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In this work we study the nature of correlations among mixed states in the setup of two symmetric strips.
We use various tools to determine how the bulk geometry could be reconstructed from the boundary mixed
information. These tools would be the modular Hamiltonian and modular flow, operator product expansion
(OPE) blocks, quantum recovery channels such as Petz map, Uhlmann holonomy, and Wilson lines. We
comment on the similarities and connections between these approaches in our symmetric setup of a mixed
system. Specially, we use parameters such as dissipation which is being modeled by the mass of graviton,
and also the same sign charge of the two strips to find connections between these different approaches.
Then, using Uhlmann fidelity as the correlation measure, we look into the various types of correlations in
mixed systems such as discord. Next, we use simple results of modular Hamiltonian for fermions to get
insights about the relations between modular flow and entanglement and complexity of purification (EoP/
CoP), and also behavior of modular flows in confining geometries. Finally, we study the dynamics of
correlations using various information speeds and also model of void formation in conformal field theory
(CFT) and again we comment on their relationships with the behavior of EoP and CoP.
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I. INTRODUCTION

In the setup of holography, out of information and
entanglement in the boundary field theory side, the one
dimension higher bulk geometry could be reconstructed.
Various models of bulk reconstruction has been discussed
in the literature, for instance Hamilton, Kabat, Lifschytz,
Lowe (HKLL) [1], Dong, Harlow, Wall (DHW) [2],
Almheiri, Dong, Harlow (ADH) [3], and Faulkner,
Lewkowycs (FL) [4], and also Ref. [5] which uses extremal
area variations. In other works such as [6], a recipe for
extracting the specific bulk metric from the boundary state
has been proposed. Various models of tensor networks and
also quantum error corrections have been employed for
studying different features of bulk reconstruction. Most of
these methods specifically use the subregion/subregion
duality and they were studied in a fixed background.
Recent works on the connections between geometry in

the bulk and information on the boundary conformal field
theory (CFT), in the setup of modular Berry connection and

Berry curvature of modular Hamiltonians [7], see also
[8,9], have also been presented. Our motivation here is that
by using the results of our previous work, [10], to show the
connections between measures of purifications and the two
methods of bulk reconstructions, modular flow, and quan-
tum error correction. Specifically we would like to dem-
onstrate how in the mixed quantum systems, modular flow,
or quantum recovery, channels would change by changing
the parameters of the system. To attain this goal, we
implement these two approaches in several backgrounds,
charged case and massive gravity backgrounds, where the
graviton has a finite mass that simulates dissipation in the
model. By changing the mass of gravitonm or the charge of
the strips q, in these two bulk reconstruction approaches,
we track their effects which would lead to the connections
between modular flows and quantum error correction.
Here, similar to [10] we consider a symmetric setup

where two strips have the same width l, with a distance D
between them. We concentrate on how the modular flow,
modular zero modes, soft modes, or edge modes, and
modular Hamiltonian would change when the two sub-
regions move from far distances [when I ¼ 0 or entangle-
ment of purification ðEoPÞ ¼ 0] to a closer distance to each
other (I ≠ 0 and EoP ≠ 0), where the system undergoes a
phase transition from two pure subspaces to one mixed
system. This would be done by tracking the extremal
surfaces at each stage of the evolution. In general, the
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quantum information is being processed in quantum
channels where by passing time, more errors would be
accumulated. On the other hand, under modular evolution,
the modular Hamiltonian become more and more nonlocal
and get larger commutators with all other operators of the
system. Another hint for their connections came from the
value of conical 2π at the x-axis in the connected entan-
glement wedge part which is related to the 2π constant of
complexity of purification (CoP) in 2d that was found
in [10].
In addition, in [11], some specific connections between

