PHYSICAL REVIEW D 104, 046011 (2021)

Mirror symmetry and mixed Chern-Simons levels
for Abelian 3D A =2 theories

Shi Cheng
Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland

® (Received 26 February 2021; accepted 1 July 2021; published 6 August 2021)

We study the mirror symmetry of Abelian three-dimensional (3D) N =2 theories with mixed
Chern-Simons (CS) levels by turning them into 7 4 y theories that are defined as N copies of U(1) —
[1] theory coupled together by mixed CS levels k;;. We find that 7 4 y theories have many mirror dual
theories with different mixed CS levels and Fayet-Iliopoulos parameter. As an example, we analyze
U(1), + NcC+ NycAC theories by transforming these theories into certain 7,y theories and
find many equivalent effective CS levels. Finally, we analyze mirror symmetry for theories

corresponding to knots. In this work we use sphere partition functions and vortex partition functions

to derive dual theories.

DOI: 10.1103/PhysRevD.104.046011

I. INTRODUCTION

Mirror symmetry relates many aspects of 3D N =2
gauge theories, such as Seiberg dualities, brane con-
structions, and 3D/3D correspondence (see [1-4]).
Constructing mirror pairs is a difficult task even for
Abelian theories. Fortunately, Kapustin and Strassler
found in [5] that 3D mirror symmetry acts as functional
Fourier transformation on partition functions, which
provides an easy way to analyze 3D N =2 gauge
theories and construct mirror dual theories (see, e.g.,
[6]). One subtle problem in mirror symmetry involves
mixed Chern-Simons (CS) levels in 3D N = 2 theories,
which have appeared, e.g., in [7-9], but have not been
extensively studied yet. In addition, the recently dis-
covered knots-quivers correspondence (KQ) implies that
colored HOMFLY-PT polynomials for knots correspond
to vortex partition functions of certain 3D N =2
Abelian theories with symmetric integer mixed Chern-
Simons levels [10]. This motivates us to consider the
physical interpretation of KQ correspondence and its
relation to 3D quiver theories with mixed CS levels.

The 3D N =2 mirror symmetry is naturally one
important part of this story, as it provides a powerful
way to construct mirror dual pairs. In order to consider
mirror symmetry for theories with mixed CS levels we
define a class of theories denoted by 74y, which
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consist of a bunch of U(1)—[l1] theories coupled
together by mixed Chern-Simons levels. We usually
denote 7, theories by (U(1)— [1])2’, The building
block U(1) —[1] of these theories is a theory that has
one gauge group U(1) and one chiral multiplet with
charge +1. Moreover, it is found by Kapustin and
Strassler in [5] that U(1) — [1] is mirror to a free chiral
multiplet denoted by [1] — [1], and vice versa. Based on
this, we find that the mirror symmetries (also called
mirror transformations) acting on various building
blocks commute with each other. Altogether they form
a nice mirror transformation group H(7 4 ). For sim-
plicity, we mainly discuss the mirror transformations of
sphere partition functions, which at a semiclassical limit
give rise to effective superpotentials that encode CS
levels and Fayet-Iliopoulos (FI) parameters, label the 3D
theories, and then verify the results by analysis of vortex
partition functions. Since there are many mirror sym-
metries in H(7 4 ) and each of them gives rise to a
mirror dual theory, it seems that we end up with many
different mirror dual theories. However, these mirror
dual theories are equivalent and their partition functions
are equal. In addition, we need to take into account the
parity anomaly constraints, which requires effective CS
levels to be integers; hence only a subset of these mirror
dual theories are consistent.

To see the application of 7 4y theories, we discuss
U(1) — [N] theories, which have brane constructions dual
to strip Calabi-Yau threefolds with one open topological
brane. By applying mirror transformations on each chiral
multiplet of U(1) — [N], one can turn these theories into
certain 7 4 theories, as illustrated in the following
diagram:
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This gives an easy way to perform mirror transformations
on U(1) — [N] theories. Interestingly, we find the vortex
partition functions of U(1) — [N] can be written in the form
of vortex partition functions of 7 y theories, from which
effective CS level matrices can be obtained by taking a
semiclassical limit. These mixed CS levels are the same as
what we obtain from sphere partition functions. In this
example we find that mirror symmetry only flips the signs
of mass parameters.

The paper is organized as follows. In Sec. I, we review
the localization method for 3D N = 2 theories and show
how mirror transformations act on sphere partition func-
tions. The effective superpotentials and open Gopakumar-
Vafa formula for 3D N = 2 theories are also discussed. In
Sec. III, we apply mirror symmetry on theories engineered
by strip Calabi-Yau threefolds by transforming them into
T 4y theories. We also verify the diversity of mixed CS
levels by analyzing vortex partition functions. In Sec. 1V,
we discuss the application of mirror symmetry on knot
polynomials. Section V contains conclusions and a list of
open problems.

II. THE 3D A =2 MIRROR SYMMETRY
AND T, y THEORY

A. Sphere partition function

It is well known that localization techniques reduce the
path integral representation of partition functions to finite
dimensional contour integrals. In [11,12], the localization
of 3D N = 2 gauge theories on three sphere

S Dl + b7z = 1, 71, €C (2.1
is developed, which shows that on a Coulomb branch
sphere partition functions can be written in terms of the
contour integral of one-loop contributions from chiral
multiplets and vector multiples. More explicitly, the con-
tribution from bare Chern-Simons level k and FI term ¢ is

exp(—inkx? + 2inéx), (2.2)
where x is a gauge transformation parameter for gauge
group U(1),. The one-loop contributions from the chiral
multiplet C and antichiral multiplet AC are

(x - l2Q * 2> ﬁ, (2.3)

respectively, where Q = b + 1/b is the localization para-
meter and u is a real mass parameter. The contributions
from antichiral multiplets can be written as

1 <iQ +u>
—_— =S — — X b I
sp(x =2 -1 "\ 2 2

2

(2.4)

For illustration, consider 3D N = 2 theories U(1),+
N¢C. These theories have gauge group U(1), bare Chern-
Simons level k, and N chiral multiplets C. We denote
them by quivers (1), — [N¢], and their sphere partition
functions take the form

N¢
(Dx=[N] _ —imkx?2iné
ZSZk — /dxe ITTKX ITSX H

i=1

sb<§+x+%). (2.5)

Similarly, for theories U(1), + NcC + N,cAC, sphere
partition functions take the form

Ne . ‘
Zé%(l)k+NcC+NACAC _ /dxe—inkx2+2iﬂ§x Hsb (%—FX—&-%)

i=1
Nac
stb (——x+ )

In this work, we mainly consider the Abelian quiver
theories,

(2.6)

ot (U= Y, (2.7)
which are N copies of U(l)—[l] theory, with real
symmetric Chern-Simons levels k;; between gauge groups
Ull)xU(l)x---xU(1). In (27), & and u; are FI
parameters and real mass parameters for chiral multiplets.
For early discussions on 7 4 y theories see, e.g., [13]. It is

easy to write down their sphere partition functions

N
N . .
Tan _ /] [dxi€Zi~f:‘ —imk;jxix;+2imE;x;

2.8
X Hsb< +x; + 2) (2.8)
Note that if one shifts x; and defines &; as follows:
U; ~ 1
xi—)—xi—zl, gi:—éi—izkijuj, (29)
j=1

then (2.8) simplifies to
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Z7; d.X € - —imk;jx; x]+21mf,x, s Q —x ),
s b 2 i

i=1
(2.10)

where real mass parameters u; are absorbed into shifted FI
parameters &. Therefore we use (2.10) as the sphere
partition functions of 7,y theories in the following
sections. Note that if Chern-Simons levels are diagonal
kij = k;6;j, then T, , theories reduce to N copies of
1ndependent building blocks

U, —1@UM), -] & - @ U(l), —[1].

(2.11)

In this paper we focus on symmetric CS levels k;; = kj;.
We find 7 y theories are very useful for mirror symmetry,
and we will show in Sec. III that U(1), + NoC + N,4C
and some other theories can be transformed into certain
T 4 n theories.

B. Effective superpotential

After compactifying on a circle S', 3D N = 2 gauge
theories can be viewed as 2D N = (2,2) sigma models
with infinitely many Kaluza-Klein modes. As shown in
[3,14-16], the vortex partition function, sphere partition
function, and superconformal index have the same asymp-
totic expansion in the semiclassical limit 7 — 0,

ZVOI‘IBX

l~eff
IV (EX)+0(h
Rixsr  Zsis Zgxs N/deiff" av=2(EX)+0(R)
i

(2.12)

where we have ignored some constant terms. The equiv-
ariant parameter is related to the quantum parameter 7 as
follows:

log(q)
27bi ’

. 212
h = 27xib?, g = el = i,

0=
(2.13)

For 7T , y theories, if we redefine parameters for each gauge
node U(1);,

log(—~%)

YT T o0

(2.14)

then the associated twisted effective superpotentials can be
obtained by taking the semiclassical limit # — 0 and using
(A4); this yields

eff
TAN kl]’ E L12

Nf eff

+Zl - logy, logy;.

)+ &M logy;

(2.15)

where polylogarithm functions Li,(y;) come from contri-
butions of chiral multiplets, k‘3ff are effective CS level
matrices, and &' are effective FI parameters, which are
related to bare parameters

- 1
Ny in
& = 27bE; + in(1 — bQ) Z kij+ (2.17)

Ny :
I
= —2ab&;+ Yk (m-;:buj— ng(‘I)> +3. (218)
J=1

To avoid mistakes, we remind the reader that for symmetric
CS terms

eff eff
ke
Z Slogylogy; =) ~2-(logy)* + ) _kif'logy,logy;.

i i<j

(2.19)

Moreover, in [17,18] it is shown that the Coulumb branch
moduli space M is defined by vacuum equations

~eff

, v
Me: "o =1, for Vi=1,...,N. (2.20)
Substituting (2.15) into (2.20) we get
éeff N k?jff .
Me: e Ty)” +yi=1=0. Vi=1,...N. (221)
j=1
The Hessian matrix of W can also be computed
_ LW '
HOVT), = _awe et 5,2
7 dlogy;logy; / -y
Vi,j=1,...,N. (2.22)

The vortex partition functions of 7,y theories can be
conjectured by comparing (2.15) with superpotentials in
[19]; this implies that they should have the following form:
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© di .y The prepotential of a 3D gauge theory on a surface defect
effd d xl N
ZVvortex _ (_ q) ij=1 k s 2 L —
Tan 0 E -- -, V4 @ Q)dl "'(Q»‘I)dN Rz, x S is defined as [21-24]
(2.23) Wizt = lim e, log Z}3%,, (2.24)
where x; := (—1)%e&" and g-Pochhammers is defined as

(x;q), = []'=3(1 — xq'). One can also factorize sphere
partitions to obtain vortex partition functions using the
factorization property found in [7,20]. We note that integers
d; have physical meaning. The poles of the partition
function (2.10) are located at x; = —d;b — h;/b, where
d; and h; are degrees of the North pole and the South pole
on a three sphere S, and are positive integers. In the
semiclassical limit » — 0, h; are restricted to be zero and d;
are positive integers.

