to fðzhÞ ¼ 0 at the horizon.
In this work, we describe the finite-temperature exten-

sion of the EHQCD model of [17]. We restrict ourselves to
the model of type A1, where the dilaton profile is given by

ΦðzÞ ¼ ϕ̂0ðΛzÞϵ þ
ðΛzÞ4−ϵ

1þ ðΛzÞ2−ϵ : ð10Þ

As described in [17], in the zero-temperature case the
EHQCD background obtained from the dilaton profile (10)
gives rise to a glueball spectrum in agreement with lattice
QCD results [32] and the results from improved holo-
graphic QCD models [14]. As stressed in [17], the glueball
spectrum does not change significantly when we consider
the conformal anomalous dimension, ϵ, in the interval

ϵ ∈ ½10−3; 10−1�. One of the aims of this paper is to
investigate if the relevant thermodynamic variables are
sensitive to the variation of the conformal anomalous
dimension. The parameters ϕ̂0 and Λ are related to the
source ϕ0 and vacuum expectation value G by

ϕ0 ¼ ϕ̂0Λϵ; G ¼ Λ4−ϵ; C ¼ Λ2: ð11Þ

The parameter C ¼ Λ2 appears as a coefficient in the large
z behavior ΦðzÞ ¼ Cz2 and it is related to color confine-
ment. The parameter Λ, with conformal dimension 1, plays
a role similar to ΛQCD and fixes the units of the EHQCD
model. The parameter ϕ̂0 is the dimensionless version of
the source (coupling) ϕ0.
Thus, the relevant parameters of the model are ϕ̂0, ϵ,

and Λ. Note that the parameter Λ controls the breaking
of conformal symmetry; in the limit Λ → 0 the dilaton field
vanishes, and conformal symmetry is restored. In this
paper, we will work most of the time with dimensionless
quantities so there will be no need of fixing Λ. In other
words, we work in units where Λ ¼ 1.
It is worth mentioning that, although the parameters ϵ

and ϕ̂0 are in general independent, as shown in [17], at zero
temperature the glueball spectrum is a physical constraint
to fit ϕ̂ as a function of ϵ. A similar scenario occurs in
the finite-temperature extension considered in this work,
where initially we take ϵ and ϕ̂0 as independent parameters
and will find that the thermodynamic properties become a
physical constraint that fixes ϕ̂0 as a function of ϵ. Finally,
it is also worth pointing out that in the limit ϕ̂0 → 0 a
massless mode arises in the scalar sector [33].

III. THERMODYNAMICS OF THE
NONCONFORMAL PLASMA

In this section we investigate the thermodynamic proper-
ties of the black hole solutions arising in our EHQCD
model, which will be interpreted in terms of the 4D
nonconformal plasma.

A. Temperature and entropy

After finding the blackening function (8), it is possible to
obtain the Hawking temperature of the black hole using the
well-known relation

T ¼ −
f0ðzhÞ
4π

¼ Chζ
3
1ðzhÞ
4π

: ð12Þ

According to the AdS=CFT correspondence, the black hole
temperature obtained from the gravitational solution should
be equal to the temperature of the dual quantum field
theory. In general, the temperature is determined numeri-
cally after setting the model parameters. In Appendix Awe
write the asymptotic behavior of the temperature for small
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zh (close to the boundary), see Eq. (A5), and for large zh
(far from the boundary), see Eq. (A19). From the asymp-
totic behavior, we conclude that the temperature is non-
monotonic and hence must have a minimum in the
intermediate region T ¼ Tmin at zh ¼ zhc. In the following,
we consider the case where the critical temperature for
deconfinement in the nonconformal plasma is Tc ¼ Tmin.
We shall see below that there are two black hole solutions
for each temperature T > Tc, although, as we will show
later, one of them is unstable.
In order to investigate the effects of finite temperature

in the dual field theory, we need to calculate some of the
thermodynamic variables, such as entropy, free energy, and
specific heat. In this paper, we follow a method commonly
used in the literature (see, for instance, [12,15], or for an
earlier study see [34]) in which the entropy density of the
5D black hole, obtained from the Bekenstein-Hawking area
formula, is identified with the entropy density of the dual
field theory. From the knowledge of the entropy density
and the use of the first law of thermodynamics, one then
obtains the free energy density which, in turn, allows us to
calculate the other thermodynamic quantities.
To obtain the entropy density, we consider the transverse

components of the metric (6) and calculate the event-
horizon area through

A ¼ 1

ζ31ðzhÞ
Z

d3x ¼ V3

ζ31ðzhÞ
; ð13Þ

where V3 represents the volume of the transverse Euclidean
space. We may now calculate the entropy, using the
Bekenstein-Hawking formula,

S ¼ A
4G5

¼ V3

4G5ζ
3
1ðzhÞ

; ð14Þ

where G5 is the 5D Newton constant, which is given in
terms of the model parameters by G5 ¼ 1=ð16πσÞ. Finally,
by substituting (12) into (14) we find the thermodynamic
relation for the entropy density s ¼ S=V3,

s ¼ 4πσ

ζ31ðzhÞ
¼ N2

c

45π2
Ch

T
; ð15Þ

where the relation M3
p ¼ 1=ð45π2Þ has been used in the

last equality [15].

B. The free energy and the trace anomaly

So far we have obtained the temperature and entropy
density. Now we use the first law of thermodynamics [35],

dF ¼ −sdT; ð16Þ

in order to calculate the Helmholtz free energy density F.
We may integrate this equation to calculate the free energy

density of the black hole. Note that the entropy density
and temperature are explicit functions of zh and therefore
we may rewrite the integration of (16) by using zh as the
independent variable,

Z
F

Fa

dF ¼ −
Z

zh

zha

sðz̃hÞ
�
dTðz̃hÞ
dz̃h

�
dz̃h; ð17Þ

where zha is an arbitrary initial value for the horizon radius
corresponding to the free energy Fa.
One might consider the prescription where the free

energy density Fa is set to zero in the limit zha → ∞, as
done in Ref. [15]. Since in this limit the horizon function
fðzÞ tends to unity, such a prescription is equivalent to
setting the free energy density of the (confining) thermal
solution to zero. In this work, however, we consider an
alternative scheme where we integrate from a finite value
of zh, namely, from zha ≡ zhc , so that the integral repre-
sentation of the free energy becomes

F ¼ −
Z

zh

zhc

sðz̃hÞ
�
dTðz̃hÞ
dz̃h

�
dz̃h: ð18Þ

Furthermore, we set the free energy at the critical temper-
ature TðzhcÞ ¼ Tc to zero. This assumption guarantees that
the free energy of the physical black hole solution, namely
the large black hole with zh < zhc , satisfies the physical
constraint F ≤ 0. This constraint results because in that
regime the entropy density and the temperature are mono-
tonically decreasing functions of zh. Interestingly, the free
energy density of the small black hole solution, corre-
sponding to the regime zh > zhc , will also satisfy the
constraint F ≤ 0 because an inversion of the monotonic
behavior of the temperature will compensate the inversion
of integration limits. In particular, the free energy density of
the small black hole solution will not vanish in the limit
zh → ∞, where the small black hole solutions reduce to the
confining thermal solutions [36].
After integrating by parts, we can rewrite (18) in the form

F þ sT ¼
Z

zh

zhc

Tðz̃hÞ
�
dsðz̃hÞ
dz̃h

�
dz̃h: ð19Þ

Note that the lhs is precisely the definition of the energy
density, which is given by

ρ ¼ F þ sT: ð20Þ

Therefore, the energy density may be calculated directly
from the formula

ρ ¼
Z

zh

zhc

Tðz̃hÞ
�
dsðz̃hÞ
dz̃h

�
dz̃h: ð21Þ
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We will be interested in investigating finite temperature
effects on the trace anomaly of the energy-momentum
tensor which is given by hTμ

μi ¼ ρ − 3p, where the pressure
is p ¼ −F. The trace anomaly can be written in the
integral form

hTμ
μi ¼

Z
zh

0

T4
d
dz̃h

�
s
T3

�
dz̃h: ð22Þ

In arriving at this equation we have considered the differ-
ence hTμ

μiðzhÞ − hTμ
μiðz�hÞ and used the property that the

trace anomaly vanishes in the limit z�h → 0, assuring that
conformal symmetry is restored.
The behavior of the trace anomaly at zero temperature

was investigated in Ref. [17]. In the next subsection, we are
going to investigate the effects of the temperature on such
an important quantity. It is worth mentioning that even
though in some asymptotic regimes the analytic solutions
can be obtained, as described in Appendix A, in the
following analysis the thermodynamic variables shall be
determined numerically,

C. Numerical results

Let us turn the attention to our numerical results for the
thermodynamic variables. We will describe the thermody-
namic variables and coordinates in units where Λ ¼ 1. For
different choices of Λ, for example, the values considered
in [17], the thermodynamic variables and coordinates must
be properly rescaled. For example, the temperature T in
units where Λ ¼ 1 is actually the dimensionless ratio T=Λ
for a different choice of Λ.
In the following analysis, we consider the parameters ϵ

and ϕ̂0 as independent of each other. One way of describing
the evolution of the thermodynamics quantities with the
model parameters is fixing one of the parameters and
varying the other. Consider, for example, setting the
conformal anomalous dimension to ϵ ¼ 0.07 (the value
used in Ref. [12]) and varying the dimensionless coupling
ϕ̂0 in the region 0 ≤ ϕ̂0 ≤ 6.

