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While we find within holography that the lifetime of the magnetic field for collider energies like those
achieved at RHIC is long enough to build up the chiral magnetic current, the lifetime of the magnetic
field at LHC seems to be too short. We study the real-time evolution of the chiral magnetic effect out of
equilibrium in strongly coupled holographic gauge theories. We consider the backreaction of the magnetic
field onto the geometry and monitor pressure and chiral magnetic current. Our findings show that
generically, at a small magnetic field, the pressure builds up faster than the chiral magnetic current, whereas
at a strong magnetic field the opposite is true. At large charge, we also find that equilibration is delayed
significantly due to long-lived oscillations. We also match the parameters of our model to QCD parameters
and draw lessons of possible relevance to the realization of the chiral magnetic effect in heavy ion
collisions. In particular, we find an equilibration time of about ∼0.35 fm=c in the presence of the chiral
anomaly for plasma temperatures of order T ∼ 300–400 MeV.
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I. INTRODUCTION

The chiral magnetic effect (CME) is the generation of
an electric current in a chirally imbalanced medium by an
applied magnetic field [1,2].1 Formally, it is described by

J⃗ ¼ 8cμ5B⃗; ð1:1Þ

where c is the coefficient of the axial anomaly and μ5 is the
axial chemical potential.
While this formula is rather straightforward to derive, its

interpretation is subtle in many respects. The fact that it
depends on a chemical potential and the magnetic field
implies that it can be derived in equilibrium quantum field
theory. This is indeed the case, but the axial chemical

potential is a thermodynamic variable conjugate to an
anomalous charge. The axial current is not conserved in
the quantum theory but obeys the anomalous nonconser-
vation law [6,7]2

∂μJ
μ
5 ¼ cϵμνρλFμνFρλ: ð1:2Þ

Since a chemical potential should in principle be introduced
only for conserved charges, the question of the precise
meaning of the axial chemical potential arises. An additional
issue is that general arguments suggest that in equilibrium,
the electric current has to vanish identically [9].
This issue is well understood by now. The CME current

indeed vanishes in equilibrium if one introduces the
axial chemical potential as a background value of an axial
gauge field A5

0 ¼ μ5. The axial gauge field gives rise to an
additional contribution to the CME that cancels the CME
current [10] (see also Ref. [11]). On the other hand, one can
introduce the chemical potential as a property of the initial
state and then consider the time evolution generated by the
Hamiltonian H in which no axial gauge field is present
[12]. In that case, Eq. (1.1) does in fact apply. However, this
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1For reviews, see Refs. [3–5].

2In this work, we will not consider effects of the gravitational
contribution to the axial anomaly [8].
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already represents a certain amount of nonequilibrium
physics, since the axial charge (or chemical potential)
has to be induced by some means in the initial state.
From these considerations, it becomes clear that the

physical realization of the CME demands a certain amount
of nonequilibrium physics. Hydrodynamics only assumes
local thermal equilibrium and thus is always intrinsically a
nonequilibrium theory too. In fact, it was shown that the
chiral transport can be derived as a consequence of
hydrodynamics with triangle anomalies [13].
If one does not assume local thermal equilibrium but

initiates the physical system in a generic nonequilibrium
state, the question arises how fast it evolves towards
equilibrium. Since the CME current is formally expressed
by a chemical potential (an equilibrium quantity), the
question of how the CME is realized far from equilibrium
is particularly interesting. Answering this question is par-
ticularly important in view of a possible realization of the
CME in heavy ion collisions. The magnetic field in heavy
ion collisions is only present in the initial stages and decays
quickly, whereas the hot QCD matter has a short but
nonvanishing equilibration time. The question naturally
arising is if the CME builds up fast enough to be measurable
before the magnetic field decays. We want to address this
question in this work by modeling the strongly coupled
quark gluon plasma by means of a holographic model.
The gauge/gravity duality or holographic duality pro-

vides many important insights into this type of question.
Starting with the key insight of the small value of the shear
viscosity to entropy ratio η=s ¼ 1

4π [14], holography has
contributed many important results on hydrodynamics and
transport in general. The modern way of understanding
hydrodynamics is strongly influenced by it [15,16]. Many
insights into anomaly-induced transport phenomena have
their origin in the holographic duality [17–20]. It also is an
ideal tool to study far-from-equilibrium evolution of
strongly coupled quantum systems [21,22]. In the present
work, we will therefore study the nonequilibrium behavior
of the chiral magnetic effect in a holographic setup.
Previous studies of out-of-equilibrium chiral transport in

holography include Refs. [23–27]. A quantum simulation
of the real-time evolution of the CME has been presented in
Ref. [28]. In particular, the question of the timescale on
which the CME becomes built up has been the subject of
Refs. [29–31]. In these works, a holographic approach was
taken based on Vaidya-type metrics. The advantage of this
approach is that the background metric can be computed
analytically. The time evolution of chiral transport can then
be studied numerically in linear response for intrinsically
small magnetic fields and beyond linear response in
Refs. [24,25] in the probe limit. In contrast, the purpose
of this work will be to study the full backreaction of the
magnetic field onto the geometry.
The question of how fast the CME current builds up can

be studied directly, since it is possible to start with a

far-from-equilibrium state with a large magnetic field in
which no CME current is present. Another important
observable that has been in the focus of holographic studies
is the pressure [21]. The large magnetic field will of course
induce a significant pressure anisotropy. The time evolution
of the magnetic-field-induced pressure anisotropy in holog-
raphy has been studied before in Ref. [32], albeit without
effects of the anomaly. In our case, we chose to start with an
initial state in which both the CME current vanishes and the
pressure anisotropy is not at its equilibrium value. We can
then monitor the equilibration of both of our observables
and study their time evolution for varying parameters. As
parameters, we chose the total energy ϵ, the axial charge
density q5, the magnetic field B, and finally also the
strength of the anomaly. The latter is represented in
holography by the value of the Chern-Simons coupling α.
We will employ a bottom-up approach to construct our

holographic model. The main motivation for choosing
a bottom-up approach is that the proper realization of
the CME needs the notion of both an axial (A) and
vector (V)-like Uð1Þ symmetry. In holography, we there-
fore need to introduce two bulk gauge fields and an
appropriate Chern-Simons term representing the mixed
VAA anomaly. It also allows us to match the parameters
of the model to QCD, and we will do this later on by
matching the holographic Chern-Simons coupling to the
axial anomaly of three-flavor QCD.
The paper is structured as follows: In Sec. II, we present

all the details of our holographic model. We set up the
equations of motion and explain some of the salient
features of the numerical methods. Section III contains a
scan through the parameter space. We present the time
evolution of the CME current and the pressure anisotropy
for varying magnetic field strength, varying Chern-Simons
coupling, and varying axial charge. Of particular interest
will be Sec. III C, in which we match the Chern-Simons
coupling to the value of QCD with Nf ¼ 3. We summarize
our findings and conclusions in Sec. IV. Further details
of the numerical methods will be presented in Appendix A.
In Appendix B, we provide results similar to Sec. III C for a
larger value of the axial charge density.

