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Generalized Einstein-Maxwell theory: Seeley-DeWitt coefficients
and logarithmic corrections to the entropy of extremal
and nonextremal black holes
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We present a consolidated manual of Euclidean gravity approaches for finding the logarithmic
corrections to the entropy of the full Kerr-Newman family of black holes in both extremal and nonextremal
limits. Seeley-DeWitt coeffcients for the quadratic fluctuations of a concern gravity theory appear to be the
key ingredients in this manual. Following the manual, we calculate the first three Seeley-DeWitt
coefficients and logarithmic corrections to the entropy of extremal and nonextremal black holes in a
generalized Einstein-Maxwell theory minimally coupled to additional massless scalar, vector, spin-1/2
Dirac and spin-3/2 Rarita-Schwinger fields. We finally employ the Seeley-DeWitt data to reproduce the
logarithmic entropy corrections for extremal black holes in all N > 2 Einstein-Maxwell supergravity via an

alternative local supersymmetrization method.
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I. INTRODUCTION

In any quantum gravity model, including string theory, it
has been found that the leading quantum correction to the
Bekenstein-Hawking entropy formula of black holes carry-
ing large charges [1] is proportional to the logarithm of
horizon area, called the logarithmic correction [2—-20]. These
quantum corrections are special features of black hole
entropy that can be entirely computable macroscopically
only using IR or low-energy gravity data (i.e., the massless
fields and their couplings to the black hole background),
without any prior knowledge about the UV completion of
the gravity theory [21-35]. Also, the logarithmic entropy
corrections are quite robust for being unaffected by the
massive fields as well as the classical higher-derivative
corrections [21]. Logarithmic corrections to the Bekenstein-
Hawking formula must match with the entropy calculated
from the UV complete microscopic side (via logarithm of
microstate degeneracy) and hence serve as a strong “infrared
window” into the microphysics of black holes.

On the macroscopic side, quantum corrections to the
Bekenstein-Hawking entropy of black holes are generally
realized by different loop contributions in the saddle point
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expansion [21-24,27-32] of the partition function describ-
ing the black hole geometry. Logarithmic corrections are
filtered by tracking only massless states in the one-loop,
requiring evaluation of the one-loop quantum effective
action. Euclidean gravity approaches have been an excel-
lent success in computing logarithmic entropy corrections
for the extremal [21-32] as well as nonextremal [33-35]
black holes. For extremal black holes, the most popular and
efficient approach is the quantum entropy function formal-
ism [36-38] that only demands data from the finite part of
Euclideanized extremal near-horizon geometry [39]. For
nonextremal black holes, we cast the strategy developed in
[33] that analyzes the whole Euclideanized black hole
geometry, including the near-horizon. The main technical
aspects of these Euclidean gravity approaches are—(i) easy
to track down the appropriate logarithmic terms, (ii) not
limited to any particular type of space-time, and (iii) a
special treatment to deal with the zero-mode contributions
to the one-loop effective action.

A conventional way to estimate the necessary one-loop
effective action is the heat kernel treatment. In this treatment,
one-loop effective action is represented as the proper time
integral [41,42] of heat kernel of the kinetic operator
controlling fluctuations in the one-loop. One can further
expand the heat kernel perturbatively in terms of the Seeley-
DeWitt expansion coefficients [43—49] for a short proper
time. Therefore, the computation of logarithmic corrections
now involves finding these coefficients (especially the third
Seeley-DeWitt coefficient a4(x) introduced in (7) for
massless fluctuations around the black hole background.
In this paper, we will follow a standard but indirect approach
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[49] to compute the Seeley-DeWitt coefficients. The major
highlight of this computation approach is that the Seeley-
DeWitt coefficients are expressed only into different invar-
iants induced from the background fields and background
geometry. Henceforth one can utilize the results for any
arbitrary black hole background of the concerned theory
without any limitations.

Einstein-Maxwell theory (EMT), also known as electro-
vacuum, is a typical source-free gravitational field theory.
The most general, static/stationary solutions to the EMT
field equations describe the Kerr-Newman family of black
holes [50]. In this family, the Kerr-Newman background is
rotating and electrically charged, while its nonrotating-
uncharged, nonrotating-charged, and rotating-uncharged
limits respectively describe the Schwarzschild, Reissner-
Nordstrom, and Kerr black holes. Quantum corrections to
the Bekenstein-Hawking entropy of Kerr-Newman family of
black holes play a vital role in macroscopic (low-energy)
analysis of any quantum theory of gravity. For example, in
the works [22-29,34], Kerr-Newman black holes are inter-
preted as solutions to the supergravity-embedded Einstein-
Maxwell theories and corresponding logarithmic entropy
corrections are obtained. These supergravity theories are
low-energy string theory models (generally type-II string
theory compactified on a Calabi—Yau three-fold [52,53]),
where the EMT serves as a basic building block [54]. So it
will always be fundamental to investigate quantum correc-
tions to the entropy of black holes in a simple EMT.

Logarithmic corrections to the entropy of black holes in a
simple four-dimensional (d = 4) EMT are not new; results
for the extremal Kerr-Newman black holes are already
achieved in [31] via the quantum entropy function formal-
ism. The current paper aims to extend the work [31] for
both extremal and nonextremal black holes in a more
generalized EMT. We investigate a minimally coupled
EMT where the simple four-dimensional Einstein-
Maxwell system is coupled minimally [55] to additional
massless scalar, vector (a.k.a. the Maxwell field or U(1)
gauge field), spin-1/2 Dirac, spin-3/2 Rarita-Schwinger
fields. If the couplings were set as “nonminimal,” the
generalized theory would have new black hole solutions
beyond the Kerr-Newman family. For example, in the
nonminimally coupled Einstein-Maxwell-scalar models
[56], various dilatonic and scalarized black holes are
possible. But, the minimally coupled EMT is structured
so that the fields are minimal and fluctuate around the pure
Einstein-Maxwell backgrounds. Thus, there will not be any
new type of black hole solutions except the Kerr-Newman
family of black holes. As a result, the minimally coupled
massless fields will give rise to additional contributions to
the pure EMT results (both Seeley-DeWitt coefficients and
logarithmic entropy corrections), and our primary goal in
this paper is to evaluate all these contributions.

The technical aim of this paper is three-fold. First, we
design a consolidated and compact logarithmic correction

manual based on the FEuclidean gravity approaches
[33,36-38], followed by the standard Seeley-DeWitt com-
putation approach [49]. The manual is global for the full
Kerr-Newman family of black holes, which does not even
depend on supersymmetry. In the second part, we calculate
the first three Seeley-DeWitt coefficients for the fluctuations
of the d = 4 minimally coupled EMT and employ them in
obtaining logarithmic entropy corrections for both the
extremal and nonextremal Kerr-Newman family of black
holes. Finally, we generalize the minimally coupled EMT for
arbitrary numbers of fields. The generalized Seeley-DeWitt
coefficients and logarithmic correction results are recorded in
Egs. (93), (97), (100), (103) and (104). The nonextremal
results exhibit a perfect match with that of [33], where the
ay(x) coefficients for individual fields are not evaluated
directly but arranged from secondary data provided in some
earlier research works and schemes [57-61]. In contrast,
our work follows a generic path: we set up the action of
concerned theory, analyze the quadratic fluctuations, calcu-
late all the first three Seeley-DeWitt coefficients and finally
find the logarithmic corrections. The contributions due to
vector and Rarita-Schwinger fields in the Schwarzschild
formula (104) perfectly match the results obtained in [62] via
the tunneling approach. All the corrections to extremal black
hole entropy are found to be new reports. The calculated
“minimally coupled” EMT results have crucial utility in
derivations of various minimally coupled sectors of super-
gravity-embedded Einstein-Maxwell theories. As an indirect
application, we locally supersymmetrize the generalized
a4(x) formula (93) and derive logarithmic entropy correc-
tions for the extremal Kerr-Newman, Kerr and Reissner-
Nordstrom black holes in N > 2, d = 4 Einstein-Maxwell
supergravity theories (see Egs. (110) and (112)).

The plan of this paper is as follows. Section II serves as
an effective manual of computing logarithmic correction to
the entropy of extremal and nonextremal Kerr-Newman
family of black holes. In Sec. III, we calculate necessary
Seeley-DeWitt coefficients and logarithmic corrections to
the entropy of extremal and nonextremal Kerr-Newman
family of black holes in the d =4 minimally coupled
Einstein-Maxwell theory. We end in Sec. IV by summa-
rizing and discussing the generalized results. Appendix A
discusses the treatment of separating the local and zero-
mode contributions of Euclidean one-loop quantum effec-
tive action that eventually leads to the working formula for
logarithmic corrections. Appendix B derives the Einstein
equation as well as includes some particular identities for
the four-dimensional Einstein-Maxwell background. In
Appendix C, we briefly present the cumbersome trace
calculations for the Einstein-Maxwell sector.

II. AN EFFECTIVE MANUAL FOR LOGARITHMIC
CORRECTION TO BLACK HOLE ENTROPY

In this section, we present a consolidated manual of how
Euclidean gravity approaches provide a standard path to
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evaluate logarithmic correction to the entropy of extremal
and nonextremal Kerr-Newman family of black holes using
the Seeley-DeWitt coefficients.

A. The working formula

Let us consider a four-dimensional Euclidean gravita-
tional theory with the matter fields £ and the metric g
describing corresponding space-time geometry over a
compact manifold. If we fluctuate g and ¢ around an
arbitrary classical background solution (g,&) for small
quantum fluctuations &,, = {7, E}

g=09+7  E=E+E (1)

then the action S[g,£] describing the theory is expanded
perturbatively as

S[g.&] = S[g. & + 6°S[E,,] + higher order terms.  (2)

The quadratic-fluctuated action 6°S[E,] can take the
schematic form [63],

SS[E,| =

d*xy/det g&, A&, (3)

where A is the kinetic differential operator that character-
izes the quadratic fluctuations. We can now introduce the
heat kernel K(x,y;s) that encodes all the data about the
spectrum of the operator A [21-23,30,49],

= S e i), 4)

i

K(x,y;s)

followed by the trace of the heat kernel, called the heat trace
D(s),

D(s) = tr(e™*?) = [ d*xy/detgK(x,x;s).  (5)

Here {f;} are the eigenfunctions of the operator A with
eigenvalues {4;} and s is a proper time with units of
(length)?, called the heat kernel time. By the proper time
representation [41,42], the quantum corrected one-loop
effective action W is then expressed in terms of the heat
trace D(s) as [27]

W= —5/6 4 s, (6)

where y = 41 for bosonic and fermionic fluctuations,
respectively; € is a UV cutoff, restricted by € ~ [ pz ~ Gy
[64]. In order to evaluate K (x, x; s) and D(s), one can cast
the Seeley-DeWitt expansion as s — 0,

K(x,x;5) = Zs" 2a,,(x) (7)

n=0

where the coefficients a,, (x) of the perturbative expansion
are known as the Seeley-DeWitt coefficients [43—48]. The s
independent part of the expansion (7) allows us to find a
logarithmic term from the integration (6) in the range € <
s < Ay (Ay is the black hole horizon area),

/oo E;(D(s) = d*x\/det ga,(x) In (#)
€ s N

+ e (8)
In any Euclidean gravity approach, this logarithmic term
corrects the black hole entropy if one integrates out
only massless modes in the one-loop effective action W
[21-27,29-35]. Therefore, the logarithmic correction to
black hole entropy is calculated by the general formula [65],

Ay
ASBH - 5 (Clocal + sz) In <GN) (93)

with the following local (Cjoq) and zero-mode (C,y,)
contributions

Clocal = d4x V det §a4 (x)’ (9b)
C m = Z}((ﬂgm - l)l’lgm, (90)
'fm
where nZf serves the zero-mode counts for a particular

fluctuation &,, having scaling dimension f; .