C. Open Gopakumar-Vafa formula

There are intricate relations between prepotentials and
superpotentials. In this section we clarify these relations
and discuss formulas encoding open BPS invariants.

Prepotentials of 3D N = 2 gauge theories play a simi-
lar role to prepotentials of 5D N =1 gauge theories.

|

Zie = expl 2
C

€H,(X,L,Z) J.reZ/2 n=1

where €, are the Q-deformation parameters. In [17,18],
the relations between prepotentials and the quantum
integrable system have been found. If we relate €¢; to
Plank constant 7 by % = Re;, then the combination of
(2.12) and (2.24) gives rise to

Woaa ~eff
e /deie%wzd,v2(/([./,5,?()‘
i

Thanks to geometric engineering, the vortex partition
functions of 3D N =2 theories can be interpreted as
partition functions of open topological strings, which
therefore satisfy a refined open Gopakumar-Vafa formula
on Q-background; for more details see [2,25]. This for-
mula asserts that the vortex partition functions can be
expanded as

(2.25)

n(qt - q7%)

oo (__1)\2J+2r nJ(t\nr (J.r)
(—1)2+2rgnd (L) 1

= PE l
CeH,(X,L,Z)J,reZ/2

where N (CJ’r)

— Re
t— e+ 61’

are degeneracies of vortex particles and
g = e parametrize the Q-background.'
The variables e R7c are the open Kihler parameters for
relative 2-cycle C € H,(X, L, Z), and T are their volumes,
namely the masses of open M2-branes wrapped on C, and R

is the radius of S'. From the perspective of topological

strings, refined open BPS invariants N éj’r) are degeneracies

of BPS states (vortex particles) engineered by open M2-
branes ending on a MS5-brane wrapping a special Lagran-
gian submanifold L in a Calabi-Yau threefold X, and (J, r)
are combinations of charges for the rotation symmetry on
R? and the R-symmetry.

By using the open Gopakumar-Vafa (GV) formula, one
can find the relations between prepotentials and

'In the second line of (2.26), PE[. -
exponential function

-] stands for the plethystic

e[S

n=1

(2.27)

_1\2J+2r ,J(t\r (J,r)
(=122 (£ N ]

(2.26)

holomorphic disk potentials. Substituting the vortex parti-
tion function (2.26) into (2.24) one gets

Weess = lim e, log ZVoeX
Rexst = M €2 g Lp2y gl

=g >3-

CEH,(X.L.Z) J.reZ/2

2J+2rN (J.r) L1 (e RTL)

(2.28)
Expanding the polylogarithm function Li,(z) := > %, ;—2,
the result (2.28) takes the form
) ) e "RTc
~RWgoes = > > ()N
n=1 CeH,(X.L.Z) J,reZ/2 n

(2.29)

which has the same form as the holomorphic disk poten-
tial encoding Ooguri-Vafa invariants in the topological
A-model (see [26])
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Wopen = Z NgVLiZ(e_RTC>

CeH,(X.L.Z)

S5 e

n=1 CeH,(X.L.Z)

—nRT¢

(2.30)

Therefore, prepotentials in 3D N = 2 theories are equiv-
alent to holomorphic disk potentials

—RWg2y 51 = Wopens (2.31)

and classical Ooguri-Vafa invariants can be represented as
the summations of refined open BPS invariants”

rar(Jor
Z (_1)2J+2 N(<Z ).

J.rez /2

NOV = (2.32)

Note that the disk potential is classical and can be expressed
as an integral in the B-model

d
Wopen = /logy_x

where log y is the differential one-form on the mirror curve
(see [27,28]). We emphasize that the prepotentials Wga, ¢
are not complete at decompactification limit R — oo.
Following the treatment in [29], we define the complete
prepotential for 3D N = 2 gauge theory in this limit

(2.33)

WComplete

R2xs' T hm

WRZXSI (2.34)

which takes the form

1
Compl rar(ds T
WRgxglete = _2 § : E ( 1)21 : Né r)[[ C]]z’
CEHZ(X,L,Z) J.rez/2

(2.35)

where we used (A6). Furthermore, refined open BPS
invariants can be resummed into different invariants in
various limits. In the Nekrasov-Shatashvili (NS) limit
€#0, e, =0 [18], using GV formula (2.26) we get

lir%ez log Zp2 g

€x—>
_ _1\2J+2r i)y s (e —RT,
— S > (—)ENG Ly (e RTe),
CeH,(X.L,Z) J.reZ/2

(2.36)
|

5 <l2Q _ Z) mirror [ransf _ix (&—z 2 / dye_:iy 627”(7(' Z)Sb <l2Q _ y) )

which implies that N7 := Zjez/z(—l)NN(CJ’r) are the
invariants in the NS limit. In the unrefined limit ¢; = ¢,,
refined formula (2.26) reduces to unrefined formula and we

identify N{ =3, c7/(=1)*N, (CJ’r> as the unrefined invar-

iants. Note that N, (Cj’r) can only be positive integers, while
Né can be either positive or negative integers.

D. Mirror transformation group

From the perspective of in 3D-3D correspondence,
mirror symmetry corresponds to a change of triangulation
of three manifolds that engineer 3D N = 2 gauge theories
[3,4]. It can also be interpreted as a functional Fourier
transformation on the partition function [5], which is called
mirror transformation in this note. The mirror transforma-
tion for 3D N = 2 gauge theories with superpotentials was
used to derive dualities, e.g., in [6]. Here we discuss its
application to 7 4 y theories. We start from the most basic
example, namely the duality between U(1);, +C and a
chiral multiplet with Chern-Simons level —1/2:

mirror symmetry
—~—

(D)= [1] [ = 1.

2

(2.37)

1
2
The corresponding partition functions are equivalent

Wip-01]

3
Sb

7 (2.38)

or more explicitly,

This is a mathematical identity presented in [30,31], which
implies that any double-sine function s,(---) can be
replaced by a contour integral. This is analogous to gauging
U(1) flavor symmetry

[1] _ [l]mirror transformation(l) _ [l] (240)

In terms of sphere partition functions, this replacement
takes form

(2.41)

Note that the double since functions, as one-loop contributions of chiral multiplets, can be regarded as basic units for mirror

transformations.

’Because of this, Néj'r) are also called refined Ooguri-Vafa invariants, e.g., in [25].
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Moreover, mirror symmetry turns out to be ST operation from the SL(2, Z) viewpoint, when acting on the Lagrangian of
3D Chern-Simons theory, as found by Witten in [32], so one can also use ST to stand for mirror symmetry. After performing
mirror symmetry on the quiver (1), — [1] only once, we get a new quiver (1)}, — [1]:

integrate out(1),

ST: (1), = [11=5(1) = (1) = [1)) === (1), = [1], (2.42)

where the original gauge group (1), was integrated out to get the new quiver with CS level k' and new FI parameters £'. This

- 1y,-[1
transformation does not change partition functions Zé?" - Z(S3)" g
b b

. After performing mirror symmetry twice we get

another quiver (1)}, — [1]:

(STP: (1), = [1=5(1) = (1) = )=5(1) = (1) = (1) = [1])
integrate out(1),(1)’(1>ZH . (2.43)
The corresponding partition functions are also equal Zgz)k_[l] = Z(S%)Z"_[l]. Furthermore, after performing mirror trans-
formation for the third time, we return to the original theory
(STP: (1) = M=) = 1= (D = 1= (1) = 1), (2.44)

in agreement with the relation (ST)* = 1.
Analogously we can perform mirror transformations on each building block of 7 4 y theories, as illustrated by the

following example:

1) - 1] (1) = ()" = [1]) (1) =[]
(1) — [1] (ST,ST,...,0) (1)—((1)/ — [1]) integrate out(1) (1)/ — [1] ’ (245)
=11/ e (1) -1 -0/

where we perform mirror transformations on some gauge nodes of U(1) x U(1) x --- x U(1). After integrating out old
gauge parameters, we get another 77, , theory with CS levels k] ; and FI parameters & We find that mirror transformations,

acting on various U(1); gauge nodes, commute with each other, which implies the following equivalence relation:
(ng,ny, .04, ..nN) ~ (ng,ny,..0n; +3,..ny), Vi=1,...,N, (2.46)
where we introduce a shorthand notation
(ng,ny,...04, ..nyN) = ((ST)™, (ST)™, ..., (ST)™). (2.47)
Since k; ; is symmetric, one can exchange its rows and columns
kij < kj;, ki; <k, for VI=1,...,N, (2.48)
by exchanging parameters x; <> x; for gauge nodes U(1); and U(1);. This gives another equivalence relation
n; < n;j. (2.49)
Composing equivalence relations (2.46) and (2.49), we introduce a group of mirror transformations

H(TA.N) = {(nl,nz, ...,nN)|ni S {O, 1,2},ni > nj if i SJ, Vl,] = 1,2, ,N}
= {(0,0.....0),(1.0,....0), .... (2.2, ....2)} (2.50)

with a finite number of elements % This group is additive under mirror transformations

(ilv iz, vy iN) . (nl, n,,...n;, ...l'lN> — (nl + il,l'lz + i2, B 1) + iN)’ (251)
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which implies that H(7 4 y) has a group structure with addition defined as
(il, i2, ceey iN) + (nl, n,,...n;, ...HN) = (nl + il,n2 + i2, LN + lN) (252)

Note that each element (ij,i,,...,ix) can be regarded as a permutation on the group H(7 4 y). Although mirror
transformations produce many mirror dual theories with different Chern-Simons levels and FI parameters, their partition
functions are equal up to some irrelevant factors

Tan
3
Sb

— ZST JJH(T an). (2.53)

Z
Note that mirror transformations may give rise to effective mixed CS levels klef]f with fractional (noninteger) numbers; in this
case, the associated theories should be regarded as inconsistent and ignored, as not meeting the parity anomaly constraint
kT e 7 [1,33].