The minimum temperature for the existence of black
hole solutions, Tc, is obtained by solving the equation
∂zhT ¼ 0. On the left panel of Fig. 1, we show that Tc

monotonically increases with ϕ̂0. A plot of the temperature
as a function of zh, both in units where Λ ¼ 1, for the few
particular values ϕ̂0 ¼ f0; 1; 2g is displayed in the right
panel of Fig. 1. The two branches, one of them corre-
sponding to the large black hole regime (solid lines), and
the other corresponding to the small black hole regime
(dashed lines) are clearly seen. The inset figure displays a
zoom of the region where the temperature reaches a
minimum. We conclude that the results are sensitive to
the value of ϕ̂0, namely the critical temperature Tc

increases with the increasing of ϕ̂0.
The numerical results for the dimensionless entropy

s=ðN2
cT3Þ as a function of the dimensionless temperature

T=Tc are displayed in Fig. 2. We observe that the
dimensionless entropy is even more sensitive to the value
of the parameter ϕ̂0, it decreases with the increasing of ϕ̂0.
As before, continuous lines represent the large black hole
regime, while dashed lines correspond to the small black
hole regime. Note that the case ϕ̂0 ¼ 0 reaches the
conformal limit, indicated by the dashed thin horizontal
line, faster than the other cases.
So far, we have two black hole regimes. In order to

discover which regime is physically relevant, we must
investigate the thermodynamic stability of the correspond-
ing solutions. A standard method for investigating the
stability of a thermodynamic system is to calculate the
corresponding specific heat, defined by the relation

CV ¼ T

�∂s
∂T

�
V
: ð23Þ

Stable systems are characterized by a positive CV . On the
left panel of Fig. 3 we display the results of the dimension-
less specific heat, CV=ðN2

cT3Þ, as a function of the
dimensionless temperature T=Tc for different values of ϕ̂0.
Solid lines represent the large black hole solutions, for
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FIG. 1. Left: The critical temperature Tc, in units where Λ ¼ 1, as a function of ϕ̂0 for ϵ ¼ 0.07. Right: The temperature T as a
function of zh, both in units where Λ ¼ 1, for three different values of ϕ̂0 and ϵ ¼ 0.07.
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which the specific heat is always positive (stable regime)
whereas dashed lines represent the small black hole
solutions, for which the specific heat is always negative
(unstable regime). The figure also shows the dependence
of the specific heat on the parameter ϕ̂0. For the large
(small) black hole, increasing the value of ϕ̂0 leads to a
decrease (increase) of the value of CV=ðN2

cT3Þ for a fixed
temperature.
Another relevant thermodynamic variable is the speed of

sound, which may be calculated using the formula

c2s ¼
∂ lnT
∂ ln s : ð24Þ

Our numerical results for c2s as a function of the temper-
ature are displayed on the right panel of Fig. 3 for different
values of ϕ̂0, as indicated, and ϵ ¼ 0.07. Interestingly,
in the region of unstable black holes (dashed lines), c2s
becomes negative, meaning that the speed of sound
becomes imaginary. This is related to the fact that the
specific heat is always negative in this region. To be more

specific we may rewrite the speed of sound in a
convenient form,

c2s ¼
s
CV

: ð25Þ

Since the entropy density is always positive, cf. Fig. 2, a
negative value of CV gives rise to a negative value for c2s,
hence the results found for the small black holes on the left
and right panel of Fig. 3 (dashed lines) are consistent. We
then conclude that the instability of the small black hole is
characterized by a negative specific heat and a purely
imaginary speed of sound. Our numerical results also show
that at T ¼ Tc, c2s crosses the horizontal axis (c2s ¼ 0)
whereas CV diverges. This is consistent with our for-
mula (25). Note that close to T ¼ Tc, c2s increases rapidly
with T and far from Tc it varies slowly. Last but not least,
we conclude that the speed of sound is also sensitive to the
variation of ϕ̂0. For the large (small) black hole solution c2s
decreases (increases) for increasing ϕ̂0. Note also that c2s
converges to 1=3 for the (physical) large black holes in the
limit of very high temperatures, which is consistent with the
restoration of conformal symmetry.
Using our formula (18) for the free energy density, we

can evaluate the pressure, P ¼ −F. Our numerical results
for the dimensionless pressure 3p=ðN2

cT4Þ as a function of
the dimensionless temperature T=Tc are displayed in Fig. 4
for ϵ ¼ 0.07 and different values of ϕ̂0. Note that the
sensitivity to the parameter ϕ̂0 depends on the region of
interest. In the branch describing small black holes (dashed
lines), the pressure is less sensitive to ϕ̂0 far from the
critical temperature Tc. Meanwhile, in the branch of large
black holes (solid lines), the pressure is more sensitive to ϕ̂0

for temperatures much higher than Tc.
Our numerical results for the energy density ρ as a

function of the temperature are displayed on the left panel
of Fig. 5, where we plot the quantity ρ=ðN2

cT4Þ for ϵ ¼ 0.07
and different values of ϕ̂0. As the figure shows, the energy
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FIG. 2. The dimensionless ratio s=ðN2
cT3Þ for the entropy

density as a function of the normalized temperature T=Tc for
three different values of ϕ̂0 and ϵ ¼ 0.07. Solid (dashed) lines
indicate the large (small) black hole regime. The thin dashed
(horizontal) line represents the value s=ðN2

cT3Þ ¼ 4π2=45.
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speed of sound c2s as a function of T=Tc for three different values of ϕ̂0, as indicated, and ϵ ¼ 0.07. Solid (dashed) lines represent the
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density is also sensitive to ϕ̂0, it decreases with the
increasing of ϕ̂0 for the large and small black hole regimes
(solid and dashed lines respectively). We also observe that
the energy density increases rapidly with T close to the
critical temperature Tc and varies slowly in the regime
of high temperatures. The right panel of Fig. 5 displays
our results for the dimensionless trace anomaly,
ðρ − 3pÞ=ðN2

cT4Þ, as a function of the dimensionless
temperature T=Tc for ϵ ¼ 0.07 and different values of
ϕ̂0. We can see that the trace anomaly decreases with the
increasing of ϕ̂0. Note that for the large black hole regime
(solid lines) the trace anomaly has a peak close to the
critical temperature, then, it decreases and goes to zero in
the limit of very high temperatures recovering conformal
symmetry. For the small black hole regime (dashed lines)
the trace anomaly becomes negative as T increases and
goes to zero in the high-temperature (conformal) limit.
The main conclusion of the above analysis is as follows.

When the conformal anomalous dimension ϵ is fixed, all
the thermodynamic variables describing the nonconformal
plasma in EHQCD are sensitive to the variation of the

dimensionless coupling ϕ̂0. We did a similar analysis for
the case where we fix ϕ̂0 and found that the thermodynamic
variables are sensitive to the variation of ϵ.
Other important lessons that can be learned from the

analysis presented in this section are the following.
Holographic QCD models that describe CFT deformations
consistent with confinement at zero temperature lead to
the formation of nonconformal plasmas only above a
certain temperature Tc. In other words, there is a minimum
temperature for gluon deconfinement due to the CFT
deformation. Moreover, above Tc the black hole solution
splits into two branches: a large stable black hole charac-
terized by a positive specific heat and a real speed of sound
and a small black hole characterized by a negative specific
heat and an imaginary speed of sound. In our bottom-up
framework, CFT deformations have been described by an
effective 5D Einstein-dilaton theory. Interestingly, qualita-
tively similar results can be obtained considering a top-
down approach, e.g., [37,38]

IV. VISCOSITY COEFFICIENTS OF THE
NONCONFORMAL PLASMA

There are at least three methods for calculating transport
coefficients of a fluid arising from a strongly coupled
theory within the framework of holography. One of them is
through the hydrodynamic limit of the black hole quasi-
normal modes, where one calculates the dispersion rela-
tions of field perturbations on the gravitational side of the
duality [9,39]. These relations are then compared to the
ones obtained from the linearized hydrodynamic modes.
In general, the dispersion relations arising from the rela-
tivistic hydrodynamics are constructed by using the gra-
dient expansion method (see, for instance, Refs. [40–43]).
Notice that in order to calculate the viscosity coefficients
we need to consider first-order hydrodynamics.
A second method consists of the direct evaluation of the

retarded Green’s functions for the components of the stress-
energy tensor associated with the transport coefficients.
Using the AdS=CFT correspondence, one identifies the

0 = 2

0 = 1

0 = 0

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T/Tc

3p
/(

N
c2

T
4
)

FIG. 4. The dimensionless pressure 3p=ðN2
cT4Þ as a function of

the dimensionless temperature T=Tc for three different values of
ϕ̂0, as indicated, and ϵ ¼ 0.07. Solid (dashed) lines represent the
large (small) black holes regime. The thin dashed horizontal line
represents the value 3p=ðN2

cT3Þ ¼ 3π2=45.
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FIG. 5. Left: The energy density ρ=ðN2
cT4Þ as a function of T=Tc for three different values of ϕ̂0, as indicated, and ϵ ¼ 0, 07.

Right: The trace anomaly ðρ − 3pÞ=ðN2
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ϵ ¼ 0, 07. Solid (dashed) lines represent the large (small) black holes regime.
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dual 5D gravitational perturbations. Then, the action is
expanded up to second-order in the perturbations to read off
the retarded Green’s function. Finally, Kubo’s formula is
used to calculate the desired transport coefficients. This is
the approach used in the seminal work for the shear
viscosity [44] and for the bulk viscosity [13].
A third method is based on the fluid/gravity correspon-

dence [45], where the full stress-energy tensor can be
obtained from the 5D metric by solving the full nonlinear
Einstein equations via a gradient expansion. In this paper,
we will follow the second method described above to
calculate the shear and bulk viscosities of the nonconformal
plasma arising in our EHQCD model.