It is also reasonable to investigate whether the universal
nature of black hole entropy sustains after incorporating the
logarithmic corrections. In the describe Euclidean gravity
framework, the logarithmic corrections ASgy are obtained

as C ln(é—;’) where the prefactor C =1 (Cipey + Cpm) is

termed as the coefficient of logarithmic correction. The
ln( ) part is global in any generic gravity theory, while

the coefﬁ01ent of logarithmic correction C is generally
“geometric” (i.e., depends on the black hole geometric
characteristics like mass, charge, angular momentum, etc.).
But C may also become “nongeometric,” then the particular
logarithmic correction result is fully universal.

B. Computation of the zero-mode part
of logarithmic entropy correction

The contributions of various fields to the zero-mode
correction C,,,, are not new; they have been computed and
analyzed in many works [22,23,30,33]. A generalized and
concise review can also be found in [34]. For both the scalar
and spin-1/2 fields ng = n?,, = 0, hence they have no
contribution in the C,,, formula (9¢). The four-dimensional
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vector fields have #; = 1, so they also contribute nothing to
C,m via the formula (9¢). For a spin-3/2 field f3/, = 3 in
d=4; ng/z = —4 for BPS solutions in V' >2, d=4
supergravities and O for all kinds of nonsupersymmetric
black holes. The four-dimensional metric has f, = 2 with
n9 = =3 — K for the extremal case and n9 = —K for the
nonextremal case. Here KK (number of rotational isometries)
is 3 for the nonrotating black holes and 1 for the rotating
black holes. In summary, C,,, receives a contribution from
only the metric for nonsupersymmetric black holes, while
both the metric and gravitino field contribute for BPS black
holes. And y in the formula (9c) takes care of the bosonic
and fermionic nature of the fields. Make sure to set y = —1
for fermions and y = 41 for bosons.

C. Computation of the local part of logarithmic
entropy correction

We will now outline computation strategies of the local
correction Cy,., for both the extremal and nonextremal Kerr-
Newman family of black holes. This analysis is twofold—a
standard computation approach of Seeley-DeWitt coeffi-
cients for any arbitrary gravity theory and the appropriate
limits of necessary background invariants over the extremal
and nonextremal Kerr-Newman black hole geometries.

1. A standard approach for computing
Seeley-DeWitt coefficients

In order to compute a4(x), we will pursue a standard and
efficient approach reviewed in [49]. The basic technical set-
up of this approach is briefly depicted as follows. First, one
needs to adjust (up to a total derivative [66]) the quadratic-
fluctuated action (3) so that the kinetic operator A becomes
Hermitian, Laplace-type and minimal of the following form

éﬂ’l Aémé” En = igm ( (D[) D/) ) Igmg” + (NpD/))§”l§n + P§V7l§n )En *
(10)

Here D, is a Christoffel-spin-connected covariant deriva-
tive. I is an arbitrary matrix induced from combinations of
the background metric g and the identity operator in spin
space. I acts as an effective metric that simultaneously
contracts all the indices of any particular fluctuation. N, P
are also arbitrary matrices in terms of background fields &
and the background metric g. The standard form (10) can be
generalized further so that it incorporates interactions
between the fluctuations. The generalized operator form
is prescribed as

EANDEE = i;tm((pppp)ﬁm-fn + EE,WEH)En’ (11)

where the redefined covariant derivative D, the gauge

connection w,, the commutator curvature £2,, = [D,,, D,

and the matrix-valued potential E are defined as

Dpzm = Dpém + <a)p)§m§nén7

(,)onén = (N (12a)

(Qpa)-%m%n =[D,, DU}E”,E” + wag]émén + [a)p,wa]émfj,,7 (12b)

Eénén — pEnés — (Dpwp)émé,, — ()5 (a)p)gpén_ (12¢)

Note that all the matrices are labeled by “E,E,”,
describing with which pair of fluctuations the matrices
are contracted where &,, includes particular fluctuations-
types along with their tensor indices. Any fluctuation is
considered as the minimally coupled if it evaluates w, = 0
(i.e., no other interactions except the one with background
gravity via the y/detg term in its quadratic-fluctuated
action). The commutations of covariant derivatives acting
on the scalar ¢, vector a,, spin-1/2 Dirac 4, spin-3/2
Rarita-Schwinger y, and metric h,, fluctuations have the
following standard definitions

[D,.D,]¢ =0, (13a)
D,.DyJa, = R.*, a,. (13b)
L, P
[Dp’DGM = Zy 14 Raﬁpoj" (13C)
1
[D/)’ D()’]Wﬂ = Ry’//m—l//zz + Z}/ayﬂRaﬂ/mw;n (13d)
[Dy. Do)l = R, ey + R polya (13e)

With all these data, the formulas for the first three
Seeley-DeWitt coefficients are listed as [49]

X

alx) = ),
X
612(.x) = mtr(6E -+ RI),
X -
a4(x) = mtr(6ORE + 180E2 + 3OQPO.QP
+ (2RWMR’”’/’” — 2R, R" + 5R)I), (14)

where y = +1, —1 and —1/2 for the fluctuation of bosons,
Dirac spinors and Majorana spinors, respectively. The
above described approach naturally recognizes any fer-
mionic fluctuation as a Dirac spinor [23,29,34]. Majorana
spinors have half the degrees of freedom of Dirac fermions,
and hence for casting them via the current approach, one
needs to employ an additional 1/2 factor in the formulae
(14). Weyl spinors are prohibited in this approach due to
having both the right and left chiral states and must be

046010-4



GENERALIZED EINSTEIN-MAXWELL THEORY: SEELEY- ...

PHYS. REV. D 104, 046010 (2021)

redefined into Dirac or Majorana forms. The crucial benefit
of the present Seeley-DeWitt computation approach is that
after taking quadratic fluctuations around a classical back-
ground, we have direct formulae to calculate the Seeley-
DeWitt coefficients in terms of background invariants like
R,.psR"P°, R,R*™, R?, R, F*"F, F, F*, (F,F")?,
etc. Thus the results are global and not limited to any
particular background of the theory. Apart from several
useful applications, the Seeley-DeWitt coefficients have
essential utility in one-loop quantum corrections. Since the
logarithmic corrections are evaluated by a4(x), we find it
|

ds> = G dx! dx”
r* + b’cos’y — 2Mr + Q?

sufficient to calculate the Seeley-DeWitt coefficients only
up to this order.

2. Strategies for extremal and nonextremal
Kerr-Newman black holes

Kerr-Newman black holes are the most general sta-
tionary solutions to the equations of motion of Einstein-
Maxwell theory [51]. In standard spherical coordinates
(t,r,y,¢), a Kerr-Newman black hole with charge Q,
mass M, and angular momentum J is characterized by the
metric [31],

2 | p2cos?
<+ becos“y a2

(r* + b*cos?y)

N (r? + b*cos?y) (r* + b?) +

dr’
T oM+ 0Y

(2Mr — Q?)b*sin*y

2 d 2
(r* + b*cos?y) sinydg
2(Q*>-2Mr)b .
+ (7'2 + bzcoszl//)dlllz + m Slnzll/ dt d¢, (15)
with the following geometric invariants [67,68]
404
R, R = ——F——,
v (2 + bPcosiy)*
vpo 8
R,,peR*P7 = AT (Q*(7r* = 34r*b*cos’y + Th*cos*y)
— 12MQ?r(r* — 10r2b*cos’y + 5b*cos*y)
+ 6M?(r® — 15b*r*cos®y + 15b*r*cos*y — bocosby)), (16)

where b =J/M. One can achieve the metric forms of
Schwarzschild, Kerr and Reissner-Nordstrom black holes
in appropriate limits of the Kerr-Newman metric (15). We
are now going to discuss two separate strategies for
calculating Cy,., corrections to the entropy of extremal
and nonextremal Kerr-Newman family of black holes. For
both the strategies, all the charges of the Kerr-Newman
black hole need to be scaled by a common large scale, say
L, so that the angular momentum, charge and horizon area
of the black hole are scaled as J ~ L?, Q ~ L and Ay ~ L?
(the large-charge limits) [31,33].

a. Strategy A (for extremal black holes).—For the extremal
Kerr-Newman family of black holes, we follow a strategy
that casts the quantum entropy function formalism [36-38].
This Euclidean gravity approach is quite efficient in calcu-
lating the one-loop quantum corrections of extremal
black holes by only using the near-horizon geometry data
[21-24,27-32]. The near-horizon geometry of an extremal
black hole is structured as AdS, x K (K is a compact space

|

that includes the angular coordinates) and can be described
by a Euclidean path integral partition function Z,4s, of
various fields asymptotically approaching the classical near-
horizon background. Z 45, could be expressed in the form
e x Z\4¢ for some constant a and boundary length £ of
the regulated AdS,. Then the principles of AdS,/CFT,
correspondence allow the quantum entropy function for-
malism to identify the finite part ZRUE as an alternative
definition of the quantum degeneracy for extremal black
holes from the macroscopic side. Therefore, the Cjy.y
formula for extremal black holes becomes

extremal __
Clocal -

/ d*xy/det gay(x), (17)
near-horizon

where the a4(x) coefficient needs to be integrated only
over the extremal near-horizon geometry (of the form
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AdS, x K) by dropping all the terms proportional to the
boundary of IR regulated AdS, [22,23,28-31]. Now for the
fluctuations of Einstein-Maxwell theories, a4(x) is always
electromagnetic dual invariant (i.e., the R,,,,F* F’° and
(F,, F*)? terms are absent in the final expression [69]) and
|

the theories also satisfy the R = 0 condition [70] for any
background solution. Therefore, one needs only the “finite”
near-horizon extremal limits of Ricci and Riemann tensor
squares for calculating logarithmic corrections to the
entropy of extremal Kerr-Newman black holes [31],

/ dx\/detGR ,R™ = —4x2(3B + (862 + 5)B).
near-horizon

/ d*xy/detgR,,, R’ = —167*(3B — (8b'° + 200" + 8b'> — 1)B),
near-horizon

where

b'=b/Q=J/MQ,

(18a)

22 + 1 N
B = 2 573 tan )
b'(b? + 1) Vb2 +1

1

/

(B2 +1)2(2b"* 4+ 1)

The strategy of finding C,, for the extremal Kerr-
Newman family of black holes involves the following
algorithm—

(1) Calculate ay(x) pursuing the standard technique of
Sec. I C 1 for the quadratic fluctuations of massless
fields in the theory embedded with Einstein-Max-
well backgrounds.