Let us denote the original theory by 77(0, ..., 0)]. Mirror transformation (iy, ..., iy) acting on it leads to a mirror dual
theory 7 ((iy, ..., ix)] with superpotentia (ie-IN) This is therefore a correspondence
heory 7(iy. ....ix)] with ial W) This is therefs d
(g, o in) =5 T [(iy. ... in)]. (2.54)

Furthermore, based on (2.51), (iy, ..., ix) gives rise to a map between 7 [(ny, ...,ny)] and 7 [(ny + iy, ..., ny + iy)] for
v (nl, ceey nN) (S H<TA,N):

(ig, ..., in): T [(ny, ...,nx)] = T[(ng + iy, ...,nN5 + iN)], (2.55)

which can be viewed as the mirror map between mirror dual theories, describing the relations between effective CS levels
and FI parameters for dual theories. Since a group of mirror transformations is finite, each (iy, ..., ix) can be regarded as a
permutation. We can think of any mirror dual theory 7 [(ny, ..., ny)] as the original theory, and act on it with all mirror
transformations in H(7 4 5) to obtain a chain of mirror dual theories. In addition, as we mentioned before, the parity
anomaly imposes constraints T € Z; hence only a subset of mirror dual theories are consistent, and we denote them by

Class(7 s ) = {T[(ny + iy, ....n5 + in)] with kT € Z, ¥ (iy. iy, ... In) € H(Tan)}- (2.56)

We summarize that for any (iy, ..., ix) € H(7 4 y), there are correspondences as follows:

one to one one to one

. t .
permutations <————5 mirror maps, (2.57)

T{(iy. ....iN)]

and mirror dual theory 7 [(ny,...,ny)] can be labeled by effective CS levels and FI parameters encoded in effective
superpotentials

(il’ '--7iN)

T((ny, ....ny)]: (KT E0mmy) | geflnrnn)y (2.58)

We will illustrate these relations in examples discussed in Sec. III.

1. Example

Consider mirror transformations for the theory 7 4,:(U(1) — [1]),;"312 whose sphere partition function is

Z;;ZA.Z — / dx, dxzeZﬂi(&xl+sz2)—i7z(k|.]x%+2k|v2x|xz+k2,2x%)sb (g _ xl) Sp (g — XZ) . (259)
According to (2.16), T 4, theory has the following effective CS levels and FI parameters
1 .
k?g = kj; +§5ija i,j=12, (2.60)
< . ir
gg:ff:2ﬂb§[+lﬂ(1—bQ)ZkU+?. (261)

j=1
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We think of (2.59) as the partition function for the original theory 77[(0,0)]. Following (2.50), we write its mirror
transformation group as

H(Ta2) ={(0,0),(1,0),(1,1),(2,0), (2.1), (2.2)}, (2.62)

which corresponds to mirror dual theories {77[0,0],7[1,0],7[2,0],7[1,1],7[2,1],7[2,2]}. Following mirror maps
between dual theories (2.55), we note that these theories are related by basic mirror transformations (1, 0) and (0, 1), as
shown in the following commutative diagram

7((2,0)] -2 72, 1)) —%Ys 7(2,2)]
(1,0) (1,0) (1,0)
11,0 -2 712, 1)) -2 71, 2)] (2.63)
(1,0) (1,0) (1,0)
(0,1) (0,1)

71(0,0)] — 7((0,1)]——> 71(0,2)]

Each mirror dual theory has associated effective twisted superpotential WAEMn2) The effective CS levels k;?jf.f for all
theories in the above diagram (2.63) read

T[(o,m}:("l‘l*% f1z )

1
kio  kyp+3
2k, -1 2k,
T 1 0 2k1.1+1 2k1.1+l
[(1.0)]: 2k 4K, H2kaoth (4hop+2)+1 )7
2ky 41 4, +2
—4k3 ) +2kp 0 k1 1 (4hoo+2)+1 2k; 5
. 4kya+2 T 2yt
1. 1)< 2% 2pr—1 )’
_ 1,2 227
2kyp+1 2kr 1
2 2k; 5
1020 =2k, 2k 11
[( ’ ) 2k _4k%12_2k2.2+kl.l(4k2,2+2)_1 ’
2k -1 4y, =2
—4k3 , 42k k1 (40 —2)—1 2ky,
. 4kyn—2 2ky,—1
7[(0,2): ,
2ky o 2
2ky -1 -2k,
2(—4ki ,=2kypky 1 4k +2)—1) 4k, 5
T[(l 1) —Sk%_2+4k2.z+km(8k2.2+4)+2 —4k?_2+2k2.2+k1,](4k2‘2+2>+1
T 4k, 2(=4k} 5 2k a1 (4h2p=2)-1) |
—4k} 5 +2ky ok 1 (4k 0 +2)+1 —8k2 ,+aky ok 1 (8K +4)+2
2(2ky,+1) 4k, 5
Ti2.1): 43, +2kyp=2ky 1 (Zhop 1)+ 4RE 42k 0 =2ky 1 (2o pt 1)+
T 4k, 5 42k 1 (2-8kp0) 42k =1 |7
A2 2k p=2k1 1 (ko n 1)+ ARE 4 2ky 2 =2ky 1 (2o ot 1)+]
4k7 1 (2—4k; ) +2kp 0~ 1 4k, ,
,2.[ (1,2): 4 5tk g (2—4ky ) =2kp ot 1 4G,k 1 (2—4kan) =2k o+
U 4k 202k ’
12 (2K, +1)
Ak2 k1 (2—4ky0)=2kan+1 43,k (2—4ko ) —2ko o+ 1
2—4ks o 4k 5
—AKT ~2kyptky (Akpp=2) 1 =4k, —2ky otk (4kyp—2)+1
T[(2,2): e 2o 2.64
[(2,2) it ik, (2.64)

—4k ,=2ky ok 1 (4kap=2)+1 =4k ,—2ky 4k 1 (4kop—2)+1
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It is obvious that the equivalence relations (2.46) and (2.49)
are satisfied, and parity anomaly strongly constrains the
possible values of k;; in (2.64).

E. Quiver reduction

Given some specific values of bare CS levels k;;,

effective CS levels kfjf-f may be problematic in some cases:
the effective CS levels have poles or vanishing determinant

k=[x g S| or detk;=0. (2.65)
. b d
0 0

We call this phenomenon quiver reduction. For instance,
there are quiver reductions for effective CS levels in (2.64),
when k) | = +1/2, ky, = +1/2, etc. Using formula (B1),
one can see that for the CS levels in (2.65), the contour
integral over gauge nodes is not Gaussian, but takes the
form of the Dirac delta function that reduces the dimension
of the full integral. Namely, quiver reductions imply some
gauge nodes are redundant and can be integrated out.

F. CS level decomposition and charge vectors

We can generalize the story to generic 7 4 y theories with
chiral multiplets of other charges except £1. It turns out
that charge vectors and CS level matrices for these theories
are exchangeable.

Let us start with generic theories with gauge groups
U(1), xU(1), x---x U(1)y and N chiral multiplets in
arbitrary representations. These theories have partition
functions of the form

N .
Zs(K,P) = /dxe"'”"TK"*z"”g" H Sh (% -Pr. x) :

i=1

(2.66)

where X = (x;;x5;...;xy) is @ N x 1 matrix, and P7 are
charge vectors for chiral multiples. We define

(2.67)

P:= (plva’ "'7pN)’

where P; = p; and y:= P'x. After this variable trans-
formation, and ignoring the Jacobian matrix, charge vectors
can be absorbed into new mixed CS levels and FI
parameters, and (2.66) becomes

N .
(K _ —iny"K'y+2inE Ty 2 — v
Zsb(K,l)—/dye Hsb(z y,>,

i=1

(2.68)

K =P !)-K-(P), (2.69)

g=(P")-& (2.70)
If K is symmetric, then K’ is also symmetric. Both K and
K’ can be decomposed in the orthogonal basis and have the
same eigenvalues A

K=Q'A(Q")" =Q"AQ, (2.71)
K'=P") K- (P =Q'AQ), (272)
Q' = QP. (2.73)

The partition function (2.68) is exactly the sphere partition
function for 7 4 y theory. Therefore, we can turn generic
Abelian theories (2.66) into 7 4 v type (2.68). Moreover,
with the help of (2.71), the form (2.66) can also be
transformed into theories with diagonal CS levels but
complicated charge vectors

ng(A,QP) :/dze_i”z"‘Az+2i”(Q‘§)Tz

stb< — (QP)T > (2.74)

where x = Q”z. We call it charge vector form.

Based on the above discussion, one can transform
generic theories (2.66) into either 74y type theories
(2.68) with mixed CS level K’ and simple charge vectors
1 or charge vector form (2.74) with diagonal CS level A and
complicated charge vectors QP

(K,P) — (K', 1) or (A,QP). (2.75)
The associated effective superpotentials for these three
forms (2.66), (2.68), and (2.74) are equivalent. Hence
these three forms of partition functions are supposed to
correspond to the same mirror theory class Class(7). In
this note we only consider the form (2.68) and leave
the charge vector form (2.74) for future work. In addition,
if K is real positive definite, then it has Cholesky decom-
position K = L”L, and (2.66) can be turned into another
form

Za (1, (L7Y)P) = / dx! = im X +2in((L)TE) Y

(2.76)

where x’ = Lx.
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ML U(1), + N¢C +NycAC

A. Brane webs

We denote by U(1), + NcC + N,cAC the theories that
contain gauge group U(1) and N chiral multiplets of
charge +1 and N, chiral multiples of charge —1. These
theories can be engineered as surface defect theories by
Higgsing 5D A/ = 1 brane webs. See, e.g., [2,34] for more
details. The corresponding brane configuration in type 1IB
strings is shown in Fig. 1. In this brane web, open strings
connecting the D3-brane and D5-brane on the left-hand
side (LHS) of the NS5-brane give rise to fundamental chiral
multiplets denoted by C, and the open strings connecting
the D3-brane and D5-branes on the right-hand side (RHS)
of the NS5-brane give rise to antifundamental chiral
multiplets denoted by AC. Note that in this brane con-
struction, there is the freedom of putting the D3-brane on
any D5-branes on the LHS of the NS5-brane, which gives
rise to the same 3D N = 2 theories. However, if moving
the D3-brane to D5-branes on the RHS of the NS5-brane,
then C and AC are switched; hence, the matter content of
the theory is changed, so this movement leads to different
theories. In addition, the string located at the D3—D5-brane
intersection is of length zero, and hence the corresponding
chiral multiplet is massless [2].

The duality between type IIB strings and M-theory can be
represented in terms of a brane construction and geometric
engineering. From this viewpoint, brane webs correspond to
strip Calabi-Yau threefolds, and the associated vortex par-
tition functions are interpreted as open topological string
partition functions. See [25,35] for discussions on open
topological string amplitudes, Higgsing, and Hanany-Witten
transitions for U(1), + NcC + N4cAC theories.