A. Shear viscosity

In the case of the shear viscosity (η), considering the
direction of propagation kμ ¼ ðω; 0; 0; qÞ, the relevant
retarded Green’s function is given by

GRðω; qÞ ¼ −i
Z

dtd3xeiωt−iqx
3

θðtÞh½Tx1x2ðt; x3Þ;

Tx1x2ð0; 0Þ�i; ð26Þ

where Tx1x2 is one of the energy-momentum tensor com-
ponents and ω (q) is the frequency (wave number) of the
perturbation. From the holographic dictionary, we know
that the source of the shear viscosity is related to the metric
perturbation hx1x2 , which couples to the component Tx1x2 of
the energy-momentum tensor, relevant for calculating η.
In the following, we develop a general procedure to

calculate the shear viscosity in the holographic model we
are working with. Let us start with a general ansatz for the
black hole metric in holographic QCD, which we write as

ds2 ¼ 1

ζ21
ð−fdt2 þ dxidxiÞ þ

dz2

ζ22f
; ð27Þ

where f, ζ1, and ζ2 are functions of z only. We use this
ansatz for the metric in order to compare with previous
results in the literature and check the consistency of our
procedure and results. The corresponding background
equations are

ζ01ζ
0
2

ζ1ζ2
−
ζ021
ζ21

þ ζ001
ζ1

−
4

9
Φ02 ¼ 0;

3ζ001 þ 3ζ01

�
f0

f
− 5

ζ01
ζ1

þ ζ02
ζ2

�
þ ζ1V

fζ22
¼ 0;

f00

f0
− 4

ζ01
ζ1

þ ζ02
ζ2

¼ 0: ð28Þ

As expected, these relations reduce to (7) for ζ1 ¼ ζ2.
In order to calculate the shear viscosity, the next step is to

consider a perturbation on the background black hole

metric, gmn → gmn þ hmn. To calculate the shear viscosity
we need to consider the component hx1x2 only, and this
perturbation decouples naturally from the others. The
relevant equation governing this sector is obtained from

Gð1Þ
x1x2

¼ 1

2σ
Tð1Þ
x1x2

; ð29Þ

where Gð1Þ
x1x2 and Tð1Þ

x1x2 are first-order contributions to the
Einstein and energy-momentum tensor expansions in hx1x2 .
Since x3 is the direction of propagation of fluctuations
in the transverse space, the differential equation for
hx1x2ðt; x3; zÞ may be written as

∂2
zhx1x2 þ

�
f0

f
þζ02
ζ2

�
∂zhx1x2 þ

�
2f0ζ01
fζ1

−
4ζ021
ζ21

þ8

9
Φ02

�
hx1x2

þ ζ21
f2ζ22

ðf∂2
x3hx1x2 −∂2

t hx1x2Þ¼0: ð30Þ

However, this equation is not gauge invariant. As discussed
in Refs. [9,39] we may write it in terms of a gauge-invariant
master field, the so-called Kovtun-Starinets master varia-
ble, defined by ZT ¼ gx

1x1hx1x2. In doing so, we obtain

∂2
zZT þ

�
f0

f
−
f00

f0

�
∂zZT þ ζ21

f2ζ22
ðf∂2

x3ZT − ∂2
t ZTÞ ¼ 0:

ð31Þ

Considering the Fourier transform

ZTðt; x3; zÞ ¼
Z

dqdω
ð2πÞ2 e

−iωtþiqx3ZTðω; q; zÞ; ð32Þ

the fundamental equation becomes

Z00
TðzÞ −

�
ln

�
f0

f

��0
Z0
TðzÞ þ

ζ21
f2ζ22

ðω2 − q2fÞZTðzÞ ¼ 0:

ð33Þ

At this point, it is interesting to observe that considering ζ1
and ζ2 appropriately, Eq. (33) reduces to the previous
results presented in the literature. For example, in the
conformal case, the dilaton field is zero and one may
compare this equation with Eq. (6.6) of Ref. [9]. It is also
interesting that Eq. (33) takes the same form as Eq. (2.11)
of Ref. [13], setting q ¼ 0. Finally, following the procedure
implemented in Ref. [46], we may write this equation in
terms of the Regge-Wheeler-Zerilli master variable [47].
To find the retarded Green’s function (26) we now

expand the action up to second-order in the fluctuation,
hx1x2 . Then, we write the resulting on-shell action in terms
of the gauge-invariant field ZT in the form
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Sð2Þ ¼ σ

Z
d5xLð2Þ; ð34Þ

where the Lagrangian is given by

Lð2Þ ¼ L̂ð2Þ þ ∂tLt þ ∂x3L
x3 þ ∂zLz; ð35Þ

with

L̂ð2Þ ¼ 1

2fζ21ζ2
ð∂tZTÞ2 −

1

2ζ21ζ2
ð∂x3ZTÞ2 −

fζ2
2ζ41

Z0
T
2;

Lt ¼ −2
fζ21ζ2

ZT∂tZT;

Lx3 ¼ 2

ζ21ζ2
ZT∂x3ZT;

Lz ¼ 2fζ2
ζ41

ZTZ0
T −

fζ2ζ10

ζ51
Z2
T: ð36Þ

As discussed in Ref. [13], it is possible to include the
contribution of the Gibbons-Hawking-York surface term to
the Lagrangian L̂ð2Þ by adding a nontrivial scalar function
GðzÞ, such that we rule out contributions of the form Z2

T
and ZTZ0

T . In turn, as GðzÞ is an arbitrary (unknown)
function, this will generate an ambiguity. However, the
profile of GðzÞ may be fixed by phenomenology, elimi-
nating the aforementioned ambiguity. Then, adding the
contribution of this function to the Lagrangian we get

L̂ð2Þ ¼ 1

2fζ21ζ2
ð∂tZTÞ2 −

1

2ζ21ζ2
ð∂x3ZTÞ2 −

fζ2
2ζ41

Z02
T

þ 1

2
∂zðGZ2

TÞ: ð37Þ

Nevertheless, the additional term of the “improved”
Lagrangian will not contribute to the imaginary part of
Green’s function. As we shall see, the shear viscosity
coefficient depends on the imaginary part of Green’s
function; then, the explicit form of GðzÞ does not matter
for our calculation.
The next step forward is to promote ZT to a complex

function, and this is because, in general, an arbitrary solution
of Eq. (33) might be complex, depending on the boundary
conditions of the problem. Thus, we rewrite the Lagrangian
using the master variable and its complex conjugate,

L̂ð2Þ
C ≡ ω2

fζ21ζ2
jZT j2 −

q2

ζ21ζ2
jZT j2 −

fζ2
ζ41

jZ0
T j2 þ G0jZT j2

þ GðZTZ�0
T þ Z�

TZ
0
TÞ: ð38Þ

The form of this Lagrangian provides the same equation of
motion (33). It is also possible to rewrite the last Lagrangian
in a form where the presence of a surface term is evident,

L̂ð2Þ
C ¼ ∂zJ þ Z�

T

�∂L̂ð2Þ
C

∂Z�
T
−

d
dz

∂L̂ð2Þ
C

∂Z�
T
0

�
; ð39Þ

where

J ¼ −
fζ2
ζ41

Z�
TZ

0
T þ GZ�

TZT: ð40Þ

At the boundary, J must be related to the retarded Green’s
function. To calculate the imaginary part of the Green’s
function (26) we need to define the number flux of gravitons,
F , which is related to the imaginary part of J through

F ¼ −ImJ ¼ 1

2i
fζ2
ζ41

ðZ�
TZ

0
T − ZTZ�

T
0Þ: ð41Þ

As described in [13], the quantity F represents the number
flux of gravitons in the radial direction and it is the conserved
charge associated with the Uð1Þ symmetry of (38). We shall
use this expression in the last part of this section.
Let us now focus on the case we are dealing with, where

ζ1 ¼ ζ2. To calculate the shear viscosity we follow the
procedure implemented in Ref. [13]. First, we solve
Eq. (33) in the limit of zero frequency and wave number,
i.e., ðω; qÞ → 0, where the resulting differential equation
has an exact solution, given by

ZT ¼ C2 þ C1 ln f: ð42Þ

Here C1 and C2 are integration constants, and in the limit
ω → 0 we must set C1 ¼ 0 in order to guarantee the
regularity condition at the horizon, where fðzhÞ ¼ 0.
Without loss of generality, we also impose the Dirichlet
boundary condition ZT ¼ 1 at the boundary, so that
C2 ¼ 1. Now consider the case of small ω (with q ¼ 0)
where we solve Eq. (33) perturbatively, considering ω as
the expansion parameter. In that case, the solution takes
the same form as Eq. (42), where C1ðωÞ depends on the
frequency. Then, expanding this solution close to the
horizon we obtain the approximate solution,

ZT ≈ C2 þ C1 ln ðzh − zÞ: ð43Þ

The next stage is to solve the differential equation (33)
close to the horizon, for arbitrary ω and q. To do so, we use
the ansatz ZT ¼ fβ, where β takes the values

β1 ¼
iω

f0ðzhÞ
; β2 ¼ −

iω
f0ðzhÞ

; ð44Þ

where f0ðzhÞ ¼ −4πT with T being the black hole temper-
ature. We choose the solution associated with β1 because
it represents waves falling into the black hole. This
condition is also related to the retarded Green’s function.