(2) Simplify the final form of a4(x) only into the
curvature invariants R,,,,R*?° and R, R* using
appropriate equations of motion of the Einstein-
Maxwell backgrounds (refer to Appendix B).

(3) Compute Cj,cy for an extremal Kerr-Newman black
hole by employing the a4(x) result into the for-
mula (17), along with the limits (18).

(4) For extremal Kerr (Q =0, J #0) and Reissner-
Nordstrom (Q # 0, J = 0) black holes, set ' — oo
and b — 0 respectively in the Kerr-Newman Cjy.y
result. The undetermined value of b’ for Schwarzs-
child black holes (Q = 0, J = 0) justifies that the
extremal-Schwarzschild limit is not possible.

b. Strategy B (for nonextremal black holes).—In Strategy
A, the quantum entropy function formalism exactly pre-
dicts the degeneracy of extremal black holes by alterna-
tively defining a near-horizon partition function. But for the
generic nonextremal Kerr-Newman family of black holes,
we cast the Euclidean gravity approach developed in [33]
where a special treatment [71] is used to extract out the
particular black hole partition function by eliminating the
thermal gas contribution of all particles (massless and
massive) present in the theory. This treatment effectively
leads to the logarithmic corrections for a particular choice

(18b)

of integration range of the heat kernel time s and writes the
following Cjy., formula for nonextremal black holes

Chanereml — / d*xy/detgay(x),  (19)
full geometry

where a4(x) needs to be integrated over the full black hole
geometry. Now the Seeley-DeWitt coefficient a,(x) enc-
odes all the trace anomaly data related to the logarithmic
corrections via (19) and can be written in the following
form

¢ a
— " W wmwro _
1622 #*° 1672

a4(x) E. (20

where the anomalies W, W**? and Ej are recognized as
Weyl tensor square and 4D Euler-Gauss-Bonnet density,
respectively, for the constant coefficients ¢ and a (a.k.a. the
central charges of corresponding conformal anomalies).
For any arbitrary backgrounds, one can use the standard

forms

1
WoipeWHP? = Ry po R*P? — 2R, R* + §R27

Ey = R,,oR"" — 4R, R* + R2. (21)

The standard definition of four-dimensional Euler charac-
teristic suggests the integral of E, is a pure number for
nonextremal black holes, i.e.,
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1
—2/ d4X\/ det gE4 =2. (22)
327° Jran geometry

On the other hand, the integral of W,,,,,W**?° over the
full nonextremal Kerr-Newman geometry (15) can be
evaluated in terms of different dimensionless ratios of

black hole parameters as [33]

48”
/ d*x\/detgW,,,,, W’ = 64z’ +5ZﬂQﬁ,
full geometry b rH( 2+ rH)
(23a)
where
rg =M+
3272
ﬂ:—ﬂ<2M2—Q2—|—2M M2—Q2—b2>,
M?—Q*— b2
B' =3y +20°r + 3br},
b
+3(b? = r;)(b* + rf;)*tan™! <E> : (23b)

Thus, we arrive at a modified working formula of C) ., for
the nonextremal black holes [72],

1
Cpsagrremal — —— ( / A /et G, W7
167 full geometry
- a/ d*xy/det QE4>. (24)
full geometry

The strategy of finding Cj,, for the nonextremal Kerr-
Newman family of black holes involves the following
algorithm—

(1) Calculate a4 (x) following the method of Sec. II C 1,
and express them only into R,,,,R*#° and R, R"
invariants of the Einstein-Maxwell backgrounds.

(2) Compare the obtained a4(x) result with the standard
form (20) and extract out the coefficients of trace
anomalies or the central charges (c, a).

(3) Evaluate Cj, for a nonextremal Kerr-Newman
black hole entropy by employing the (c,a) data
into the formula (24), along with the limits (22)
and (23).

(4) For nonextremal Reissner-Nordstrom (Q # 0,
J = 0) black holes, set » — 0 in the Kerr-Newman
Ciocal Tesult, while put Q = 0 for both nonextremal
Kerr (Q =0, J#0) and Schwarzschild (Q =0,
J = 0) black holes.

We, therefore, have all the necessary ingredients for
evaluating logarithmic entropy corrections for all the Kerr-
Newman family of black holes. The “Strategy A” and
“Strategy B” provide the local corrections (Cy,) for
the extremal and nonextremal cases, respectively [73].

The zero-mode corrections (C,;,,) can be extracted using
the inputs of Sec. II B in the general formula (9¢). Finally,
the central formula (9a) evaluates the necessary logarithmic
correction results for the Kerr-Newman family of black
holes. It is important to highlight that the whole framework
II C of calculating logarithmic corrections does not rely on
supersymmetry and hence entirely appropriate for all
extremal and nonextremal black holes in supergravity
embedded Einstein-Maxwell theories.

III. SEELEY-DEWITT COEFFICIENTS AND
LOGARITHMIC ENTROPY CORRECTIONS
IN THE MINIMALLY COUPLED
EINSTEIN-MAXWELL THEORY

A pure or simple EMT casts a vector field A, coupled
minimally to metric g, in four dimensions via the action
(Gy = 1/16m),

d4.X'\ / dethEM,

where R is the Ricci scalar constructed from ¢ and F,, =
d,A, — 0,A, is the field strength tensor of A,,. The Einstein
equation for any general classical background solution
(G A,) 1o (25) is [74]

SEM = ‘CEM = (R_F#UFM/)’ (25)

R, =2F,,

FS =3 iuFpP”. R=0. (26)
where F w = 6ﬂAD - 8,,;1” is the background field strength,
R,, and R are background Ricci parameters induced from
G- We now turn to a generalization of the simple EMT: a
massless scalar field ¢, an additional massless vector field
a,,, a massless spin-1/2 Dirac field 4 and a massless spin-
3/2 Rarita-Schwinger field y, (Majorana form) are min-
imally coupled to the pure Einstein-Maxwell system (25).
The generalized theory is structured such that all the addi-
tionally coupled fields must fluctuate around the back-
ground of the pure Finstein-Maxwell system for the
requirement of sharing the common Kerr-Newman family
of solutions. The action describing the resultant d = 4
minimally coupled Einstein-Maxwell theory, denoted as
SEM(me)»> €an be structured by coupling the free actions of
the massless fields minimally to the pure Einstein-Maxwell
action (25),

SEM(me) = / dxy/ det gLem(me)»

1
‘CEM(mc) = Legm + Dp¢Dp¢ - Zf//,wf/ﬂb
+ l/_lj/prﬂ - l/‘/ﬂ},llﬂl/Dpr (27)

where [}, = 0,a; = 0,a, 2= A", i, =, and p* is
an antisymmetrized product [75] of Euclidean gamma
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matrices y* which follow the 4D Clifford algebra (with the
identity matrix 1),

4 vt = 297, (28)

For investigating quadratic fluctuation of the content in the

minimally coupled EMT (27), we consider the following

fluctuations

(a) the metric g,, and vector field A, fluctuate around the
classical background (g,,, AM) of the pure Einstein-

Maxwell system (25) for small fluctuation (g,,.A,),

G = V2h,, A, ==a, (29)

which yields (up to quadratic order),

- 1 1 1
\/ detg: \ detg<1 +ﬁhﬂﬂ _Ehﬂyhyﬂ +Z(hﬂﬂ)2> ’
9" =" = V21" + 217D,

- 1
F/w:F/w +§f/w’ (30)

where f,, = 0,a, —0,a,,

(b) all other minimally coupled fields (¢, a,, 4, y,) are
supposed to have no background values and must
fluctuate around the Einstein-Maxwell background
(gyw AM)

As a result, the minimally coupled EMT (27) satisfies the

same FEinstein equation (26) and the other equations of

motion as the simple EMT (25) for the common back-
ground solution (g, Aﬂ). We then execute the quadratic
fluctuation of the action (27). The particular kind of
couplings allows us to distribute the fluctuations &,, =
{huw.a,.¢.a,, A, w,} into various sectors,

628EM(mc) [‘Z:m] = 52$EM [hﬂl/’ aﬂ] + 5ZSscalar [¢]
+ 628vect0r [(1;4] + 628Dirac M]
+ 6°Sgs vl (31)
where the quadratic-fluctuated Einstein-Maxwell sector

5°Sgy and the additionally coupled field sectors 6%Sears
|

Fﬂ/w — (gpo _ \/Ehﬂﬁ + 2hﬂaha0) <I:‘a/w 4

5 Syectors 0> Spiracs 0> Srs are expressed as well as analyzed in
Secs. IIT A to IIIE. Furthermore, the minimally coupled
EMT does not give rise to new black holes beyond the Kerr-
Newman family of solutions, and hence the minimally
coupled fields provide additional contributions to the loga-
rithmic correction results of the pure Einstein-Maxwell
system. Our purpose is to compute all these logarithmic
correction contributions for the Kerr-Newman family of
black holes in both extremal and nonextremal limits. For that,
we need to analyze the quadratic fluctuated action compo-
nents and evaluate the Seeley-DeWitt coefficients. Following
the prescription of Sec. II, we now pursue this direction
further. Note that all the significant terms and data relevant to
the pure Einstein-Maxwell sector and the additionally
coupled scalar field, vector field, spin-1/2 Dirac field,
spin-3/2 Rarita-Schwinger field sectors are respectively
labeled by “EM”, “scalar”, “vector”, “Dirac” and “RS”.

A. Contributions of the Einstein-Maxwell sector

Investigating the Einstein-Maxwell part of the action (27)
via the Seeley-DeWitt approach is not an easy task; it
involves a lengthy but systematic process. The initial
challenge is preparing the quadratic order fluctuated action
for the fluctuations (29) and expressing it into the prescribed
Laplace-type form (10). Then one needs to encounter a
mountain of tedious trace calculations. For the quadratic
fluctuations &,, = { h,,.a,}, the Einstein-Maxwell sector in
the action (27) can be decoupled into two separate subparts,
52‘SEM [h;w’ aﬂ] = 528Ricci [h;w] + 628Maxwell [huw aﬂ] ’ (323')
where 6% Sgici and 6>Sypaxwen respectively denote the quad-
ratic fluctuated Ricci scalar part and Maxwell part:

8% Sriceill] = / d*x5*(\/detgR), (32b)

SZSMaxwell [h”y, Cl”} = - / d4x52( detgFle’““). (32C)

1. The Ricci scalar part

We begin by expressing the standard form of Christoffel
symbol I, in terms of the fluctuated g,, and ¢**,

\/i ra
5 (Dﬂhl/(f + Duh/w - Dah/w +2r ;u/hom))’ (33)

where the background Christoffel symbol I_“GM,, and the covariant derivative D, operating on the metric fluctuation A, are

defined as

_ | _ _
Fo/u/ =35 (aygm + aug;w - aog;w)’

2

D,h,, = d,h,, —T

a/whal/ - Fauah

(34)

nar
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One can now execute the product (33) by eliminating all the terms higher than second order of the fluctuation 4, and
express,