NS5
D5
C 1 AC
B; a;
>
z

FIG. 1. This diagram is the IIB brane construction for theories
U(1); + NcC + N, cAC. The blue line stands for D3-brane as a
surface defect. The horizontal lines denote D5-branes, and the
vertical line denotes the NS5-brane. The wavy lines denote open
strings between the D3-brane and D5-branes. This IIB brane web
is dual to toric Calabi-Yau threefold with a Lagrangian brane
through IIB/M-theory duality.

The U(1), + NcC + N,cAC can be rewritten as 7 4 y
theories by doing mirror transformation (1,1,...,1) and
integrating out the original gauge node U(1),

This implies that performing mirror transformation on
U(1), + NcC + NycAC is equivalent to performing
mirror transformations on 74 y.yy,. theories. We take
U(1), + NC theory as an example, whose sphere partition
functions can be transformed into 7 4 y theories,

(3.2)

More explicitly, by (2.5), the associated sphere partition
functions for U(1), + NC take the following form:

N .
(1)=[N] _ —inkx?+2inéx g &
Zsf?k —/dxe + Hsb<2 +x+2 . (3.3)

i=1

which in the semiclassical limit (3.3) gives the effective
superpotential

N off
A i€ . . k
Wi = Z Liy(XY;) + &M log X + = (log X)2,

(3.4)

N 1 N
eff _ k eff _ [ ; —4 1 Y.
k + R E 5 (zzzN bré + log ll:l] l),
(3.5)

X = e2bﬂx’ Yi = _ﬁebﬂui‘
The above superpotential is consistent with the well-known
fact that the one-loop contribution of each fundamental
chiral multiplet C to ki is 1/2, and antifundamental AC to
ket is —1/2. Moreover, parity anomaly constrains effective
CS levels k° € Z. The mirror transformation (1,1, ...,1)
replaces double sine function s,(---) given by chiral
multiplets into contour integrals via (2.41). Hence we
get the sphere partition functions for the dual 7, y theories
on the RHS of (3.2),

N N P . .
Z?i“’ = / H dyiezf~f:1 ki T 2miCy H Sp (g - yi) ,
i=1 i=1
- 1 2
=% N

(VT 2 iQ  u
5i_7+3_2k+N<§_Z<T+Z>>’ (37)

i=1

(3.6)
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where mass parameters u; can also be absorbed into new FI
parameters ;. When k = —N/2, Eq. (3.7) is ill defined
because there is a pole in &;, and hence quiver reductions
appear in this case. We will show in examples in Sec. III. F
that when k = —N/2, this pole can be bypassed and it gives
rise to the mirror pair discovered by Dorey and Tong in
[36,37]. In addition, quiver reduction always reduces
(1), — [N] to a bunch of chiral multiplets after the mirror
transformation (2,2...,2) on (3.7). However, this involves
subtle issues that require taking into account superpoten-

tials for chiral multiples.
Once we constructed some particular 7 4 y theory with
the mixed CS level in (3.7), acting on it with mirror
|

transformations could lead to many equivalent mirror dual
theories. After ruling out theories with parity anomaly, we
can find many equivalent sets of mixed CS levels.

B. Vortex partition functions

The correspondence (3.1) can be independently conjec-
tured (rather than derived) from vortex partition functions,
by invoking mathematical identities. In this section we
explain this statement taking advantage of the quiver
structure found in [19,25].

Using the topological vertex formalism for the toric
diagram shown in Fig. 1, the vortex partition functions of
U(1); + NcC + N,cAC theory can be written in the form

] n L1 \n
vortex Z(—\/?z)(f*”z(q 72)" (1, 9) (2. q), -~ (an, 2 q),
g (9.9),

U(1)+NcC+N4cAC —

B )2 @)y (Bro-1-4), (3.8)

where f is the framing number that can be put in by band, and the factor g~(/*1)/2 can be absorbed into z (see [19,25,34] for
more details). In open topological string theory, open strings are given by M2-branes wrapping a chain of CP!’s connected
to a disk. In terms of refined GV formula (2.26), each open string has Kéhler parameter

Nyc Ne—1

—RT: _ .n d; od;
o=z [T ] of'67.
i=1 j=1

where (n,d;,d j) are degrees for (z,a;, b j), z is the open Kéhler parameter for the disk, and a;, f§; are closed Kihler
parameters from AC and C, respectively, which correspond to the distances between D5-branes as shown in Fig. 1. The
computation reveals that closed Kihler parameters correspond to mass parameters of chirals a;, §; ~ e?™i.

The open topological string partition function (3.8) can be written in the quiver form [19,25]3

(3.9)

Zenecan eac = 2o Pe(xr o xm), (3.10)
where
Z() _ (al’ q)oo(a27Q)oo"'(aNAC’q)oo (311)
(/Bl’ Q)oo(ﬁb Q)oo e (ﬂNc—]v Q)oo
and Pc(---) is defined as
oo dl d2 dm
" Cdd, X1 X5 X
Pe(xecntn) = Y (—y/@)20m L2 (3.12)

(@ Da, (@ Da, - (2:9)a,”

which is determined by matrices C;;. In (3.12), n is denoted by d, for convenience. To get the form (3.12) we use the
following expansion formula to rewrite each Pochhammer symbol in (3.8):

X%

(ai’ Q)f ~ Z(_\/a)c().o[ai]”z‘*’zcoj[ai]"di“fcii[ai]d% _
4=0

(g.9), (3.13)

where C.[a;] denotes the coefficients in front of the degrees n, d;. These C..[a;]’s encode the presence of chiral multiplets.
Interestingly, there are two equivalent ways to expand Pochhammer symbols, in either a; or \/ﬁai‘l, pj or qﬁ;':

3 . . . .
This quiver form comes from quiver representation theory.
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(@39), = RUALIESEO w D (=) 7j

(04", 9) 0 = (4:9)q,

3

= (vgai')*
(a , q (Z / n n2 2nd,‘+lff
’ Va) ;) (4:9)a,

(3.15)

Bivd;
1 _ ($i4". q) o _ 1 = _\2ndtd (75) !
I R R e W0 D Lt Py

(3.16)

0 o, (aB;")%
<ﬂ],> S Z_ R

(3.17)

Following this notation, we denote the expansion (3.13) by

Coola] Co.ilai]
(@i q)y = : o (3.18)
Ciola] Ciila]
so that each antifundamental chiral AC leads to*
0 --- 1
(ai§61)n_’ SRR Y 7 I
1 0
1 -1
or o Vaet L (3.19)
-1 - 1
and each fundamental chiral C leads to
0 .-~ 1
1 .. . ﬂj
- Ak
(ﬂﬁ‘])n \/‘_1
(11
-1 - —1
or || s |wa(2) 7| eao)
1 0 va

ER)

where all the elements denoted by “ in the above
matrices are 0. In total, the matrix C;; has the structure

*Where the number marked in blue stands for Co,0, Which is the
open Kihler parameter z.

=C z]+ZC..[ai]+ZC..Lﬁj]. (3.21)

Here we show one particular CS level matrices k;‘?jff for
(3.8): fixing the variables x; in P(---) as follows:

Pe(xg, X1, ey Xy)
) P ﬂzv I
_Pc<q zzvalv‘- aNA ) - ) (322)
Vi v
we find that the C;; matrix takes the form
(f+1 I -1 1 - 17
1 0o --- 0 0 --- 0
C;;((3.10)) = 1 0O --- 0 0O --- 0
1 0 0 1 0
|1 0o --- 0 0 -+ 1
(3.23)

The rank of C;; is (Nac + N¢) X (Nyc + N¢). By com-
paring superpotentials in explicit examples, we find that the
framing number is related to the bare CS level £,

Nc=Nac

1:
fHl=k+=

(3.24)

vortex
Note that there are several ways to write Z}; U1, NeCAN  AC

in the form of Pc(x;), since there are two equivalent
expansion parameters x; in (3.19) and (3.20). If flipping any
X; — \/c_pci‘l , then one gets another matrix C’ ;- Allx; can be
flipped, and therefore one gets a chain of {C;}. There are
in total 2VactNe=1 equivalent matrices.

Invoking the mirror symmetry, we can provide a physical
interpretation of (3.10) and matrices C;;. Recall that (3.10)
implies that the vortex partition functions of U(1), +
NcC + N,4cAC theories can be rewritten in the quiver form
Pc, (x;). It can be noticed that on the Higgs branch, Zj is

actually related to the one-loop part Z'71°P = Z1, which is
given by the inverse of Pochhammer symbols in (3.14)—
(3.16),

Hyil (ﬁij)w

1-loop _ 1=tV 1/ (325)
U(l)k+NCC+NAC va:Af (ai’ q)oo
and then (3.10) reads
1-1 vortex _
ZU(IO)[:l—)Q—NCC-&-NACAC 'ZUO(r{e),(+NCC+NACAC(Z’ai’ﬁj) = P, (x;)-
(3.26)
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Moreover, vortex partition functions (2.23) of 7 4 y theories also take a quiver form

vortex ( eff
L] ’

TaANc+Nc

x;) = Pc, (x);

(3.27)

hence we conjecture C;; = k‘;'jff and U(1); + NcC + N4cAC can be regarded as certain 7 4 y theories. Then the vortex
partition functions of U(1), + NcC + N4cAC theories are conjectured to be equal to vortex partition functions of the

corresponding 7 4 y theories

Zl—loop

Tl
U(1),+NcC+N,cAC (ai. Bj) - ZySt

VNN eac(B @i b)) = Zr, L (Xi)-

(3.28)

This is checked to be correct in various examples in the
following sections. We stress that the one-loop part of the
T 4y theory on the Higgs branch is trivial, and hence

w 7Vvortex . .
Tanginye (x))2Z e (x;). Note that the correspon

dence between U(1); + N-C + N,cAC and 7 4  theories
is a conjecture from the perspective of vortex partition
functions; however, this correspondence can be derived
from the sphere partition functions using mirror trans-
formations. Furthermore, the vortex partition functions in
(3.28) can be refined, and then they satisfy refined open GV
formula (2.26) that encodes positive integer BPS numbers;
for more details and explicit computations see [25].
There is one problem left: what are the relations between
these equivalent C;;’s? The answer is that each Cj; is the

keif of a particular mirror dual theory, and mirror symmetry

relates them. More explicitly, mirror transformations relate
dual theories

T[(nyg, ..., nNC+NAC)}

Ty +ip. .o nyeaN e T iNgaN, )]
(3.29)

and give rise to mirror maps between effective CS levels

eff.(n;....nN, +Nyc)
k;;

flipping somex;—x;! eff,(ny+ip,...nn, +Nac+ing +Nac)
i

(3.30)

We will show in examples in the following sections
that these equivalent integer CS matrices k' can be
obtained by performing mirror transformations on
sphere partition functions. In terms of vortex partition
function of the corresponding 74 v, theories, mirror

symmetry acts as flipping closed Kéhler parameters a; —
a;' or f; — B! (or in other words, changing the sign of
real mass parameters u; — —u;, since the closed Kihler
parameters equal mass parameters and FI parameters by
a;, i ~ ™ 7 ~ %) However, the exchange symmetry
qg = 1/q in open topological strings does not lead to
new CS level matrices k¢J', as it only shifts bare CS level

k—k+£1.

