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Conserved charges in theories with gauge symmetries are supported on codimension-2 surfaces in the bulk
spacetime. It has recently been suggested that various classical formulations of gravity dynamics display
different symmetries, and paying attention to the maximal such symmetry could have important consequences
to further elucidate the quantization of gravity. After establishing an algebraic off-shell derivation of the
maximal closed subalgebra of the full bulk diffeomorphisms in the presence of an isolated corner, we show
how to geometrically describe the latter and its embedding in spacetime, without constraining the geometry
away from the corner, such as by assuming a foliation. The analysis encompasses arbitrary embedded
surfaces, of generic codimensions k. The resulting corner algebraAk, calling S the embedded surface andM
the bulk, is that of the group ðDiffðSÞ ⋉ GLðk;RÞÞ ⋉ Rk. This result is independent of any dynamics or
pseudo-Riemannian structure in the bulk. We then evaluate the Noether charges of A2 for Einstein-Hilbert
dynamics and show that the Noether charge algebra gives a representation of the algebraA2, for finite proper
distance corners in the bulk, while all other charges associated with DiffðMÞ vanish.
DOI: 10.1103/PhysRevD.104.046005

I. INTRODUCTION

In the Hamiltonian [1–5] or covariant phase space
formulation [6–12] of physical theories, focus is often
put on codimension-1 hypersurfaces in spacetime, upon
which one imagines specifying initial field configurations.
Nevertheless, it has been known since the time of Noether’s
seminal paper [13], and perhaps before in some contexts,
that conserved gauge charges have support only in codi-
mension 2 in spacetime. This arises for example in
electrodynamics, via Gauss’s law, in which the codimen-
sion-2 surfaces are usually taken to be spheres surrounding
charged matter. Such charges are also the objects of interest
in the Lagrangian reducibility parameter method initiated in
[14,15] and further developed in [16,17]. We will follow
more recent literature and refer generically to spacelike
codimension-2 surfaces, upon which charges may be
defined, as corners. The interest in corners goes well
beyond the classical dynamics of gauge theories and
gravity; indeed in addition to their relevance to conserved
charges, examples of corners appear as entanglement cuts
in quantum field theories, and as horizons and celestial

spheres, and thus scattering amplitudes. As first discussed
in [18,19], it is therefore expected that corners (and
symmetries thereof) should play a prominent role in the
quantization of any gauge theories, gravity included, a
concept that was also recently emphasized in [20–22]. In
the case of gravity at least, one has in mind here a sort of
generalized holographic structure, in which the basic
building blocks of a quantum theory would be defined
on corners, and “bulk” geometries in which they are
thought to be immersed arising in some semiclassical limit.
In that context, it is indeed of the utmost importance to
organize the physics of the corners in a clear geometric
fashion, with the symmetries (whether they be spontane-
ously broken or not) and their representation theory clearly
elucidated.
In the absence of any specified geometric structure

defining a particular locus of points in a manifold M of
dimension d, the group of transformations allowed onM in
gravity is its group of diffeomorphisms DiffðMÞ, and it is
purely a redundancy of the theory. This is the basis of any
geometric theory. In general relativity, it is traditional to
specify a pseudo-Riemannian structure on the bulk, and one
often considers particular classes of metrics or invokes
simplifying assumptions. But foremost, one almost always
chooses a specific gauge (or choice of coordinates). Given
recent developments on the relevance of edges and corners
[19–25], it has become increasingly clear that gauge fixing
in an empty spacetime is quite different than gauge fixing in
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a spacetime with specified substructures, such as corners,
and indeed one expects to find in general degrees of
freedom that have support on such substructures that would
not be considered physical in the bulk. This is by no means
a new or controversial idea, as it is a well-known feature,
for example, of topological gauge theories. Indeed, in the
context of entanglement for example, this is the root
cause of the spatial nonfactorizability of Hilbert space in
gauge theories. In many applications, corners can be
regarded as isolated submanifolds1 in M, and the local
geometry in a neighborhood of a corner serves to describe
the embedding without specifying bulk dynamics. One of
the purposes of this paper is to describe the relevant
geometry in a neighborhood of a corner in a general
way without specifying additional structure such as folia-
tions. Another purpose is to separate the aspects that pertain
to a particular dynamical theory from those that are purely
geometric (or, therefore, “kinematic”). In particular, in the
context of a theory involving two derivatives of a metric on
M, without specifying particular dynamics or a correspond-
ing classical solution, one expects to be able to constrain
the local geometry up to and including a first derivative.
Constraining the geometry further in this context is
equivalent to introducing dynamics.
The presence of a corner then removes part of the bulk

redundancies, making them true physical symmetries, with
nonvanishing surface charges. These symmetries are the so-
called corner symmetries,2 and to our knowledge, they
appeared first in the literature in Ref. [2]. Indeed, given a
manifold S of dimension n ¼ d − 2 embedded or immersed
in M, it is natural to regard data (an induced metric,
connections, etc.) on the manifold as background fields
whose components respond to changes of coordinates on S.
From this point of view, we regard DiffðSÞ as a back-
ground symmetry. This background symmetry can be
expected to be extended, corresponding to freedom in
how S is embedded in M.3 The embedding of S in a
manifoldM can be specified as a map ϕ∶S → M, although
we are primarily interested in the corresponding injection
dϕ∶TS → TM. The latter map can be thought of in terms of
a (generally nonintegrable) screening distribution (that is, a
sub-bundle of TM), requiring that the normal forms
defining the distribution pullback to zero on S. We will

make use of this construction in the present paper, and we
note that we have recently made use of similar tools in
studying local Weyl invariance in holography [26] and in
constructing the Carroll fiber bundle [27] on null geom-
etries. The construction makes manifest additional sym-
metries, contained in DiffðMÞ, that act naturally on the
embedding. Indeed, one of our first tasks in this paper will
be to show that, in the more general context of codimension
k (i.e., d ¼ nþ k), there is a maximal closed subalgebra of
the algebra diffðMÞ that organizes the local geometry,
which we call the maximal embedding algebra.
One of the central concepts in this construction is the

relevance of a so-called Ehresmann connection which
appears in a suitable parametrization of a metric on M
in the presence of a corner. Indeed we will parametrize the
bulk metric using a generalized version of the so-called
Randers-Papapetrou form [28–30]. This is an alternative to
the more commonly utilized Zermelo parametrization [31],
which, as we will explain, implicitly assumes a codimen-
sion-2 foliation. The Randers-Papapetrou form is, in
contrast, appropriate in the context of an isolated codi-
mension-k surface. This fact is borne out by an analysis and
interpretation of the symmetries [corresponding to the
aforementioned maximal subalgebra of diffðMÞ] that act
simply on the fields appearing in the parametrization. This
phenomenon is analogous to the appearance of bms
algebras on Carroll structures [27]. As we will see, the
interplay of algebraic and geometric features permeates our
analysis in a coherent and simple way.
There is another reason for utilizing a generalized

Randers-Papapetrou parametrization. Since the codimen-
sion-2 corner is the support for surface charges, we will
take it to be spacelike, with any notion of time correspond-
ing to a normal extrinsic direction. Correspondingly, the
normal bundle has signature ð−1; 1Þ. By reversing the
logic, while Zermelo foliates corners, Randers-Papapetrou
foliates the normal bundle, described geometrically, for
example, recently in [32]. This is a geometric way to
describe the fact that there is a two-dimensional light cone
for each point on S, a picture that is certainly relevant for
example in the description of scattering amplitudes [33–37]
on asymptotically flat geometries where the corner is the
celestial sphere: gravitons or photons freely propagate
along straight lines on M, hitting S at a point. To some
extent this resonates with the original discussion that led
Penrose to the definition of the Penrose-Carter diagrams
[38–40]. Furthermore, it is in line with the logic used in
methods in general relativity to describe Einstein solutions,
like the Newman-Penrose [41] or Geroch-Held-Penrose
[42] formalisms.
The paper is organized as follows. In Sec. II A, we

describe the construction of a codimension-k distribution in
TM as the kernel of a set of 1-forms. In suitable adapted
coordinates, these 1-forms in general include a set of
functions that will have an interpretation as components

1Throughout the paper, our analysis will be essentially local
and will concern mostly properties of tangent bundles rather than
the corresponding base spaces themselves. Thus, one can think in
terms of the submanifolds under discussion as being immersions,
but nevertheless we will often use the language of embeddings for
clarity.

2We use the word symmetry here to denote an underlying
group of transformations of interest. It should be noted that we are
not using it in the sense of a property of some action or of some
particular background.

3Often in the literature, a related problem is addressed where
one is interested in fixing some geometric structures on S and
then considering the transformations that preserve this structure.
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of an Ehresmann connection. The condition that these
forms pull back to zero on S is shown to correspond to a
flatness condition on the pullback connection, which is
weaker than an integrability condition. In Sec. II B, we
establish the closure of a subalgebra of diffðMÞ that
corresponds to symmetries of a codimension-k submani-
fold. The maximal such algebra is the algebra Ak ¼
ðdiffðSÞ ⨭ glðk;RÞÞ ⨭ Rk of the group ðDiffðSÞ ⋉
GLðk;RÞÞ ⋉ Rk. By construction, the subalgebra is real-
ized in the bulk through the Lie bracket of certain vector
fields on M, some of which vanish on S. In Sec. II C, we
show that the connection appearing in the parametrization
of the normal forms defining the distribution give rise,
through an expansion near S, to a collection of fields
defined on S that transform nonlinearly (that is, as gauge
fields) with respect to Rk and GLðk;RÞ. [In a later section,
we will show that a connection for DiffðSÞ arises by
induction from the bulk Levi-Civita connection upon
introduction of a metric on M.] In this way, the full
symmetry Ak can be thought to be implemented intrinsi-
cally on the isolated surface S.
In Sec. III, we consider the introduction of a metric onM

in the Randers-Papapetrou form, making direct use of the
normal forms discussed earlier. We demonstrate that the
action ofAk on the components of the metric have a simple
geometric interpretation. In Sec. IV,we consider theNoether
charge in the Einstein-Hilbert theory. In this context we are
interested in codimension 2. We show that the nonzero
Noether charges correspond to a subset of the vector fields
generating theA2 diffeomorphisms. This is a generalization
of the results of [25]; indeed we find that the fullA2 algebra
is not realized on the Einstein-Hilbert phase space, but
instead a subalgebra, Ã2 ¼ ðdiffðSÞ ⨭ slð2;RÞÞ ⨭ R2, at
least in the case of a generic surface S (that is, asymptotic
embeddings should be considered separately, and we will
return to them in a separate publication). The R2 factor
corresponds to local translations of the surface (i.e., super-
translations), a symmetry which is spontaneously broken by
any fixed surface S. We show that the algebra of the Noether
charges closes on the phase space (that is, gives rise to a
consistent set of brackets) if we carefully take into account
variations not only of the metric but also of the embedding
itself. The variation of the embedding is required to close the
algebra in the presence of translations, and should be
thought of as corresponding to including the embedding
as part of the field content of the theory. We stress again that
we perform this analysis for finite proper distance corners
and in the context where we do not impose specific gauge
conditions on fields or boundary conditions on the corner.
We show how the results are extended to the case in which
such gauge conditions are imposed, by taking into account
the corresponding field dependence of the vector fields
generating the charges. This effect does not modify the
charges themselves, but it does play a role in the algebra of
the charges, which then involves a modified bracket.