BALLON-BAYONA, MAMANI, MIRANDA, and ZANCHIN PHYS. REV. D 104, 046013 (2021)

046013-10



Then, considering the first subleading term close to the
horizon, ZT is given by

ZT ¼F0f−
iω
4πT

�
1þ iðq2f02ðzhÞþ2ω2f00ðzhÞÞ

ð2ω− if0ðzhÞÞf02ðzhÞ
ðzh−zÞþ���

�
;

ð45Þ
or, expanding fðzÞ around z ¼ zh,

ZT ¼ A−ðzh − zÞ− iω
4πT

�
1þ iðq2f02ðzhÞ þ 2ω2f00ðzhÞÞ

ð2ω − if0ðzhÞÞf02ðzhÞ

× ðzh − zÞ þ � � �
�
; ð46Þ

where F0 and A− are constants. Considering q ¼ 0 and
expanding the leading term around ω ¼ 0, we get

ZT ≈A−

�
1 −

iω
4πT

ln ðzh − zÞ
�
: ð47Þ

This approximate solution must be equal to Eq. (43). Thus,
we identify the corresponding coefficients:

A− ¼ C2 ¼ 1; C1 ¼ −
iωA−

4πT
: ð48Þ

Note that C1 vanishes in the limit ω → 0, as expected.
Having found the asymptotic solution for ZT near the
horizon in (46) we can evaluate the (conserved) graviton
number flux F in the limit z → zh. Plugging the result (46)
for ZT into the number flux formula (41) we get (setting
q ¼ 0)

F ¼ ω

ζ31ðzhÞ
: ð49Þ

The imaginary part of the retarded Green’s function takes
the form

ImGRðω; q ¼ 0Þ ¼ −
F

16πG5

¼ −
ω

16πG5ζ
3
1ðzhÞ

: ð50Þ

Finally, we extract the shear viscosity using Kubo’s
formula:

η ¼ −lim
ω→0

1

ω
ImGRðω; q ¼ 0Þ ¼ 1

16πG5ζ
3
1ðzhÞ

: ð51Þ

Just like the entropy density, the shear viscosity coefficient
η depends on the (inverse) scale factor evaluated at the
horizon. In Fig. 6 we display our numerical results for the
shear viscosity, normalized as η=ðN2

cT3Þ, as a function of
the dimensionless temperature T=Tc for different values of
the dimensionless coupling ϕ̂0, for a fixed value ϵ ¼ 0.07
of the conformal anomalous dimension. We observe that
close to the critical temperature the shear viscosity
increases rapidly with the temperature whereas far from

the critical temperature it varies slowly. We conclude that
the shear viscosity is also sensitive to the value of ϕ̂0,
for fixed ϵ.
It is worth pointing out that the ratio η=s does not change

under the variation of ϕ̂0 or ϵ. This can be shown by
plugging (14) in (51); thus, we get the famous result

η

s
¼ 1

4π
: ð52Þ

This ratio is expected to change when higher curvature
terms are added in the five-dimensional action, see for
instance [48]. Wewould like to remark that, in contrast with
Ref. [13], we did not need to redefine our radial coordinate
z in terms of the dilaton field Φ. This is true whenever we
express the perturbation in terms of a gauge-invariant
master field. In conclusion, the master field ZTðzÞ is
equivalent to the field H12ðΦÞ used in Ref. [13].

B. Bulk viscosity

Following the conventions of Ref. [13], the retarded
Green’s function related to the bulk viscosity is given by

GRðω; qÞ

¼ −i
Z

dtd3xeiωt−iqx
3

θðtÞ
��

1

2
Ti
iðt; x3Þ;

1

2
Tk
kð0; 0Þ

��
;

ð53Þ

where Ti
i is the trace of the spatial part of the energy-

momentum tensor. The holographic dictionary then indi-
cates that the source of the bulk viscosity is related to the
trace of the metric perturbations.
The bulk viscosity has been investigated previously in

holography (see, for instance, Refs. [13,16,49–58]). This
transport coefficient is associated with the expansion scalar
term ∂μuμ of the fluid stress-energy tensor and associated
with conformal symmetry breaking. Here we follow the
procedure implemented in Ref. [13] adapted to our case.
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FIG. 6. The normalized shear coefficient η=ðN2
cT3Þ as a

function of T=Tc for different values of ϕ̂0 and ϵ ¼ 0.07. Solid
(dashed) lines indicate the large (small) black hole regime.
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The gauge where the dilaton field becomes the holographic
coordinate simplifies dramatically the problem of calculat-
ing this transport coefficient. Such a choice is possible
whenever the dilaton is a monotonic increasing function.
Thus, within this gauge the metric (27) becomes

ds2 ¼ 1

ζ21
ð−fdt2 þ dxidxiÞ þ

dΦ2

ζ22f
: ð54Þ

It is worth pointing out that the metric (54) reduces to (6)
considering ζ2 ¼ Φ0ðzÞζ1. In this gauge, we do not need
to care about the perturbation of the scalar field, which
naturally shall be coupled to the trace of the metric
perturbations. We restrict ourselves to the zero spatial
momentum case (q ¼ 0); thus, the perturbed metric
depends on the time and dilaton field only, and the metric
components are given in explicit form by

gmn ¼ diagðgtt; gx1x1 ; gx1x1 ; gx1x1 ; gΦΦÞ; ð55Þ
where

gtt ¼ −
f
ζ21

�
1þ λ

2
H00ðt;ΦÞ

�
;

gx1x1 ¼
1

ζ21

�
1þ λ

2
H11ðt;ΦÞ

�
;

gΦΦ ¼ 1

ζ22f

�
1þ λ

2
H55ðt;ΦÞ

�
: ð56Þ

Here ζ2, ζ1, and f are functions of the dilaton field, whereas
λ (λ ≪ 1) is a small parameter introduced to control the
expansion. In turn, the background equations are:

∂Φζ1
ζ1

∂Φζ2
ζ2

−
ð∂Φζ1Þ2

ζ21
þ ∂2

Φζ1
ζ1

−
4

9
¼ 0;

f

�
12

ð∂Φζ1Þ2
ζ21

−
4

3

�
− 3

ð∂ΦfÞð∂Φζ1Þ
ζ1

−
V
ζ22

¼ 0;

∂2
Φf

∂Φf
− 4

∂Φζ1
ζ1

þ ∂Φζ2
ζ2

¼ 0: ð57Þ

Plugging (56) into the Einstein equations (3), and then
performing a Fourier transform, we get the corresponding
perturbation equations:

0 ¼ −
∂Φ ln f
2∂Φ ln ζ1

H11 −
1

∂Φ ln ζ1
∂ΦH11 þH55; ð58aÞ

0 ¼
�ð∂Φ ln fÞ2
2∂Φ ln ζ1

− 2∂Φ ln f þ 2∂Φ ln f
9ð∂Φ ln ζ1Þ2

þ ω2ζ21
f2ζ22ð∂Φ ln ζ1Þ

�
H11 þ

�
1 −

4

9ð∂Φ ln ζ1Þ2

−
∂Φ ln f
2∂Φ ln ζ1

�
∂ΦH11 − ∂ΦH00; ð58bÞ

0 ¼
�
ð∂Φ ln fÞð∂Φ ln ζ2Þ −

4∂Φ ln f
9∂Φ ln ζ1

−
ω2ζ21
f2ζ22

�
H11

þ
�

8

9∂Φ ln ζ1
þ ∂Φ ln

�
ζ41
ζ32f

��
∂ΦH11 − ∂2

ΦH11: ð58cÞ

As can be seen from the equations, once we solve the
differential equation (58c) we may automatically calculate
H00 and H55. Using the background differential equa-
tions (57) we may rewrite Eq. (58c) in the reduced form

∂2
ΦH11 − ∂Φ ln ½ð∂Φ ln fÞð∂Φ ln ζ1Þ2�∂ΦH11

þ
�
ω2ζ21
f2ζ22

þ ð∂Φ ln fÞð∂Φ ln ½∂Φ ln ζ1�Þ
�
H11 ¼ 0: ð59Þ

To obtain the bulk viscosity we need to calculate the
retarded Green’s function related to these metric perturba-
tions. Thus, analogously to what has been done with the
shear viscosity, we substitute the metric (56) in the action
(2) and then expand up to second-order in λ. The resulting
on-shell action may be written as

Sð2Þ ¼ σ

Z
d5xLð2Þ: ð60Þ

The Lagrangian is given by

Lð2Þ ¼ L̂ð2Þ þ ∂tLt þ ∂ΦLΦ; ð61Þ

where

L̂ð2Þ ¼ 1

2
∂tH⃗

TMtt∂tH⃗ þ 1

2
∂ΦH⃗

TMΦΦ∂ΦH⃗ þ 1

2
H⃗TMH⃗

þ 1

2
∂ΦH⃗

TMΦH⃗: ð62Þ

To get this Lagrangian we have used the equality
∂ΦH⃗

TMΦH⃗ ¼ H⃗TðMΦÞT∂ΦH⃗. The matrices are given by
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H⃗ ¼