Iy, = l_“/’”,, +4I7,,,

V2
o, = - (D,h, 4 D,h,” — D’h,,) — h**(D,h,, + D,h,, — D,h,,). (35)

ouy

which adjusts the expression of Ricci tensor R, = ¢’ R,,,, up to quadratic order by avoiding all the total derivative
terms as

Ry = Ry + D, (817,,) = D, (8T7,,) + 6T, 817 5, — 61,617,
V2
= Ry + 5 (D,Dyh/ + D,D,hy/ = D,D’hy, = D,D, ")
1
5 (hpo DD + 27D, Do = 21, D, D oy = b DDy = b DDy + 1, D,DI7,). (36)

Here R, is the background Ricci tensor induced from I - Further, contracting the R, expression (36) by the fluctuated
g form (30), one can achieve a simplified quadratic fluctuated Ricci scalar R form as

1
R = R+ V2D, D" = DD, = Ry h*) + 2 (D, D™ + 1, D, D", = 207D, D, + 4R, WPH,). (37)

where R = g"“R,,, is the background Ricci scalar. We, therefore, obtain,

1 1 1
8 (y/detgR) = \/det§<1 —I—ﬁhaa —Ehaﬁhﬁa —l—Z(h“a)z)R,

1 -
= 5 V/det g(h,wD,,D/’h”” — 1#,D,D’R, — 2h**D, D, h*, + 2h*D,D,h",

1
+2R,, (2n**h* , — h®,h,,) = R (h/wh”” ) (h“a)2> ) , (38)

where only second-order product terms of the metric fluctuation 4, are considered. At this stage, we can choose a harmonic
gauge D, h** —1D’h®, = 0 in the form of the gauge-fixing term,

- 1 1
—/det g<Dﬂh"/’ - EDf’h“a) (D”h,,,, - 5D,,hﬂ,,>, (39)
which provides the following simplified, gauge-fixed and quadratic fluctuated form of the Ricci scalar part (32b)
1 e v 1 12 v c v 12
8*Sriceillw] = 3 d4x\/detg<hﬂ,,DpDPh” - EhﬂquDph v+ 2R, W R + 2R, PR, — 2R, 0 h/’p). (40)

Derivation of the above quadratic fluctuated form involves the elimination of all total derivative terms, the use of the
commutation relation (13e), and the condition R = 0 for the minimally coupled EMT background.

2. The Maxwell part

With the help of fluctuations (30) and considering up to the second-order fluctuated terms for the fluctuations
&, = {hy,.a,}, we obtain
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1

1
Py hpaho.p + Z (hpp)2> gﬂagyﬁF/AuFrxﬁ’

1
8%(+/det gF ,,F*) = \/detg(l +—=n,- 5

V2

1 /1 o o
\/det g<§ Fuf" + 4F , Fogh"ah? + 8F , FrahPh,,,

T2

- - - = - 1
- 4\/§Fﬂ,,h”“fa” + \/iFﬂ,,hppf’““ —4F, F R W — F, F*" (haﬁh“ﬁ ) (h"p)2>> . (41)

where only second-order product terms of the metric and gauge field fluctuations are considered. Furthermore, up to a total
derivative and with the help of a, commutation relation (13b), one can also express,

1
-5 fuf* =g*a,D,D’a, — a,R*"a, + (D,a")*. (42)

After substituting the forms (41) and (42), we gauge fix the action (32c) by choosing a Lorenz gauge D,a* = 0 in the form
of the following gauge-fixing term [76]

—%\/det 3D, (43)

and obtain the simplified, gauge-fixed and quadratic fluctuated form of the Maxwell part (32c) as

1 _
8% Sntaxwen [P @) = 3 d4x\/detg<aﬂDpD”a" - a,R™a, + 4V2F,, hf
— V2F 1 [ — AF , F oy h — 8F ,, Fr“h*Ph,,

o o 1
+4F, F b e o+ F B (haﬁhaﬂ -3 (hﬂp)2> > : (44)

We now need to recombine 5*Sgieei (40) and 8>Sypaxwen (44) parts in order to present the Einstein-Maxwell sector’s
contribution in the quadratic fluctuation of the action (27),

1 1
& Spulh-a,] = 5 [ dxy/det g(h,wD,,DﬂhW =5 WD, D I, + a D, D'
R 1. -
_ aaR"/”a/; + h;w (ZR/,tau/} + g;mRy/} _ 3gu/3R/4a _ 4Fﬂ(1F1//)’ + 5 F/}O_F/m (gﬂl/g{l/} _ 29/4(191//)’)) ha/)’

+ 2V 2Ry, (27 Fre — 2g Fre — Q“”F”“)(Dpaa)) . (45)

We further perform multiple customizations over the above form to extract the necessary Laplace-type operator A. This
includes bypassing the kinetic term h*,D,D’”h*, via casting an effective metric, neglecting all total derivative terms, and
considering all symmetric properties of the fluctuations and their all possible pairs. All these lead to the following Laplace-
type structure for the Einstein-Maxwell fluctuations &,, = {hw.a,},
. 1 L.
528EM [ém] = 5 d*x V det ggmAémgn <o
EpASEE, = Pl D, D hyy + 1% a,D,DPag + hy, Pl by + a P ag + hy, Pwiea, + agP%wh,
+ hy, (207) % (D ya,) + ao(20”) %" (Db, ). (46)

where I, P and w,(=$N,) hold the forms,
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Jwhap —

(@5 + 77 - 77), (47a)

| =

[ty = gob, (47b)

Plwhey — Ruovp | pupra _ 2( FHaFvB o Fup Fva) — % de Fpa(gﬂagv/f 4 guﬂ 7 - gﬂl/gaﬁ)

- % (#°RY + gPRve 4 GroRWP + P RHa), (47¢)

Péaty = —RP, (47d)
Phwda = paalt = \}i ((D*F™) + (D*F*)), (47¢)
(@) = — (o)l = % (P 4 geFrn — g Fe — g Fow — g e, (47f)

According to the formulas (12), the above data provide us the following results for £ and Q,,

iz 3 S
ngﬁmfn frz — hﬂy (R/muﬁ + Rﬂﬁl/a _ g/wRaﬁ _ ‘lXﬁRllb)haﬁ + zgwﬂamFﬂbF,Ml/aﬂ

- - 1 - -
(D!F® 4 DYF™)a, + —=a,(D*F® + D*F)h

1
+—=hy,
V2! V2

~ L os o 1. ) i i
5’" (Qﬂﬂ)énlfn 5" = hﬂ” <§ (glmRUﬁpa + gﬂﬁRWpa + ngﬂﬂpa + g”ﬂR/‘apa)

(48a)

(I

+ (,) " (@), " = (wa)h”““"(wp)a,)h“”) hap

+ a (R ﬂ + lla 1% (wo_)hm/aﬂ —_ (wo_)aahub (wﬂ)hwaﬂ>aﬂ
- hﬂy« ) = (D, e ),

a,((Dyw,) " — (D,m,) %" )y, . (48b)

where the appropriate forms of (@)% and (@”)%" in the result (48b) can be arranged from Eq. (47f). From here, our
next challenge is to calculate the crucial trace values tr(/), tr(E), tr(E?), and tr(€,,£) as urged by the formulas (14) for
finding the Seeley-DeWitt coefficients. Appendix C contains a detailed outline of these lengthy trace calculations. In terms
of background invariants, the trace results are recorded as

tr(l) = 14,
tr(E) = 6F),
wr(E?) =3 ,w,,,,Rwrw TR, R# + O(F, ) + 3R, F#Fre,
tr(Q,,°) = =7R,,,,R*""° 4 56R,,, R" — 54(FWF/‘”) - ISRWMF"”F/’” (49)
providing the following Seeley-DeWitt results (without the ghost contribution)
7
EM.no-ghost —_
ao (x) 82
aZEM,no»ghost( ) _ %F I_:';w’
1
MO () — — ——(179R,,,cR*"* + 196R,,, R 50
ay ( ) 1671'2 % 180( Hvpo =+ ) ( )
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In addition, we must need to include appropriate ghost
fields for countering the effect of gauge-fixing terms (39)
and (43). All these ghost fields can be described via a
combined action [21],

1
3 / d*xy/detg(gb,D,D’c,

+@“c,D,D’b, + bD,D’c + ¢D,D’b

+b,R*c, + c,R*b, — 2bF*(D,c,)
—2¢,F"(D,b)), (51)

2 _
0 SEM,ghost -

where b,, ¢, are vector ghosts that arise due to diffeo-
morphism invariance of metric fluctuation 4, and b, ¢ are
scalar ghosts induced due to U(1) gauge invariances of
gauge fluctuation a,. The quadratic fluctuated form (51) is
of Laplace-type and hence, one can read off I, P and
w,(=1N,) for the ghost fluctuations &,, = {b,.c,. b. c} as
Emlaﬂgnfn =b,q"c, + ¢,g"b, + bc + cb,
&, PoreE, = b,R™c, + c,R"D,,
E(w,) 5 E, = —bF e, — c,F¥ b, (52)
which further yields the following results for £ and Q,,,
E ESE, = bR c, + c,R™D,,
Em (szr)a”g” gn = bﬂRﬂypacy + CﬂRﬂypaby
+ b(D¥F,,)c, — c,(D*F,,)b.  (53)

Then the needful trace results are calculated as

tr(7)

w(E)
tr(E?)
r(€2,,€)

10
0,
2R,

—2R Rre, (54)

HUPO
|

which serves the following Seeley-DeWitt results for the
ghost action (51)

aOEM,ghost(x) — _W ,
T
a2EM,ghost(x) — 0’
1
ag" N (x) = 1 (W R — VTR, R).

(55)

Note that here we have set y = —1 in the Seeley-DeWitt
formulae (14) to account for the reverse spin-statistics of
the ghosts. Finally, combining a,,EM"0-host and g, EM.ghost
we obtain the net result for the first three Seeley-DeWitt
coefficients of the Einstein-Maxwell sector,

1
aoEM(X) = a2’
EM 3 = LUy
ar (X) = QF”DF ’
1
EM(x) = ————(199R,, . RF’° 26R,, R"
45" (%) = 767750 1 OMRuwp R + )

(56)

Corresponding coefficients of trace anomalies [introduced
in relation (20)] are then extracted from the above ay(x)
result as

137 53

EM _ 7" ¥
(e a)™ =55 35" (57)

Employing the Seeley-DeWitt and trace anomaly data
into “Strategy A” and “Strategy B,” we find the local
corrections to the extremal and nonextremal Kerr-Newman
black hole entropy due to the Einstein-Maxwell sector. The
results are

Clak e = — == (12338 + (463 — 3080”2 — 79606 — 31840/°) ), (58a)

1 41180*B"
CEM ,nonextremal __ 308 . 58b
focal "~ 90 " 32xb ryy (b* + 1) (3%b)

Also, the zero-mode corrections receive the only con-
tribution from metric fluctuation in the formula (9c).
C,m values are (—4,—4,-6) in extremal limit and
(—1,—1,-3,-3) in nonextremal limit of Kerr-Newman,
Kerr, Reissner-Nordstrom and Schwarzschild black holes.
The combined formula (9a) finally provides the logarithmic
correction contributions of the Einstein-Maxwell sector to
the entropy of the Kerr-Newman family of black holes that
are recorded in Table I. The afM(x) coefficient (56) and the

extremal logarithmic corrections exactly match with the
results given in [31].