In Sec. IV C, we consider a specific example of the
symmetries of a black hole horizon, and we show in detail
how our formalism compares with the treatment in the
literature, as e.g., [43]. Finally, in Sec. V, we conclude
with comments and directions for future research. In the
Appendix A, we discuss some details of how the bulk Levi-
Civita connection induces a connection on the corner, while
inAppendixBwegive an explicit computation of the change
of embedding and its active versus passive interpretation.

II. INVARIANT DESCRIPTION
OF EMBEDDED SURFACES

In this section we study d-dimensional manifolds M
admitting isolated surfaces S. We begin the discussion with
the geometric aspects of the embedding, and later focus on
algebraic aspects. We emphasize that everything in this
section is off shell in that we will not yet introduce a metric
and thus the discussion is independent of any particular
dynamics.

A. Geometric structure

Consider an isolated codimension-k surface S,
embedded in M,

ϕ∶S → M: ð1Þ

In the case k ¼ 2, this will be a corner, although for the sake
of discussion we leave k arbitrary in this section. By using
the term isolated, we mean that we are not assuming thatM
is foliated, even locally, by such surfaces. Of course this does
not preclude a foliation, but we are not bound by its
existence. What we are assuming in this paper is that S is
embedded (or somewhat more generally, immersed) in M,
and a choice of the map ϕ specifies this embedding. Where
useful, we will denote a choice of coordinates on a local
patch ofS as fσα;α ¼ 1;…; ng, withn ¼ d − k. Given local
coordinates yM onM, the embedding ϕ can be expressed by
giving yM ¼ yMðσÞ. A particularly nice choice that we will
often refer to is wherewe adapt the coordinates such that the
embedding corresponds locally to the vanishing of k
functions, ua ∈ C∞ðMÞ, and the embedded surface has
uaðσÞ ¼ 0; ∀ a ¼ 1;…; k. Furthermore, one often chooses
the coordinates yM ¼ ðua; xiÞ, with the embedding further
given by xiðσÞ ¼ δiασ

α. We will refer to such an embedding
as ϕ0, with ϕ0∶yM0 ðσÞ ¼ ð0; δiασαÞ.
It is natural to introduce a split of the tangent bundle TM

in a vertical rank-k sub-bundle V and a complementary
rank-n horizontal sub-bundle H. The embedding ϕ is
“adapted” to such a structure if

ϕ�ðH�Þ ¼ T�S; ϕ�ðV�Þ ¼ 0; ð2Þ

where ϕ� is the pullback of ϕ and H�; V� are the dual
bundles of H and V. The split of TM in H and V is a local
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statement, preserved only under a subset of the diffeo-
morphisms in M, which we will emphasize below. By
introducing k 1-forms na ∈ T�M (regarded as in V�), we
define H to be the distribution

CkðnaÞ≡ kerðfnagÞ
¼ fX ∈ TMjnaðXÞ ¼ 0; ∀ a ¼ 1;…; kg: ð3Þ

An adapted embedding ϕ is then subject to the condition
(2) that the normal forms na pull back to zero on S,
ϕ�na ¼ 0, that is,

ϕ�naðXÞ ¼ 0 ¼ naðϕ�XÞ; ∀X ∈ TS: ð4Þ

If we specify na, then we should interpret this as a condition
on the embedding.
Let us now introduce local coordinates inM that cover a

neighborhood of an open set in the embedded surface.
As described above, we will refer to a choice of local
coordinates on M as yM ¼ ðua; xiÞ, with a ¼ 0;…; k − 1
and i ¼ 1;…; n. Up to normalization,4 we can write the
forms na as

na ≡ dua − aai ðu; xÞdxi: ð5Þ

Given such a distribution, there is a notion of integrability
which (by the Frobenius theorem) would imply that M is
foliated. Since we are generally interested in just an isolated
embedded surface, we will make no such assumption,
beyond the pullback condition (4). A simple example of a
foliation would be obtained by taking aai ðu; xÞ to identi-
cally vanish, in which case the leaves of the foliation are
just the level surfaces of the ua. The reader familiar with
Ehresmann connections may anticipate that aai ðu; xÞ may
be interpreted in such terms, representing the ambiguity in
lifting vectors in S to a horizontal sub-bundle of TM. We
will establish in what sense such a picture pertains, but we
emphasize that the construction should be thought of as
valid in a neighborhood of the embedded surface, and
certainly not far away. In this sense, we organize tensorial
objects that can be thought of as intrinsic to S; extending
intoM further should be thought of in terms of introducing
dynamics.
To further understand the pullback condition, for an

embedding yMðσÞ ¼ ðuaðσÞ; xiðσÞÞ, we find that the pull-
backs of the bulk forms na are given explicitly by

ϕ�na ¼ ð∂αuaðσÞ − aai ðuðσÞ; xðσÞÞ∂αxiðσÞÞdσα;
ϕ�dxi ¼ ∂αxiðσÞdσα ð6Þ

and so ϕ�na ¼ 0 gives

∂αuaðσÞ ¼ ∂αxiðσÞaai ðuðσÞ; xðσÞÞ≡ aaαðσÞ: ð7Þ

One can understand this as a differential equation for the
embedding ðuaðσÞ; xiðσÞÞ. Equivalently, we interpret this to
mean that aai ðu; xÞdxi pulls back under ϕ to aaαðσÞdσα and
this must be simply ∂αuaðσÞdσα. So one can interpret aaαðσÞ
as a (flat) connection for the normal translation group5 Rk,
which is spontaneously broken by the presence of S, with
the uaðσÞ the corresponding Goldstone modes. Note that
Eq. (7) is not a restriction on aai ðu; xÞ, but on its pullback
once a specific embedding is chosen. What Eq. (7)
expresses is the fact that the assumption that S is embedded
leads to the flatness of the connection aaα on S, with the
choice of gauge for this flat connection determined by the
embedding. In the specific embedding ϕ0 we have aaα ¼ 0,
but nevertheless the u derivatives of aai ðu; xÞ will give rise
to nontrivial intrinsically defined quantities on S that are of
physical interest.
Given the coordinatization (5), it is straightforward to

solve Eq. (3). One finds that the distribution H is spanned
by vector fields Di,

CkðnaÞ ¼ spanfDi ¼ ∂i þ aai ðu; xÞ∂ag: ð8Þ

Therefore, the aai ðu; xÞ have an interpretation in terms of the
components (here in a local trivialization) of an Ehresmann
connection, necessary to lift the ambiguity in the definition
of the distribution (3) as the kernel of the vertical one forms
na. Notice that ∂αxið∂i þ aai ðuðσÞ; xðσÞÞ∂aÞ ¼ ∂α by the
chain rule given in Eq. (7), and thusDi is the push forward of∂α. Consider the Lie bracket

½Di;Dj� ¼ ðDiaaj −Djaai Þ∂a ≡ faijðu; xÞ∂a: ð9Þ

If we interpret faijðu; xÞ as the components of a 2-form and
pull this back to S, we find just faαβðσÞ ¼ ∂αaaβðσÞ −
∂βaaαðσÞ which vanishes given Eq. (7). So indeed, one
can view the pullback condition as a flatness condition for
the translations. Note that this is a statement in S that
therefore does not preclude the distribution H from being
nonintegrable inM. As wewill discuss in Sec. II C, there is a
subset of diffeomorphisms of the form u0ðu; xÞ and x0ðxÞ
under which the field aai transforms as an Ehresmann

4Note that the definition of CkðnaÞ does not constrain the
normalization of the na, and so multiplying the na by functions
on M does not modify the distribution. We also assume that, at
least near the embedded surface, the 1-forms na are nowhere
vanishing and linearly independent, such that the tangent planes
to the image of S are everywhere of the same dimension.

5We make this identification because a nontrivial embedding ϕ
can be thought of as corresponding to a surface described by
uaðσÞ, that is, a local translation with respect to the “trivial”
embedding ϕ0. So this by definition corresponds to a diffeo-
morphism that does not preserve (i.e., moves) the surface.
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connection. While this subset of diffeomorphisms preserves
the split of the tangent bundle, it does not preserve the
isolated surface S. As we will now show, the latter is
preserved only under an even smaller subclass of diffeo-
morphisms included in those just mentioned.