universal recovery channels and modular Hamiltonian
have been mentioned as they could show that by pertur-
bing a bulk state in a direction of a bulk operator which is
within a boundary subregion causal wedge, the modular
Hamiltonian of the boundary would correspondingly res-
pond. This would be related to the noncommutative version
of Bayes rule which then could be used to reconstruct the
lost information similar to a quantum error correction
system. Note also that, the connections between thermal
quantum chaos and quantum recovery channels have
already been discussed in quantum information literature,
so we expect such connections also work for modular
chaos which then could give us further information about
the mechanisms of bulk emergence. Therefore, the con-
nections between various universal recovery channels such
as twirled Petz map or normal Petz map and modular Berry
flow could be discussed.
Most of the discussions in bulk reconstructions have

been done for pure states but here we are interested in a
mixed setup. The connections between modular Berry
connection and entanglement wedge for pure systems
has been discussed in [7,8,12]. As for the case of mixed
states, in [13], it has been proposed that the Berry phase
along the “Uhlmann parallel paths”would be the integral of

a connection which its curvature would be the symplectic
form of the entanglement wedge (EW), so Berry phase
and the symplectic form of EW , has been linked in that
work. In [14], the reconstruction of entanglement wedge
using Petz map has been discussed. Using the results of
these works, one then could catch the connections between
Petz map and Berry and Uhlmann phase and also the
symplectic form of EW . Most of the discussions of holo-
graphic bulk reconstructions using error corrections have
been done for the two dimensional Jackiw-Teitelboim (JT)
gravity background, while our setup of two intervals in the
3-dimensional anti-de Sitter spacetime (AdS3) background,
would be richer than those discussed in [14,15]. Also, the
connections between quantum error correcting properties
of holography and modular flow, modular connection, and
symplectic form of entanglement wedges could then be
perceived.
One other compelling phenomenon would be the phase

transitions between zero mutual information (MI) between
the strips when they are far apart and a jump in MI when
they get closer than a critical distance Dc. As Berry
curvature of modular Hamiltonians could sew together
the orthonormal coordinate systems along the Hubeny,
Rangamani, Ryu, Takayanagi (HRRT) surfaces and lead to
the bulk reconstruction, [7], we would like to examine how
this proposal would work for the case of two disconnected
versus connected subsystems and then investigate the
properties of the modular Hamiltonian and modular flows
during the phase transitions.

II. THE SETUP

Our setup consists of two subregions A and B which are
infinite strips with the width of l separated by the distance
D on the same side of the boundary as

A ≔ flþD=2 > x1 > D=2;−∞ < xi < ∞; i ¼ 2; 3;…; d − 1g;
B ≔ f−l −D=2 < x1 < −D=2;−∞ < xi < ∞; i ¼ 2; 3;…; d − 1g; ð2:1Þ

which is shown in Fig. 1. The critical distance Dc for each dimension could be found by setting in each case the mutual
information zero, IðD; lÞ ¼ 0, as we did in our previous work [10]. The background was chosen to be the Schwarzchild
AdS black brane in the form

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx⃗2d−1

�
; fðzÞ ≔ 1 − zd=zdh: ð2:2Þ

The entanglement of purification (EoP) between the two states could be computed using the area of the surface Γ shown in
green and the complexity of purification (CoP) would be the volume of blue region as shown in [10].
The effects of charge q and mass of graviton m on EoP and CoP could then be studied by considering the background of

charged-massive Banados, Teitelboim, Zanelli (BTZ) black hole in the following form [16]:

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2
�

with fðzÞ ¼ −Λ −m0z2 − 2q2z2 ln

�
1

zl

�
þm2cc1z; ð2:3Þ
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which is a solution to Einstein equations for the three dimensional Einstein-massive gravity with the action [16]