C. U(1),+1C

T 1.1 (1), — [1] theory is an interesting basic example. Its
sphere partition function is given by (2.5). We shift x and
absorb the mass parameter in & and obtain

7T = /dxez”i'::"_i”kxzsb (g — x). (3.31)

The mirror transformation group H(7 4 ;) in this case takes
the form

H(T 41) ={(0),(1).(2)}, (3.32)
which leads to mirror dual theories
{7T1(0). T[(1)]. T[(2)]}- (3.33)
Mirror transformation (1) relates them as follows:
T[> T[> T((2)) (3.34)

namely,

(1) = 12 (1) = (1) = ()2 (1) = (1) = (1) = 1)),

(3.35)

which are the following quivers after integrating out old
gauge nodes:

1) 1)
(D = []—= (D) = [1]—= (W) =1 (3:36)
Their sphere partition functions are as follows:
Z?[O] — / derm‘Ex—kzrixzsb (% _ .X') ,
b
H(Q—2kQ=8i&)x-+i(3-2K) 72 ]
Z;[ll — /dxe -2 Sziw 0= Sy <§ — x>,
b
T 2(Q+2kQ+8iE)x+i(342K) mx2 iQ
Zy" = [ dxe -2+t sp{ 5 =) (3.37)
b
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One can see mirror transformations change CS levels and FI parameters significantly. By taking the semiclassical limit and
using formula (2.15), we read off these CS levels and FI parameters

ij

70 (kef““)

X ‘ ) .
= 5+ k&0 = 2brE + in(1 — bO)k + %”) :

2k —1 4brf  in(2k -1+ bQ)
T (K0 = 28T () — _
1] (k” 2k+1’§ 1+ 2k 1+ 2k '
3 2 i(=27 + brQ — 4ibxé)
7121 ( (@ = eff (2) _ . )
2] (U ¢ T (3.38)
As we discussed before, mirror transformations permute mirror dual theories. The permutation
70 - T[], TV ->T[2).  TI2)] - T[0)] (3.39)
is given by mirror transformation (1), and the corresponding mirror map is
5 y 3+ 2k ., i(Q+2kQ + 8i)
/ AW !/ __ !
(k&) = (k&) K =5—. &= (3.40)
The permutation given by mirror transformation (2) is
T[] - 7(2)].  TIQ)]->TIW).  TIA)] - T0)]. (3.41)
whose corresponding mirror map is the reverse of (3.40),
. 5 -3 +2k o i(=1+2k)Q -8
/= : /— 1/ — 42
R R R T o (3.42)

In this paper, we only consider mirror maps for 7 4
theories. In principle, one can find mirror maps for generic
T 4y theories too.

Parity anomaly constrains k?;f’m to be integers, so we
throw away theories with fractional effective CS levels, and
find all possible values for bare CS level %,
k=43/2,0,%+1/2. (3.43)
The associated effective CS levels and FI parameters can be
obtained by inserting these values in (3.38).
More explicitly, when k= £3/2, we get theories
denoted by 7153456

k - - % 5 Tlﬂ)Tz, (344)
1)

k= O, T3—)T4, (345)

k= % 727, (3.46)

where

3 -
T, {k‘,?jf@ = —1, &0 = _jz 4 5ibnQ + Zbﬂéj}

. ~ 1 .
T,: {k,.]f.f’“) =2, &) — 2z — 5ib7Q + 2bﬂ§},
. {k‘:']ffu)

LI — 0 &) — 2jx — ibrQ — 4brE},

ij

= —1,&00 = —iz + ibnQ — 4bn&},

. \ 3 .
Ts: {k R 5ibnQ + 2bﬂ§},

ij

Te: {kjjf.f’“) =—1,800) = iz + % ibrQ + 2197:%}.
(3.47)
Some of them are equivalent:
Ty =T3="T¢: ()3, —[1]. (3.48)
Ty=T,="Ts:(1)3,—[1]. (3.49)

Therefore, we end up with a mirror dual pair
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{30 = 1], (V3o = [11}-

When k = £1/2, and inserting this value into (3.38), we
find the theories

(3.50)

1 1
k=3 7 Yr U, (3.51)
1
k = —E . T]O—)T]l—)le, (352)
where
. 1 .
T;: {k‘jjf*<°> = 1.&M0) = iz — S ibnQ + 2b7z§},
. . 1 N
Ty {k,jf*“) — 0, &t = 5ibnQ ~ 2bﬂ.§},
Ty: {k?;f’(z) = oo},
. 1 -
Tho: {kj?;“(‘” =0, &0 = 5 b0 + anaf},
Ty {k?;f'(l) = oo},
c 1 ;
Th: {kif'(” = 1,&M0Q) = iz — 5ibm0 - 2bn§}.
(3.53)

Here oo implies that there is a quiver reduction. Moreover,
some of these theories are equivalent:

77 = 712? TS = TlO? T9 = Tll' (354)

More explicitly, when k = 1/2, sphere partition func-
tions for 7,59 take the form (where we define

E=-p+9)

T, Z(l)l/z 1

9 - /derﬂ.'l p)x—%mxz (%_x)

Ty: Z(S%)fl/z_[l] = /dxe‘z”i(?‘P)x+5”ixzsb <§ - x),

(3.56)

(3.57)

The mirror transformations relate these three theories, and
ence

(Dip—1]

3
Sh

S
= ZSZ

_ Wt

Z s

(3.58)

(D=1

where 242 = ZLF g the identity in (2.39).
b

5
Similarly, when k= —1/2, partition functions for
T 101112 are of the following form (where we define

E=p-2):

Tio: Zk(;)-l/z—m _ / dxe—Zm’(%—p)x+%nix2sb (Q — x) ,
b

Th: Zas

le Z ()12=[1] /dxe2m )x—%mxzsh (% _ x)_

The mirror transformation relates them as follows:

Wop=0] [1]1/2 (1]

3 - 3
s s

Z“]]/Z_[l]‘

Z
5

(3.62)

Combining (3.58) and (3.62), we get another mirror pair

{12 - [, (1212 = 11}
(3.63)

[, (Do = [ [12 =

The toric diagram for the theory (1), — [1] is shown in
Fig. 2. By (3.8), the open Kéihler parameter for the open
topological brane on Calabi-Yau threefold C3 is ¢\/*1/2z
where f is the framing number. To match it with the FI
parameter in vortex partition functions in (2.23), we
identify

Y = i(—1)kgEeE = (—1)FlgT T, (3.64)
which implies that the framing number f maps to the CS

level k, and the open Kihler parameter maps to the FI
parameter

1/4 ezbﬂ;

f=k-1/2, =g (3.65)

FIG. 2. Calabi-Yau threefold C* with a Lagrangian brane
marked in blue.
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D.U(1),+2C
We turn this theory into a particular 7 4 y theory

42c (L) T
k ZS3A.2 ,
b

z\)

b

(3.66)

where Z;“ is given by (3.7) when N = 2. We perform mirror transformations (n;,n,) € H(7 4,) and take the
b

semiclassical limit to read off effective superpotentials. For simplicity, we denote the mirror dual theories and

superpotentials by 7 [(ny,n,)]: (k?ff’(""HZ), f;c»ff’(n"m)) and find the following results:
t 1 7(2i(k=14+bQ—2ib&)+(b+2bk)u, —buy)
. T+~ 1+k 2(1+k)
T[(O’ 0)] <<_L _k_ ) ( 7(2i(k—=14+bQ—2ib&)—bu; +(b+2bk)u, )) ’
1+k 1+k 2(1+k)
=1 1 7(2ik+4bE+b(2k=1)u; +buy)
} k k 2k
TIO.f: (( 1 —l>’< _ b4, +(142k)up) ))’
k k 2k
1 1 7(2i —ibQ + buy — bu,)
710(0,2)]: Lo1ex ) , , ,
+ 57(=2i(bkQ — 2ibE + bQ — k — 2) — uy(2bk + b) + buy )
11 _ ab((2k+1)u; +4é—u)
; kok 2k
T[(l’ 0)] (( 1 k;l)’ <ﬂ(b(2k—l)u2+4b§+bu1+2ik) ) )
k k 2k
! , (uy (b=2bk)~4bE+2ibQ—buy—4i)
) Tk T-k 2(k=1)
T 1)]: ((; L) ’ ( 7(b(2k=1)uy +4bE=2ibQ+bu, +4i) ) ) ’
1-k  1-k - 2(k—1)
T(1.2): 0 -1 7(i(bQ — 1) — buy + bu,)
T -1k ) \43n(=2i(k(bQ — 1) = b(Q + 2i&) + 1) + uy(b — 2bk) — buy) ) )’
T12.0)]: k+1 1 %ﬂ(—2i(ka —2ibé+bQ —k —2) —u;(2bk + b) + bu,)
e 1) w(=ibQ — buy + buy + 2i) ’

2(=2i(k(bQ — 1) = b(Q + 2i) + 1) + u; (b — 2bk) — bu,) (3.67)

Because of the exchange equivalence n; «— nj, there are
only two independent theories. We identify these theories
with {7[(2,0)], 7[(2,1)]}, which are related by the trans-
formation (0, 1),

712,02 772, 1).