B. Contributions of the minimally
coupled scalar field

In the fluctuation of the action (27), the quadratic
fluctuated part of the minimally coupled massless scalar
field ¢ is
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TABLE I. Logarithmic correction contributions (ASgy) of the
Einstein-Maxwell sector to the entropy of Kerr-Newman family
of black holes in the d = 4 “minimally coupled” EMT.

TABLE II. Logarithmic correction contributions (ASgy) of the
massless scalar field to the entropy of Kerr-Newman family of
black holes in the d = 4 minimally coupled EMT.

Black hole type  Limits ASpy/In Ay Black hole type Limits ASpy/In Ay
Kerr-Newman Extremal — 15 (12338 + (463 — 30805 Kerr-Newman Extremal — 5245 (9B = (1 + 400"
—79601)’4 31841)’6)8’ + 1440) +800'* + 32b'6)8’)
411p0*B" 3p0*B"
Nonextremal 180 (308 + 327rb15]r{,1_1 %’ZJF’%;)) Nonextremal Lo 2+ 64”175/,45(172“2))
Kerr Extremal é—g Kerr Extremal %
Nonextremal % Nonextremal 91—0
Reissner- Extremal - %‘ Extremal 18 5
Nordstrom  Nonextremal (64 + 41101er4) Reissner-Nordstrém ~ Nonextremal 2 fgﬂQr“)
Schwarzschild Nonextremal 32 Schwarzschild Nonextremal 1

15

90

P Suald] = [ 455 (/aRgD,4D9).  (59%)
where we can adjust up to a total derivative,

—+/detgpD,D’ ¢,

and reexpress into the following form of the Laplace-type
operator A

5ZSscalar[¢] - / d*x V det gpAg,

A=-D,D’. (60)

52(\/det gD, D’ ) = (59b)

Comparing it with the standard schematic (10), we read off
P =N’ =0 and then write down the results for the
matrices 1, E,w, and Q,;,

I=1, E=0, w, =0, Q,, =0, (61)

along with their trace values,

wr(l)=1, w(E)=0, w(E?)=0, tr(Q

L&) =0. (62)
Inserting all the trace data in the formulae (14), we find the
first three Seeley-DeWitt coefficients for the massless
scalar field fluctuation as

1
a(s)calar(x) — 16][2 ,
ascalar(x) =0,
1
scalar — R RHvPe — R RV, 63
a ( ) 180 x 1677,’2( Hvpo uv ) ( )

followed by the coefficients of trace anomalies,

)scalar _ 1 1
120360

(64)

(c,a

The a§¥¥(x) coefficient (63) and trace anomaly results
(64) encourage us to follow “Strategy A” and “Strategy B”
and calculate the scalar field contribution in the logarithmic
correction to the entropy of extremal and nonextremal Kerr-
Newman family of black holes. The results are provided in
Table II, where there is no C,, contribution for the
particular scalar field [77].

C. Contributions of the minimally
coupled vector field

The quadratic fluctuated part of the additionally coupled
vector field @, in the fluctuation of the action (27) is
presented as

1
P Svnldy] = = [ ¢ et af ).
fuw = 0,a, = 0,ay,, (65a)
with
*(/detgfuf™)
= 2y/detj(~a,D,D’a’* + a,R" a, — D,a'*D,a""),
(65b)

where we have omitted all total derivative terms and also
used the commutation relation (13b) for the vector field
fluctuation a,. We then gauge fix the action (65) by
incorporating the gauge fixing term,

d*x\/detg(D,a")(D,a"). (66)

The gauge-fixed action (without ghost) provides the desired
Laplace-type operator A as

1 ! !
PSanld) = [ @tx/aeti

A% = gD, DP — R, (67)
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yielding (N?)%®% = 0, P%“% = —R" in the schematic (10).
With the aid of the formulas (12), one obtains results for the
useful matrices,

Ia:,af, — S—};w’ (wp)a;,af, =0,
(Q/)O_)u;u,’/ = RMD/)m (68)

along with their following trace results

tr(l) =4,
tr(E) =0,
tr(E?) = R, R™,
tr(,,°%) = =R, R*"°. (69)

Putting everything together in the formulas (14), one can
come up with the Seeley-DeWitt coefficients for the addi-
tionally coupled vector field (without ghost),

vector,no-ghost o 1
% W=
vector,no-ghost o
a (x)=0,

1

vector,no-ghost vpo v

a0 =~ 1505 e (1 R R~ 8OR, RY).
(70)

The particular kind of gauge-fixing term (66) demands to
account for the following ghost action [21]

1
észecmghost =3 d*xy/ detg(bD,D’c+cD,D’b), (71)

where b and c are corresponding scalar ghosts. Since b and
¢ are scalars and minimally coupled to the background
metric g,,, their total Seeley-DeWitt contribution is —2
times the free massless scalar field result (63), i.e.,

T ) = =2 (), (72

where the minus sign is included due to the fact that ghost
fields follow the reverse of usual spin-statistics. Then the
complete Seeley-DeWitt coefficient results for the vector
field, adding the contributions from the gauge-fixed part
(70) and the ghost part (72), are

1
agector (x) — g’
a;ector (x) — 07
vector 1 vpe v
(14 t (X):—m<13Rﬂmeﬂl —88R”yRﬂ ) (73)

Also, the trace anomaly form (20) of a}*'"(x) specifies the
following (c, a) data

1 31
10°180°

)VSCKOI‘ —

(c,a (74)

In a similar fashion, one can use the data (73) and (74)
respectively into Strategy A and Strategy B and compute
the logarithmic correction contribution of the minimally
coupled vector field to the entropy of Kerr-Newman family
of black holes. The extremal and nonextremal results are
recorded in Table III. As per the discussion of Sec. II B, the
logarithmic correction results do not include any zero-mode
correction from the vector field.

D. Contributions of the minimally coupled
spin-1/2 Dirac field

In the quadratic fluctuation of the action (27), the
contribution of the minimally coupled massless Dirac
spinor 4 is

2 Spincli] = / s\ /detgily Dy1), (75
where

8%(\/det gly? D ,2) = +/det gy’ D 1. (76)

The Seeley-DeWitt coefficients for the fluctuation of an
elementary free spin-1/2 Dirac field around an arbitrary
background have already been reported in our earlier work
[78]. We find it worthy of reviewing the work [78] in order
to obtain necessary results from the quadratic fluctuated
action (75). Unlike bosons, the quadratic fluctuations of
fermions are characterized by first-order operators. After
correctly identifying the first order Dirac-type operator D
for the spin-1/2 fluctuation (75), we structure the required
Laplace-type operator A as following

TABLEIII. Logarithmic correction contributions (ASgy) of the
massless additionally coupled vector field to the entropy of Kerr-
Newman family of black holes in the d = 4 minimally coupled
EMT.

Black hole type Limits ASpy/In Ay
Kerr-Newman Extremal — 355 (278 + (97 + 28052
+260b"* + 1045'°)B')
4BH
Nonextremal ﬁ(—26 + 16@3/;45(1;2“%’))
Kerr Extremal — %
Nonextremal — %
Reissner-Nordstrom  Extremal — %
9504
Nonextremal % (—13 + % )
Schwarzschild Nonextremal -3
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P Spicld] = | d*x\/detgiba,
D =iy’D,,
A =D'D =-1,D,D", (77)

where we have employed various gamma matrix identities,
the spin-1/2 commutation relation (13¢) and the R =0
condition for the Einstein-Maxwell background. The par-
ticular form of A yields P =N’ =0, which further
expresses the forms of matrices defined in Eq. (12) as

I — H4,

o’ =0, E=0,

1
Qpa = ZyayﬁRpoaﬁ' (78)
We then compute the following trace results

tr(l) =4, tr(E) =0, tr(E?) =0,

R, (79)

Hvpo

1
tr(Q,, ") = —5R

and find the first three Seeley-DeWitt coefficients for the
minimally coupled spin-1/2 Dirac field fluctuation,

' 1
Dirac — _
ay (x) 471_2 ’
alz)irac (.X) — 07
. 1
Dirac =—— (7R, ,,R"P° 4+ 8R,, R"). 80
ay ()C) 360 x 1677.'2 ( Hvpo + Hv ) ( )
Notice that we have used y = —1 in the formula (14) to

encounter the Dirac spinor condition. The coefficients of

trace anomalies are extracted from the a2™(x) result as

Dirac _ 1 11

(c,a) = 50" 360" (81)
Finally, the logarithmic correction contribution of the
minimally coupled spin-1/2 Dirac field to the entropy of
extremal and nonextremal Kerr-Newman black family of
holes are calculated as in Table IV. In these corrections, the
minimally coupled spin-1/2 Dirac spinor contributes
nothing to the C,,, formula (9c).

E. Contributions of the minimally coupled spin-3/2
Rarita-Schwinger field

The quadratic fluctuated part of the minimally coupled
massless Rarita-Schwinger field y, (Majorana type) is
expressed as

& Srsly,) = - / d*x6*(\/det g,y Dy, ), (82a)

where one can adjust,

TABLE IV. Logarithmic correction contributions (ASgy) of the
massless spin-1/2 Dirac field to the entropy of Kerr-Newman
family of black holes in the d = 4 minimally coupled EMT.

Black hole type Limits ASpy/In Ay
Kerr-Newman Extremal — =35 (27B + (17 — 40b"2
—140b"* — 566'°)B')
1 9 Q4B/I
Nonextremal s (7+ 32”1)5/%,“72“%1,))
Kerr Extremal ]7%
Nonextremal %
Reissner-Nordstrom  Extremal - %
9 4
Nonextremal % 7+ 5/;&%_1 )
Schwarzschild Nonextremal I

& (+/det gip,y*** Dy,

1 iy v v
=3V detgp, (P'y’y" = r'r’r)Dyy,.  (82b)

with the following gauge-fixing term for casting the gauge
7w, =0

] =y U
E/d“x\/detgi//”y”y”y D,y,. (83)

We again review the work [78] where Seeley-DeWitt
coefficients for a free Rarita-Schwinger Dirac spinor are
evaluated around an arbitrary background, without consid-
ering any ghost contribution for the particular gauge-fixing
term chosen. But we aim to calculate the complete [gauge-
fixed (84) and ghost (89)] Seeley-DeWitt coefficient results
for the quadratic fluctuated minimally coupled spin-3/2
Majorana spinor (82). After combining (82) and (83), the
gauge-fixed action extracts a first-order Dirac-type [79]
operator D that further structures the second-order Laplace-
type operator A as following