B. Maximal embedding algebra

As we have just seen, a natural choice of embedding is
uaðσÞ ¼ 0; xiðσÞ ¼ δiασ

α; more generally we can regard
this as a specific choice of gauge for the (spontaneously
broken) normal translations, and our parametrization given
in the last section emphasizes the corresponding pure gauge
connection. We interpret the coordinates ðua; xiÞ as adapted
to this trivial embedding, and generally consider embed-
dings that are “close to” the trivial embedding. As such, we
will include in this discussion transformations that corre-
spond to infinitesimal departures from this gauge, which
are precisely the local translations Rk. Indeed, this sym-
metry plays an interesting role in certain applications, as we
will uncover. Given a vector field ξ ¼ ξiðu; xÞ∂i þ
ξaðu; xÞ∂a on M, we expand the components near ua ¼ 0,6

ξbðu; xÞ ¼
X
n¼0

1

n!
ua1…uanξbðnÞa1…an ðxÞ

¼ ξbð0ÞðxÞ þ ξð1Þba1ðxÞua1

þ 1

2
ξð2Þba1a2ðxÞu

a1ua2 þ… ð10Þ

ξiðu; xÞ ¼
X
n¼0

1

n!
ua1…uanξiðnÞa1…an ðxÞ

¼ ξið0ÞðxÞ þ ξið1Þa1 ðxÞua1

þ 1

2
ξið2Þa1a2 ðxÞua1ua2 þ…: ð11Þ

Nevertheless, we are not interested here in studying under
what conditions these expansions are possible to all orders
of ua because, as we will see shortly, there is a natural
truncation at first order.7 We then consider the terms up to
first order in the Lie bracket of two such vector fields,

½ξ
1
; ξ

2
� ¼ ½ξ̂ð0Þ1ðξbð0Þ2Þ − ξð1Þ1baξ

a
ð0Þ2 þ ξð1Þ2baξ

a
ð0Þ1 − ξ̂ð0Þ2ðξbð0Þ1Þ�∂b

þ ½ξjð1Þ2aξað0Þ1 − ξjð1Þ1aξ
a
ð0Þ2 þ ½ξ̂ð0Þ1; ξ̂ð0Þ2�j�∂j þ ucð½−½ξð1Þ1; ξð1Þ2�bc þ ξð2Þ2bcaξ

a
ð0Þ1

− ξð2Þ1bcaξ
a
ð0Þ2 þ ξ̂ð0Þ1ðξð1Þ2bcÞ − ξ̂ð0Þ2ðξð1Þ1bcÞ þ ξ̂ð1Þ1cðξbð0Þ2Þ − ξ̂ð1Þ2cðξbð0Þ1Þ�∂b

þ ½ξjð1Þ2aξð1Þ1ac − ξjð1Þ1aξð1Þ2
a
c þ ½ξ̂ð1Þ1c; ξ̂ð0Þ2�j − ½ξ̂ð1Þ2c; ξ̂ð0Þ1�j þ ξjð2Þ2caξ

a
ð0Þ1 − ξjð2Þ1caξ

a
ð0Þ2�∂jÞ þ…; ð12Þ

where by hats we denote vector fields of the form ξ̂ ¼ ξi∂i. We see that there is a consistent truncation of the full diffðMÞ
algebra generated by vector fields of the form

ξ ¼ ξkð0ÞðxÞ∂k þ ðξað0ÞðxÞ þ ubξð1ÞabðxÞÞ∂a: ð13Þ

Indeed, these vector fields satisfy the closed algebra

½ξ
1
; ξ

2
� ¼ ½ξ̂ð0Þ1; ξ̂ð0Þ2�j∂j

þ ½ξ̂ð0Þ1ðξbð0Þ2Þ − ξ̂ð0Þ2ðξbð0Þ1Þ − ξð1Þ1baξ
a
ð0Þ2 þ ξð1Þ2baξ

a
ð0Þ1�∂b

þ uc½−½ξð1Þ1; ξð1Þ2�bc þ ξ̂ð0Þ1ðξð1Þ2bcÞ − ξ̂ð0Þ2ðξð1Þ1bcÞ�∂b: ð14Þ

6While it is possible that nonanalytic contributions occur in these expansions, we expect it to be always possible to probe a
neighborhood of a point to first order analytically.

7Often in the literature, one encounters vector fields that have further subleading, field-dependent, terms. These occur because in such
contexts one is imposing conditions on fields and requiring that the transformations preserve such conditions. Here we are imposing no
conditions and thus it is consistent to have such a truncation. In any case, the leading terms in the vector fields do determine the gauge
charges and their algebra, at least in the case of finite proper distance corners that we consider in this paper. Later in the paper, in the
context of Noether charges in the Einstein-Hilbert theory with support on general codimension-2 corners, we will return to this issue and
understand what simple modifications must be made.
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To interpret this algebra from the point of view of a corner
S, it is particularly simple to consider the trivial embedding
ϕ0, in terms of which the first line can be interpreted as
simply the push forward of the Lie bracket on S; as such,
we will refer to this as the algebra diffðSÞ, which is itself a
subalgebra of the full bulk algebra. On the third line, we
have the commutator of matrices of the form ξð1ÞabðxÞ,
giving a glðk;RÞ algebra. In addition, the third line
contains terms corresponding to the action of diffðSÞ on
glðk;RÞ. Thus, we have a diffðSÞ ⨭ glðk;RÞ subalgebra,
given that the second line vanishes with ξað0Þ. Without that

restriction the second line contains both diffðSÞ and
glðk;RÞ acting on ξað0ÞðxÞ, which are the vector fields

generating the Abelian algebra Rk corresponding to trans-
lations in the normal directions discussed above (they do
not preserve the uaðσÞ ¼ 0 gauge). Thus the full algebra is
Ak ¼ ðdiffðSÞ ⨭ glðk;RÞÞ ⨭ Rk, which we will generally
refer to as the maximal embedding algebra. This is the
algebra of the group ðDiffðSÞ ⋉ GLðk;RÞÞ ⋉ Rk. The
generators are

ðDiffðSÞ|fflfflfflfflffl{zfflfflfflfflffl}
ξjð0Þ

⋉ GLðk;RÞ|fflfflfflfflffl{zfflfflfflfflffl}
ξð1Þab

Þ ⋉ Rk|{z}
ξað0Þ

: ð15Þ

To summarize, we have

½ξ
1
; ξ

2
�|fflfflffl{zfflfflffl}

Ak

¼ ½ξ̂ð0Þ1; ξ̂ð0Þ2�j∂j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
diffðSÞ

ð16Þ

þ ½ξ̂ð0Þ1ðξbð0Þ2Þ − ξ̂ð0Þ2ðξbð0Þ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffðSÞ acts onRk

þ ξð1Þ2baξ
a
ð0Þ1 − ξð1Þ1baξ

a
ð0Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

glðk;RÞ acts onRk

�∂b ð17Þ

þ uc½−½ξð1Þ1; ξð1Þ2�bc|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
glðk;RÞ

þ ξ̂ð0Þ1ðξð1Þ2bcÞ − ξ̂ð0Þ2ðξð1Þ1bcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffðSÞ acts on glðk;RÞ

�∂b: ð18Þ

This algebra for codimension 2, or at least the diffðSÞ ⨭
slð2;RÞ subalgebra, is the one studied recently in [25],
whose importance was appreciated in [19]. In that context,
this subalgebra is the one that becomes physical on the
codimension-2 corner S, while the rest of the diffðMÞ
transformations keep generating spacetime redundancies. It
is remarkable that with this simple derivation we have
access to such an apparently deep feature of the theory. We
will see in the following sections that a connection for this
full symmetry is contained in the aai ðu; xÞ field together

with the induced connection on S (given a metric in the
bulk, which we will introduce in Sec. III).
Before moving to such a study, we note that Ak, in the

presence of an isolated embedded surface, is the maximal
closed subalgebra of diffðMÞ admitting a finite expansion
in powers of ua. Indeed one finds that including any further
terms beyond those in Eq. (13) leads to an infinite algebra.
For instance, one can consider transformations of the type
u0ðu; xÞ and x0ðxÞ. Including all powers of ua, this algebra is
smaller than diffðMÞ and closes. The biggest consistent
truncation of this algebra to finite powers of ua is then the
algebra Ak. As already stressed, in this work we are not
assuming a codimension-k foliation in M. That is, we are
considering an isolated surface rather than a family of them.
Therefore, transformations of the type u0ðu; xÞ; x0ðxÞ have a
clear geometric interpretation as symmetries on the single
surface (x0ðxÞ) and generic transformations of the extrinsic
space, preserving the split of the tangent bundle. On the
other hand, had we assumed a family of surfaces foliating
the bulk, we would have been naturally interested in
diffeomorphisms acting differently on each leaf, i.e., trans-
formations of the form x0ðu; xÞ, together with u0ðuÞ, that
avoid mixing the coordinates labeling the leaves with the
intrinsic ones. We see therefore that, although there is
nothing fundamentally wrong with introducing a family of
embedded surfaces inM, not only it is not the most general
setup to investigate but also the symmetries we found,
being a particular subset of u0ðu; xÞ; x0ðxÞ, are an indication
that the geometric structure established here is most
suitable.
We should also note that in the case k ¼ 2, the algebra

A2 is not necessarily completely realized on the phase
space of a given dynamical theory. This might happen if
there are simply no degrees of freedom on S that are
charged under some subset of the symmetry. Although we
will not explore all possibilities in the current paper, we
note that this may occur depending on the details of a
specific corner’s embedding, because the symmetries dis-
cussed here are linearly realized via coordinates in the
ambient space (that is, the bulk).
In the special case k ¼ 1, we have the group

ðDiffðSÞ ⋉ RÞ ⋉ R. In the context of asymptotically
anti–de Sitter (AdS) spacetimes with S the conformal
boundary, the first R factor is the Weyl diffeomorphism
discussed in [26]. The second R is a simple translation of
the radial coordinate z, which is usually considered fixed,
the boundary taken at z ¼ 0 (more generally, the translation
can be taken to induce a spacetime-varying cutoff). Another
application of the codimension-1 case occurs in the study of
corners of certain asymptotic realizations of null structures.
In that context, the first R factor is not independent, being
related to the divergence of the DiffðSÞ generators, an
example of a field-dependent transformation introduced to
preserve a particular structure. The second R factor is free
and corresponds to the supertranslations, giving rise to the
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generalized Bondi-Metzner-Sachs (BMS) group occurring
in the asymptotic analysis [44,45].8 We therefore see that it
is important to keep track of the normal translation
symmetry, as it plays a crucial role in specific realizations
of our setup. The generalized BMS group has been further
enlarged recently to include Weyl in [50]; the resulting
group there is ðDiffðSÞ ⋉ RÞ ⋉ R, where the Weyl R
factor has been disentangled from DiffðSÞ. This group is
also discussed in [51] for two- and three-dimensional bulks.