0
BB@

H00

H11

H55

1
CCA; Mtt ¼ −

3

ζ21ζ2f

0
BB@

0 0 0

0 1 1
2

0 1
2

0

1
CCA; MΦΦ ¼ 3fζ2

ζ41

0
BB@

0 1
2

0

1
2

1 0

0 0 0

1
CCA;

M ¼ fζ2
3ζ41

½9ð∂Φ ln ζ1Þð∂Φ ln fÞ þ 4ð1 − 9ð∂Φ ln ζ1Þ2Þ�

0
BB@

0 1
2

0

1
2

1 0

0 0 − 1
2

1
CCA;

MΦ ¼ 3fζ2ð∂Φ ln ζ1Þ
ζ41

0
BB@

0 − 1
2
ð ∂Φ ln f
2ð∂Φ ln ζ1Þ − 1Þ 1

2

1
2

1 − 1
2
ð ∂Φ ln f
2∂Φðln ζ1Þ − 3Þ

0 0 0

1
CCA; ð63Þ

whereas LΦ and Lt can be written as

LΦ ¼ −
3fζ2
2ζ41

∂ΦðH00H11Þ þ
fζ2
2ζ41

H55∂ΦH00 −
3fζ2
ζ41

H11∂ΦH11 þ
3fζ2
2ζ41

H55∂ΦH11

þ ζ2f
4ζ41

ð∂Φ ln f − 8∂Φ ln ζ1ÞH55H00 þ
3ζ2f
4ζ41

ð∂Φ ln f − 8∂Φ ln ζ1ÞH55H11 −
ζ2f
4ζ41

ð∂Φ ln f − 8∂Φ ln ζ1ÞH55H55;

Lt ¼ 3

fζ21ζ2
H11∂tH11 þ

3

2fζ21ζ2
∂tðH11H55Þ −

3

2fζ21ζ2
H00∂tH11 −

1

2fζ21ζ2
H00∂tH55:

In this case, G is a symmetric matrix whose elements
may depend on the dilaton. Such a function has the same
role as the one introduced in Eq. (38). Thus, it will not
contribute to the imaginary part of the retarded Green’s
function (53). In analogy to what was done in the previous
section, we write down the improved Lagrangian,

L̂ð2Þ
C ¼ ∂ΦH⃗

�TMΦΦ∂ΦH⃗ þ H⃗�TKH⃗ þ ∂ΦH⃗
�TBH⃗

þ H⃗�TB�T∂ΦH⃗; ð64Þ

where we have promoted the functions to complex ones and
also defined

K ¼ ω2Mtt þMþ ∂ΦG; B ¼ MΦ þG: ð65Þ

The next step is to rewrite this Lagrangian in an analogous
form to Eq. (39), where a surface term is evidenced. The
result is

L̂ð2Þ
C ¼ ∂ΦJ þ H⃗�T

�∂L̂ð2Þ
C

∂H⃗�T −
d
dΦ

∂L̂ð2Þ
C

∂ΦH⃗
�T

�
; ð66Þ

where

J ¼ H⃗�TðMΦΦ∂ΦH⃗ þ BH⃗Þ: ð67Þ

Therefore, the flux number of gravitons associated with
rotationally invariant perturbations, i.e., the imaginary part
of J, is given by

F ¼ −ImJ ¼ i
2
½H⃗�TðMΦΦ∂ΦH⃗ þBH⃗Þ

− ð∂ΦH⃗
�TðMΦΦÞ�T þ H⃗�TB�TÞH⃗�: ð68Þ

Finally, this equation may be reduced by plugging
Eqs. (58a), (58b), and (63) into (68), resulting in

F ¼ −
iζ2f

3ζ21ð∂Φζ1Þ2
½H�

11ð∂ΦH11Þ − ð∂ΦH�
11ÞH11�: ð69Þ

As observed in Ref. [13], the flux number F is proportional
to the Wronskian of the complexified solution H11.
Therefore, in order to calculate F , we only need the
solution of H11. Moreover, asymptotic solutions may be
obtained considering the asymptotic behavior of the back-
ground. Close to the horizon, H11 behaves like H11 ∝ fα,
where f is a function of the dilaton field Φ. Plugging this
ansatz into Eq. (60) we find two possible solutions:

α1¼
iωζ1ðΦhÞ

∂ΦfðΦhÞζ2ðΦhÞ
; α2¼−

iωζ1ðΦhÞ
∂ΦfðΦhÞζ2ðΦhÞ

; ð70Þ

where Φh is the location of the horizon. In terms of the
temperature, defined by

T ¼ −
∂ΦfðΦhÞ

4π

ζ2ðΦhÞ
ζ1ðΦhÞ

; ð71Þ

the first solution in (70) represents waves falling into the
black hole horizon, while the second solution represents
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waves coming out from the horizon. Thus, we choose α1
and we may write H11ðΦÞ close to the horizon as

H11 ¼ B−ðΦh −ΦÞ− iω
4πT; ð72Þ

where B− is a constant. Expanding the last function around
ω ¼ 0, we get

H11 ≈ B−

�
1 −

iω
4πT

ln ðΦh −ΦÞ
�
: ð73Þ

Note that for ω ¼ 0, the function H11 becomes regular
(constant) at the horizon. On the other hand, close to the
boundary we consider the ansatz H11 ∝ Φβ. Plugging in
Eq. (58c) we get two solutions: β1 ¼ 0 and β2 ¼ ð4 − 2ϵÞ=ϵ.
Thus, the leading term in the asymptotic solution close to
the boundary must be a constant, which can be fixed as

H11ð0Þ → 1: ð74Þ

Now we are able to find an expression for the flux
number F. Plugging (72) in (68) we get the simplified
expression

F ¼ 2ω

3

jB−j2
ζ1ðΦhÞð∂Φζ1ðΦhÞÞ2

: ð75Þ

Note that F depends on the (inverse) scale factor, its
derivative, and the constant jB−j. The imaginary part of the
retarded Green’s function takes the form

ImGRðωÞ ¼ −
F

16πG5

¼ −
ω

24πG5

jB−j2
ζ1ðΦhÞð∂Φζ1ðΦhÞÞ2

:

ð76Þ

To calculate the bulk viscosity we follow the procedure of
Ref. [13] and find that

ζ ¼ −
4

9
lim
ω→0

1

ω
ImGRðωÞ ¼

2

27π

ðζ1ðΦhÞÞ2
ð∂Φζ1ðΦhÞÞ2

sðΦhÞjB−j2:

ð77Þ

To write the last result we have used the entropy density
relation (15).
A few comments are now in order. The bulk viscosity

depends on the value of the inverse scale factor (and its
derivative) evaluated at the horizon. Moreover, in contrast
with the shear viscosity case, the bulk viscosity depends
on the constant jB−j. It is worth mentioning that in the
high-temperature regime the constant reduces to jB−j ¼ 1.
Thus, in this region, the result (77) is in agreement with
the formula obtained in Ref. [53]. However, there is a

subtlety when one compares both results (see the discus-
sion in Ref. [54]). This is also true in the adiabatic
approximation [16,53] (see also [54]). Considering
jB−j ¼ 1, we display our numerical results for the bulk
viscosity to entropy density ratio ζ=s in Fig. 7. The solid
lines represent the stable large black holes while the dashed
lines represent the unstable small black holes. We conclude
that in the case jB−j ¼ 1 the ratio ζ=s is less sensitive to the
value of ϕ̂0. Note that the bulk viscosity has a sharp rise
close to the critical temperature. This result was previously
reported in the QCD literature; see for instance Ref. [59]
where a semi-analytic study is presented.
On the other hand, we may calculate the constant jB−j

using the boundary conditions of the problem, the Dirichlet
condition at the boundaryH11ðΦ ¼ 0Þ ¼ 1, and the incom-
ing wave condition at the horizon given by (72). Following
this procedure, we calculate numerically jB−j as a function
of Φh. The results are displayed on the left panel of Fig. 8.
Meanwhile, the right panel of Fig. 8 shows the bulk
viscosity using jB−j obtained numerically for ϕ̂0 ¼ 2
and ϵ ¼ 0.3, solid lines represent the large black hole
regime, while dashed lines small black hole regime. It is
worth pointing out that depending on the combination of
the parameters fϵ; ϕ̂0g, we found values of jB−j that do not
satisfy the condition jB−j ≥ 1. In fact, it is possible to get
jB−j ¼ 0 in the region close to the critical temperature
for the combination of parameters ϵ ¼ 0.1 and ϕ̂0 ¼ 2,
for example.
Knowing the asymptotic form of the inverse scale factor

we are able to find an expression for the bulk viscosity to
entropy density ratio in the regime of large black holes. In
this regime the derivative of the horizon function may be
neglected, this means that the coefficient of H11ðΦÞ in
Eq. (59) is zero in the limit of zero frequency. Thus, we may
solve the resulting differential equation, getting the asymp-
totic solution

H11ðΦÞ ¼ c1 þ c2Φ
4−2ϵ
ϵ : ð78Þ
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FIG. 7. The bulk viscosity to entropy density ratio ζ=s as a
function of T=Tc for different values of ϕ̂0 and ϵ ¼ 0.07. Solid
(dashed) lines represent the large (small) black hole regime. The
results were obtained considering jB−j ¼ 1.
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Hence, the boundary condition H11ð0Þ → 1 reduces the
solution to c1 ¼ jB−j ¼ 1. Plugging this result and the
leading term of the asymptotic warp factor (A2) into (77),
we get

ζ

s
¼ 2ðϵϕ̂0Þ2

27π

Λ2ϵ

ðπTÞ2ϵ : ðHigh temperatureÞ ð79Þ

From this expression, it is easy to see the role of the
parameter Λ. Notice that the bulk viscosity vanishes in the
limit Λ → 0 where the dilaton field (10) vanishes, recov-
ering conformal symmetry. We obtained numerical results
for (77) considering jB−j ¼ 1 and jB−j obtained numeri-
cally, an overlap of both results is displayed in Fig. 9, where
the blue line represents the case jB−j ¼ 1, while the red line
represents the case where jB−j is obtained numerically. As
it can be seen from the figure, both results are in agreement
in the region of high temperatures for both the large black
holes (solid lines) and small black holes (dashed lines).