II. THE HOLOGRAPHIC MODEL

We study a holographic quantum field theory with a
Uð1ÞA ×Uð1ÞV symmetry. The presence of two gauge fields
Aμ and Vμ encodes the presence of the symmetry in the dual
field theory. The field strengths of these fields are denoted as
F5 ¼ dA and F ¼ dV, respectively. The anomaly is imple-
mented through a Chern-Simons term which is gauge
invariant up to a total derivative. Wework with the consistent
form of the anomaly. Combining these ingredients, the
holographic model we consider is the following3:

3In our notation, greek letters denote the bulk coordinates, and
small latin letters denote the boundary coordinates.
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S ¼ 1

2κ2

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

4
F2 −

1

4
F2
ð5Þ

þ α

3
ϵμνρστAμð3FνρFστ þ Fð5Þ

νρ F
ð5Þ
στ Þ

�
þ SGHY þ Sct;

ð2:1Þ

where SGHY is the Gibbons-Hawking-York boundary term to
make the variational problem well defined, L is the AdS
radius, κ2 is the Newton constant, and α is the Chern-Simons
coupling. We also add appropriate counterterms Sct to cancel
the possible divergences [33–35]. The Levi-Civita tensor is
defined as ϵμνρστ ¼ ϵðμνρστÞ= ffiffiffiffiffiffi−gp

. The (consistent)
anomaly is

δ5S ¼ α

2κ2

Z
d4xλ5ϵabcd

�
FabFcd þ

1

3
F5;abF5;cd

�
: ð2:2Þ

The relative factor of 1=3 reflects the Bose symmetry of the
UAð1Þ3 anomaly, and λ5 is an axial gauge parameter.
Varying the fields, we find the equations of motion.

They are

∇νFνμ þ 2αϵμνρστFνρF
ð5Þ
στ ¼ 0; ð2:3Þ

∇νF
νμ
ð5Þ þ αϵμνρστðFνρFστ þ Fð5Þ

νρ F
ð5Þ
στ Þ ¼ 0; ð2:4Þ

Gμν −
6

L2
gμν −

1

2
FμρF

ρ
ν þ 1

8
F2gμν −

1

2
Fð5Þ
μρ F

ð5Þρ
ν

þ 1

8
F2
ð5Þgμν ¼ 0: ð2:5Þ

We are interested in studying the vector current and
pressure living in the dual field theory. Those can be
extracted from the full bulk solution through the standard
holographic prescription—i.e., varying the on-shell action
with respect to the boundary value of the dual field
appropriately subtracting the divergences.
In order to find the bulk solution, we choose an ansatz

for the metric and the gauge fields, which preserves the
symmetries present in the system. We label the coordinates
with xμ ¼ ðu; v; x; y; zÞ, where u is the radial coordinate
and v the time coordinate. In particular, we have transla-
tional invariance of the three spatial directions ðx; y; zÞ.
Hence, the metric fields can only depend on the radial u and
temporal v coordinates. Besides this, the presence of the
magnetic field, which we assume to point in the z direction,
breaks the SOð3Þ rotational invariance down to SOð2Þ.
Consequently, we consider the metric ansatz to be

ds2 ¼ −fðv; uÞdv2 − 2L2

u2
dvduþ 2

u2
hðv; uÞdvdz

þ Σðv; uÞ2½eξðv;uÞðdx2 þ dy2Þ þ e−2ξðv;uÞdz2�; ð2:6Þ

which has been written in infalling Eddington-Finkelstein
coordinates, with the boundary located at u ¼ 0. Note that ξ
parametrizes the anisotropy of the system. In order to
recover asymptotic AdS5, we demand

lim
u→0

fðv; uÞ ¼ L2

u2
; lim

u→0
hðv; uÞ ¼ 0;

lim
u→0

Σðv; uÞ ¼ L
u
; lim

u→0
ξðv; uÞ ¼ 0: ð2:7Þ

In this work, we consider a finite axial charge density and
an external vector magnetic field B, which are the minimal
ingredients required to generate the CME. We choose
to work in the radial gauge Vu ¼ Au ¼ 0. Under these
considerations, the only nontrivial component that is turned
on for the axial gauge field is Av ¼ −Q5ðv; uÞ, whereas the
vector gauge field contains B and a nontrivial profile in its z
component. Therefore, the ansatz for the gauge fields takes
the form

Vμ ¼ ð0; 0;−yB=2; xB=2; Vzðv; uÞÞ;
Aμ ¼ ð−Q5ðv; uÞ; 0; 0; 0; 0Þ: ð2:8Þ

The axial gauge field still has the gauge freedom to add a
general function gðvÞ to the temporal component without
altering the physics. We fix this freedom by demanding that
Q5ðv; uÞ vanish at the boundary.
It turns out that such an ansatz allows us to set the

function hðv; uÞ in Eq. (2.6) to zero,4 simplifying signifi-
cantly the system of equations to solve. Plugging the
ansatz (2.6) and Eq. (2.8) into the equations of motion,
setting L ¼ 1, and manipulating the expressions yields

Q0
5 ¼

q5
u2Σ3

�
1 − 8α

BVz

q5

�
; ð2:9Þ

e2ξΣðdVzÞ0 þ
1

2
ðe2ξΣÞ0dVz þ

1

2
V 0
zdðe2ξΣÞ − 4αBQ0

5 ¼ 0;