C. Ehresmann connection

Now let us return to the Ehresmann connection that we
first discussed in Sec. II A, encoded in the definition of the
distribution CkðnaÞ. The distribution defines a horizontal
sub-bundle inside TM. Although one can perform arbitrary
diffeomorphisms in M, only a subset of them preserves the
local split of TM into H and V. As we already discussed,
these are the finite transformations of the form u0ðu; xÞ and
x0ðxÞ. Under them, we require that the vertical sub-bundle is
preserved, that is,

n0aðu0ðu;xÞ;x0ðxÞÞ¼Jabnbðu;xÞ; with Jab¼
∂u0a
∂ub : ð19Þ

This requirement implies that the aai transform nonlinearly
as

a0ai ðu0ðu; xÞ; x0ðxÞÞ ¼ J−1ijðJababi þ JaiÞ; with

Jij ¼
∂x0i
∂xj ; Jai ¼

∂u0a
∂xi ; ð20Þ

where we have used that the Jacobian for this finite
diffeomorphism is upper triangular, Jia ¼ 0. It is the last
piece in the transformation of aai in (20) that confers to it the
status of Ehresmann connection under the group preserving
the split.
We now expand infinitesimally the transformation (20).

To do so, we write u0a ¼ ua − ξa and x0i ¼ xi − ξi keeping
both ξa and ξi arbitrary, and as usual we expand the
left-hand side near ðu; xÞ defining a0ai ðu; xÞ ¼ aai ðu; xÞ þ
δξaai ðu; xÞ. We then obtain

δξaai ðu; xÞ ¼ aaj∂iξ
j þ ξj∂jaai þ ξb∂baai

− abi ∂bξ
a − ∂iξ

a: ð21Þ

Due to the semidirect structure in Eq. (15), the finite version
of Eq. (13) falls inside the class of transformations studied

here. Therefore, although so far more general, we can now
restrict our attention to the embedding symmetries gen-
erated by Eq. (13). Expanding the bulk field aai ðu; xÞ near
ua ¼ 0 as

aai ðu; xÞ ¼ að0Þai ðxÞ þ ubað1Þai bðxÞ

þ 1

2
ubucað2Þai bcðxÞ þ… ð22Þ

and using Eq. (21), we can read off the infinitesimal

transformations of að0Þai and að1Þai b under the embedding
symmetry

δξa
ð0Þa
i ðxÞ ¼ ξjð0Þ∂ja

ð0Þa
i þ að0Þaj ∂iξ

j
ð0Þ − ξð1Þaba

ð0Þb
i − ∂iξ

a
ð0Þ

þ að1Þai bξ
b
ð0Þ; ð23Þ

δξa
ð1Þa
i bðxÞ¼ ξjð0Þ∂ja

ð1Þa
i bþað1Þaj b

∂iξ
j
ð0Þ−∂iξð1Þab

það1Þi
a
cξð1Þcb−ξð1Þaca

ð1Þc
i bþað2Þai bcξ

c
ð0Þ: ð24Þ

All of the aðkÞi for k ≥ 2 transform linearly under Ak, and
thus it is consistent to set these to zero.9 In each of these

equations the first two terms are present because að0Þai ðxÞ
and að1Þai bðxÞ transform covariantly under DiffðSÞ. In

Eq. (23), the third term is present because að0Þai ðxÞ trans-
forms as a vector under GLðk;RÞ. The last two terms in
Eq. (23) and the last three terms in Eq. (24) are GLðk;RÞ-
covariant derivatives, indicating that að0Þai ðxÞ is a connec-

tion for Rk and að1Þai bðxÞ a connection for GLðk;RÞ. As
such, it is convenient to introduce notation for the
GLðk;RÞ-covariant derivatives,

Diξ
a
ð0Þ ≡ ∂iξ

a
ð0Þ − að1Þai bξ

b
ð0Þ; ð25Þ

Diξð1Þab ≡ ∂iξð1Þab − að1Þai cξð1Þ
c
b þ ξð1Þaca

ð1Þc
i b

¼ ∂iξð1Þab − ½að1Þi ; ξð1Þ�ab: ð26Þ

This suggests that the embedding symmetries, linearly
realized in M, can be reformulated intrinsically, without
any reference toM itself. In this sense, this is the realization
of a holographic nature of gauge theories. In this section,
we showed the geometric and then the algebraic aspects
of a gravitational theory in the presence of an isolated
embedded surface S. Note though that the discussion has so

8The original BMS analysis [46,47] restricted diffðSÞ to the
globally well-defined conformal Killing isometries of S. The
extension to local, not necessarily invertible, holomorphic map-
pings has been considered in [48], leading to the extended BMS
group. The embedding of BMS in AdS and dS spaces has been
discussed in [49].

9Note that the translation subalgebraRk couples aðk−1Þai to aðkÞai
because translations can be interpreted as moving S in the normal
direction. Fixing to the embedding ϕ0 and setting ξað0Þ and a

ð0Þa
i to

zero then cleanly leaves Eq. (24) as just the transformation of a
GLðk;RÞ connection.
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far been entirely off shell, without even referring to a metric
on M. In the next section, we will introduce a metric and
connection adapted to the embedding.

III. ADAPTED METRICS

In the last section, we have shown that aai transforms as a
connection under the maximal embedding algebra of
diffeomorphisms Ak. At this stage, the reader may be
puzzled by this result for several reasons. First, connections
usually show up in gravitational theories as derivatives of a
metric, and so far we have not made reference to a metric at
all. One should in fact regard this as the power of the
method. Another puzzle concerns how the GLðk;RÞ
connection may show up given that the forms na are
defined to pull back to zero on S, and that would seem to
make the connection disappear. In this section, we will
explain carefully how these puzzles are resolved. While in
the previous section we focused on the embedding, in this
section we start from the bulk endowed with an arbitrary
metric and adapt its description to the embedding.
Given that we have the forms na in hand, without loss of

generality we can introduce a metric for M in the adapted
coordinates as

g ¼ habðu; xÞna ⊗ nb þ γijðu; xÞdxi ⊗ dxj: ð27Þ

In this line element, since the na pull back to zero on S, we
see that γij pulls back to a metric on S, while habðu; xÞ can
be thought of as a metric on the normal fiber at any given
point on S.
The metric (27), especially in the codimension-1 case, is

familiar; in some contexts it would be referred to as of the
Randers-Papapetrou parametrization [28–30]. In this form
of the metric, particular emphasis is given to the spatial
forms dxi. In this regard, Eq. (27) can be viewed as a
specific form, naturally restricted to the problem at hand, of
the standard Newman-Penrose formalism [41], and in
particular the subsequent Geroch-Held-Penrose construc-
tion [42], as arising for instance in the treatment of
asymptotic properties of a spacetime (see [52] and refer-
ences therein).
Note that this form of the metric differs from the form

usually used in the context of foliations (such as in the
Arnowitt-Deser-Misner formalism [1]),

g ¼ h̃abdua ⊗ dub

þ γ̃ijðdxi þ Ni
aduaÞ ⊗ ðdxj þ Nj

bdu
bÞ: ð28Þ

In some contexts, this is referred to as a Zermelo form of the
metric [31]. At any generic point in M, the two metrics are
equivalent and simply correspond to a reshuffling of
notation. However, Eq. (28) is a good parametrization
in the context of a foliated manifold, because the constitu-
ents transform in a compact way under u0 ¼ u0ðuÞ,

x0 ¼ x0ðu; xÞ, which correspond to arbitrary and indepen-
dent diffeomorphisms on each leaf of the foliation along
with reparametrizations of the leaf labels. On the other
hand, the metric (27) is preferred in the context of an
isolated embedded surface because as we will now show,
the (pullbacks of the) constituents transform as intrinsically
defined tensors or connections on the surface with respect
to the diffeomorphisms u0¼u0ðu;xÞ; x0¼x0ðxÞ. We interpret
such diffeomorphisms to correspond to the diffeomor-
phisms of the surface, along with local reparametrizations
of ua. Furthermore, the diffeomorphisms generating the
maximal embedding algebra Ak are a subset of this form,
and not of the form natural to the foliation. It is the presence
of the surface itself that distinguishes the two forms of the
metric; we have in fact already seen the first manifestation
of this, that the translation Rk symmetry is spontaneously
broken. In the recent literature on corners [25], a metric of
the form (28) was chosen. The data forming the connection
for the corner symmetry are then to be found within the
various bulk Christoffel symbols. Although this leads
eventually to correct results, the foliation setup blurs the
geometric organization of the problem. As we will now
uncover, choosing Eq. (27) and working with an isolated
embedding bypasses this problem yielding the sought-after
connection directly in the line element, with a clear geo-
metric interpretation as the connection defining the adapted
split of the tangent bundle.
To explore this further, let us first note that the coordinate

components are

gab ¼ hab; gaj ¼−hababj ; gij ¼ γijþhabaai a
b
j ; ð29Þ

and the inverse is

gab ¼ hab þ γijaai a
b
j ; gaj ¼ γjkaak; gij ¼ γij; ð30Þ

where habhbc ¼ δac and γijγjk ¼ δik.
Infinitesimal diffeomorphisms act as usual as

ðLξgÞab ¼ ξc∂chab þ ξi∂ihab þ hbcBc
a þ hacBc

b; ð31Þ

ðLξgÞai ¼ −ξc∂cðhababi Þ − hcbabi ∂aξ
c þ hac∂iξ

c

− ξj∂jðhababi Þ þ ðγij þ hbcabi a
c
jÞ∂aξ

j

− hababj∂iξ
j; ð32Þ

ðLξgÞij ¼ ξa∂aγij þ ξa∂aðhbcabi acjÞ − hababj∂iξ
a

− hababi ∂jξ
a þ ξk∂kðhbcabi acjÞ

þ hbcabka
c
j∂iξ

k þ hbcabka
c
i ∂jξ

k þ ξk∂kγij

þ γkj∂iξ
k þ γki∂jξ

k; ð33Þ

where for compactness we introduced
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Ba
b ≡ ∂bξ

a − aaj∂bξ
j: ð34Þ

These bulk Lie derivatives induce the following changes in
the metric constituents:

δξhab ¼ ξj∂jhab þ ξc∂chab þ hbcBc
a þ hacBc

b; ð35Þ

δξabi ¼ ξj∂jabi þ abj∂iξ
j − Bb

caci − ∂iξ
b

þ ξc∂cabi − hbaγij∂aξ
j; ð36Þ

δξγij ¼ ξk∂kγij þ ξa∂aγij þ γkjDiξ
k þ γkiDjξ

k: ð37Þ

We now restrict our attention to the maximal embedding
algebra Ak,

ξj ¼ ξjð0ÞðxÞ; ξa ¼ ξað0ÞðxÞ þ ubξð1ÞabðxÞ; ð38Þ

and expand the metric constituents around ua ¼ 0. An
important question arises at this point, concerning the
behavior in ua of the metric constituents as we approach
ua ¼ 0. In considering embedding at (conformally) infinite
distance in the bulk, it is well known that there is a
coordinate-independent pole structure, so that the induced
metric structure is actually an induced conformal class
[38,53]. The coordinate realization of this phenomenon is
that the metric has a pole in terms of the extrinsic
coordinates (as e.g., for k ¼ 1 in AdS, the holographic
coordinate). Although asymptotic surfaces are of signifi-
cant importance in many contexts, and we plan to return to
them in future work, we will in the rest of the current paper
consider embedded surfaces that are at finite proper
distance, imposing therefore that the metric constituents
expand smoothly around ua ¼ 0. This has deep conse-
quences for the Noether charges discussed in the next
section, especially in the relationship to the generalization
of the Weyl symmetry and associated charges [26,54].
Thus, working in this context and restricting our attention
to Eq. (38), we have

δξh
ð0Þ
ab ¼ ξjð0Þ∂jh

ð0Þ
ab þ ðhð0Þbc ξð1Þ

c
a þ hð0Þac ξð1ÞcbÞ þ ξcð0Þh

ð1Þ
ab;c;

ð39Þ

δξa
ð0Þb
i ¼ ðξjð0Þ∂ja

ð0Þb
i þ að0Þbj ∂iξ

j
ð0ÞÞ − ξð1Þbca

ð0Þc
i

þ ð−∂iξ
b
ð0Þ þ ξcð0Þa

ð1Þb
i cÞ; ð40Þ

δξa
ð1Þa
i b ¼ ðξjð0Þ∂ja

ð1Þa
i b þ að1Þaj b

∂iξ
j
ð0ÞÞ

þ ð−∂iξð1Þab þ að1Þai cξð1Þ
c
b − ξð1Þaca

ð1Þc
i bÞ

þ ξcð0Þa
ð2Þa
i bc; ð41Þ

δξγ
ð0Þ
ij ¼ ðξkð0Þ∂kγ

ð0Þ
ij þ γð0Þkj ∂iξ

k
ð0Þ þ γð0Þki ∂jξ

k
ð0ÞÞ

þ ξcð0Þγ
ð1Þ
ij;c; ð42Þ

and so on. We have grouped together terms that correspond
to the transformations under the algebras diffðSÞ, glðk;RÞ,
and Rk, respectively. So we see that under the restricted
diffeomorphisms, the metric constituents transform
appropriately under the algebra Ak of the group

ðDiffðSÞ ⋉ GLðk;RÞÞ ⋉ Rk: hð0Þab and γð0Þij are, respec-
tively, scalars and a tensor with respect to DiffðSÞ and a
tensor and scalars under GLðk;RÞ, with translations
coupling them to their next order in ua. Remarkably,
and expectedly, Eqs. (40) and (41) are the same as Eqs,
(23) and (24), showing as advertised that the connection for
the maximal symmetry is encoded in constituents of the
bulk metric in the parametrization (27). Strictly speaking,
the connections we found here are only the ones for the
GLðk;RÞ and Rk symmetries. The connection for DiffðSÞ
arises as an induced connection from the bulk Levi-Civita
connection. The details of this are discussed in
Appendix A. We observe that Eq. (40) can be rephrased
from the point of view of forms pulled back to S and is then
consistent with our discussion in Sec. II A. A translation of
the normal directions changes the embedding. Indeed,
starting with the embedding ϕ0, and hence aaαðσÞ ¼ 0,
and performing a translation, the new embedding corre-
sponds to uaðσÞ ¼ −ξað0ÞðxðσÞÞ, and the translation con-

nection correctly becomes aaαðσÞ ¼ −∂αξ
a
ð0ÞðxðσÞÞ.

The adapted split of the tangent bundle TM discussed in
Sec. II A introduces a noncoordinate basis in TM such that
the rotation coefficients encode the relevant geometric
quantities of the problem. We have

½Di;Dj� ¼ faijðu; xÞ∂a; ð43Þ

½Di; ∂a� ¼ −∂aabi ðu; xÞξ∂b; ð44Þ

with faijðu; xÞ given in Eq. (9). Borrowing vocabulary
proper to hydrodynamics, we might refer to faijðu; xÞ as
the vorticity (related to integrability of the horizontal
subbundle H) and φi

b
a ¼ −∂aabi ðu; xÞ the acceleration

of the vertical congruence ∂a. Expanding near ua ¼ 0
we obtain

½Di;Dj� ¼ Wa
bijðxÞub∂a þ…; ð45Þ

½Di; ∂a� ¼ −að1Þbi aðxÞ∂b þ…; ð46Þ

where we have defined the Ak tensor

Wa
bij ¼ Dia

ð1Þa
j b

−Dja
ð1Þa
i b: ð47Þ
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So the leading order of the acceleration and the vorticity are
the GLðk;RÞ connection and its field strength. The latter
plays a pivotal role in the analysis performed in [25]. Here,
we appreciate its geometrical significance as the leading
order in the obstruction to the integrability of the horizontal
sub-bundle H of TM. The geometric content of the bulk
established, we now proceed by specializing to k ¼ 2,
where the maximal embedding algebra is further realized in
terms of Noether charges.

IV. CORNER CHARGES AND ALGEBRA

In this section we focus on the case k ¼ 2, where the
n ¼ d − 2 dimensional embedded surfaces are corners. It is
in this context that we can make the link between the vector
fields studied above and the gauge charges of a particular
dynamical theory. We will confine our attention here to the
Noether charges of Einstein-Hilbert theory in the bulk,
although other dynamics, and other charges, would be also
fruitful to study. There are two main results. First, we show
that the Noether charges realize on phase space the
generators of the full maximal embedding algebra; how-
ever, at least for the case of finite proper distance isolated
corners that we consider here explicitly, only slð2;RÞ ⊂
glð2;RÞ is realized in the Einstein-Hilbert theory. Second,
we show that the Noether charges give a representation of
the full maximal embedding algebra, normal translations
included, without central extension. To realize this result, it
is necessary to carefully treat the embedding of the corners.
We take these results to indicate that the Noether charge
should be interpreted as a corner charge associated with the
maximal embedding algebra. We then conclude this section
by showing how the general construction applies to the
specific example of near-horizon symmetries.

A. Noether charges

We specialize to the Einstein-Hilbert theory and consider
the corresponding Noether diffeomorphism charges asso-
ciated with vector fields generating diffðMÞ in the bulk. It is
well known that these have support in codimension 2 and in
our context it is natural to consider their expression as an
integral over an isolated embedded corner ϕ∶S → M. For a
vector field ξ on M, the corresponding Noether charge is
given by

Hξ ¼
Z
S
ϕ�ð�dgðξ; ·ÞÞ; ð48Þ

where ϕ� is the pullback of the embedding ϕ, � is the bulk
Hodge dual, and d the exterior derivative of the 1-form
gðξ; ·Þ ¼ iξg. We emphasize that the embedding is part of

the definition of the charge. We will regard vector fields as
field independent when their components in a coordinate
basis are field independent.

Suppose we have local coordinates yM onM and a metric
g ¼ gMNðyÞdyM ⊗ dyN . In these coordinates we write a
field-independent infinitesimal vector field ξ ¼ ξMðyÞ∂M

and so we compute

gðξ; ·Þ ¼ gMNðyÞξMðyÞdyN; ð49Þ

dgðξ; ·Þ ¼ 1

2
ð∂PðgNMξ

MðyÞÞ − ∂NðgPMξMðyÞÞÞdyP ∧ dyN

≡ 1

2
κPNðyÞdyP ∧ dyN: ð50Þ

We then define the bulk n-form (with the Levi-Civita
symbol ε)

K½ξ; g; y�≡ �dgðξ; ·Þ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gðyÞ

p
gM1PðyÞκPNðyÞgNM2ðyÞ

×
1

n!
εM1M2M3…Md

dyM3 ∧ … ∧ dyMd ð51Þ

≡1

2
kM1M2

ξ ðyÞ 1
n!
εM1M2M3…Md

dyM3 ∧…∧ dyMd: ð52Þ

While we work in fixed bulk coordinates yM, in these
coordinates S is described by the embedding yM ¼ yMðσÞ,
where σα are coordinates on S. In order to integrate this n-
form, we must first pull it back to S. We then have

ϕ�ðK½ξ; g; y�Þ ¼ 1

2
kM1M2

ξ ðyðσÞÞð∂α1y
M3ðσÞÞ…ð∂αny

MdðσÞÞ

×
1

n!
εα1…αnεM1M2M3…Md

vol0; ð53Þ

where for brevity we have written vol0 ¼ 1
n! εα1…αndσ

α1 ∧
… ∧ dσαn .
Now let us rewrite this expression in the adapted

coordinates yM ¼ ðua; xiÞ. We find

ϕ�ðK½ξ;g;y�Þ¼εab

�
1

2
kabξ ðyðσÞÞ∂α1x

i1ðσÞ∂α2x
i2ðσÞ

−nkai1ξ ðyðσÞÞ∂α1u
bðσÞ∂α2x

i2ðσÞ

þ1

2

nðn−1Þ
2

ki1i2ξ ðyðσÞÞ∂α1u
aðσÞ∂α2u

bðσÞ
�

×
1

n!
εα1…αnð∂α3x

i3ðσÞ…∂αnx
inðσÞÞεi1…invol0:

ð54Þ

This can be simplified further by recalling that the
embedding satisfies ∂αuaðσÞ ¼ ∂αxiðσÞaai ðuðσÞ; xðσÞÞ.
After some algebra, we find
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ϕ�ðK½ξ; g; y�Þ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
εabhacκcdhdbJ

ffiffiffiffiffiffiffiffiffi
det γ

p
vol0; ð55Þ

where

κcd ¼ ∂cðhdeξeVÞ − ∂dðhceξeVÞ ð56Þ

and J ¼ 1
n! ε

α1…αn∂α1x
i1ðσÞ…∂αnx

inðσÞεi1…in . Noting that
J

ffiffiffiffiffiffiffiffiffi
det γ

p
vol0 ¼ volS, we finally obtain

ϕ�ðK½ξ; g; y�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
hcaεabhbd∂cðhdeξeVÞvolS; ð57Þ

where all quantities are to be evaluated at yðσÞ. For the sake
of brevity, we introduced here the notation ξeV ≡ ξe − aejξ

j

(which in fact correspond to the components of a vertical
vector field).
It is instructive to evaluate the charges in the trivial

embedding ϕ0, given by yM0 ðσÞ ¼ ð0; δiασαÞ. One finds that
the charge can be simply expressed by making use of the
notation introduced in Eq. (10), and we find

Hξ ¼
Z
S
volS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hð0Þ

p

× haeð0Þεecðξð1Þca − að1Þcj a
ξjð0Þ þ hcbð0Þξ

d
ð0Þh

ð1Þ
db;aÞ ð58Þ

≡
Z
S
volSðξð1ÞabNb

a þ ξjð0Þbj þ ξað0ÞpaÞ ð59Þ

(all the functions appearing are functions on the corner, i.e.,
of σα), where we have introduced

Nb
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hð0Þ

p
hbcð0Þεca; ð60Þ

bj ¼ −Nb
aa

ð1Þa
j b

; ð61Þ

pd ¼
1

2
Na

chcbð0Þðhð1Þdb;a − hð1Þda;bÞ: ð62Þ

The first important remark is that only ξð1Þab, ξ
j
ð0Þ, and ξað0Þ

contribute in Eq. (59), showing that only the vector fields of
the maximal embedding algebra for k ¼ 2 (that is,A2) give
rise to nonvanishingNoether charges. This is consistentwith
the fact established above that these vector fields generate
the maximal closed subalgebra of diffðMÞ, with all the rest
of diffðMÞ acting trivially at the corner. Na

b is clearly
associated with glð2;RÞ, but we notice that it is a traceless
A2 tensor so only the slð2;RÞ ⊂ glð2;RÞ is realized on the
Einstein-Hilbert phase space, as the charge algebra compu-
tation will confirm shortly. This is our aforementioned
result: the Noether charges of the Einstein-Hilbert theory
for amanifoldMwith finite proper distance isolated cornerS
realizes only the Ã2¼ðdiffðSÞ⨭ slð2;RÞÞ⨭R2 subalgebra

of A2. We stress that this result concerns only finite proper
distance corners. The diffeomorphisms on S are generated
on phase space by bj while the normal translations are
generated bypd. The first two terms inEq. (59)were recently
derived also in Ref. [25], and play an important role in the
coadjoint representation10 of diffðSÞ and slð2;RÞ. The
normal translations were not considered in that work, but
their effects will be crucial in the Noether charge algebra.

B. Charge algebra

To evaluate the algebra, we will examine δηHξ. This is
subtle in the general case because of the normal trans-
lations: we must consider variations of the bulk fields, but
also we must consider a corresponding variation in the
embedding of the surface that is part of the definition of the
charge. The latter is in keeping with the idea that
the embedding gives rise to new degrees of freedom
[19,57] that otherwise would have been pure gauge in
the absence of the corner. To compute the charge algebra,
one should evaluate the variation of the fields in K holding
fixed the parameters ξ and η, if the latter are field
independent, i.e., they do not depend on the metric
constituents. This is the case if one does not specify a
gauge for the bulk metric and does not impose specific
boundary conditions. Indeed, requiring the vector fields to
preserve a gauge or specific boundary conditions imposes
constraints on them that can result in residual vector fields
that depend explicitly on the metric. In the derivation of the
charge algebra below, to avoid confusion, we will at first
suppose that ξ is field independent. After deriving the
algebra, we will show that promoting the vectors to be field
dependent has a straightforward impact. Therefore, we
have

δηK½ξ; g; y� ¼ K½ξ; δηg; y� ¼ K½ξ;Lηg; y�: ð63Þ

If the transformations that we are considering did not
change the embedding, then we would just have

δηHξ ¼ δη

Z
S
ϕ�ðK½ξ; g; y�Þ ¼

Z
S
ϕ�ðδηK½ξ; g; y�Þ

¼
Z
S
ϕ�ðK½ξ;Lηg; y�Þ: ð64Þ

Here, however, we are interested in transformations that
change the embedding as well, so we are not allowed to
commute δη past ϕ�. In general we then have an extra

contribution that we write as

δηHξ ¼
Z
S
ϕ�ðδηK½ξ; g; y�Þ þ

Z
S
ðδηϕ�ÞðK½ξ; g; y�Þ: ð65Þ

10The coadjoint orbits of bms3 and bms4 have been studied in
Refs. [55,56].
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Treating the bulk diffeomorphism passively, the additional
effect δηϕ� comes from the fact that the surface S is located

at y0M ¼ y0MðσÞ in the y0 coordinates, while in the y
coordinates it is described by yM ¼ yMðσÞ. We remark
that the charges, as well as the algebra, are defined for any
choice of embedding. However, since local translations are
included in the set of generators and, as already discussed,
they change the initial choice of embedding, it is crucial to
vary it in this computation. In this sense, ϕ is on a
similar footing as the metric g. Infinitesimally, for
y0MðyÞ ≃ yM − ηMðyÞ, this reads11

Z
S
ðδηϕ�ÞðK½ξ; g; y�Þ

¼
Z
S
ϕ�ðK½ξ; g; y − η� − K½ξ; g; y�Þ: ð66Þ

Gathering the various results, we arrive at the final
expression

δηHξ ¼
Z
S
ϕ�ðK½ξ;Lηg; y�Þ þ K½ξ; g; y − η�

− K½ξ; g; y�Þ; ð67Þ

valid for a generic embedding and an arbitrary vector field
ξ. This expression is useful in practice because the passive
interpretation adopted here allows us to compute the effects
of the change of embedding directly in the bulk and then
utilize only the unmodified embedding.12

We finally have all the ingredients to obtain δηHξ. We

will compute this in the embedding ϕ0 corresponding to
yM ¼ yM0 ðσÞ ¼ ð0; δiασαÞ. First, since K½ξ; g; y� is a bulk
n-form that is a specific functional of the metric g, it is an
invariant quantity under arbitrary bulk diffeomorphisms

K½ξ0; g0; y0� ¼ K½ξ; g; y�; ð68Þ

where ξ0 and g0 are transformed generators and fields, while
y0 are the new coordinates. Using y0MðyÞ ≃ yM − ηMðyÞ, the
variation at the same point is as usual the Lie derivative,
that is,

K½ξ0; g0; y� − K½ξ; g; y� ≃ LηK½ξ; g; y�
¼ K½ξ;Lηg; y� þ K½Lηξ; g; y�: ð69Þ

An explicit calculation then gives

LηK½ξ; g; y� ¼ diηK½ξ; g; y� þ iηdK½ξ; g; y� ð70Þ

¼ 1

2
kPQξ ð∂Rη

SÞ 1

ðn−1Þ!εPQSM2…Mn
dyR ∧ dyM2 ∧…∧ dyMn

þ1

2
ηRð∂Rk

PQ
ξ Þ 1

n!
εPQM1…Mn

dyM1 ∧…∧ dyMn: ð71Þ

We now pull this back using ϕ�
0. After some simple

manipulations we arrive at

ϕ�
0ðLηK½ξ; g; y�Þ

¼ 1

2
δi1α1k

PQ
ξ ð∂i1η

SÞ 1

ðn − 1Þ! εPQSα2…αndσ
α1 ∧ … ∧ dσαn

þ 1

2
ηR∂Rðεabkabξ Þvol0 ð72Þ

¼ ½εabkjaξ ∂jη
b þ 1

2
ηc∂cðεabkabξ Þ

þ 1

2
∂jðηjεabkabξ Þ�ðy0ðσÞÞvol0: ð73Þ

So the first term of the integrand on the right-hand side of
Eq. (67) for the embedding ϕ�

0 is

ϕ�
0ðK½ξ;Lηg; y�Þ

¼
�
εabk

ja
ξ ∂jη

b þ 1

2
ηc∂cðεabkabξ Þ þ 1

2
∂jðηjεabkabξ Þ

�

× ðy0ðσÞÞvol0 − ϕ�
0ðK½Lηξ; g; y�Þ: ð74Þ

The last term in this expression is nothing but the integrand
of the Noether charge associated with the Lie bracket of the
vector fields

−
Z
S
ϕ�
0ðK½Lηξ; g; y�Þ ¼ H½ξ;η�: ð75Þ

We now use our result (59) for H½ξ;η�, where ½ξ; η�jð0Þ,
½ξ; η�að0Þ, and ½ξ; η�ð1Þab are the expressions given in

Eq. (14), reported explicitly below to clarify notation:

½ξ; η�jð0Þ ¼ ½ξ̂ð0Þ; η̂ð0Þ�j; ð76Þ

½ξ; η�að0Þ ¼ ξ̂ð0Þðηað0ÞÞ − η̂ð0Þðξað0ÞÞ − ξð1Þabη
b
ð0Þ

þ ηð1Þabξ
b
ð0Þ; ð77Þ

½ξ; η�ð1Þab ¼ −½ξð1Þ; ηð1Þ�ab þ ξ̂ð0Þðηð1ÞabÞ
− η̂ð0Þðξð1ÞabÞ: ð78Þ

We then calculate the remaining terms in Eq. (67), i.e.,
ϕ�ðK½ξ; g; y − η�Þ − ϕ�ðK½ξ; g; y�Þ, for the embedding ϕ�

0,
which yields

11Since this result is key to our derivation of the algebra, we
show it explicitly in Appendix B.