I ¼ −
1

16π

Z
d3x

ffiffiffiffiffiffi
−g

p �
R − 2Λþ LðF Þ þm2

X4
i

ciU iðg; hÞ
�
; ð2:4Þ

where R is the scalar curvature, LðF Þ is an arbitrary
Lagrangian of electrodynamics, and Λ is the cosmological
constant.
In relation (2.3), m0 is an integration constant which is

related to the total mass of black hole and we could set it as
m0 ¼ 1. In addition, one could set c ¼ c1 ¼ 1, without any
loss of generality. In the action,m is the mass of graviton in
the theory. In the holographic framework, the massive
terms in the gravitational action break the diffeomorphism
symmetry in the bulk, which then would correspond to
momentum dissipations in the dual boundary field theory
as shown in [17], so the solution would be a “massive-
charged BTZ black hole” in a “massive gravity theory”.
Here we are interested in studying the effects of the
parameters m and q on various bulk reconstruction for-
mulations such as quantum error corrections, modular flow,
CC flow, Operator Product Expansion (OPE) block, and the
dynamics.
We first bring here some of the results we found in [10] to

summarize the effects of m, q, and d on EoP and CoP. The
figures in this section are brought from our previous work
[10] to review the results that we are going to use here.
As you could see from the figures, we found in [10] that in

the case of massive gravity where the graviton gain a small
mass, EoP/CoP would be lower than the massless case. We
expect to see this decreasing effects in specific stages of
various bulk reconstruction methods, e.g., tensor networks,
modular Berry connection, and quantum error corrections.
In [10], we have proposed that the correlation strengths

and density of bit threads would have a decreasing behavior
along Γ from the turning point m toward the turning point
m0. We would like to check this observation using other
bulk reconstruction methods as well. We could show that
modular zero modes would have a decaying behavior along
this path from m to m0.
We give a short overview of modular Hamiltonian and

modular Berry phase, quantum recovery channels and the
connections between them and then we study these

procedures in our setup. We also study the effects of the
parameters we mentioned on the formulations of bulk
reconstruction.

III. ENTANGLEMENT WEDGE CROSS
SECTION AND MODULAR FLOW

One of the main questions of holography is that how
using the subregion duality and the operator algebra of
the boundary CFT, the physics of bulk entanglement
wedge would emerge. One of the guiding principles would
be a duality found in [18], which relates to and forms a
mixed state entanglement of purification between mixed
states to the area of the minimal entanglement wedge
cross section, i.e., the EW ¼ EP conjecture. This duality
would have connections with the behavior of modular zero
modes and modular Hamiltonians. We would like to
connect EW ¼ EP conjecture to the setup of [7] using
the duality between the modular Hamiltonians of the
bulk and boundary within the code subspace, i.e., the
Jafferis, Lewkowycz, Maldacena, Suh (JLMS) formula
[19] HCFT

mod ¼ A
4GN

þHbulk
mod þ � � � þOðGNÞ.

Modular Hamiltonian is defined as Hmod ¼ − log ρ, and
A is the area operator of HRRT surface. The gravity dual of
modular Hamiltonian operators has been discussed in [20].
For a fixed spatial region R, modular Hamiltonian could be
written as H ¼ − log ρR ⊗ I, and the modular evolution of
a density matrix ρ could be written as ρα ≡ e−iαHρeiαH.
HereH is a state-dependent operator and also, due to a kink
at the boundary of R, it would be a nonsmooth operator.
However, the full modular Hamiltonian for the region V
written as ĤV ¼ HV −HV̄ , would be smooth, [20], since it
has support on all regions of space. Also, this operator
always annihilates the vacuum, ĤV j0i ¼ 0.
In [21], it has been shown that the full modular

Hamiltonian could be written in terms of energy momen-
tum tensor in the form as

Ĥγ ¼ 2π

Z
dd−2x⊥

Z
∞

−∞
dλðλ − γðx⊥ÞÞTλλðλ; x⊥Þ; ð3:1Þ

so the general form of modular Hamiltonian for a region A
would be as HA ¼ R

A dσ
μTμνη

ν, where ην is a timelike
vector that generates the modular flow for the region A.
Based on the perspective of [19], the bulk and boundary

modular flows and their corresponding relative entropies
are dual to each other. The goal would be using this duality,
and also the intuitions from other formalisms such as
tensor network and bit thread picture, to check how zero
modes and edge modes would behave along the surface Γ.