FSsly,] = [ dixy/detgg, Dy,

Dy = é)’”?”)’”Dn,
APy = ( Dli/w/a)'l' Dv’/ Wy
_ 1
= —Lg"D,D’ + LR" =y’ R o5

1 1
—ylyARY  _ _yVyQRE 84
VY R =51 R, (84)

where various gamma identities, spin-3/2 commutation
relation (13d), and R = 0 condition are employed to obtain
the last line equality. As per the schematic (10), we read off
N? and P,
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(Nf’)"_’#% =0,
PPy — —I,R* + lyayﬁRﬂv _ lyﬂy(lRV
D) aff ) a
1
VTR (85)
and then find the matrices I, w,, E, and Q,;,
[Py =T,5", (wp)v'/,‘% =0,
WL, v 1(1[)’/41/ 1;4(11/ 11/(1;4
EViVr = —I4R TV R =SV R G+ ST TR
_ 1_
(Qpn)wﬂwu :]I4Rm/pa+zgﬂbyayﬁRp0aﬂ' (86)

The relevant trace values are evaluated as

tr(/) = 16, tr(E) =0
tr(E?) = 2R, RMP7,
tr(€,,”°) = —6R,,,,R""°. (87)

By setting y = —1/2 and the above trace data in the
formulas (14), we present the Seeley-DeWitt results (with-
out ghost contribution) for the spin-3/2 Majorana spinor as

_ohos 1
aORS,no ghost (.X) _ _2_”2 ’
alzls,no—ghost(x) _ 07

aRS,no—ghost( ) o 1

p 5 (53R

= R¥7% — 8R , R™).
180 x 167

HUpo

(88)

It is also customary to include a ghost action that counters
the gauge-fixing term (83),

1 = _
528R5,ghost = ) d*x \/det g<b7’prE + é?’pré)’ (89)

where b, ¢, and & are three minimally coupled bosonic
ghosts (i.e., spin-1/2 Majorana spinors) [21]. The com-
bined Seeley-DeWitt contribution of these ghosts is equiv-
alently obtained as

1 .
a];?-ghosl = (-1)x 3 x 5 x a]2)rllrac’ (90)

where the minus sign is included for the reverse spin-
statistics of ghosts, 3 serves the ghost multiplicity and 1/2
factor converts the single spin-1/2 Dirac results ab™

[recorded in Eq. (80)] into the Majorana kind. After

.. RSno-ghost RS, ghost -
combining a,, """ and a,,*"*" contributions, the com-

plete Seeley-DeWitt results for the minimally coupled
Rarita-Schwinger field fluctuation are

TABLE V. Logarithmic correction contributions (ASgy) of the
massless spin-3/2 Majorana field to the entropy of Kerr-Newman
family of black holes in the d = 4 minimally coupled EMT.

Black hole type Limits ASgy/In Ay

Extremal leto (6938 + (223 — 188052

—4660b'* — 1864b'0)B')

Kerr-Newman

N t 1 _ 1 __231pO*B"
onextrema 360 (233 + 321rb5r‘;1(b2+f,2r.,))
Kerr Extremal - %
Nonextremal - %
Reissner-Nordstrom Extremal %
Nonextremal - 35 (233 + %@?4)
H
Schwarzschild Nonextremal - %
1
RS _
a X) = ——%,
0 ( ) 8 77,'2
a’S(x) =0,
1
A5(x) = = o (23R, R = 8R,,R).  (91)

along with the following trace anomaly data

77 229
RS =L 2 92
(c.a) 120° 720 (92)

In the end, we utilize the a}5(x) and trace anomaly data and
achieve the logarithmic correction contributions of the
minimally coupled Rarita-Schwinger field to the entropy
of extremal and nonextremal Kerr-Newman family of black
holes. The results are presented in Table V. These correc-
tions do not receive any zero-mode contribution from the
nonsupersymmetric Rarita-Schwinger field, as discussed in
Sec. II B.

IV. DISCUSSIONS

This section generalizes the d = 4 minimally coupled
EMT further by coupling any arbitrary numbers of mass-
less fields, which leads to a set of generalized Seeley-
DeWitt coefficient and logarithmic correction formulas for
all the extremal and nonextremal Kerr-Newman family of
black holes. We then employ the generalized minimally
coupled data in successful derivation of the logarithmic
corrections to the entropy of extremal black holes in
N >2, d=4 Einstein-Maxwell supergravity theories.
Finally, we conclude by summarizing and discussing the
results.

A. Einstein-Maxwell theory minimally coupled to
arbitrary numbers of massless fields

Consider a generalized EMT with ngy numbers of
Einstein-Maxwell sectors (each containing one metric
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and one vector field) is minimally coupled to ny num-  Then the first three Seeley-DeWitt coefficients for
bers of scalar fields, n; numbers of additional vector  the quadratic fluctuations of the field content of
fields, n;/, numbers of spin-1/2 Dirac fields and n3,,  the generalized d =4 minimally coupled EMT are

numbers of spin-3/2 Rarita-Schwinger fields (Majorana).  expressed as
|

EM(mc) 1
aop (X) = ) (4nEM + ny + 2)’11 - 471]/2 2}’13/2),
@, EM(me) (x) = _anMFWF ,

T
EM(mc) . 1 233 y
(14 (X) = m { (398nEM + 2}’10 - 26711 + 71’11/2 - TI’I:;/Q R;wpo'RM po
+ (52ngy — 21 + 1760, + 8ny ), + 4n3/2)RWR”’“}, (93)

followed by the trace anomaly data (c, a),

1
EM(me) 60 (822ngy + 3ng + 36n; + 181y, —231n3),),

1 229
gEM(me) — 360 (424nEM +ny+62n; + 11n; ), — > n3/2>. (94)
The data (93) and (94) provide the following local corrections to the entropy of extremal and nonextremal Kerr-Newman

black holes

1 233
o™ =~ 365 { (398nEM + 2ng = 26m; + Tnyyy = =g /2>
x (3B — (856 + 206" + 812 — 1)B)

+ (38 + (8[?/2 + S)B/) (13nEM - % + 44]’11 + 27’11/2 + n3/2> }, (953)

1 233
Cﬂg:ﬁxuema] = { <398nEM + 2710 267’11 + 77’11/2 — T n3/2>

90
ﬁQ4B//
64xb3r4,(b* + 1%)

(822nEM + 3”10 + 367’11 + 187’[1/2 2317’13/2) } . (95b)

On the other hand, the zero-mode correction only includes the contribution from metric in the formula (9c) and should be
added to the Einstein-Maxwell sector. For Kerr-Newman black holes,

C%}remal — (2 _ 1) X (_3 — 1) — _4, (963)
Cg&nextremal — (2 _ 1) X (_1) = —1. (96b)

The logarithmic corrections to the entropy of Kerr-Newman black holes in the generalized minimally coupled EMT are

1 233
Asgﬁremal = -5 { (398nEM +2ny —26n; + Tny/p — T”s/z)

x (3B — (8b'° + 200" + 8b"> — 1)B') + (3B + (8b'* +5)B)

X <l3l’lEM —% +447’l1 =+ 2”]/2 + n3/2> =+ 1440} lnAH, (973)
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1 233
AS%(;,IIIeXHemaI = ﬁ{ (398nEM + 21’1,0 - 267’11 + 71’11/2 - 7”3/2)

,BQ4B”
64xb r (b + r%)

(822ngy + 319 + 361, + 181,/ — 231n35) — 90} In Ay. (97b)

In particular limits (refer to Sec. II C 2) of the Kerr-Newman results, one can extract the logarithmic entropy corrections for

Kerr and Reissner-Nordstrom black holes as below:
(i) For the extremal and nonextremal Kerr black holes, we need to set b’ — co and Q = 0 in the Cy ., results (95a) and
(95b), respectively. This yields exactly the same extremal and nonextremal local corrections for the Kerr black hole,

1 233
™ = iy = o (398num + 20 = 2604 Ty = ). (98)

The corresponding zero-mode corrections are obtained as

ngmtremal — (2 _ 1) X (_3 — 1) = —4, (99&)

Crzlglnexll‘ema] — (2 _ 1) X (_1) = —1. (99b)

Hence, the logarithmic corrections to the entropy of Kerr black holes in the generalized d = 4 minimally coupled
EMT are

remal 1 233
ASEH™ = o 398nmn + 219 = 26m, + Tnyp === 32 =360 ) In Ay, (100a)
cemal 1 233
Asggreest = o | 398ngy + 29 = 26m + Tnyjy == n3 =90 | In Ay, (100b)

(ii) For the extremal and nonextremal Reissner-Nordstrom black holes, we need to set b’ — 0 and b — 0 in the Cjyy
results (95a) and (95b), respectively. This provides extremal and nonextremal local corrections for the Reissner-
Nordstrom black holes,

1 229
Cfggﬁmal — —9—0 (42471]5]\/[ + ny + 62”1 + 11"1/2 - 2]’13/2> s (1013)
1 233
C{l(:)cr;?xtremal = % {398nEM + 2110 - 261’11 + 71’11/2 - 7n3/2
po*
+ Tho5 (822”EM + 37’10 + 36”1 + 18}’11/2 - 231”3/2) . (IOIb)
1077y,

The corresponding zero-mode corrections are obtained as

ngmtremal — (2 _ ]) X (_3 — 3) = —6, (1023)
nglnextremal — (2 _ 1) X (_3) = 3. (102]3)

The logarithmic corrections to the entropy of Reissner-Nordstrom black holes in the generalized d = 4 minimally
coupled EMT are thus

1 229
AS%xlflremal — _@ (424nEM +ng+62n; + 1 ]l’l]/z - Tl’l3/2 + 540) In Ay, (103&)

046010-18



GENERALIZED EINSTEIN-MAXWELL THEORY: SEELEY- ...

PHYS. REV. D 104, 046010 (2021)

1 233
AS%(;_?eXtremal = — {398nEM + 2”10 - 2671] + 771]/2 - T}’l3/2

180
po*

+ 75(82211}31\/[ + 3]10 + 36)’11 + 18)’11/2 — 231]’13/2) — 270} lnAH.

10713,

(103b)

(iii) For the Schwarzschild black holes, we need to set Q = 0 in Eq. (95b), which yields the same C} ., as the nonextremal
Kerr result (98). Also, Schwarzschild black hole is nonrotating and hence the zero-mode correction C,,, is the same as
the nonextremal Reissner-Nordstrom result (102b). Hence, the logarithmic correction to the entropy of Schwarzs-
child black hole in the generalized d = 4 minimally coupled EMT is

1
AS%(irIlextrcmal _ (398”EM =+ 2n0 - 261’[1 + 71’[1/2 — Tl’l3/2 — 270) In AH'

180

The above results are our principal focus in this work. The
corrections for extremal black holes [Eqgs. (97a), (100a),
and (103a)] are novel reports to the literature. The non-
extremal black hole results [Egs. (97b), (100b), (103b), and
(104)] agree with [33], where the a4(x) formula [80] is
managed from a set of secondary data provided in [57-61].
Also, the Schwarzschild corrections due to vector and spin-
3/2 Rarita-Schwinger fields in Eq. (104) are entirely
consistent with [62], where results are obtained via the
tunneling approach.