12We also observe that this result, generalizing accordingly the
n-form K, can be applied to higher form symmetries, where the
codimension can be higher than 2.
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ϕ�
0ðK½ξ; g; y − η� − K½ξ; g; y�Þ

¼ −
h
εabk

ja
ξ ∂jη

b þ 1

2
ηc∂cðεabkabξ Þ þ 1

2
∂jðηjεabkabξ Þ

i
× ðy0ðσÞÞvol0: ð79Þ

This contribution cancels exactly Eq. (73), leading to the
final result

δηHξ ¼ H½ξ;η� ¼ f½Hξ; Hη�g; ð80Þ

where we have introduced a bracket notation. Defining the
individual charges by projecting the vector field onto
individual components,

Nξ ¼
Z
S
volSξð1ÞabðσÞNb

a;

bξ ¼
Z
S
volSξ

j
ð0ÞðσÞbj;

pξ ¼
Z
S
volSξað0ÞðσÞpa; ð81Þ

we then read off the brackets of these charges

f½bξ; bη�g ¼ b½ξ;η� ¼ b½ξ̂;η̂�;

f½bξ; Nη�g ¼ N½ξ;η� ¼ N ξ̂ð0Þðηð1ÞÞ
;

f½bξ; pη�g ¼ p½ξ;η� ¼ pξ̂ð0Þðηð0ÞÞ
; ð82Þ

f½Nξ; Nη�g ¼ N½ξ;η� ¼ −N½ξð1Þ;ηð1Þ�;

f½Nξ; pη�g ¼ p½ξ;η� ¼ −pξð1Þ·ηð0Þ ; ð83Þ

f½pξ; pη�g ¼ 0; ð84Þ

where the brackets in the middle expressions have been
evaluated by consulting Eqs. (76)–(78). This structure is of
course consistent with the identification of the group in
terms of semidirect products, showing that the brackets of
the Noether charges give a representation of the algebra Ã2.
This is the second result we advertised above: the total
algebra closes exactly without central extensions.
Furthermore, we note that this algebra contains normal
translations, so its closure is a nontrivial statement. Since
the transformations A2 considered here are the most
general compatible with the presence of an isolated corner
in an otherwise arbitrary d-dimensional bulk, Ã2 is the
most general algebra realized by Noether charges in
Einstein-Hilbert theories.13 In this manuscript, however,

we are considering only corners at finite proper distance,
because in deriving Eqs. (39)–(42) we assumed the metric
constituents to be finite when the coordinates ua go to zero.
Consequently, as is clear from Eq. (42), the pullback of the
bulk metric to the corner is uncharged under GLðk;RÞ, as
noticed previously. One is still free to perform an arbitrary
rescaling of the coordinates ua, but this does not affect the

metric on the corner γð0Þij . In the case of an asymptotic corner
in which the metric constituents are not strictly finite at the
corner, the geometric quantities on the corner become
charged under an “extrinsic” Weyl symmetry [26], as
opposed to justDiffðSÞ. The absence of central extensions
in the charge algebra is another manifestation of this fact,
which, given this discussion, could have been anticipated.
We will return to a thorough study of the interesting case of
the maximal embedding algebra for asymptotic corners in
future works.
Finally, let us generalize to field-dependent vector fields

ξ and η. In this case, the computation of the charge algebra
is essentially the same, except that one should take into
account the field dependence of ξ, as originally discussed in
[48]. The consequence of this is an effective modification
of the Lie bracket in order for it to correctly take into
account the field variations

½η; ξ�M ≡ ½η; ξ� − δηξþ δξη: ð85Þ

Taking this effect into account through the computation of
the algebra, the brackets are given by the modified Lie
brackets

δηHξ ¼ H½ξ;η�M ¼ f½Hξ; Hη�g: ð86Þ

This construction is able to describe gauge-fixed situations
and/or instanceswith particular boundary conditions imposed.

C. Example: Near-horizon symmetries

As an application of our general results, we show how
the BMS-like symmetries found in [43] (see also [58])
in the black hole near-horizon region are a specific instance
of the maximal embedding algebra.14 Here, for the sake of
simplicity, we will present the d ¼ 3 case, but the four-
dimensional version is similar. Thus we consider a three-
dimensional bulk geometry with a black hole, for which the
near-horizon metric may be written

ds2 ¼ fdv2 þ 2kdvdρþ 2hdvdϕþ R2dϕ2: ð87Þ

In these coordinates, the horizon is located at ρ ¼ 0, v is the
null coordinate along it, and ϕ is a 2π-periodic angular

13This statement concerns only diffeomorphisms in the Ein-
stein-Hilbert formulation of the theory. As discussed in [20–22],
extensions of this algebra may arise in other formulations of
gravity, due to extra symmetries on top of diffðMÞ.

14In this section we mainly compare with [43], but other useful
references on near-horizon symmetries and null boundaries are,
e.g., [59–71].
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coordinate. The corner we are interested in is the one
embedded on the horizon at some fixed value of v, say,
vðσÞ ¼ 0, with σ the 2π-periodic coordinate on the corner.
That is, calling ua ¼ fv; ρg and xi ¼ fϕg, the corner is at
ðuaðσÞ ¼ 0;ϕðσÞ ¼ σÞ, and it is at finite proper distance in
the bulk, showing that this situation falls into our general
treatment for the trivial embedding ϕ0. Comparing Eq. (87)
to the parametrization (27) gives

hvv ¼ f; hρρ ¼ 0; hρv ¼ k;

avϕ ¼ 0; γϕϕ ¼ R2; aρϕ ¼ −
h
k
: ð88Þ

The metric constituents in Eq. (87) are then expanded in
powers of ρ, to define the solution space15

f ¼ −2κρþOðρ2Þ; k ¼ 1þOðρ2Þ; ð89Þ

h ¼ θðϕÞρþOðρ2Þ;
R2 ¼ γðϕÞ2 þ λðϕÞρþOðρ2Þ; ð90Þ

from which we read the first terms in ðhab; aaϕ; γϕϕÞ. The
nonvanishing terms that contribute to the charges are

hð0Þρv ¼ 1; hð1Þvv;ρ ¼ −2κ;

a
ð1Þρ
ϕ ρ

¼ −θðϕÞ; γð0Þϕϕ ¼ γðϕÞ2: ð91Þ

Furthermore, in [43] the residual (that is, gauge and
boundary conditions preserving) vector field χ ¼ χv∂v þ
χρ∂ρ þ χϕ∂ϕ was found to be

χv ¼ TðϕÞ þOðρ3Þ; ð92Þ

χρ ¼ θðϕÞ
2γðϕÞ2 T

0ðϕÞρ2 þOðρ3Þ; ð93Þ

χϕ ¼ YðϕÞ − 1

γðϕÞ2 T
0ðϕÞρþOðρ2Þ; ð94Þ

where T 0ðϕÞ ¼ ∂ϕTðϕÞ. We therefore see that the arbitrary
parameters generating the symmetries are TðϕÞ, generating
supertranslations, and YðϕÞ, generating superrotations,
while all the other components in χ contain just field-
dependent quantities needed in order to preserve the gauge
and falloffs. Comparing this vector with the generator of the
maximal embedding algebra, Eq. (13), we obtain

ξvð0Þ ¼TðϕÞ; ξρð0Þ ¼ 0; ξϕð0Þ ¼YðϕÞ; ξð1Þab¼ 0: ð95Þ

Therefore, according to our general discussion, the sub-
algebra of the maximal embedding algebra realized is that
of the group DiffðSÞ ⋉ R, and the vector algebra is a
faithful representation of the charge algebra, without
central extension. This is indeed the result found in [43].
There, the surface charges were computed in the covariant
phase space formalism, but since fluxes were set to zero,
they coincide with the Noether charge

QðχÞ ¼ 1

16πG

Z
2π

0

dσγðσÞ½2κTðσÞ − θðσÞYðσÞ�; ð96Þ

agreeing exactly with (59), where, using the information
gathered above (and taking εvρ ¼ −1), one computes

Na
b ¼ 0; bϕ ¼ −θðσÞ; pρ ¼ 0; pv ¼ 2κ: ð97Þ

This shows how the near-horizon symmetries found in [43]
are included in our general formalism.

V. CONCLUSIONS

In this work, we showed that there exists a maximal
field-independent closed subalgebra Ak of diffðMÞ in the
context of a d-dimensional manifold M with an embedded
n-dimensional corner S, with d ¼ nþ k. This result is an
off-shell and metric-independent characterization of the Lie
bracket on M in the presence of S. We furthermore set up
the geometric framework of embeddings, showing how to
adapt the bulk tangent bundle. This in turn introduces an
Ehresmann connection.
It is important that these results were established without

reference to a pseudo-Riemannian structure onM. We then
discussed how the latter can be implemented, such that the
Ehresmann connection appears as part of the metric
constituents in M. The split of TM to adapt to the
embedding allowed us to show that, given our metric
parametrization à la Randers-Papapetrou, the corner sym-
metry transforms the metric constituents as expected. The
details of these transformations depend on how the metric
behaves in the vicinity of the corner; in this paper, we chose
corners at finite proper distance, while asymptotic corners
require a separate analysis which we will return to in a later
publication. Using the natural noncoordinate basis in the
bulk adapted to the split of TM, we then obtained all the
various geometric data induced on S, together with their
derivatives, which are candidates for conjugate momenta.
While for generic Ak this could be of importance for

higher form symmetries and higher codimensional corners,
we focused our attention in the remainder of the paper on
codimension 2. Codimension-2 embedded surfaces are
the geometric objects on which gauge charges have
support. We computed the Noether gauge charges for
Einstein-Hilbert dynamics and showed that they form a