ð2:10Þ

6Σ0

uΣ
þ 3Σ00

Σ
þ e2ξ

2Σ2
V 02
z þ 3

2
ξ02 ¼ 0; ð2:11Þ

3
dΣ0

Σ
þ 6dΣΣ0

Σ2
−
1

4
u2Q02

5 þ 6

u2
−
B2e−2ξ

4u2Σ4
¼ 0; ð2:12Þ

ðdξÞ0 þ 3

2Σ
ðΣ0dξþ ξ0dΣÞ − 1

6

B2e−2ξ

u2Σ4
−

e2ξ

3Σ2
V 0
zdVz ¼ 0;

ð2:13Þ

4The h function would eventually account for the response of
the stress tensor to the CME, yet with only μ5 and B active, the
stress tensor receives no contribution.
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1

2
ðu2f0Þ0 − 3

2
ξ0dξþ 6

Σ0

Σ
dΣ
Σ

−
5

12

B2e−2ξ

u2Σ4
þ 2

u2

−
7

12
u2Q02

5 −
e2ξ

6Σ2
V 0
zdVz ¼ 0; ð2:14Þ

ddΣþ 1

2
Σdξ2 þ 1

2
u2f0dΣþ e2ξ

6Σ
dV2

z ¼ 0; ð2:15Þ

where Eq. (2.9) has already been integrated once with the
integration constant q5, which we eventually identify with
the axial charge density. More specifically, setting μ ¼ v, u
in the axial Maxwell equations (2.4), we find

∂u½u2Σ3ðv; uÞ∂uQ5ðv; uÞ þ 8αBVzðv; uÞ� ¼ 0; ð2:16Þ

∂v½u2Σ3ðv; uÞ∂uQ5ðv; uÞ þ 8αBVzðv; uÞ� ¼ 0: ð2:17Þ

Hence, the quantity u2Σ3ðv; uÞ∂uQ5ðv; uÞ þ 8αBVzðv; uÞ
is independent of u and v, and we identify it with the
integration constant q5. The prime and the dot denote radial
and temporal derivatives, respectively, whereas

d ¼ ∂v −
u2f
2

∂u ð2:18Þ

is the derivative along infalling null geodesics. Its intro-
duction is customary in this context and decouples some of
the differential equations in a nested structure.
We can use these equations of motion to find the

near-boundary expansions of the metric and gauge fields,
which read

Q5ðv; uÞ ¼
u2

2
q5 þOðu3Þ; ð2:19Þ

Vzðv; uÞ ¼ u2V2ðvÞ þOðu3Þ; ð2:20Þ

Σðv; uÞ ¼ 1

u
þ λðvÞ þOðu5Þ; ð2:21Þ

ξðv; uÞ ¼ u4
�
ξ4ðvÞ −

B2

12
logðuÞ

�
þOðu5Þ; ð2:22Þ

fðv; uÞ ¼
�
1

u
þ λðvÞ

�
2

þ u2
�
f2 þ

B2

6
logðuÞ

�

− 2_λðvÞ þOðu3Þ: ð2:23Þ

The function λðvÞ is a remnant of diffeomorphism
symmetry and is thus arbitrary. We follow Ref. [32] and
use λ to keep the position of the apparent horizon of the
black brane at a fixed radial position uh ¼ 1 throughout the
time evolution. The coefficient f2 is related to the energy
density of the black brane, and the subleading coefficients
V2ðvÞ and ξ4ðvÞ shall give us the vector current and the

pressure anisotropy, respectively. In particular, making use
of the holographic prescription described above and sub-
stituting the asymptotic solution, we find

2κ2hJzi ¼ 2V2ðvÞ; 2κ2hJ05i ¼ q5 ð2:24Þ

for the currents and

hTv
vi ¼

1

4κ2
½6f2 − B2 logðμLÞ�;

hTx
xi ¼ hTy

yi ¼ −
1

8κ2
½B2 þ 4f2 − 16ξ4ðvÞ−2B2 logðμLÞ�;

hTz
zi ¼ −

1

4κ2
½2f2 þ 16ξ4ðvÞ þ B2 logðμLÞ� ð2:25Þ

for the stress tensor. We have reinstated the AdS radius L
because in the regularization procedure, a renormalization
energy scale μ appears due to the fact that the magnetic
field induces a trace anomaly, breaking conformal invari-
ance at a microscopic level. All in all, the problem reduces
to solving the full dynamics in the bulk, finding the
subleading coefficients of ξ and Vz, and substituting
them into Eqs. (2.24) and (2.25). The details about the
numerical implementation of this strategy are summarized
in Appendix A. Our numerical code is implemented in the
programming language Julia [36].
The thermodynamic properties of the system are speci-

fied by two quantities: temperature and the axial chemical
potential. At late times, the system equilibrates, and we
shall label different solutions in terms of their thermody-
namical variables of the final equilibrium state. Those will
also be useful to compare with the QGP produced in heavy
ion collision experiments. In the dual gravity picture, this
equilibration implies that the metric becomes stationary at
late times. The temperature is formally that of the black
brane once equilibrium is reached:

T ¼ 1

2π

�
−
u2

2
∂ufðv; uÞ

�����
u¼uh;v→∞

: ð2:26Þ

The chemical potential is computed as the temporal
component of the gauge field at the boundary minus its
value at the horizon, i.e.,

μ5 ¼ Q5ðv; uhÞ −Q5ðv; 0Þjv→∞: ð2:27Þ

We conclude this section by discussing the initial state of
the dual quantum field theory. The asymptotic form of the
metric ansatz (2.6) has been chosen so that it describes an
infinite-volume nonexpanding plasma. By construction, the
plasma has a charged distribution given by q5, is immersed
in a magnetic field of magnitude B, and has some energy
density ϵ. All three of these values are considered to be
homogeneous and constant in time in our model. Finally,
we specify the initial conditions of the evolution by giving a
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starting profile to the fields ξ and Vz. In particular, we
choose them to be zero everywhere, which in turns means
that the plasma starts with vanishing CME current and
vanishing dynamical pressure anisotropy—i.e., vanishing
anisotropy generated by ξ4. Notice that in Eq. (2.25), the
term proportional to B does include anisotropy in the
pressure from the beginning. That contribution is the same
over the evolution and is referred to as kinematic pressure
anisotropy (see Ref. [32] for further details). Hence, if there
were no magnetic field, we could interpret the initial
conditions as being the equilibrium solution; yet, since B
is present, the system is out of equilibrium.