(3.68)
The toric diagram for the theory (1), —[2] is shown in
Fig. 3. It follows from (3.8) that the vortex partition
function takes the form

0 2 L \n
Zvortex _ Z (_ﬂ)(f-H) (q 2 Z) 1 ’
V€~ (9.9), (B:4)n

(3.69)

which, combined with the one-loop part, takes the form of
the vortex partition function of the 7 4, theory. However,

2(ibQ + buy — bu, — i)

))

there are several equivalent forms of (3.69), as we discussed
in Sec. III B, and each form corresponds to the vortex
partition function of a particular 7 4, theory

_ ~l-loop
Z?;fx - ZU(l)k+2C ’ ZZJO(rSfﬂc (3.70)
B

7

FIG. 3. The toric Calabi-Yau threefold with a Lagrangian brane
for theory U(1), + 2C.
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0

2 k?lfr‘(z'o)d,»d Zdl (ﬂ/ q)d2
= Z (—ﬂ)z:.jzl ij J —\/_ (3.71)
dy,d,=0 (g, CI)dl (¢, Q)dz
. > geeng g 20 (gt
= (=y/@)e=imt 0 e (3.72)
dl.dzz=0 va 2 ‘I)dl (q. 61)42

where we have absorbed the additional framing number and
factors caused by flipping f into z. From (3.68), it can be
noticed that (3.71) is the vortex partition function for theory
71((2,0)], (3.72) is the vortex partition functions for theory

|

[+ kL pau, (L U —2bm (Uy—u
(6] - Z,ﬂ/\/a) _ ((_1)2k+1q kz e b ,(2+k)eb 2/26 2b ‘f,—eh (us ,)/\/g)’

while for 7[(2,1)] the relations are

(q_%lz, qﬁ_l) _ ((_1>k+1q—%ebﬂul(%—k)e—bﬂuz/Ze—me:’ _\/c—]ebn(ul—uz))_

T[(2,1)], and flipping mass parameter f/./q — qf~"
relates effective CS levels

flip A
kc;,;f,(z,()) p k?jff,(z.l)

(3.73)

This flipping is interpreted as mirror transformation (0, 1),
as (2,0) +(0,1) = (2,1).

The relations between Kihler parameters z, a;, f; and
gauge theory parameters u;, £ can be obtained by comparing
with (2.23) where the variables x; are defined to be
x; = (1)K e&". For T[(2,0)], the relations between
Kihler parameters and gauge theory parameters are given by

If u; = 0, the relations between z, # and u;, & simplify to z ~ ¢*** and f ~ e?™.

E. U(1),+1C+1AC

The sphere partition function for this theory is

b

1 IC+1AS —imkx?
Z§3)k+ + _/dxe2;z§x imkx Sb(

which after the mirror transformation (1, 1) becomes that of the theory 7 4 »,

z\)

b

where

(+H1C+1AS (11)

Z;A.z _ /dyldyze_iﬂ‘%(ﬁﬂ%) 2(k+1)
b

in(=ikQ—(2k+1)uy —4E=iQ—uy )y

(3.74)
(3.75)
lQ uy lQ u
2+x—|—2>sb<2 x+2>, (3.76)
T a2
=z, (3.77)
e, (g - yl) Sh (g - yz) . (37)

After acting with mirror transformations from the group (7 ,,), we obtain mirror dual theories labeled as follows:

& 1 7(uy (2bk-+b)+4bE+buy+2ik+2i)
. T+k T+ 2(k+1)
T[(O’ 0)] ’ ((1 k ) ’ (n(2i(2ib§+k+1)+u2(2bk+b)+bu1) ) ) ’

1+k  1+k 2(k+1)
k=1 _1 7(2i(=2ibE+bQ+k—2)+b(2k=1)u, —buy)
. k k %
TI0.1)]: ( ( _1 _ 1) ’ ( (s (2bk+b)—4bE=2ibQ+bu; +4i) > ) ’
ko k - 2%

7((

L

()

=
N

1 -1
-1 1+

zb(iQ + uy + uy)

) ’ (%ﬂ(—zika — Uy (2bk + b) + 4b& — bu, + 2ik) ) ) ’

VN
| |
— i
T
=1
LT
v »

N

=

=2
VR

(1) (2bk+b)+4bE=2ibQ+buy+4i)
’ (ﬂ(2i(2ib£+bQ+k—2)+b(2k—1)uz—bul) ) ) ’
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(—ibQ — buy — bu, + i)
(=2ibkQ + uy(b — 2bk) + 4b& + buy + 2ik + 2i)

iy (2bk + b) — 4ibE — ibu, — 2k)
7b(iQ + uy + uy) ’

(3.79)

1 1 2k lku|l+4§ )
T[(1,1)]: ((E :) ( (1- 2k uz+i§+u|) >>
k=1 % S
Ti.2)): <<? ) (l
2
T](2.0)]: <<k_+11 11 < iz(2bkQ —
T((2,1)]: <<’1‘ (1)>,<%”(—2ika+M1(b—2bk)

Because of the exchange relation m; <> nj, there are
only two independent mirror theories with integer effec-
tive CS level matrices. We identify these theories as
{T[(2,1)],7[(2,0)]}, and they are related by the trans-
formation (0, 2)

72,1122

71((2,0). (3.80)
The corresponding toric diagram for U(1), + 1C + 1AC is
shown in Fig. 4. Following (3.8), we get its vortex partition

function

0 Dn? n
Zvonex Z(_\/@(H) "(a, q),

. (3.81)
U(1),+1C+1AC o (5179);1

which in combination with a one-loop part equals
the vortex partition functions of 7[(2,1)] and 7[(2,0)]
theories,

__ ~l-loop
Zr,, = ZU(l)k+1C+lAC ZV()(rt§X+1c+1Ac
AN DL el U sl
dy.d,=0 2 ‘1),1l (q. Q)dz
(3.82)
z
(0%

FIG.4. The corresponding toric Calabi-Yau threefold for theory
U(l), +1C + 1AC.

—4b§+bu2+zik+2i)>>

7(=ibQ — buy — bu, + i)

=S (g by AR

dydy=0 (9, Q>d1 (g Q)dz

where the second line is for the 77[(2,1)] theory and the
third line is for 77[(2,0)]. One can see that flipping the
expansion parameter o — \/ﬁoc‘1 relates effective CS
levels in (3.82) and (3.83),

ke;ff,(z.l)fli_Pw)xkeff,(z,o)

ij ij

(3.84)

Therefore we interpret this flipping as the mirror trans-
formation (0, 2).

F.U(1),+3C
This theory can be turned into a particular 7 4 5 theory,

11,1
Z(Slz)"%C(—QZ

b

Ty3

il (3.85)

Following (3.7), we get the sphere partition function of the
corresponding 7 4 3 theory

3 .
ij=1

_i(2k=1) Din Din
644k 342k 32k
k.. — 2ix _i(2k-1) 2ix
1 342k 644k 342k ’
2in 2ix __i(2k-1)
342k 342k 6+4k
 m(2kQ=4i(k+1)uy ~8iE=30+2iuy+2ius)
4k+6
’ _ 7(2kQ—4i(k+1)uy—8iE—30+2iu; +2iuz)
= L (3.87)
_ m(2kQ—4i(k+1 ) uy—8iE=30+2iu; +2ius)
4k+6

By acting with mirror transformations on the sphere

partition function, we get many mirror dual theories with

integer effective CS level matrices keff (nems, "3>,
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10 1 10 1 1 1 0
7[0.02)]: {0 1 1 |, T[0.12)]:|0 0 -1 |, 7[0.20)]: [1 k+3 1],
11 k+3 1 -1 k+3 0 1 1
1 1 0 k+3 1 1 k+3 1 -1
T[0.2.1)]: [ 1 k+1 -1, T[(Z,0,0)]:( 1 1 0|, T[2071): 11 0),
0 -1 1 1 0 1 -1 0 0
0 0 -1 0 0 -1 0 -1 0
T)(1,0,2)]: | 0 1 1 |, T[(l,l,Z)]:(O 0 -1 |, T[L20)]: (-1 k+5 1],
-1 1 k+1 -1 -1 k-3 0o 1 1
0 -1 0 k+3 -1 1 k=3 -1 -1
T(L21)): [ -1 k=% -1 |, T[@roe: | -1 o of. T[@LD]:|[ -1 0 O
0 -1 0 1 0 1 -1 0 0

(3.88)

Because of the exchange relation m; <> nj, there are only four independent theories. We choose them to be

{71(2,0,0)],7([(2.0,1)].7[(2,1,0)],7[(2,1,1)]}, and their effective CS level matrices and effective FI parameters
are as follows:

1 $m(=2ibkQ — 2b(k + 1)uy — 4b& — 4ibQ + bu, + bus + 2ik + 7i)
0], z(=ibQ — buy + bu, + 2i) .
ﬂ(—le - bu1 + bu3 + 21)

1

7((2,0,0)]: 11
0

k+1 1 -1 1(=2ibkQ — 2bku; — 4bE + buy — bus + 2ik + i)
1
0

7((2,0,1)]: 1 0 |, #(—ibQ — buy + bu, + 2i) .
—1 0 ﬂ(le+bM1 —bu3 - l)
k+% -1 1 L(=2ibkQ — 2bku; — 4b& — buy + buy + 2ik + i)
T7[(2.1,0)]: -1 0 o], 7(ibQ + buy — bu, — i) ,
k=1 -1 -1 1(=2ibkQ — 2b(k — 1)u; — 4b& 4 4ibQ — buy — buy + 2ik — 5i)
T[(2.1,1)]: -1 0 o0 [, 7(ibQ + buy, — bu, — i) . (3.89)

These four mirror dual theories are related by

(0,1,0)

71(2,0,0)] T1(2,1,0)]
l(mcm) l(0,0,l) (3.90)
(0,1,0)
71(2,0,1)] T1(2,1,1)] .

The toric diagram for U(1), + 3C is shown in Fig. 5. Using (3.8), its vortex partition function is given by

N
Zvortex — R 391
U()+3€C ; (q7 Q)n (ﬂl’Q)n(ﬂ% Q)n ( )

which can be written in terms of vortex partitions of the above four dual theories:
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; B2/
B
/z—

FIG.5. The corresponding toric Calabi-Yau threefold for theory
U(1), + 3C. Note that putting the open topological brane
(marked in blue) on various horizontal lines gives rise to the
same theory.

1-1 vortex
Zr,, = ZU(I(;(:I-)%—_%C ’ ZIJ()(rltt;k+3c (3.92)
_ i (=v3) Pk g g, 2 (B /D)= (Ba) D)
da—o (2:9)a,(9:9)0,(9:9) 4,
(3.93)
- i (=v4) Lk O i Z(gpr)" ('62/\/‘_1)d3
dy.dy,d;=0 (q9 Q)dl (q9 Q)dz (q’ Q)d3
(3.94)
LS (Tt 2 B D e )
dy.dy,d;=0 (Q9 Q)dl (C], q)dz (qv ‘I>d3

(3.95)

z

111
U(1) 5, +3C(LL1) o

B o (_\/6) ,3.]':1 k?;f_(zl.l)didj Zdl (qﬂl—l)dz(qﬂgl)d_;
P (@ Da,(00)a,(q-9)a,
(3.96)

It is obvious that mixed CS level matrices for these mirror
dual theories are related by flipping closed Kihler para-
meters f3;,

kfjff,(z,o,O)
lﬁip B2

kfjff,(z,o,l)

flip 1 kfjff’(z’l’o)

lﬂip B2

flip 1 kie]ff,(ll,l) _

(3.97)

Therefore, to match with (3.90), the flipping f; should
correspond to mirror transformation (0, 1,0) and flipping
P, corresponds to (0,0,1). This confirms the fact that
mirror transformations are interpreted as flipping Kihler
parameter x; of vortex partition functions of 7 4 y theories
corresponding to strip Calabi-Yau threefolds.