V. COMPARISON WITH LATTICE SUðNcÞ
THEORIES AND HEAVY ION COLLISIONS

In this section we compare our results for the thermody-
namics quantities against the results from lattice SUðNcÞ

theories [24,60,61] and we also compare our results for the
viscosity coefficients against the results from the JETSCAPE
Collaboration [25], obtained from a model-to-data analysis
of heavy ion collision experimental data. For this compari-
son, we will only be interested in the (physical) stable black
hole solution, namely the large black hole.

A. Thermodynamic quantities

Let us start this subsection by describing the critical
temperature for the formation of a nonconformal plasma
in our EHQCD model. In our approach, we identify the
critical temperature with the minimum temperature for the
existence of black hole solutions.
Considering the parameters fixed by the glueball spec-

trum, obtained in Ref. [17], we calculate the critical
temperature and observe its dependence on the conformal
anomalous dimension ϵ. The critical temperature is
obtained by solving the equation ∂zhT ¼ 0, and it is
represented by a black dot in the plot displayed on the
left panel of Fig. 10. The plot describes the variation of the
temperature (in MeV) as a function of zh, where ϕ̂0 and Λ
(in MeV) were fixed for a given ϵ from a fit to the glueball
spectrum, as done previously in Ref. [17]. For the particular
case shown in the figure, we have ϵ ¼ 0.1, ϕ̂0 ¼ 5.6, and
Λ ¼ 743 MeV. As described in the previous sections, there
are two branches: one corresponds to the large black hole
(solid line) and the other corresponds to the small black
hole (dashed line).
In turn, the right panel of Fig. 10 shows the critical

temperature (in MeV) as a function of the conformal
anomalous dimension ϵ. For each value of ϵ the parameters
ϕ̂0 and Λ (in MeV) were fixed appropriately from the
glueball spectrum [17]. The interval considered here is
ϵ ∈ ½10−3; 0.5�, extending the fit to the glueball spectrum
performed in [17]. As the figure shows, the critical temper-
ature is a slowly growing function of the conformal
anomalous dimension ϵ and varies from Tc ≈ 263 MeV
to Tc ≈ 274 MeV. It is worth pointing out that the present
results for the critical temperature are very close to the
recent results found in lattice SUðNcÞ theories [60,61],
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FIG. 9. The figure shows the bulk viscosity to entropy density
ratio as a function of T=Tc for ϵ ¼ 0.3, and ϕ̂0 ¼ 2. The result of
Eq. (77) is displayed with a red line, while the result considering
jB−j ¼ 1 is displayed with a blue line.

0 2 4 6 8 10

1.0

1.5

2.0

2.5

3.0

h

1.0 1.5 2.0 2.5 3.0 3.5

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T/Tc

s

FIG. 8. Left: The constant jB−j as a function of Φh for ϕ̂0 ¼ 2 and ϵ ¼ 0.3. The vertical dashed line represents the place where the
critical (minimal) temperature is reached. Right: Bulk viscosity to entropy density ratio as a function of T=Tc calculated using Eq. (77).
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namely Tc ≈ 0.595
ffiffiffi
σ

p
≈ 262 MeVwhere σ ≈ ð440 MeVÞ2

is the phenomenological value for the string tension. It is
remarkable that a holographic model with the metric
coupled to a single scalar field provides such a result.
This analysis also suggests an alternative approach for
fixing the parameter Λ. We will see later in this section that
for a given value of the anomalous conformal dimension ϵ
we can use the lattice results for the trace anomaly to fix the
dimensionless coupling ϕ̂0. Then we can also use the lattice
result for Tc to fix Λ in MeV units. In conclusion, the
parameters ϕ̂0 and Λ can be obtained as a function of ϵ
considering either the glueball spectrum at zero temper-
ature, as done in Ref. [17], or the thermodynamics of the
nonconformal plasma at finite temperature.
Next, we compare our results for the pressure of the

nonconformal plasma against the results obtained in lattice
SUðNcÞ theories [24]. Our results for the pressure, properly
normalized, as a function of T=Tc are displayed in the left
panel of Fig. 11 (solid lines) and compared against the
lattice results (dotted lines with error bars). As the figure
shows, the pressure in our EHQCD model is sensitive to
the value of the parameter ϕ̂0, once the parameter ϵ is kept
fixed. We present results for two values of ϕ̂0: one of them
being fixed with the glueball spectrum at zero temperature,

as in [17], and the other being fixed by matching the
maximum value for the dimensionless trace anomaly
ðρ − 3pÞ=ðN2

cT4Þ with the lattice result 0.381 found for
SUð8Þ [24]. Although displaying a qualitative agreement
with the lattice results, we observe that the values of the
pressure in the case of parameters fixed by the glueball
spectrum, i.e., for fϵ; ϕ̂0g ¼ f0.3; 2g (orange dashed line),
are far from a quantitative agreement. This apparent short-
coming was also observed in other holographic models for
QCD, see for instance [62]. In turn, the results for the
pressure in the case of the parameters were fixed by the trace
anomaly condition, i.e., for fϵ; ϕ̂0g ¼ f0.3; 0.9g (orange
solid line), and are in quantitative agreement with those
obtained from QCD on the lattice in the limit of large Nc.
It is also very interesting to compare the trace anomaly

against the lattice SUðNcÞ results. Our results for the trace
anomaly, properly normalized, as a function of T=Tc, are
displayed in the right panel of Fig. 11 (orange lines) and
compared against the lattice results [24] (dotted lines
with error bars). The figure shows that the results provided
by the combination of parameters fϵ; ϕ̂0g ¼ f0.3; 0.9g
(orange solid line) are in quantitative agreement with those
of the lattice theory. In turn, the set of parameters fϵ; ϕ̂0g ¼
f0.3; 2g (orange dashed line) consistent with the glueball
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FIG. 11. Left: The normalized pressure as a function of T=Tc. Right: The normalized trace anomaly as a function of T=Tc. The lattice
results (discrete/dotted lines) include error bars, while the results of the holographic model are represented by orange lines. Both figures
were obtained for ϵ ¼ 0.3.
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FIG. 10. Left: The temperature as a function of zh for ϕ̂0 ¼ 5.6 and ϵ ¼ 0.1. The black dot shows the location of the minimum.
Right: The critical temperature as a function of the conformal anomalous dimension.
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spectrum are not in quantitative agreement with those
obtained on the lattice.
We have found in this section that our EHQCD model

with parameters ϕ̂0 and Λ fixed as a function of ϵ from a fit
to the glueball spectrum provides at finite temperature a
good result for the critical temperature for deconfinement
and pressure that displays a qualitative agreement with
lattice SUðNcÞ theories. However, for the pressure we
could not obtain a quantitative agreement; the pressure in
our EHQCD model is lower than the lattice result when the
parameters are fixed by the (zero-temperature) glueball
spectrum. We also found a trace anomaly that has a
qualitative behavior similar to that obtained in lattice
SUðNcÞ theories but presents a peak that is lower than
the corresponding lattice result. Since the main goal of
holographic QCD models is to provide an effective
description of QCD in the limit of large Nc, the fact that
we found a discrepancy with the lattice SUðNcÞ results for
the thermodynamic quantities suggests that some more
ingredients may be needed in our EHQCD approach.
A phenomenological solution for the discrepancy was

considered in Ref. [63], where additional parameters were
added to control the curve of the pressure in the region of
high temperatures and the height of the peak of the trace
anomaly close to the critical temperature. Our analysis
suggests the following alternative approach. Once the
parameter ϵ is fixed, we can fix the dimensionless coupling
ϕ̂0 imposing the condition ðρ − 3pÞ=ðN2

cT4Þ ¼ 0.381,
which corresponds to the maximum value of the dimen-
sionless trace anomaly obtained in the lattice SUð8Þ theory
[24]. The running of ϕ̂0 as a function of ϵ is displayed on
the left panel of Fig. 12 (solid line) and is compared to the
case where ϕ̂0 was fixed from a fit to the glueball spectrum
(dashed line). In turn, the parameter Λ can be fixed by
matching the critical temperature for deconfinement Tc
with the value 262 MeVobtained in lattice SUðNcÞ theories
in the limit of large Nc. The dependence of Λ on ϵ is
displayed on the right panel of Fig. 12 (solid line) and

compared to the case where Λ was fixed from a fit to the
glueball spectrum (dashed line).
We therefore reach the following conclusion. In our

EHQCD model, when one fixes the conformal anomalous
dimension ϵ there are two possible methods for fixing the
parameters ϕ̂0 and Λ. The first method uses a fit to the
lattice results for the glueball spectrum at zero temperature
to fix ϕ̂0 and Λ. This is the method we followed in our
previous work [17]. The parameters fixed in that way are
displayed as dashed lines in Fig. 12. The second method,
found in this work, uses the results for some thermody-
namic quantities describing the gluon plasma in lattice
SUðNcÞ theories to fix ϕ̂0 and Λ, namely the maximum for
the dimensionless trace anomaly to fix ϕ̂0 and the value for
the deconfinement temperature to fix Λ. The parameters
fixed by following the second method are displayed as solid
lines in Fig. 12.
Note that the behavior of ϕ̂0ðϵÞ is qualitatively similar for

both methods (solid and dashed lines). As regards the
behavior of ΛðϵÞ, in the first method we find that Λ is a
slowly growing function of ϵ whereas the second method
yields Λ as a slowly decreasing function of ϵ. On physical
grounds, since the parameter Λ represents a dynamical
mass gap similar to ΛQCD it is expected that it should be
independent of the parameter ϵ. The fact that we find a slow
variation for ΛðϵÞ suggests that some further improvement
would allow us to satisfy this physical condition.
We would like to remark that the numerical errors for

the thermodynamic quantities in our model are very small.
This is because the only differential equation that is solved
numerically is the first equation in (7) that allows us to find
the (inverse) scale factor ζ1 as a function of z for a given
dilaton profile ΦðzÞ. Considering a moderate numerical
precision, the uncertainty in ζ1 is of order 10−6. The
entropy density is inversely proportional to ζ1ðzhÞ3 and
therefore has an uncertainty of the same order. All the
other thermodynamic quantities were obtained from the
entropy density.
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FIG. 12. The behavior of ϕ̂0 (left panel) and Λ (right panel) as a function of ϵwith the other parameters fixed by the available data from
SUð8Þ theory on the lattice is shown by the solid blue lines, in comparison to the results obtained when the other parameters are fixed by
the glueball spectrum at zero temperature, represented by the dashed blue lines.
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B. Shear and bulk viscosity