III. RESULTS OF NUMERICAL SIMULATIONS

We scan the parameter space ðα; q5; BÞ and study the
features displayed by the chiral magnetic effect through the
vector current5 hJi and the dynamical pressure anisotropy,6

which we denote as ξ4. The latter simply refers to the
subleading coefficient of the metric field ξ, parametrizing
the anisotropy. The transverse and longitudinal pressures
can be trivially read off from Eq. (2.25).
There is a subtlety related to the definition of the energy

density due to the nontrivial renormalization scale depend-
ence in Eq. (2.25):

ϵðμÞ ¼ 2κ2hTvvi: ð3:1Þ

We refer the reader to the discussion in Ref. [32] for details.
In order to assign a definite value to the energy-momentum
tensor, we have to choose a renormalization scale μ. For
computational convenience, we choose μ ¼ 1=L through-
out this section. The scale 1=L is, however, not a physical
scale, since it can be changed without changing the values
of the physical observables on the boundary due to a
scaling symmetry [32]. The physically relevant scale is
μ ¼ ffiffiffiffi

B
p

, which is also the natural choice. We will use this
scale in Sec. III C. Both choices are related through

ϵB
B2

¼ ϵL
B2

þ 1

4
logðBL2Þ; ð3:2Þ

where ϵL and ϵB refer to the energy density at scales
μ ¼ 1=L and μ ¼ ffiffiffiffi

B
p

, respectively.
The parameter scan is performed at fixed energy density7

ϵL ¼ 12. In Sec. III C, we match our model to QCD and
give physically relevant values for the parameters.

A. B dependence

We first study both vector current and dynamical
pressure anisotropy as we vary the vector magnetic
field B. We keep the anomaly fixed—i.e., fixed Chern-
Simons coupling α—and consider two qualitatively differ-
ent values of axial charge q5. The results are shown in
Figs. 1 and 2. We choose to work with dimensionless
variables: time, pressure, and current are normalized to the
energy density ϵL, whereas we consider the dimensionless
ratio of the magnetic field B to temperature squared.
All thermodynamic quantities (chemical potential and
temperature) refer to the final equilibrium state where they
are well defined.
As we increase the magnetic field, we observe the

appearance of oscillations in the current hJi. This is in
agreement with the quasinormal modes computed in
Refs. [24,25], where they found that the imaginary part
of the lowest quasinormal mode (QNM) approaches the real

FIG. 1. Vector current (upper plot) and dynamical pressure
anisotropy (lower plot) for fixed Chern-Simons coupling α ¼ 1.5
and fixed small axial charge density q5 ¼ 0.2. The magnetic field
B is f0.1; 0.5; 1.0; 2.0g. Even though q5 is fixed, the dimension-
less ratio of axial chemical potential to the temperature (in the
final state) is different for each simulation. In particular, we find
μ5=T ¼ f0.11; 0.06; 0.04; 0.02g for the would-be final equilib-
rium state.

5The vector current is parallel to the magnetic field, which we
choose to be along the z direction without loss of generality.

6Actually, ξ4 is proportional to the dynamical pressure
anisotropy when evaluated at a scale μ ¼ 1=L.

7Working with a different value for ϵL seems to only modify
the final equilibrium state for the pressure anisotropy but does not
alter the relevant qualitative behavior, like the buildup time and
the presence or absence of oscillations.
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axis for increasing the magnetic field, and hence perturba-
tions become long lived. As a consequence, the equilibration
time dramatically increases for increasing B. The oscillatory
behavior of the current indicates that the time evolution is
dominated by the lowest QNM near the real axes. The final
equilibrium value matches the equilibrium value for the
CME—i.e., 2κ2hJieq ¼ 8αμ5B. Note that oscillatory behav-
ior in the current indicates that we have not reached the final
equilibrium state yet (and it may take a very long time to get
there in the case of almost undamped oscillations). However,
we have verified that the axial chemical potential (2.27) read
off from these states already closely matches the values of
the would-be equilibrium state.
It is also worth noting that the vector current builds up

progressively faster with increasing magnetic field. We
expect such a behavior for the following reason. At a large
magnetic field, all fermions are in the lowest Landau level.
The physics reduces effectively to the motion of the
charged particles along the magnetic field lines and is thus

effectively 1þ 1-dimensional. In 1þ 1 dimensions, the
following relation between the axial current and the vector
current holds:

J5a ¼ ϵabJb; ð3:3Þ
(where the a, b indexes are v, z). This is an operator relation
and is hence valid for matrix elements and expectation
values. In contrast, the 3þ 1-dimensional chiral magnetic
effect depends on the (near-)equilibrium quantity μ5. Since
for larger magnetic fields the theory becomes more
and more dominated by the effective 1þ 1-dimensional
dynamics, we expect the buildup of the vector current to
occur already in the nonequilibrium stages in order to fulfill
the 1þ 1-dimensional relation between the operators of
axial charge and vector current.
Finally, increasing q5 simply increases the absolute

value of the final equilibrium state of the vector current.
The effect in the pressure anisotropy is dramatically
different. For large axial charge densities, we clearly
observe oscillatory behavior in ξ4. A closer look, however,
reveals that the same type of oscillations are also present for
small q5, but their amplitude is significantly smaller, and
they could not be seen by the eye in Fig. 1; we have zoomed
into one of the curves to clarify this statement.
We conclude this subsection with a discussion of the

pressure anisotropy. To quantify our results, we define the
time where the first local extremum in the current and in
the pressure anisotropy appears as the buildup time. The
buildup time of the pressure anisotropy decreases slightly
with increasing magnetic field. There then exists a cross-
over in the system as a whole as we vary B: for small B,
the pressure anisotropy builds up faster than the current,
whereas for large B, such behavior is reversed. As we
increase axial charge, the transition is lost and the vector
current always builds up faster. We denote ΔJ and ΔP for
the vector current and pressure, respectively, and plot the
ratio of both quantities in Fig. 3.