1. Tong’s mirror pair

When k = —3/2, the dual 7 4 ; theory given by (3.7) is
problematic because of poles in l~<,<j. Nevertheless, it is
possible to bypass this pole in &; ; and still get well-defined
T 45 theories. The procedure of addressing this problem is
as follows: first, we do not give value to k£ and continue
acting (2, 0, 0) on the partition function, and at the end we
set k= —3/2. This leads to a well-defined partition
function that can be viewed as the original theory as well.
This new original 77, ; theory is given by mirror trans-
formation (1,1,1) 4 (2,0,0) = (0,1,1). More explicitly,
its sphere partition function is obtained in two steps

(200)_ T/, (3.98)

S Sy
where
Z;}” = / dx,dx,dx;e S temg, (—Q - xl)sb (g - x2> Sp <§ - x3> , (3.99)
CSterm = %ﬂi(x% - x5 - x%) - ﬂ(% + iuy — iu2>x2 - ﬂ(% + iuy — iu3>
—ﬂ<Q+2i§—§(u| —|—u2+u3)) — 2i(xy + x3)%;. (3.100)

Furthermore, when acting with the mirror transformation (1, 0, 0) on this new original theory Tim, one gets T;m [(1,0,0)],

U(1)_3,,4+3C(L1L1) (2,0,0) (1,00) 77 .[(1,0,0)]
Si( )30+ e _)ZSiA.3 )

z (3.101)

Here, we encounter quiver reduction for the theory 77, 5[(1, 0, 0)] that turns out to have a reduced quiver. Its sphere partition
function, after shifting parameters x, - —x,, u, - —=3iQ +4& — u; — us, is the following:
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Z']}}[(I,O,O)] _ dx2dX3€CS termssb Q +x; |8y Q —x3 |5, Q - X, +x3 |,
S 2 2 2

CSterms = —in(x3 + x5 — xox3) — in(uy — uz)x3 — (30 + 4i€ — 2iuy — iuz)x,. (3.102)

The integral dimension for this theory is two, and hence the gauge group is U(1)x U(l). Since
(2,0,0) + (1,0,0) = (0,0,0), (3.102) is equivalent to the problematic sphere partition function given in (3.7) with
k = —3/2. The associated bare CS level matrix for (3.102) is

=3
k= (_; 1 ) (3.103)
2

and the associated chiral multiplets have charges (—1,0), (1, 1), (0, 1), respectively. It is easy to draw its quiver
1] -U(1)-U(1)-1]. (3.104)

Interestingly, we obtain the mirror pair found by Dorey and Tong in [36],

1 _1
U0)p=B) =00 =0 -() win k= ().
with k= —3/2, <> . 2 (3.105)
and ke = 0 and  kSIf _( B >
T\ 2

In this case the mirror transformation is (1, 1, 1). This example illustrates the fact that mirror transformations can be used to
verify and derive dualities with the help of 7 4 y theories.

G. U(1), +2C+1AC

The sphere partition function for this theory is

U(1),+2C+1AC PR 410, u iQ u iQ U
ZSi( )it 2C+ :/dxezf k sh<2+x+2])sh<2—x+22>sb<2+x+;>. (3.106)

Because of parity anomaly, the bare CS level k € Z + 1/2. Mirror transformation (1, 1, 1) turns this theory into type 7 4 3,

() +2C+1ACLLY) T, o

3 3
Sb Sb ’

7 (3.107)

where the open partition function of 7 4 ; in this case is

3 .
T 2y —inkovy. 1O
ZSzAﬁ — / 'H] dyiez 'fl-)’t i klly:y_/sb (7_);1)’ (3108)
L]=

_ik=1)  _ 2ig 2in  ((142k) Q=8iE—4i(1+K)uy —2iur +2iu3)
6-+4k 342k 342k 6+4k
L _ 2in _i(2k=1) _ 2in / _ in(=i(542k) Q+86—2u; —4(1+k)u,—2u3)
kt/ - 342k 6+4k 342k |° él - 6+4k : (3'109)
din _ 2in_i(2k=1) _in(=i(142k) Q=8E+2u; —2uy~4(1+k)u3)
342k 342k 6+4k 6+4k

Similarly as before, we list all integer effective CS level matrices obtained by mirror transformations
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0 1 10 1 1 -1 0
710.0.2): {0 1 -1 |, 7T[0,1,2)]: (0 0 1 |,  7T[0.20)]: -1 k+3 -1][,
1 -1 k+3 11 k+3 0 11
1 -1 0 0 0 -1 0 0 -1
7(0,2.1)]: | -1 k+% 1|, 7T[1o2}:| 0 1 -1 | T[(LL2)]:| 0 0 1
0 1 0 -1 -1 k+1 -1 1 k-1
0 1 0 0 1 0 k+3 -1 1
T[(1,2,0)]: |1 k+1 -1,  T[@21): (1 k-1 1), T[2.000: | -1 1 0],
0 -1 1 0 1 0 10 1
k+1 -1 -1 k+1 11 k=1 1 -1
T[201]: | -1 1 0|, T[210]:| 1 o0 0] T[2Ly}:| 1 0 0 |. (3.110)
-1 0 0 1 01 -1 0 0

which satisfy exchange equivalence n; <> nj, so there are only four independent theories that we choose them to be
{T[(2,0,0)],7[(2,0,1)],7[(2,1,0)],7[(2,1,1)]}. (3.111)

The associated effective CS levels and effective FI parameters are as follows:

% +k 1 1 %7[(—21‘ka — 2bkuy — 4b& — 2ibQ + bu, + bus + 2ik + 5i)
7((2,1,0)]: 1 0 0], a(—ibQ — buy — bu, + i) (3.112)
1 0 1 7(—ibQ — buy + bus + 2i)
k+3 -1 1 17(=2ibkQ — 2b(k + 1)u; — 4b& — 2ibQ — bu, + bus + 2ik + 3i)
7((2,0,0)]: -1 1 0], ab(iQ + uy + uy) (3.113)
1 0 1 f[(—le - bl/tl + bI/l3 + 2l)
k+31 -1 -1 —2in(2bkQ — 2ibku, — 4ibé — 2bQ — ibuy — ibuy — 2k + 3)
71((2,0,1)] -1 1 0 [, mb(iQ + uy + uy) (3.114)
-1 0 0 7z(ibQ + bu; — bus — i)
k—% 1 -1 %zz(—2ika—2b(k—1)ul —4bE + 2ibQ + bu, — buy + 2ik — i)
T[(2.1,1)]: 1 0 0 [, 7(—ibQ — buy — bu, + i) (3.115)
_l 0 O ﬂ'(le + b”l - bu3 — l)
These four mirror dual theories are related by mirror transformations
0,2,0
TI(2,1,0)] —2% 7((2,0,0)
l(07071) l(0,0,1) (3.116)
(0,2,0)
TI(2,1,1)] ——— T[(2,0,1)].

The toric diagram for this example is shown in Fig. 6. The corresponding vortex partition function is
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>, (< @) (aq) S s ey b (gp)
Zvortex _ n , 3.117 — (_\/6) ij=1"ij i“j .
U(l)t2CHAC ; (¢:9) (B q), (.117) 4 ,dz,zdzzo (4-9)4,(4.9)a,(4- 9)a,

which along with the one-loop part is equivalent to the (3.122)

vortex partition functions of four mirror dual theories
mentioned in (3.111),
It is obvious that flipping « — /ga~"! and g — /gp~"

— g!-loop relates their effective CS level matrices
2T ZU(l)k+2C+1AC 'ZZJO(IT?:HCHAC (3.118)

N ke g, Zha (B eff.(2.1.0) _ fip o eff.(200)
aPP D C N e e ey T
d,,d,.d3=0 s 4)d, q.49 d, q.9 ds
(3.119) lﬂip B lﬂip B (3.123)
kie]ffv(2’171) ﬂlp o kfjff9(27071) .
SR oL O L /N
= —_ q ij=1"1 L
di.d>.d»=0 (q’ q)dl (Q’ q)dz (q’ q)d'; . . .
nce again, this confirms that mirror symmetry can be
P 0) gain, th fi that ymmetry b
(3.120)  interpreted as flipping closed Kihler parameters in vortex
partition functions.
io: (=/3) 3 ke gy, 2 (o) (gp~") "
fr—y —_ q ij=1 "1 L)
dy.dydy =0 (9.9)a,(9:9)a,(q- @), H. [1]-U(1),, -U(1),, - [1]

(3.121) This quiver theory has three chiral multiplets with
charges (1,0), (p1, p2), (0, 1), respectively. The associated
sphere partition function is given by

Z[l]_(l)kl_(l)kz_[l] _ /dxldxze—iklnx%—ikznx§+27zi(§]x|+§2x2)

5
iQ u iQ u iQ u
X S <2+X1 +21>Sb <2+x2 +22>sb<2+p1x1 +p2)€2 +21> (3124)
After redefining parameters
locY log Y. log(—gPitr=1/2y, _
i olog¥e o leehs o log(—q s = in(p1+ pa)). (3.125)
bn br bn

we get the associated effective superpotential in the semiclassical limit

Wflf]f—(l)kl—(l)kz—[l] = Liy(X,Y}) + Liy(X,7,) + Lip (X7 X5°Y3)

1 1 2 1 1 2
+§ (kl + +2p1) log X2 +§ <k2 + —;p2> log X3 + P12Pz log X log X,

2
+ ) (14 py)mi +log ¥y + pylog Y5 + 2zik; — k;log q — 4bmé)) log X,. (3.126)
=1

The associated effective CS level matrix is

1+p?