We end this section by comparing our results for the
viscosity coefficients in the regime of large black holes
against the results obtained by the JETSCAPE
Collaboration [25] (see also [64]), from a model-to-data
analysis of heavy ion collision data. The universal result for
the shear to entropy density ratio η=s, reproduced in this
work, is displayed by the solid black line on the left panel
of Fig. 13, while the dashed blue lines represent the upper
and lower bounds found by the JETSCAPE Collaboration.
As can be seen from the figure, the universal result
η=s ¼ 1=ð4πÞ fits well within the region bounded by the
lines drawn from the experimental data, except in the small
interval of temperatures 0.15–0.20 GeV where the solid
line lies below the lower dashed line.
The bulk viscosity to entropy density ratio ζ=s is

displayed on the right panel of Fig. 13. The sharp rise
close to the critical temperature is in agreement with
previous calculations on the lattice [23] (see also [65]).
Using Eq. (77) with jB−j ¼ 1, the maximum value of the
ratio is ζ=s ≈ 0.0695 (black line). Meanwhile, consider-
ing jB−j obtained numerically, the maximum value of the
ratio is ζ=s ≈ 0.125 (red line) for the set of parameters
fϵ; ϕ̂0;Λg ¼ f0.3; 2; 759 MeVg fixed by a fit to the
glueball spectrum. Compared against the lattice results
of [23], our results are within the error bars. In turn, our
results are a bit larger than the results of [65]. However,
our results fit very well into the expected region
presented recently by the JETSCAPE Collaboration
[25,64] enclosed by dashed blue lines. Compared against
the holographic models of Refs. [13,16], the result for
jB−j ¼ 1 is of the same order, but for jB−j obtained
numerically our result is larger than the one obtained in
these papers (see also Refs. [16,55–57] for additional
discussions). Hence, we conclude that our results are in
agreement with those results obtained previously in the
literature.

We would like to remark that our result for the shear
viscosity to entropy ratio η=s ¼ 1=ð4πÞ is exact whereas
our result for the bulk viscosity to entropy ratio ζ=s is
obtained numerically using the formula (77). According to
this formula, the bulk to entropy ratio ζ=s only depends on
powers of the inverse scale factor ζ1, its derivative, and the
coefficient B−. For a moderate numerical precision, we find
that the uncertainty in the scale factor ζ1 is of order 10−6

and the uncertainty in the coefficient B− is of order 10−4.
Thus, the uncertainty in ζ=s is approximately of order 10−4.
This uncertainty is very small compared with the uncer-
tainties found in lattice QCD.

VI. CONCLUSIONS

We have described the finite-temperature extension
of the EHQCDmodels proposed in [17] in order to describe
the physics of a nonconformal plasma. At zero temperature
the EHQCDmodel provides a spectrum of scalar and tensor
glueballs in agreement with results obtained in lattice QCD
[32]. The finite-temperature extension consists of embed-
ding a black hole solution into the gravitational Einstein-
dilaton theory, which is equivalent to creating a thermal
state in the dual quantum field theory. We calculated some
of the relevant thermodynamic variables, which are
required to investigate the stability of the black holes.
We showed that the large black holes are thermally stable,
while the small black holes are thermally unstable. The
unstable black hole is characterized by a negative specific
heat and an imaginary speed of sound. We also showed that
all the relevant thermodynamic quantities are sensitive to
the variation of the model parameters, namely the dimen-
sionless coupling ϕ̂0 and the conformal anomalous dimen-
sion ϵ. These two parameters characterize the breaking of
conformal symmetry in EHQCD. Interestingly, we found
that the pressure and the trace anomaly display qualitative
behaviors that are similar to the ones found in lattice
SUðNcÞ theories. In particular, the trace anomaly displays a
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FIG. 13. Left: Shear viscosity to entropy density ratio as a function of the temperature. The black solid line represents the
holographic result. The region bounded by dashed blue lines corresponds to the interval constrained by the JETSCAPE
Collaboration [25]. Right: Bulk viscosity to entropy density ratio ζ=s as a function of T for ϕ̂0 ¼ 2 and ϵ ¼ 0.3. The black line was
drawn by taking jB−j ¼ 1. The red line represents the results for ζ=s by taking the value of jB−j determined numerically from the
corresponding critical temperature Tc ¼ 0.269 GeV.
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peak near the critical temperature for deconfinement. In the
limit of very high temperatures, all thermodynamic quan-
tities reach the corresponding conformal values.
We also investigated the viscosity coefficients associated

with the transport properties of the nonconformal fluid. We
recovered the universal result for the ratio between the
shear viscosity and the entropy density η=s ¼ 1=ð4πÞ. This
result was found by writing the relevant equations for the
metric perturbations in terms of a gauge-invariant variable,
calculating the retarded Green’s function, and extracting the
shear viscosity through Kubo’s formula. Our numerical
results show that the shear viscosity and the entropy density
behave almost identically with the temperature, rising
rapidly close to the critical temperature and then varying
slowly in the region of high temperatures. We verified that
the shear viscosity is sensitive to the variation of ϕ̂0 for
fixed ϵ, and vice-versa, while the ratio η=s remains
constant, as expected for this class of holographic models
arising from Einstein-dilaton gravity. To study the bulk
viscosity we followed a different approach, by adopting a
gauge where the dilaton field plays the role of the holo-
graphic coordinate. After calculating the retarded Green’s
function we were able to find an expression for the bulk
viscosity by using Kubo’s formula. The numerical results
indicate that the holographic bulk viscosity increases
sharply close to the critical temperature. This result is in
agreement with previous predictions from lattice QCD and
other holographic models of QCD. We also showed that the
bulk viscosity is sensitive to the parameters of the model ϕ̂0

and ϵ. It is worth mentioning that our results were obtained
using model A1 proposed in Ref. [17]. However, we have
also considered model A2 proposed in that work and
obtained equivalent results. We decided not to present
the results of model A2 in this paper to avoid redundancy.
We believe that models B1 and B2 would provide equiv-
alent results to those obtained from models A1 and A2.
Finally, we compared our results on the thermodynamics

against the data available from lattice SUðNcÞ theories.
We also compared our results for the viscosity coefficients
against those found by the JETSCAPE Collaboration.
Regarding thermodynamic quantities, we found that our
results for the pressure and trace anomaly are in qualitative
agreement with the results found in the literature for lattice
SUðNcÞ theories. However, we found that the value of the
parameters adjusted to fit the glueball spectrum does not
provide a quantitative agreement with the thermodynamics
of lattice SUðNcÞ theories. We found, however, that a
quantitative agreement with lattice SUðNcÞ theories is
possible if one fixes the model parameters ϕ̂0 and Λ, for
a given value of ϵ, by using the lattice results for the
maximum value of the dimensionless trace anomaly and
the critical temperature for deconfinement, respectively. We
concluded that the results for the viscosity coefficients
provided by our EHQCD model are consistent with the
phenomenological constraints obtained by the JETSCAPE

Collaboration from the model-to-data analysis of the heavy
ion collision data. Although the shear viscosity did not
always belong to the region bounded by the JETSCAPE
Collaboration, the bulk viscosity fits very well in the region
of parameters considered by the collaboration.
A possible extension of this work would be by including

flavor degrees of freedom in order to investigate chiral
symmetry breaking. This task shall be reached by adding a
non-Abelian SUðNfÞL × SUðNfÞR gauge symmetry (dual
to the chiral currents) and a bifundamental scalar (dual
to the chiral condensate). Another interesting direction
would be investigating the role of a nonminimal coupling
in the phase diagram of QCD in the same line of
Refs. [29–31,66–68]. From the gravitational point of view,
a natural next step would be the investigation of the
quasinormal modes of the black hole solutions found in
this work. This would allow us to describe the melting of
scalar and tensor glueballs in a nonconformal plasma.
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APPENDIX: ASYMPTOTIC ANALYSIS

Here we present some details regarding the asymptotic
analysis of the present model, close to the boundary (UV)
and close to the horizon (IR). We use these results as
“boundary conditions” to get numerical solutions of the
differential equations for the complete model.