FIG. 2. Vector current (upper plot) and dynamical pressure
anisotropy (lower plot) for fixed Chern-Simons coupling α ¼ 1.5
and fixed large axial charge density q5 ¼ 1.5. The magnetic field
B is f0.5; 1.0; 1.5; 2.0g. Even though q5 is fixed, the dimension-
less ratio μ5=T (in the final state) is different for each simulation.
In particular, we find μ5=T ¼ f0.11; 0.06; 0.04; 0.02g for the
would-be final equilibrium state.

FIG. 3. Ratio of buildup time for current and pressure
anisotropy as a function of the magnetic field for small and
high axial charge for fixed anomaly α ¼ 1.5.
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B. α dependence

In quantum field theory, the anomaly coefficient is fixed
by the fermion spectrum. However, in the context of
holography, the anomaly coefficient appears as a parameter
of the holographic model that may be varied at will. We
shall study its effect for two qualitatively different values of
axial charge while keeping the magnetic field fixed at
B ¼ 2, or B=

ffiffiffiffiffi
ϵL

p ¼ 0.58 in dimensionless units. Results
for small and high axial charge are shown in Figs. 4 and 5,
respectively.
The vector current builds up faster and develops oscil-

latory behavior as we increase α regardless of the magni-
tude of q5. This is the same effect as we observed in the
previous section. Hence, increasing either α or B results
qualitatively in analogous results. At small charge (see
Fig. 4), the evolution of the pressure seems to be governed
solely by B and is independent of α. Zooming in on the tail
of the curve shows that ξ4 slightly depends on the anomaly
coefficient α; however, due to the small value of the axial

charge, the effect is negligible. The situation is clearer for
larger axial charges q5 (see Fig. 5): increasing α yields
again undamped oscillations, yet the buildup time remains
constant. In Fig. 6, we show the ratio between the buildup
time of the vector current and pressure anisotropies as a
function of the Chern-Simons coupling.

C. Matching to QCD

1. Parameters

In this subsection, we aim to provide simulations in the
parameter range that is experimentally relevant for the
quark-gluon plasma (QGP). We obtain estimates for
the parameters in our model by matching to known
QCD results—i.e., the entropy and the anomaly.
Under an axial gauge transformation, our action has the

mixed anomalyACS ¼ α
2κ2
. In order to get an estimate for κ,

we take the entropy of a black brane:

FIG. 4. Vector current (upper plot) and dynamical pressure
anisotropy (lower plot) for fixed magnetic field B ¼ 2 and fixed
small axial charge q5 ¼ 0.2. In dimensionless units, the simu-
lations are for B=T2 ¼ 10.34 and a final equilibrium value of the
axial chemical potential corresponding to μ5=T ¼ f0.104; 0.053;
0.037; 0.016g, respectively.

FIG. 5. Vector current (upper plot) and dynamical pressure
anisotropy (lower plot) for fixed magnetic field B ¼ 2 and fixed
large axial charge q5 ¼ 1.5. In dimensionless units, the simu-
lations are for B=T2 ¼ f10.66; 10.39; 10.35; 10.35g and a final
equilibrium value of the axial chemical potential corresponding
to μ5=T ¼ f0.802; 0.396; 0.278; 0.119g, respectively.
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sBH ¼ A
4GN

¼ 4π4T3

2κ2
: ð3:4Þ

Now, we want to match these expressions to the entropy
of QCD at finite temperature and eventually to the anomaly.
First, we need to fix how many flavors we take into
account. The up and down quarks are light, whereas the
strange quark has a mass of around 95 MeV. The crossover
temperature of QCD is at around 175 MeV. Therefore, we
include the strange quark in our counting—i.e., we match
to three-flavor QCD. The Stefan-Boltzmann value of the
entropy density is

sSB ¼ 4

�
νb þ

7

4
νf

�
π2T3

90
; ð3:5Þ

where νb ¼ 2ðN2
c − 1Þ and νf ¼ 2NcNf, with Nc ¼ 3 and

Nf ¼ 3. Note that the Stefan-Boltzmann value of the
entropy is reached only for asymptotically high temper-
atures. Typically, the entropy at the temperatures of interest
is lower. As a ballpark value, we take a factor of 3=4,
which is the one that arises in the strongly coupled N ¼ 4
SYM theory [37]. QCD lattice simulations also indicate a
reduction by a factor of around 0.8 at moderate temper-
atures (see, e.g., Ref. [38]). Thus, we match our holo-
graphic model to QCD by

3sSB
4

¼ sBH; ð3:6Þ

from which we read off κ2 ¼ ð24π2Þ=19 ≈ 12.5.
On the other hand, the axial anomaly in three-flavor

QCD is

AQCD ¼ 2
Nc

32π2

�
4

9
þ 1

9
þ 1

9

�
¼ 1

8π2
; ð3:7Þ

where the factor 2 comes from the sum over right- and left-
handed fermions and we sum over the squares of the electric
charges of up, down, and strange quarks in the bracket.
We can get the value for the Chern-Simons coupling by
matching the anomaly ACS ¼ AQCD, and this leads to

α ¼ 6

19
≈ 0.316: ð3:8Þ

Let us finally discuss some physical considerations for
the QGP. The strength of the temperature, magnetic field,
and chemical potential in typical nucleations of the QGP at
RHIC and LHC are given in Table I.
They provide us with two independent dimensionless

quantities, which have to be adjusted in the numerical
simulations with our two free parameters ðϵL; q5Þ. It turns
out that fixing the dimensionless ratio ϵB=B2 gives a unique
B=T2; hence, we work with ϵB and then compute the
associated ϵL for the simulation through Eq. (3.2).
In contrast to the previous sections, we show the full

pressure anisotropy evaluated at the physical renormaliza-
tion scale μ ¼ ffiffiffiffi

B
p

in this section:

δPi ≡ 2κ2
ΔPB

B2
¼ 12ξ4ðvÞ=B2 þ 1

2
logðBL2Þ − 1

4
: ð3:9Þ

Fixing ϵB=B2 in Eq. (3.2) does not fix f2 and B uniquely
but rather gives us Bðf2Þ. This means that at fixed ϵB=B2

and vanishing initial dynamical anisotropy ξ4ð0Þ ¼ 0, we
are confronted with a one-parameter family of relative
pressures of the initial state [Eq. (3.9)] depending on the
value of the magnetic field B (for L ¼ 1). We shall exploit
this feature to study equilibration of the pressure and
current for several nonequivalent initial states by consid-
ering different values of δPi.