‘ k + 1 PP

k;:]t_f: 1 2 2 , |- (3127)
PiP2 k2 + +p;

2

Similarly as before, mirror transformation (1, 1, 1) turns this quiver theory into some particular 7 4 5 theories,
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(1]=(1y, —(l)kz—[l](il))ZTA_3

3 3 -
Sb Sb

z (3.128)

We list some effective CS level matrices given by mirror
transformations

1 1 _P
P P
1 2ky+pi+1 2k pat
T0.22): | 5 T ~pe
k 2 2
i g MR L (B11)
(3.129)
0 _1 P
Pi Pi
| 2ki+pi-l ,—2k
T[(I,Z,Z)]Z _E 1217%1 P zp%ﬂ’z i
—2k kip3 P
% Pzzp%mz ;7_%2+k2_ﬁ+§
(3.130)
32k +pi+1) py PP
71((2,0,2)]: P2 1 2
o P2 52k, +p3+1)
(3.131)
ol 1
ky=3+35 —p1 —301P2
7T((2,1,2)]: - 0 —p> ,
| P
—3P1P2 —P2 ka—F+5
(3.132)
2k2[7%2+p%7%+l7§ + kl _ ZkZéwILg-pl _%
T((2,2,0)]: _2kpitp Ztpptl 1 ||
2p; 2p; P2
_P 1 1
P2 P2
(3.133)
22, .2
2k2p12p1§1+p2 + ky p]_zikgpl %
T[(2.2,1)]: pi=2kyp) Zotp=l 1
2p; 2p; P2
P _ 1
P2 P2
(3.134)

It is obvious that if charges p; and p, for the bifundamental
multiplet are chosen properly, there could be many anomaly
free mirror dual theories with integer effective CS levels.

IV. KNOT POLYNOMIALS

Mirror symmetry is also important in knot theory,
because many knot invariants can be engineered by gauge
theories. The theories U(1);, + NcC + N,cAC discussed
in Sec. III actually correspond to the unknot. However, in
this work we expect that mirror transformations could be
applied to generic knots.

In [38,39], it is found that the HOMFLY-PT polynomials
of various knots can be lifted to the form

PK(a, x, g)—P2 (x, q)

= Z (_\/a)zi\-’i:] Cijd;d; Xy xy |
e (4:9)a, -+~ (4:@)a,

(4.1)

which implies that different knots correspond to matrices
C;;. This relation is called the knots-quivers correspon-
dence in [39].° Moreover, some identifications need to be
imposed on variables x;,

4i=Cii

x; = xa%q > (—t)cT (4.2)
in order to ensure that
4i=Cii Cii
PX(a,x,q) = P9 (x; = xa“q = (—t)2.q), (4.3

where parameter —t = 1 in the unrefined limit ¢ = ¢. On
the other hand, 3D/3D correspondence claims that colored
HOMFLY-PT polynomials are equal to vortex partition
functions of certain 3D N = 2 theories [2,3]. Inspired by
this argument and the form (4.1), it is conjectured in [10]
that the lifted version P9%(x, t) also corresponds to certain
3D N = 2 theories T[Q] whose vortex partition functions
in the semiclassical limit take the form

h—0 dy; 1~
Pes(x.q)— [ [[=Fexps Wrig(x.¥) + O(n).

y
(4.4)

Wrig(x.¥) = D _Lix(vi) +log((~1)%x;) logy;
Cij logy;1 4.5
+;70gyi 0gy;. (4.5)

By comparing (4.5) with (2.15), we note that the lifted
HOMFLY-PT polynomials P9 (x, g) are the same as vortex
partition functions of 7 y theories, and the corresponding
quiver theories T[Q] are actually

Tan: (U() - [INEY. (4.6)

In [10,39], C;; is called quiver following the notation in
quiver representation theory.
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Therefore C;; play the role of effective Chern-Simons levels
kel and log ((—1)%x;) play the role of FI parameters &, The
mirror transformations of 7 4 y theories enable us to obtain a

where f in the second term is the framing number for trefoil.
Based on the above conjecture that the 3D theory 7 [Q]
from KQ correspondence is the 7 4 y theory, we assume the

chain of equivalent integer matrices {C,;} for knots. original theory denoted by 77[(0, 0,0,0.0, 0)] has effective

CS levels,
A. Trefoil |
Trefoil 3; is one typical example in KQ correspondence Cij= k?;f’w """ 0~ kij + 56,-]-, (4.8)
[10,39]. The associated KQ matrix C;; is
001122 111111 :«;lnd mass parameters were a.bsorb.edinto shifted FII?arameters
&;. Then one can act with mirror transformations from
011122 111111 H(T o) on the sphere partition function given in (2.10)
co_ 112223 11111 and get many integer effective CS level matrices.
P11 123 2 3 +f 1111111 Quiver reductions appear in this context as well. By
v 22033 111111 scanning the CS levels obtained by mirror transformations,
we find there is at least one gauge node that cannot be
223334 11111 integrated out. More explicitly, mirror transformation
(4.7) (0,1,1,1,1,1) leads to the sphere partition function
|
ZsT3 (011111 _ / doxeHO147 45/ mi taix (=0 + QF o+ (14 G+ H2HN)EH2 1))
b

Xsh<§_x)sb<%+fx_gz>sb<§+(1 +f)x_g3>sb<§+(] +f)x—54>

xsb<§+(2+f>x—?ss>sb<§+(2+f>x—2=6),

which implies that the corresponding theory has a star shape quiver in Fig. 7 with one gauge node U(1) and six chiral
multiplets with charges {—1, f,1+ f,1 + f,2+ f,2 + f}. The FI parameters 52,3,4.5,6 were turned into mass parameters
while &, is still an FI parameter. If f = 0, —1, —2, some double sine functions from chiral multiplets can be moved out of the
integral, so framing f plays a subtle role here. Moreover, mirror transformation (1,1, 1, 1,0, 1) also leads to a star shape
quiver with one gauge node U(1) and six chiral multiplets with charges {2+ f,2+ f,2+ f,2+ f,—1,3+ f}. The
corresponding sphere partition function is

(4.9)

ZST3 (111100)] _ / doe—3B0+24f+5 1) min? +mix(—2LiQ+ (28, +28,+25,+ 28,4285+ 38 )+ (B +E+E+Ei+&))
b
iQ z iQ 7 iQ 3
<o (L @ p=b)sn (L Qo p-b)sn (L @a k)

XSb(%""(2+f)x_g4)sb(§_x_és>sb<§+(3 +f)X—§6>- (4.10)

Bla

FIG. 6. The corresponding toric Calabi-Yau threefold for theory
U(1); +2C + 1AC. Note that the vortex partition function is
invariant under the flop transition on closed Kéhler parameter a.

FIG. 7. The star shape quiver for the 3D N =2 theories
corresponding to trefoil.
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V. CONCLUSIONS

In this work we discussed the mirror symmetry for
Abelian 3D N = 2 gauge theories using 7 4 y theories, on
which mirror symmetry acts as a functional Fourier trans-
formation of sphere partition functions. These transforma-
tions form a nice group H(7 4 y), so that each element in
H(T 4) stands for a mirror transformation and corre-
sponds to a mirror dual theory. By reading off effective
mixed Chern-Simons levels and effective FI parameters
from superpotentials, we can get many mirror dual theories
with different mixed CS levels. However, these mirror dual
theories are equivalent and have equivalent partition func-
tions. This implies that effective CS levels are not sufficient
to identify theories in this context. Fortunately, these
equivalent mixed CS levels can be tracked by mirror
transformations and are under control. As many theories
are related to 7 4 y theory, and the latter theory is easy to
analyze, we can use 7 4 y as a tool to analyze other types of
quiver theories. We discussed the 3D mirror symmetry of
theories engineered by strip geometries, in particular
U(1),; — [N] theories, by turning them into 7 4 y theories
via mirror transformation (1,1, ..., 1). The result is that for
these theories there are several corresponding mirror dual
T 4 n theories with different mixed CS level matrices. If
considering their vortex partition functions, one could find
mirror symmetry only changes the sign of mass parameters.
An interesting discovery is that Tong’s mirror pairs can be
verified with the help of 7,y theories. In addition, we
discussed the open BPS invariants encoded in vortex
partition functions and the open Gopakumar-Vafa formula
in various limits.

There are many open questions. First, it would be
interesting to understand quiver reductions, and the rela-
tions between mixed CS levels and charge vectors for chiral
multiplets. Second, it is important to understand better
mirror transformations and quiver reductions for knot
polynomials and their Higgsing and geometric realization.
Third, finding the relations between non-Abelian 3D
N =2 theories with mixed Chern-Simons levels, 3D/3D
correspondence, three-manifolds, cluster algebra, super-
potentials, and monopole operators, is an interesting
direction for further studies [13,40]. Last but not least, it
is important to verify whether the local mirror symmetry
discussed in [41] can be identified with the mirror sym-
metry discussed in this work, and find the mirror symmetry
for 3D NV = 2 theories obtained by compactifying 6D (2,0)
SCFTs on three manifold M.
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APPENDIX A: DOUBLE-SINE FUNCTION

The double-sine function is defined as

mb+n/b+ Q/2 —ix 1
= = b —
() mllomb—i—n/b—i—Q/Z—i—ix’ e=b+y
(A1)
and it satisfies the identity
5p(x)sy (=) = 1. (A2)

The equivariant parameter ¢ in localization is defined as

g = el =l = 20 p—2xib? = 27ibQ.  (A3)

The asymptotic limit » — 0 of the double-sine function is

Sb(z) = mind /2 pin(2-07)/24 exp <2 —
i

Lis(e™) ).
(A4)

where Li,(z) is the polylogarithm function defined by a
power series

Li,(z) = ii— . (AS)

k=1

In the decompactification limit R — +4o0, the effective
superpotentials of 3D N = 2 gauge theories on spacetime
R? x Sk involve

Lip(e™™) _ [1x])?

R1—1>r-¥I-loo R? 2
0 x>0,

7 =0 = { (46)
x x<0,

where [[x]? is defined in [29] and 8(x) is the Heaviside step
function. The derivative of Li,(y) in vacua equations is

exp <y dLiz(y)> 1

dy ) 1=y

(A7)

There is one useful identity in reading off effective super-
potentials

7 1

Liy(z) + Liy(z7) = i 510g2(—2)-

In addition, the g-Pochhammers is defined by (x;gq), =

[1i= (1 = xq").

(A8)
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APPENDIX B: INTEGRATION

When performing mirror transformations, we use the
higher dimensional Gaussian integral formula

/dxexp(-iX.A.X_l_J‘X)
_ @) (N _
_\/;exp EJ AT, only if det A # 0,

(B1)

to integrate out old gauge nodes. The Dirac delta function

5(k) = %/dxe”‘x (B2)

reduces the dimension of integrals and hence plays an
important role in quiver reduction.

APPENDIX C: MATRIX DECOMPOSITION

Real symmetric matrix S can be decomposed in the
orthogonal basis

S =Q’AQ,

where A is a real diagonal matrix and Q is an orthogonal
matrix satisfying QQ” =Q7Q =1, and Q7 = QL. If
matrix A is symmetric, then B’AB and A~! are also
symmetric. In addition, Cholesky decomposition asserts
that if matrix A is real positive and definite symmetric,
then it can be decomposed as A = LL”, or more specifi-
Cally Aik = L”Lk]
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