B. A local method for logarithmic correction to
the extremal black hole entropy in N/ > 2
Einstein-Maxwell supergravity

Logarithmic entropy corrections for the black holes in
Einstein-Maxwell embedded supergravity theories are
already reported in various works [22-29,34,81]. The basic
technical approach is common—analysis of relevant quad-
ratic fluctuated action via the heat kernel method. But
supergravity actions are incredibly complicated and
unwieldy. The direct calculations are hardly manageable
|

2
33 (104)

and so far only accomplished for V' = 1, 2, 4, 8 Einstein-
Maxwell supergravity theories (EMSGTs). In [25,29,34,81],
the results are estimated for all V" > 3, d = 4 EMSGTs by
considering the N > 3 — N = 2 decompositions. For the
derivations of the minimally coupled EMSGT sectors, the
minimally coupled EMT results of the previous section are
found to have essential utility [29]. But, the quadratic
fluctuated supergravity actions mostly include nonminimal
coupling terms [22,23,27,29,34]. Consequently, one can
not directly employ the minimally coupled EMT data in
the full reproduction of logarithmic entropy corrections
in the EMSGTs. However, we find an alternative but
indirect way of getting a supersymmetrized form of the
ay(x) formula (93) for near-horizon backgrounds, which
can be utilized for the full reproduction of logarithmic
corrections to the entropy of extremal black holes in
N > 2, d =4 EMSGTs. The entire approach is depicted
as follows.

At first, we need to express the a4(x) formula (93) in
terms of the Weyl tensor square W, ,,W¥*? and Euler
density E, [using the trace anomaly form (20)],

360(4r)2ay "™ (x) = (822npy + 3ng + 361, + 1815 — 231n32) W, ,, WH°

229
- (42471EM +ny+62n; + 11n; ), — Tn3/2> Ey.

The supersymmetric completion of the above expression
entirely depends on the invariants W, ,, W¥? and Ej. The
Euler density E, is a topological invariant and hence self-
supersymmetric. On the other hand, it is well reported that
the supersymmetrization of W, W#*??, evaluated on near-
horizon black hole backgrounds [82-86], is surprisingly
found to be the same as E, [87,88]. Again, the quantum
entropy function formalism [36-38] used in Strategy A

requires only the near-horizon details of extremal black

uvpo

(105)

holes. All that mentioned suggests a simple and straight-
forward way to supersymmetrize any theory by analyzing
only the Gauss-Bonnet term E, as well as bypassing the
need for Weyl tensor square term W,,,,W**? and then
achieve logarithmic entropy corrections for the extremal
black holes in supergravity theories. As discussed, sub-
stituting W ,,, W?° = E4 in (105) will lead to the super-
symmetrized a4(x) formula for near-horizon backgrounds

in N > 2, d =4 EMSGTs,
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1

N>2
=) = 62 x 360

233
Cl4 <398nEM + 2”0 - 26”1] + 77’11/2 - T n3/2> E4. (106)

This necessarily yields a C,, formula (via the Strategy A) for the extremal Kerr-Newman black holes,

(107)

extremal 233 2b'6 —+ 5p'4 + 4b/2
C.l/:)/c>alz t I — 90 <398nEM + 2]’[0 26}’11 + 7}’11/2 — n3/2> ( )

2 B2+ 12202 +1)

where the equality is obtained after using the extremal near-horizon limits (18) in the form of E,. In addition, one obtains the
following zero-mode corrections using the formula (9c)

2-1)x(-3-1)—(3-1)x0=-4  for Kerr-Newman,
Chizrexuemal — (3 1) x (=3-1)=(3-1)x0=—-4  for Kerr, (108)
(2-1)x(-3-3)—(3—-1)x(—4) =2 for Reissner-Nordstrom.
Note that extremal Reissner-Nordstrom black holes with near-horizon geometry AdS, x S? are the only possible BPS

solutions in the four-dimensional N > 2 EMSGTs. Summing all up, we write a combined logarithmic entropy correction
formula that reads as follows

1 233
AS/\/>2 extremal __ 180 <398nEM + 2n0 — 26n1 -+ 7n1/2 - T”B/Z)

(2b/6 + Sb/4 +4bl2 + 1)1 yn C'é\r/n>2 extremal
(B2 4+ 1)2(202 + 1) " 2

In Ay. (109)

By setting particular multiplicity values in the above formula, one can extract logarithmic corrections to the entropy of
extremal Kerr-Newman, Kerr (b’ — o0) and Reissner-Nordstrom (b — 0) black holes in all N’ > 2, d = 4 EMSGTs.

For a matter coupled N = 2, d = 4 EMSGT, with the supergravity multiplet (ngy = 1, n3 /2 = 2) coupled to ny vector
multiplets (ng =2, ny = 1, ny, = 1) and ny hyper multiplets (ny =4, n;;, = 1), one obtains

(26'° + 5b™ + 4b'% +

. 1 !
AS.Q/}FZ.Kerr-Newman _ (11 —ny + nH) )11’1 AH —2In AHs (1103)

12 (b +1)2(2b" +1)
AS,Q/H:Z,Kerr :E(—13_nv+nH>lnAH’ (110b)
o w1
ASQ/’PFZ Reissner-Nordstrom _ E (23 —ny + nH) In -AH- (1 IOC)

For N/ > 3, d = 4 EMSGTs, it is possible to describe the extremal logarithmic entropy corrections via some generalized
formulae (only in terms of A). The field contents of the A” > 3 branch (recorded in Table VI) are such that we can write a
relation connecting their multiplicities with the corresponding N/,

1 233
180 <398]’ZEM+2”0—26I’11 +7i’l1/2—2l’l3/2> :3—N (111)

Substituting the above relation into the formula (109), we get

(260 +5b" + 4 + 1)

ASN>3 Kerr-Newman __ 3N
= ) (b +1)*(2b"* 4+ 1)

ln.AH —ZIIIAH, (1128.)

ASQ/§3’KEH:(1_N)IHAH5 (112b)
ASQ/HZZ%,Reissner—Nordstrém _ (4 _ N) In AH’ (1 120)
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TABLE VI. Multiplicities of the content in N >3, d =4
EMSGTs [53]. The fraction values in the fifth column arise
while extracting out the Dirac spinors from the odd multiplicities
of Majorana or Weyl content by diving a 1/2 factor. Note that
ngm already includes one vector field along with the metric.

N >3 EMSGTs ngM no n ni n3;)
N =3, d =4 EMSGT 1 0 2 % 3
N =4, d =4 EMSGT 1 2 5 2 4
N =5, d =4 EMSGT 1 10 9 % 5
N =6, d =4 EMSGT 1 30 15 13 6
N =8, d =4 EMSGT 1 70 27 28 8

All these logarithmic entropy corrections [Egs. (110) and
(112)] exhibit perfect matching with the available direct
approach results in [22-25,27,29]. The whole process of
estimating logarithmic entropy corrections for extremal
Kerr-Newman, Kerr and Reissner-Nordstrom black holes
in/N > 2, d = 4EMSGTs is an indirect “local method.” It is
strictly limited to the analysis of extremal black holes via
Strategy A. As compared to the direct approaches, it is much
simpler because one needs not required to deal with overly
complicated quadratic fluctuated supergravity actions and
execute a mountain of complex trace calculations.

C. Summary and conclusions

To sum up, we have provided a consolidated manual for
investigating logarithmic correction to the entropy of Kerr-
Newman family of black holes for both extremal and
nonextremal limits. The whole framework is divided into
two separate strategies (Strategy A and Strategy B) based
on the Euclidean gravity approaches [33,36-38]. Seeley-
DeWitt coefficients are found to be the crucial and common
ingredients in these strategies, where a standard method
[49] computes them in various background invariants.
Following this manual, we have calculated the first three
Seeley-DeWitt coefficients for the fluctuations of the
generalized d =4 minimally coupled EMT and employ
them in obtaining logarithmic correction to the entropy of
extremal and nonextremal black holes in the theory. The
investigation of a global platform for simultaneously
calculating logarithmic corrections to the entropy of all
the Kerr-Newman family (Kerr-Newman, Kerr, Reissner-
Nordstrom, and Schwarzschild) of black holes in both
extremal and nonextremal limits is novel. The extremal
black hole results are mostly new reports. The nonsuper-
symmetric minimally coupled data, generalized for arbi-
trary numbers of minimally coupled fields, have essential
utility in alternative derivations of the results for different
N >2, d =4 EMSGTs via both direct (e.g., [29]) and
indirect local methods (see Sec. IV B).

This work reported the presence of both the geometric
dependent as well as fully universal logarithmic entropy
corrections ASgy for the black hole solutions in the d = 4

minimally coupled EMT. Our analysis showed that the
quantum corrections for the charged (Kerr-Newman and
Reissner-Nordstrom) black holes are geometric via the
parameters Q, b, b', B, ry, while ASgy for the uncharged
(Kerr and Schwarzschild) black holes have no dependence
on their parameters, i.e., universal in both extremal and
nonextremal limits. But, we found an exception for the
extremal Reissner-Nordstrom black holes that possess a
universal form of logarithmic entropy corrections. Almost a
similar outcome is exhibited by the extremal black holes in
N >2, d =4 EMSGTs. However, the extremal Kerr-
Newman results show a slight deviation: universal only
in /' = 3 EMSGT but have geometric dependence in all
other N’ >2 EMSGTs. Any progress in searching the
reason behind the typical patterns of ASgy would be
welcome. We have not witnessed any vanishing ASgy
for black holes in the d = 4 minimally coupled EMT, as
reported for extremal Reissner-Nordstrom black holes in
the NV = 4, d = 4 EMSGT. One should not worry about the
logarithmic correction contributions that are found to be
negative. The total quantum corrected black hole entropy

(fT"I’V + ASgy) is always positive due to the presence of the

leading positive Bekenstein-Hawking term ‘é—*jv in the large

charge limit. All the calculated ASgy results as well as their
particular characteristics are significant and can be served
as “macroscopic experimental data” to understand the
microstructure of the general black holes in any quantum
theory of gravity in the future.
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APPENDIX A: LOCAL AND ZERO-MODE
CONTRIBUTIONS OF ONE-LOOP
EFFECTIVE ACTION

Zero modes are described by the normalized eigenfunc-
tions fY(x) of the kinetic differential operator A that
provide zero eigenvalues (4; = 0),

AfO(x) = 0. (A1)

The total number of zero modes of the operator A for all

the fluctuations &,,, denoted by n,,,, can be introduced by
rewriting the heat trace D(s) [defined in Eq. (5)] as

Dls) = Yo = T
i

i
(4;#0)

(A2)

with
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(A3)

My = Z/d“x\/detgf?(x)f?(x),

where the prime indicates that the summation is over
nonzero modes only. The quantum corrected Euclidean
path integral partition function Z, .., corresponding to the
one-loop effective action WV [defined in Eq. (6)] has the
following structure [89-94]

Zl-loop = e_W - /D[Em] exp <_ d4x V dethmAZ:m>

= (det A) /2. (A4)
But for the case of zero modes, the functional integral (A4)
cannot sustain its Gaussian form, and hence one needs to
remove the zero modes from Z,,, to carry out the heat
kernel treatment of V. However, we can add their con-
tribution back by substituting the zero-mode part of Z o,
with ordinary volume integrals over different asymptotic
symmetries that induce the zero modes [21-23,30]. As a
result, the one-loop partition function Z 4, is disinte-
grated into a product of two separate parts,
Zl—loop = e_W = (det’A)_l/z ’ Zzero(L)’ (AS)
where det’ A is the determinant over nonzero modes of A
and Z,.,(L) is the zero-mode integral that scales non-
trivially with an overall length scale L of the background
metric. For this choice of scaling, the nonzero eigenvalues
of the Laplace-type operator A scale as L2, which
essentially sets a new rescaled heat kernel parameter
5 =s/L? of the integration range ¢/L> <5< 1 (or
equivalently e<<s<<L?). Then, using the Seeley-DeWitt
expansion (7) in the relation (5), we express the nonzero
mode contribution to the one-loop effective action as