2. Simulation

In Figs. 7–9, we show the numerical results for the out-
of-equilibrium CME with the physical parameters esti-
mated in the previous sections. We fix our initial state by

FIG. 6. Ratio of buildup time for the current and pressure
anisotropy as a function of the Chern-Simons coupling α for
small and high axial charge and fixed B ¼ 2.

TABLE I. Parameters used in our simulations. For the temper-
ature, we take a lower value of roughly twice the critical
temperature and a high value of roughly six times the critical
temperature. The values for the magnetic field are taken from
Ref. [39]. Estimates for the axial chemical potential are very
uncertain, and we take a small value of 10 MeV for both. Due to
the considerable uncertainties in the values of the parameters and
also the lifetime of the magnetic field, these should be viewed as
ballpark values representative for RHIC and LHC physics.

RHIC LHC

T 300 MeV 1000 MeV
μ5 10 MeV 10 MeV
B m2

π 15m2
π
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setting the dynamical pressure anisotropy to zero, i.e.,
ξ4ð0Þ ¼ 0, fixing the ratio ϵB=B2 and the axial charge
density q5 so that we reach the temperature T and the axial
chemical potential μ5 indicated in Table I as the final
equilibrium configuration.
In Figs. 7 and 8, we present the results for the pressure

and the current for the RHIC and LHC parameters,
respectively. Neither the vector current nor the pressure
anisotropy shows oscillatory behavior. The former takes
slightly more time to build up than the latter. On one hand,
we observe that in the RHIC simulation in Fig. 7, the
peak in the vector current is reached at vpeak ∼ 0.54 fm=c.
On the other hand, the pressure anisotropy reaches the peak
at vpeak ∼ 0.48 fm=c.
We display the equilibration times for the simulation

with the RHIC parameters in Table II. We use the definition
of Chesler and Yaffe to label the equilibration times [21]—
i.e., the times when the pressure anisotropy and the current
are within 10% of their final values. As for the LHC in
Fig. 8, we find the peak in the vector current at
vpeak ∼ 0.14 fm=c, which is also the time that the pressure

anisotropy reaches its peak. We tabulate the equilibration
times for the simulation with the LHC parameters in
Table III. Note that the equilibration times for the LHC
parameters are about 1=3 shorter than in the RHIC case.
Another interesting feature is that the equilibration time
for the pressure slightly depends on the initial state in a
nonmonotonic fashion. The change in tendency can be
understood as a consequence of choosing an inital state
with a pressure anisotropy that is either above or below
the final equilibrium state. Actually, in the regimewhere the
initial and final states do not differ more than 10%, the
equilibration time prescribed above is rather ill-defined,
because we could have a curve in which pressure does not
deviate much from the final value yielding veq ¼ 0.
However, this problem does not arise for the parameters
chosen in our simulations.
An estimate for the lifetime of the magnetic field has

recently been given in Ref. [40] as τB ∼ 115 GeV fm=cffiffi
s

p , whereffiffiffi
s

p
is the energy of the collision. At RHIC and LHC,

the collisions take place at around
ffiffiffi
s

p
≃ 200 GeV andffiffiffi

s
p

≃ 5000 GeV, respectively, which yield lifetimes of
τRHICB ∼ 0.6 fm=c and τLHCB ∼ 0.02 fm=c. In this context,

FIG. 7. Vector current (upper plot) and pressure anisotropy
(lower plot) as a function of time for the physical parameter
estimates for RHIC in Table I: i.e., anomaly α ≃ 0.316, for
mπ ¼ 140 MeV. The pressure anisotropy is for B ¼ m2

π; the
results for B ¼ 0.1m2

π are shown in Fig. 9.

FIG. 8. Vector current (upper plot) and pressure anisotropy
(lower plot) for the physical parameter estimates for LHC in
Table I: i.e., anomaly α ≃ 0.316. The pressure anisotropy is for
B ¼ 15m2

π; the results for B ¼ 1.5m2
π are shown in Fig. 9.
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the equilibration and buildup times extracted from our
simulations are of high significance. It is clear from the
equilibration times that for the RHIC parameter choice, the
current reaches its equilibrium value before the magnetic
field vanishes. On the contrary, for the LHC parameter
choice, the magnetic field is short lived and is gone before
the current could start to build up. Hence, we conclude that
the chiral magnetic effect should only be observable at
RHIC and not at LHC.
We notice that ΔP=B2 for fixed ϵB=B2 yields the same

final equilibrium state independent of the value of B as we
expect. Even though the initial state is different for each
run, all curves cut at the same point during the evolution.
The current is not influenced by the specific choice of B as
long as the dimensionless ratios stay constant.
In heavy ion collisions, the magnetic field drops almost

instantaneously from its peak value indicated in Table I,
where it stays for most of its remaining lifetime. Since we
consider the magnetic field as static and the drop happens
almost instantaneously, we performed a second simulation
for our parameter estimates with 10% of the peak magnetic
field in Table I. The corresponding results for the current
are the blue curves in Figs. 7 and 8, and the results for the
pressure are depicted in Fig. 9. Even though the smaller
magnetic field influences the overall absolute values of
the observables, the equilibration times remain effectively

unchanged, which may be seen from the results tabulated in
the lower columns of Tables II and III.
In the parameter estimates in Table I, the estimate for

the axial chemical potential is the most uncertain one in the
literature. To prove that our estimations for the buildup
and equilibration times of the current and the pressure
are not influenced by choosing the particular value of
μ5 ¼ 10 MeV, we provide analogous simulations at a
ten-times-larger axial chemical potential of μ5¼100MeV
in Appendix B. The time-dependent current and the pressure
anisotropy are depicted in Figs. 11 and 12, respectively.
Furthermore, we tabulate the equilibration and buildup times
in Table IV. The bottom line is that our results for the buildup
times, and thus the presence of the chiral magnetic effect in
heavy ion collisions at RHIC and LHC, remain qualitatively
unchanged at the larger axial chemical potential.