1. Close to the boundary

The starting point is the asymptotic expansion of the
dilaton field (10) close to the boundary, i.e., in power series
for small z,

Φ ¼ ϕ0zΔ− þ GzΔþ þ � � � ; ðA1Þ
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where Δ− ¼ ϵ and Δþ ¼ 4 − ϵ, and ellipses denote
higher powers on z. Hence, by plugging this expression
into the first differential equation of (7), we get the
asymptotic expansion for ζ1ðzÞ and for the warp factor
A1ðzÞ ¼ − ln ζ1ðzÞ,

ζ1ðzÞ ¼
z
l

�
1þ 2Δ−

9ð1þ 2Δ−Þ
ϕ2
0z

2Δ− þ 2Δ−Δþ
45

ϕ0Gz4

þ 2Δþ
9ð1þ 2ΔþÞ

G2z2Δþ þ…

�
;

AðzÞ ¼ − ln ðz=lÞ − 2Δ−

9ð1þ 2Δ−Þ
ϕ2
0z

2Δ−

−
2Δ−Δþ

45
ϕ0Gz4 −…: ðA2Þ

The asymptotic form of the horizon function is straight-
forwardly obtained by plugging (A2) into (8), which gives

fðzÞ ¼ 1 −
Chz4

4l3

�
1þ 4ϕ2

0Δ−

3ð2þ Δ−Þð1þ 2Δ−Þ
z2Δ− þ � � �

�
:

ðA3Þ

Similarly, the asymptotic form of the constant Ch is
determined by substituting (A2) into (9) and by integrating
from z ¼ z0 to zh, with z0 being a UV cutoff, and by
neglecting the divergent terms that include z0. The result is

Ch ¼
4l3

z4h

�
1 −

4Δ−ϕ
2
0

3ð2þ Δ−Þð1þ 2Δ−Þ
z2Δ−
h þ � � �

�
; ðA4Þ

where the ellipsis stands for higher power on zh. Notice that
the leading term in (A4) corresponds to the AdS contri-
bution, while the subleading term reveals the deformation
introduced by the nontrivial dilaton field.
One may also write fðzÞ in terms of zh by plugging (A4)

into (A3). It is clearly seen that the horizon function
reduces to unity in the limit of zero z, as expected.
Let us now calculate the asymptotic expressions of the

thermodynamic variables close to the boundary. The
asymptotic expansion of the temperature is obtained by
plugging (A4) and (A2) into (12),

T ¼ 1

πzh

�
1þ 2Δ2

−ϕ
2
0

3ð2þ Δ−Þð1þ 2Δ−Þ
z2Δ−
h þ � � �

�
: ðA5Þ

Again, the leading term is due to the AdS warp factor and
the subleading term is the deformation generated by the
dilaton field.
It is worth pointing out that in the above analysis the

natural independent parameter is the coordinate zh.
However, in thermodynamics one usually uses the temper-
ature as being the fundamental degree of freedom.With this

in mind, we invert the asymptotic expression (A5) to get zh
as a function of the temperature in the form

zh ¼
1

πT

�
1þ 2Δ2

−ϕ
2
0

3ð2þ Δ−Þð1þ 2Δ−Þ
1

ðπTÞ2Δ−
þ � � �

�
:

ðA6Þ

With this relation, we may express all thermodynamic
variables as a function of the temperature.
Let us then apply the procedure to the entropy density.

By plugging (A4) and (A2) into (15) it follows that

s ¼ 4πl3σ

z3h

�
1 −

2Δ−ϕ
2
0

3ð1þ 2Δ−Þ
z2Δ−
h þ � � �

�
: ðA7Þ

Now substituting (A6) into the last equation, we get the
entropy as a function of the temperature,

s
σ
¼ 4π4l3T3 −

16πl3Δ−ϕ
2
0

3ð2þ Δ−Þ
ðπTÞ3−2Δ− þ � � � : ðA8Þ

Once again the leading term corresponds to the AdS warp
factor contribution, which is equivalent to recovering
conformal symmetry, while the subleading terms corre-
spond to the deformation from such symmetry.
To get an asymptotic expression for the free energy we

write the integral representation (18) in the form

F ¼
Z

zhc

zh

sðz̃hÞ
�
dTðz̃hÞ
dz̃h

�
dz̃h þ

Z
∞

zhc

sðz̃hÞ
�
dTðz̃hÞ
dz̃h

�
dz̃h;

ðA9Þ

where zhc is the value where the temperature reaches its
minimal value, TðzhcÞ ¼ Tc. Equation (A9) indicates that
we may split the free energy into two parts, the first one
corresponding to large black holes, z̃h ∈ ½zh; zhc �, and the
second one related to small black holes, z̃h ∈ ½zhc ;∞i. To
guarantee the validity of the following analysis we rewrite
the free energy of the large black holes in the form

Flarge ¼
Z

zh�

zh

sðz̃hÞ
�
dTðz̃hÞ
dz̃h

�
dz̃h

þ
Z

zhc

zh�

sðz̃hÞ
�
dTðz̃hÞ
dz̃h

�
dz̃h; ðA10Þ

where zh < zh� < zhc .
In the large black holes regime, the main contribution is

expected to come from the first integral in Eq. (A10),
and then we may use the asymptotic expressions for the
temperature and entropy density to evaluate it. Thus, the
result for Flarge is given by
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Flarge ¼ −
l3σ

z4h

�
1 −

8Δ−ð1þ Δ2
−Þϕ2

0

3ð4 − Δ2
−Þð1þ 2Δ−Þ

z2Δ−
h þ � � �

�

þOðzh� Þ; ðA11Þ

where Oðzh� Þ stands for the result of the integral evaluated
at zh� , which is a subleading constant term in the limit of
zero zh. Hence, as a function of the temperature the free
energy becomes

Flarge

σ
¼ −π4l3T4 þ 8l3Δ−ϕ

2
0

3ð4 − Δ2
−Þ

ðπTÞ4−2Δ− þ � � � : ðA12Þ

Now one may fix the factor ðMplÞ3 by comparing F
with the corresponding value obtained by using the
Stefan-Boltzmann approximation of pure Yang-Mills,
FYM ¼ − π2

45
N2

cT4. Thus, from the leading term of (A12)
we get

ðMplÞ3 ¼
1

45π2
; ðA13Þ

which is the same value obtained in Ref. [15]. It is worth
pointing out that the subleading term in (A12) may be of
the same order as the leading term if the value of Δ− is
small enough, such that T4 ∼ T4−2Δ− .
In turn, the asymptotic form of the trace anomaly is

given by

hTμ
μi ¼ 16

3

l3ϕ2
0Δ2

−

ð4 − Δ2
−Þ

ðπTÞ4−2Δ− þ � � � : ðA14Þ

As it can be seen, the leading term of the trace anomaly is
T4−2Δ− . In the particular case where the leading term of the
dilaton is linear in the UV, i.e., for Δ− ¼ 1, this expression
reduces to the result obtained in Ref. [69], with the trace
anomaly being hTμ

μi ∼ T2.

2. Far from the boundary

So far we have dealt with the asymptotic analysis close to
the boundary, and from here on we perform the asymptotic
expansion of all relevant quantities far from the boundary,
for large z.
Far from the boundary, the dilaton field behaves like the

zero-temperature asymptotic form

Φ ¼ Cz2 þ � � � : ðA15Þ

Thus, plugging this expression into the Einstein equa-
tion (7) we get the asymptotic form for the warp factor,
ζ1 ¼ e−A1ðzÞ:

ζ1 ¼ ð
ffiffiffiffi
C

p
zÞ−1=2 exp

�
2

3
Cz2

�
þ � � � : ðA16Þ

Now, we may rewrite (9) in the form

Z
zh

0

dz̃ζ31ðz̃Þ¼
Z

zhc

0

dz̃ζ31ðz̃Þþ
Z

zh

zhc

dz̃ζ31ðz̃Þ¼
1

Ch
: ðA17Þ

Additionally, we may split up the second integral in the
intervals zhc ≤ z̃ ≤ zh� and zh� ≤ z̃ ≤ zh. Hence, by plug-
ging (A16) into (9) and expanding the result in the region
zh ≫ zhc , where zhc is the value where the temperature
reaches its minimum, the integration constant may be
approximated by

Ch¼4C7=4z5=2h e−2Cz
2
h

�
1−

5

8Cz2h
þ���

�
þOðzh� Þ; ðA18Þ

where Oðzh�Þ is the same result evaluated at zh� .
The asymptotic expansion for the temperature close to

the singularity is obtained by plugging (A18) and (A16)
into expression (12), which yields

T ¼ Czh
π

−
5

8πzh
þ � � � : ðA19Þ

This approximate expression confirms the linear behavior
observed in our numerical results, as shown by the dashed
lines in the left panel of Fig. 2.
In turn, analogously to what we have done in the large

black holes regime, we may invert the series (A19) in the
region of large temperatures. Hence, we get

zh ¼
πT
C

þ 5

8πT
−

25C
64π3T3

þ � � � : ðA20Þ

The entropy density in this region is given by

s ¼ 4πσe−2Cz
2
hð

ffiffiffiffi
C

p
zhÞ3=2: ðA21Þ

By plugging (A20) in the last result we get the entropy
density in terms of the temperature,

s
σ
¼ e−

2ðπTÞ2
C

�
4π5=2T3=2

C3=4 þ 15C1=4π1=2

4T1=2 þ � � �
�
: ðA22Þ

The leading term is exponentially suppressed, this behavior
can be seen in the right panel of Fig. 2 with dashed lines.
It is also worth mentioning that the entropy density is
always positive.
Following the same procedure, it is easy to show that the

free energy is given by

F
σ
¼ e−

2ðπTÞ2
C

�
C1=4ðπTÞ1=2 þ 17C5=4

16ðπTÞ3=2 þ � � �
�
: ðA23Þ

The exponentially suppressed leading term is also observed
in our numerical results, as it is shown by the dashed lines
in the left panel of Fig. 4.
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