N

1 L?
=—— d*xy/detgay(x) — yn,m, | In{ —
2 Gy

+oe (A6)

L2
W :gm det' A = —g / 95 Dis) = )

Here “---” represents all nonlogarithmic terms containing
the other Seeley-DeWitt coefficients. On the other hand,
the zero mode contribution to the path integral from all
fluctuations &,, each having n! zero modes, can be

represented as [21-23,30]
Zzem(L) = ngm #e ng’" ZO’ (A7)

where Z, does not scale with L. f; are numbers that
depend on the type of fluctuation and space-time

dimensions. In a d-dimensional theory, it is found that #; =
% for vector, f, = %for metric, ff3/, = d — 1 for gravitino,
etc. Finally, substituting both (A6) and (A7) contributions
in the relation (A5) and using n,,,, = 25 ng , we write the

following restructured one-loop effective action form

1 - L?
W:—2< d4x\/detga4(x)+‘§z;((ﬂ5m—l)ngm>ln<GN>
_|_ s,

where the first part containing a4 (x) coefficient is termed as
the “local” contribution and the second part controlled by

the zero-mode parameters /i , ng is recognized as the

“zero-mode” contribution. We refer the readers to [24,95]
for more details regarding the above analysis.

If W is identified as the one-loop quantum effective
action to the partition function describing the macroscopic
horizon degeneracy of a black hole with horizon area A,
then the form (A8) provides the particular logarithmic
correction formula (9). One needs to consider only the
terms proportional to In. A4y in the relation ASgy =

In Z| 1o, = =WV for the large-charge limit Ay ~ L.

1. Note on the strategy for nonextremal
black holes

In the Euclidean gravity approach [33], the nonextremal
black holes are in equilibrium with thermal gas present in
the theory. In order to identify only the particular piece of
black hole partition function, one must subtract the thermal
gas contributions. The special treatment is to consider two
black hole solutions (same type but different scaling) in the
same theory

System 1: black hole with the length parameter a

confined in a box of size ¢,

System 2: black hole with the length parameter o’

confined in a box of size {d’/a.
Itis argued in [33] that the thermal gas contribution remains
invariant in both systems and hence, the difference between
corresponding one-loop effective actions becomes

AW =W, (BHI + gas) — W,(BH2 + gas)

= W, (BH1) — W,(BH2). (A9)
Now the eigenvalues of system 2 are scaled in terms of
those in system 1 as

A= Aa*/d"?, (A10)
which appropriately fits the AWV into the form (A6) for an
upper integration limit € = e¢/L? with L = a'/a. This
finally leads us to the same effective action form (A8)
and logarithmic correction formula (9) for the nonextremal
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black hole after extracting only the terms proportional to
In a2. The above note is mostly based on Refs. [33,96] [97].

APPENDIX B: THE FOUR-DIMENSIONAL
EINSTEIN-MAXWELL BACKGROUND:
EOMS AND IDENTITIES

It is necessary to achieve the Einstein equation for
background solutions of the particular four-dimensional
Einstein-Maxwell theory (25). At first, we need to reshape
the action (25) as

SEM—/d“x\/deth—l—SM, (Bl)
where S, is the action for the matter term,
Sy =-— / d*x\/detgF ,, Fr°. (B2)

The Einstein equation satisfying the classical solution
(G A,) is defined as

1_ 1
R, —=9u,R=3T

SR =3 T, (B3)

where the energy-momentum tensor 7, for the matter
term is

2 88y,

T, =———_ oM B4
w et o, B

Avoiding all the boundary terms, one can obtain

5SM=‘/ d*x(8(1/detg) F o F*° +/detgd (¢ ¢ F yo F )

d*xy/detg ( G /,,,F/’”—ZFWF/’>69””, (B5)

and finally express the particular Einstein equation,

1_ - 1. -
R;w - Eg/wR - 2F;thy 29/4vaan67 <B6)
where F w = 8/}1,, - 8UA/4. Trace over (B6) allows us to

consider the constraint R = 0 for the Einstein-Maxwell
theory. Therefore all the terms proportional to the back-
ground Ricci scalar R vanish, and this argument is used
throughout this paper. For the four-dimensional Einstein-
Maxwell background, the relevant Riemannian identities,
Bianchi identities and equations of motion are listed as

FyFl = 5 R+ 58 F P,
R =0, R;t[upo‘] 0,
DUF, =0, DyF,, =0,
(DpFﬂy)(D”Fl’”) = Rypc F" F’° — R, R,
1

(B7)

!
5 Rupo P FP7 =S Ry R

(DMF/)D)(DUF'DM) = B

APPENDIX C: TRACE CALCULATIONS FOR
THE PURE EINSTEIN-MAXWELL SECTOR

The trace calculations for obtaining the Seeley-DeWitt
contribution of the Einstein-Maxwell sector (46) are
extremely tedious and complex compared to the minimally
coupled fields’ contributions. For the pure Einstein-
Maxwell fluctuations &,, = {hu.a,}, we set up the follow-
ing traces
+ EMw (Cla)

tr(E) = tr(E"w), + E% e T E*n,)

ap

tr(E?) = te(E",, EMo, 4 E%,E%,

+ Elw a Ed » 4 E » Ehw aﬂ), (C lb)

(F(€2,,27) =tr((Qy,)/, (7)1
(@), (27,

hap + (Qﬂ(")aaay (Q/J(F)ay
+ (le)“a Ny (Q/IO’) &z ag ) .

(Clc)

ag

op

Simplifying Eq. (48a) further, the following components
of E are extracted as

By =RV, + R — G R, (C2a)
X,
Ee, =2 g, P C2b
ag — Eg[j uv ’ ( )
—
X,
Ehe, = piipy LpEp (c)
Ay \/E a \/j a
X3
E¢a ! —D,F*%, ! D, F* Cc2d
h;w \/E " +—= \/2 vt ou- ( )
Xy

Also, all the components of Q,, are extracted from

Eq. (48b) as
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1, _ _ _
(Q/m)hw hap = 5 (%RU/}/)U + d[;Rya/)a + gZzRﬂ[)’/m- + g;}RMa/m)

Y,

1 - - = o o - - -
_E(Q”HF/)U +gy9F/1” _g,/;Fey _g;;FHy _g}wF/)e) X (gaHFﬂ[)’ +g/}9Frm _garfFé'/} _g/)’o'FQa _ga/)’FaF))

Y,

1 _ - - = o o - - [
+§(g”€Fo-y +gy€F(r” _dllTng _gfiFgﬂ - gnyﬂé)) X (gaGFp/} + g[)’()F/)a _ga/)FH/)’ - gﬂ/)Ft‘)a - ga/}F/Jt‘))v (C3a)

Y3

1, o = o o - - - - R
_z(glmeU + guan” - g}/;Fay - g;/)Faﬂ - glepa) X (gﬂﬂFo'l/ +guﬁFU/4 - g/wFﬂu _gyaF/iu - g[ll/FO'ﬁ)

Ys

+ <§”QFGD + gyapaﬂ - %Fav - QZ'FQ” - g;wi:ga) X (gﬂﬂppl/ + gvﬁFpM - gﬂpFﬂl/ - gl/pFﬂﬂ - gvapﬂ)v (C3b)

N =

Y

(Q/m’)hma“ = E (g}ﬂllD/)FaD + QZD/)Frf” - ggD/)FaD - glr/rD/)Faﬂ - gﬂuD/)sz)

Y;
~ S DL+ DL ~ D, = EDF = 7D, F). (C30)
Yy
(Qp) ey, =— \% (GDyF oy + FDyF oy = GusDpF*, = 906Dy F?, = 9D, F )
Yy
+ % (FiDoF p + FiDoF = GupDoF®, = 3D F? = §uDoF %) (C3d)
Yo

To calculate different needful traces, we employ the following definitions

G — AEMEHT. .
Asng = Aerlz g

tr(A) = Agmém e Agmgplg:p%m,

(r(A?) = Afng ABy = (AT 5 ) (AT ; ),

tr(AB) = Az By = (Aénfplgpgn)(Bfnffqlgqa") = tr(BA), (C4)

where 5% acts as an effective metric corresponding to any two arbitrary matrices Aén& and Bi+%: . The traces can be
simplified and reduced to different background invariants with the help of identities (B7). Following the systematic process
(C4) and the relations (B7), we then calculate,
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tr(Xl) = 0,
o tr(YeYs) = TR, R" — 3(F, F"™)2,
tr(X,) = 6F,, F",
tr(Yle) = 0,
tI'(X:;) = 0,
tr(Yl Y3) = 0,
tr(Xy) = 0. tr(Y,Y3) = =R, R™ — 9(F, F*)
(X, X;) = 3R,,cR*" — 4R, R*, > " m
tr(Y,Ys) = R, R",
tr(X,X,) = 9(F,, F*™)?,
tr(Y4Y6) = R/lew’ (CS)
tr(X3Xy) =3 R,,0 F"FP* = 3R, R",
tr(YsYs) = 4R, R* — 12(F,,F")?,
(YY) = —6R,,,,R*"°
_ tr(Y7Yy) = 6R,, R* — 6R,,,, F* F’,
tr(Y,Y,) = 7R, R — 3(FWF/‘”)2,
- tr(Y7Y10> R”W)GF'”DF/)O———R R;w
tr(Y3Y3) = TR, R — 3(F,, F*)?,
tr(YgYy) =3 R, F*FP* —3R, R,
tr(YyYy) = =R, R,
tr(YgYyo) = 6R,, R* — 6R,,,, F*F°,
tr(YsYs) = 7R, R" — 3(F,, F*)
and find the following results
tr(E"y,,) = tw(X,) = tr(E%,,) = tw(Xy) = 6F,, F*,
tr(EMw, ) =tr(X;) = tr(E%), ) = tr(X4) =0,
tr(E"wy, EMo, ) = tr(Xlz) = 3RW,RM6 — 4R, R,
tr(E% , E%, ) = tr(X5?) = 9(F, F™),
3 3
tr(EMw o E%), ) = te(E%), E', ) = tr(X3X,) = RMDMF’”’FF’" — S RuRY,
3 - -
tr((Qy5) "k, (7)o, )= > tw(Y;Y}) = —OR,,)oR*"* + 12R,, R — 24(F, F*™)?,
ij=1
6
tr((Qpe) %, (7)) = Y tr(Y;¥}) = =RyppeR*™P7 +26R,, R™ — 30(F,,, F*)?,
ij=4
8 10 o
tr((Qpe) " 4, (), ) = tr((Q) %, (7)) = ZZH(Y Y;) =R R" = OR,p B FP7. (CO)

The above results produce the exact list (49) via the definitions (C1).
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