IV. CONCLUSIONS

In this work, we investigated the out-of-equilibrium
behavior of the chiral magnetic effect in the presence of
strong external magnetic fields. We characterized how the
chiral anomaly, the magnetic field, and the axial charge

TABLE II. Equilibration times veq for the RHIC simulation at
B ¼ m2

π and B ¼ 0.1m2
π; δPi labels the different initial conditions

for the pressure anisotropy [Eq. (3.9)].

RHIC B ¼ m2
π

δPi −2.55 −1.75 −1.05 −0.60 0.00

vhJieq in [fm=c] 0.380 0.380 0.380 0.380 0.380

vhΔPieq in [fm=c] 0.383 0.418 0.334 0.344 0.350

RHIC B ¼ 0.1m2
π

δPi −3.70 −2.90 −2.55 −2.21 −1.75
vhJieq in [fm=c] 0.380 0.380 0.380 0.380 0.380

vhΔPieq in [fm=c] 0.383 0.418 0.310 0.334 0.344

TABLE III. Equilibration times for the LHC simulation at
B ¼ 15m2

π and B ¼ 1.5m2
π; δPi labels the different initial con-

ditions for the pressure anisotropy [Eq. (3.9)].

LHC B ¼ 15m2
π

δPi −2.55 −1.75 −1.40 −1.05 −0.60
vhJieq in [fm=c] 0.114 0.114 0.114 0.114 0.114

vhΔPieq in [fm=c] 0.114 0.187 0.085 0.098 0.103

LHC B ¼ 1.5m2
π

δPi −3.70 −2.90 −2.55 −2.21 −1.75
vhJieq in [fm=c] 0.114 0.114 0.114 0.114 0.114

vhΔPieq in [fm/c] 0.114 0.187 0.085 0.098 0.103

FIG. 9. Pressure anisotropy for RHIC (upper plots) and LHC
(lower plot) with 10% of the magnetic field compared to the
pressures in Figs. 7 and 8.
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density influence the nonequilibrium response of the chiral
magnetic vector current and the pressure anisotropy, and
how they affect their equilibration and buildup times.
To quantify the real-time response of the vector current

and the anisotropy, we performed a parameter scan. For a
fixed strength of the chiral anomaly, we investigated the
dependence of the response on the magnetic field B for
small and large values of the axial charge density q5.
Increasing the magnetic field at a fixed strength of q5
eventually leads to long-lived oscillations in the vector
current, which send the equilibration time to infinity. This is
in agreement with the QNM results for our system obtained
in Refs. [24,25]. Furthermore, the buildup time of the
vector current gets progressively smaller for increasing the
magnetic field. Both effects might be rooted in the presence
of Landau levels in our system. For large magnetic fields,
the system is effectively 1þ 1-dimensional, and the phys-
ics is totally dictated by the lowest Landau level. Keeping
the magnetic field constant while increasing the axial
charge density simply increases the final value of the
current. The buildup time for the anisotropy also decreases
for an increasing magnetic field, even though the effect is
small. However, increasing the axial charge density dra-
matically affects the pressure anisotropy, since it induces
long-lived oscillations which appear to be absent in the
setup without chiral anomalies [32]. Indeed, we show
explicitly that the anomaly coefficient has to be sufficiently
large in order to observe these long-lived oscillations.
Interestingly, we observe a crossover in the buildup times

of the vector current and the anisotropy at small axial charge.
For small magnetic fields, the pressure anisotropy builds up
faster, while for large magnetic fields the roles are reversed.
For large axial charges, the vector current always builds up
faster than the anisotropy independent of the magnetic field.
Finally, we aim to provide insights on the buildup time of

the chiral magnetic current in heavy ion collision experi-
ments at RHIC and LHC. Within our setup, the buildup time
of the chiral magnetic effect is smaller than the lifetime of
the magnetic field and should thus be an observable in heavy
ion collisions at RHIC [41]. However, the lifetime of the
magnetic field at LHC seems to be so short that the magnetic
field already drops to zero before the chiral magnetic current
can build up in a meaningful way. Furthermore, we find that
in both cases, the buildup time of the chiral-magnetic current
is approximately as fast as the buildup time of the pressure
anisotropy. Interestingly, in the RHIC case we find in the
presence of the chiral anomaly a shorter equilibration time
of ∼0.35 fm=c [for an initial state with δPið0Þ ¼ 0] com-
pared to the result of Chesler and Yaffe, which estimates the
equilibration time as ∼0.5 fm=c [21]. This is in agreement
with the equilibration time estimate of ∼0.3 fm=c for
plasma temperatures of T ∼ 300–400 MeV [42]. Note that
the buildup time of the chiral magnetic current is with
∼0.38 fm=c in the same parameter range. The parameter
estimate for the axial chemical potential seems to be the most

uncertain one in the literature. To prove that our results do
not rely on the given parameter estimate of μ5 ¼ 10 MeV,
we verified that our results for the buildup and equilibration
times remain qualitatively unchanged for a ten-times-larger
axial chemical potential.
In the future, it would be interesting to generalize our

setup to more realistic cases of asymmetric shockwave
collisions as initiated in Refs. [43,44]. It would also be
very interesting to consider time-dependent, dynamical
magnetic fields as they are present in heavy ion collisions.
Finally, it would be interesting to understand how the
quantum critical point investigated in Refs. [45–47]
influences the nonequilibrium dynamics of the system.
We leave these questions open for future investigations.
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APPENDIX A: NUMERICAL METHODS

In this Appendix, we explain the numerical methods
used throughout this work. We use the so-called character-
istic formulation of Bondi and Sachs8 established in holo-
graphic setups by Refs. [21,22,49–51]. The big advantage
of this approach is that a set of coupled partial differential
equations decouple in a nested structure of ordinary differ-
ential equations in which the equations may be solved
successively. In terms of the characteristic formulation,
we solve the ordinary differential equations on a given
time slice by means of pseudospectral methods. The main
idea of pseudospectral methods (for an introduction, see
Ref. [52]; here we follow Refs. [53–55]) is to expand the
solution uðxÞ ¼ P∞

n¼0 cnϕnðxÞ to the differential equation
in a basis fϕnðxÞg and approximate the exact solution uðxÞ
by a finite number N of basis polynomials ϕnðxÞ

uðxÞ ≈ uNðxÞ ¼
XN
n¼0

cnϕnðxÞ: ðA1Þ

As basis functions, we choose Chebychev functions:

TkðxÞ ¼ cosðk arccosðxÞÞ: ðA2Þ
We can rewrite the first and second derivative by using
the derivatives of the basis functions—i.e., ϕ0

mðxÞ ¼P
N
n¼0 D̂mnϕnðxÞ, ϕ00

mðxÞ ¼
P

N
n;l¼0 D̂mnD̂nlϕlðxÞ. With the

differentiation matrices, we can rewrite derivatives so that
they act on the coefficients—for example,

8Note that there is a second approach from numerical relativity
established in Ref. [48].
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u0ðxÞ ≈
XN
n¼0

cnϕ0
jðxÞ ¼

XN
n;m¼0

cnD̂nmϕmðxÞ ¼
XN
n¼0

c0nϕnðxÞ:

ðA3Þ

To discretize the differential equations in the radial direc-
tion, we use a Chebychev-Lobatto grid with N grid points
given by

xi ¼ cosφi ¼ cos
πi
N
: ðA4Þ

We may solve the equations of motion for the axial
gauge field by introducing

q5 ≡ 8αBVðv; uÞ þ u2Q0
5ðv; uÞΣðv; uÞ3 ðA5Þ

and simplify it further by introducing q̃5ðv; u; α; BÞ ¼
q5 − 8αBVðv; uÞ. As explained in Ref. [22], the condition
for fixing the apparent horizon to uh ¼ 1 on the initial time
slice reads dΣðuhÞ ¼ 0. We can keep the apparent horizon
fixed at uh ¼ 1 by imposing that the time derivative of
the aforementioned equation vanishes. By using the equa-
tions of motion, we find that we can implement this as a
boundary condition on the blackening factor f at the
horizon—i.e.,

FIG. 10. Chebychev coefficients for a large magnetic field
B=

ffiffiffi
ϵ

p ¼ 2.31, q5=ϵ3=4 ¼ 0.31, α ¼ 6=19.

FIG. 11. Vector current (upper plot) and pressure anisotropy
(lower plot) for the physical parameter estimates for RHIC at
chemical potential μ5 ¼ 100 MeV (otherwise with the values
from Table I) and anomaly α ≃ 0.316.

FIG. 12. Vector current (upper plot) and pressure anisotropy
(lower plot) for the physical parameter estimates for LHC at
chemical potential μ5 ¼ 100 MeV (otherwise with the values
from Table I) and anomaly α ≃ 0.316.
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2fðv;1ÞðB2Σðv;1Þ2e−2ξðv;1Þ þ q̃25 − 24Σðv;1Þ6Þ
− 2Σðv;1Þ4ðdVðv;1Þ2e2ξðv;1Þ þ 3dξðv;1Þ2Σðv;1Þ2Þ ¼ 0:

ðA6Þ

We start with an initial profile for V and ξ. The initial data
also contain the energy density ϵ ¼ −3f2, the axial charge
density q5, the Chern-Simons coupling α, and the magnetic
field B. On a given time slice, we solve the set of equations
in the following order: Eq. (2.11) for Σ, Eq. (2.12) for dΣ,
Eqs. (2.10) and (2.13) for dV and dξ, and Eq. (2.14) for
the blackening factor f. Equation (2.15) functions as a
constraint. Every time step, we can extract _λ by reading
_λ ¼ −fsðu ¼ 0Þ=2. We impose the constraint equa-
tion (2.15) in terms of the horizon boundary condition
for f [Eq. (A6)] and at the conformal boundary in terms
of dΣsðu ¼ 0Þ ¼ 0. Finally, to evolve in time, we use a

fourth-order Runge-Kutta with an appropriately small
time step.
To improve the convergence, we subtract the logarithmic

terms up to the appropriated order and work with redefined
functions which are given by

Σðv; uÞ ¼ 1

u
þ λðvÞ þ u5Σsðv; uÞ;

dΣðv; uÞ ¼ 1

2
Σðv; uÞ2 þ dΣsðv; uÞ þ ϵ

�
1

u
þ λðvÞ

�
−2

−
B2

12
log

�
1

u
þ λðvÞ

��
1

u
þ λðvÞ

�
−2
;

ξðv; uÞ ¼
�
1

u
þ λðvÞ

�
−3
ξsðv; uÞ −

B2

12
log

�
1

u
þ λðvÞ

��
1

u
þ λðvÞ

�
−4
;

dξðv; uÞ ¼
�
1

u
þ λðvÞ

�
−2
dξsðv; uÞ −

B2

6
log

�
1

u
þ λðvÞ

��
1

u
þ λðvÞ

�
−3
;

fðv; uÞ ¼
�
1

u
þ λðvÞ

�
2

þ fsðv; uÞ þ 2ϵ

�
1

u
þ λðvÞ

�
−2

−
B2

6
log

�
1

u
þ λðvÞ

��
1

u
þ λðvÞ

�
−2
;

Vðv; uÞ ¼
�
1

u
þ λðvÞ

�
−1
Vsðv; uÞ;

dVðv; uÞ ¼ dVsðv; uÞ:

We monitor the accuracy of our numerical algorithm by
different methods. First, we check the constraint equation
throughout the time evolution and monitor how accurately
the apparent horizon stays at 1. Second, we compare our
solution to a solution with a larger number of grid points
and check that it does not change significantly. Last,
we check the Chebychev coefficients of our numerical
solution, as presented in Fig. 10 for a given time and ensure
that the coefficients drop to the required precision.

APPENDIX B: SIMULATIONS FOR μ5 = 100 MeV

In this Appendix, we provide simulations with a ten-
times-larger chemical potential compared to the parameter
estimates given in Table I. We keep all the other parameters
the same, and Fig. 11 has to be compared with Fig. 7 (for
RHIC at B ¼ m2

π), and Fig. 12 compared with Fig. 8 (for
LHC at B ¼ 15m2

π). We tabulate the equilibration and
buildup times for these simulations in Table IV.
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