15Note that in our parametrization, the field λ would be a
function of ϕ. In [43], this was written initially as λðv;ϕÞ but
reduced to λðϕÞ on shell. In that sense the on-shell solution agrees
with our coordinatization at linear order in v, ρ, and so can be
compared directly.
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representation of the subalgebra Ã2, where only slð2;RÞ
inside glð2;RÞ is dynamically realized. The novel feature
of this analysis was to keep the full Ã2 symmetry in the
game, including normal translations. This required a careful
treatment of the embedding ϕ∶S → M, which is an
ingredient in the definition of the Noether charge. We
concluded the discussion by comparing our general con-
struction to near-horizon BMS-like symmetries in the
absence of fluxes.
In the near future, we plan to report on how the

construction can be adapted to asymptotic corners.
There, the metric constituents are not finite, because such
corners are at conformal infinity. This makes the metric
constituents induced on S charged under the Weyl sym-
metry contained in GLðk;RÞ, such that the embedding is
actually a conformal embedding. This analysis typically
requires the specification of a normal vector field (say,
tangent to an asymptotic hypersurface), and as such one
could say that the algebra Ak can be regarded as (further)
spontaneously broken. Although we focused on the
gravitational Noether charge in that it gives a representa-
tion of the maximal embedding algebra on a corner, it is
clearly of interest to explore other charges that have
support on corners and study the effects of fluxes and
edge modes.
Finally, let us note that the truncation of diffðMÞ to a

closed subalgebra is reminiscent of higher spin gravity
versus metric gravity, or of W algebras versus Virasoro
algebras in 2D conformal field theories. Codimension-2
subspaces are implicated in a wide variety of situations in
(quantum) gravity, such as entanglement in the holographic
context and in notions of bulk reconstruction, and thus are
presumably of central interest to any serious notion of
quantum gravity. We might even go so far as to interpret
diffðMÞ as an emergent symmetry that arises (semi)clas-
sically. It may also be of interest to consider the maximal
embedding algebra in the context of the S matrix in
asymptotically flat instances.
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APPENDIX A: LEVI-CIVITA CONNECTION

In this Appendix we compute the bulk Levi-Civita
connection and show how it induces the Levi-Civita
connection of the surface, if the latter is embedded at
finite distance. We will compute the spacetime connection
using the noncoordinate basis fDi; ∂ag in TM adapted to
the split introduced in Sec. II A. Therefore, some care must
be taken as the connection coefficients will not coincide
with the usual Christoffel symbols. By definition, we have

∇∘ Di
Dj ¼ Γk

ijDk þ Γb
ij∂b; ðA1Þ

∇∘ ∂aDi ¼ Γj
aiDj þ Γb

ai∂b; ðA2Þ

∇∘ Di
∂a ¼ Γj

iaDj þ Γb
ia∂b; ðA3Þ

∇∘ ∂a∂b ¼ Γj
abDj þ Γc

ab∂c; ðA4Þ

and we explicitly find

Γi
ja ¼ Γi

aj ¼ ρa
i
j −

1

2
habfbjkγ

ki; ðA5Þ

Γb
ia ¼ τi

b
a −

1

2
hbdðhacφi

c
d − hdcφi

c
aÞ; ðA6Þ

Γb
ai ¼ τi

b
a −

1

2
hbdðhacφi

c
d þ hdcφi

c
aÞ; ðA7Þ

Γi
ab ¼ −γijhaeτjeb þ

1

2
γijðhbcφj

c
a þ hacφj

c
bÞ; ðA8Þ

Γc
ab ¼

1

2
hcdð∂ahdb þ ∂bhda − ∂dhabÞ; ðA9Þ

where we introduced

fbij ¼ Diabj −Djabi ; ðA10Þ

φi
b
a ¼ −∂aabi ; ðA11Þ

ρa
i
j ¼

1

2
γik∂aγkj; ðA12Þ

τi
a
b ¼

1

2
hacDihcb: ðA13Þ

As expected, the pullback of Eq. (A5) reverts to the
Christoffel connection of the induced metric on S, whereas
the other components displayed contain information on the
various geometrical quantities (connections and curvatures)
for the maximal embedding algebra. The quantities (A10)–
(A13) gather together the various first derivatives of the
metric constituents. In the bulk, they would be therefore
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momenta with respect to certain flows. Inspired by the
hydrodynamic formalism (see e.g., [73]), if we think in
terms of a normal flow generated by ∂a, one then refers to
Eq. (A10) as the vorticity, Eq. (A11) the acceleration, and
the traceless part of Eq. (A12) as the shear.
We note that an example of this construction in codi-

mension 1 was given in [26]. There, the boundary metric
(rather, the conformal class of metrics) was charged under
Weyl, resulting in an inducedWeyl connection rather than a
Levi-Civita connection. In the present treatment, the sur-
face S is embedded at finite distance, and its induced metric
is only charged under DiffðSÞ, plus the effects of normal
translations, as shown in (42). Consequently, the bulk Levi-
Civita connection induces the surface Levi-Civita connec-
tion. We plan to come back in future works to this question
for infinite distance embedded surfaces.

APPENDIX B: CHANGES OF EMBEDDING

We show here Eq. (66) by computing explicitly the left-
hand side and prove that it evaluates to Eq. (79). This is a

check of the passive versus active interpretation of δη.
Changing the embedding is an active point of view,
whereas seeing the action of δη as a change of coordinates

y in the bulk for the same embedding is a passive
interpretation, which is then straightforward to evaluate.
So here we work actively on the embedding, using ϕ0 as

the initial one, and compute

ðδηϕ�ÞðK½ξ; g; y�Þ ¼ ϕ�̃
ηðK½ξ; g; y�Þ − ϕ�

0ðK½ξ; g; y�Þ: ðB1Þ

In this expression we have introduced the new embedding
ϕη̃ corresponding to yMη̃ ðσÞ ¼ yM0 ðσÞ − η̃MðσÞ, where at this
point we think of this actively as a new embedding, with
yMη̃ ðσÞ unrelated to a change of coordinates in the bulk. We

then expand for η̃ infinitesimal and obtain

ϕ�̃
ηðK½ξ; g; y�Þ ¼ 1

2
kM1M2

ξ ðyη̃ðσÞÞ
1

n!
εM1…Md

dyM3

η̃ ðσÞ ∧ … ∧ dyMd
η̃ ðσÞ ðB2Þ

¼ 1

2
ðkM1M2

ξ ðy0ðσÞÞ − η̃PðσÞ∂Pk
M1M2

ξ ðy0ðσÞÞÞ
1

n!
εM1…Md

dyM3

η̃ ðσÞ ∧ … ∧ dyMd
η̃ ðσÞ ðB3Þ

¼ 1

2
kM1M2

ξ ðy0ðσÞÞ
1

n!
εM1…Md

dyM3

η̃ ðσÞ ∧ … ∧ dyMd
η̃ ðσÞ

−
1

2
η̃PðσÞ∂Pk

M1M2

ξ ðy0ðσÞÞ
1

n!
εM1…Md

dyM3

0 ðσÞ ∧ … ∧ dyMd
0 ðσÞ ðB4Þ

¼ ϕ�
0ðK½ξ; g; y�Þ − 1

2
η̃PðσÞ∂Pkabξ ðy0ðσÞÞεab

1

n!
εi1…inðδi1α1…δinαnÞdσα1 ∧ … ∧ dσαn

−
1

2
kM1M2

ξ ðy0ðσÞÞ
1

ðn − 1Þ! εM1M2M3i2…in∂α1 η̃
M3ðσÞðδi2α2…δinαnÞdσα1 ∧ dσα2 ∧ … ∧ dσαn ðB5Þ

¼ ϕ�
0ðK½ξ; g; y�Þ −

1

2
η̃PðσÞ∂Pkabξ ðy0ðσÞÞεabvol0

−
1

2
kabξ ðy0ðσÞÞεab

1

ðn − 1Þ! εii2…in∂α1 η̃
iðσÞðδi2α2…δinαnÞdσα1 ∧ dσα2 ∧ … ∧ dσαn

− kjaξ ðy0ðσÞÞ
1

ðn − 1Þ! εabεii2…in∂α1 η̃
bðσÞðδi2α2…δinαnÞdσα1 ∧ dσα2 ∧ … ∧ dσαn : ðB6Þ

Subtracting ϕ�
0ðK½ξ; g; y�Þ and using the identity 1

ðn−1Þ! εii2…inðδi2α2…δinαnÞdσα1 ∧ dσα2 ∧ … ∧ dσαn ¼ δα1i vol0 we find

ðδηϕ�ÞðK½ξ; g; y�Þ ¼ −
�
1

2
η̃PðσÞ∂Pkabξ ðy0ðσÞÞεab þ

1

2
kabξ ðy0ðσÞÞεab∂α1 η̃

iðσÞδα1i þ kjaξ ðy0ðσÞÞεab∂α1 η̃
bðσÞδα1j

�
vol0:

Note that the last term has an interpretation in terms of the pullback flat connection abα ¼ −∂αη̃
bðσÞ appropriate to

the embedding ϕη̃. To then make contact with the passive interpretation, we relate the change of embedding to a change of
coordinates in the bulk. This is achieved if we identify η̃MðσÞ ¼ ηMðy0ðσÞÞ, such that, if the new coordinates in the
bulk are y0M ¼ yM − ηMðyÞ, then we simply have y0MðσÞ ¼ yMη̃ ðσÞ. From this follows ∂α1 η̃

MðσÞ ¼ ∂α1η
Mðy0ðσÞÞ ¼

∂α1u
aðσÞ∂aη

Mðy0ðσÞÞ þ ∂α1x
iðσÞ∂iη

Mðy0ðσÞÞ ≃ δiα1∂iη
Mðy0ðσÞÞ and so we obtain
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ðδηϕ�ÞðK½ξ; g; y�Þ ¼ −
�
1

2
ηPðy0ðσÞÞ∂Pkabξ ðy0ðσÞÞεab þ

1

2
kabξ ðy0ðσÞÞεab∂iη

iðy0ðσÞÞ þ kjaξ ðy0ðσÞÞεab∂jη
bðy0ðσÞÞ

�
vol0

¼ −
�
εabk

ja
ξ ∂jη

b þ 1

2
ηc∂cðεabkabξ Þ þ 1

2
∂jðηjεabkabξ Þ

�
ðy0ðσÞÞvol0: ðB7Þ

This result is exactly Eq. (79), proving thus Eq. (66), which is a crucial step in the derivation of the Noether charge algebra.
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