FIG. 1. Two strips of A and B with length l and with the
distanceD between them is shown. The two turning points would
correspond to region ad and bc which are m and m0, and Γ is the
minimal cross section of the “connected” entanglement wedge.
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Also, we would like to study how as these modes are
correlated and form a mixed state, they could glue the
entanglement wedges of each boundary CFT, and then how
they could reconstruct the curvature of the metric in the
bulk. From the intuitions of bit thread, tensor network, and
EW ¼ EP conjecture we claim several statements here.
First, note that the recent studies in [7] were focused on

edge modes along the Hubeny-Rangamani-Ryu-Takayanagi
(HRRT) surface. Here, as we study the correlations for
mixed states and the connections between modular flow,
CoP and EoP, we should focus our studies on not only the
zero modes, but the flow of the whole “normal modes”, and
not just along HRRT surface but along the “minimal wedge
cross section” between the two mixed CFTs, Γ.
Claim: Through the entanglement wedge cross section,

the maximum amount of flow of edge modes [22] would
pass.
Note that the flow of these modes could be formulated

using amplitude of thewave functionbetween states onA and
B as hϕAje−πKAJ jϕBi, where KA is related to modular
Hamiltonian and would implement the charge conjugation
(C), parity transformation (P), time reversal (T), (CPT
transformation) as J ∶HB → HA. The operator KA in a
special case where the angular coordinate θ around the
entangling surface is zero, could be written as KA ¼R
A d

D−1xfðxÞT00, where T00 is the energy density and
fðxÞ is a weight function, so along Γ, this weight function
would make the amplitude of transformation maximum.
Also note that the pattern of entanglement of purification
between mixed boundary CFTs would create the bulk
curvature. As MI and EoP have decreasing gradients along
the surface Γ, the bulk would be negatively curved.
The next claim involves the structure of modular

Hamiltonian and modular zero modes using the struc-
ture of [7]. Claim: In our setup, moving from the HRRT
surface with turning point m to the HRRT surface with
turning point m0, the change in the local gauge and the
modular Hamiltonian, would be proportional to the area of
minimal wedge cross section Γ. So the structure of
entanglement of purification and the connections between
the algebra of the two Hilbert space of mixed states would
dictate the structure of bulk curvatures. For instance,
similar to [7], one could imagine that for each pair of
qubit on the two subregions A, B, a map between two
Hilbert space would transform under the action of a local
SUð2Þ symmetry as jiiA → jĩiB ¼ i¼P

j ¼WijjjiB, where
Wij → U†

A;ikWklUB;lj. The matrix Wij could be considered
as the Wilson loop between the two regions connecting
qubits on each side. Based on the idea of ER ¼ EPR, each
of these would be a wormhole connecting the qubits. The
pattern of “Entanglement of Purification” would then
dictate the local density of threads and their gradient along
the surface Γ, moving from turning point m to m0.
Then we have the following picture: Claim: As the

correlations between pairs in the two subregions are

stronger where they are closer to each other, the density
of threads would be higher around those points (also the
gradients of change of correlations would be higher), the
densities of bit threads, modular flow, and edge modes are
bigger around m, the holonomy is bigger around the m
compared to m0, the density of the symmetry operators or
symmetry generators is higher, the Bures metric has a
bigger absolute value, and also the curvature in the bulk is
bigger around the HRRT surface associated with turning
point m compared to the one passing through m0.
These claims indicate that the gradient of modular flow

would be similar to the behavior of bit threads, or even a
gradient of an electric field between two charged strips, as the
flow between two equal and symmetric strips as shown in
Fig. 8 would be symmetric and decreasing along Γ, moving
further away from the strips. Also, we expect that similar to
bit threads formalism, the modular flow has a bound of
J ≤ 1

4GN
, which has been observed in [23], too, so thegradient

of bit threads could be found by considering the behavior of
modular scrambling modes around various RT surfaces
along the minimal entanglement wedge cross section. In a
dynamical setup, the change in modular Hamiltonian of
the boundary region (for instance by closing the two strips
to each other in our case), would act as a vector flow close
to RT surface which would depend on the boost vector and
gradient of fields in the bulk. The effects of varying the
physical parameters of the boundary system, on the bulk
reconstruction, could also be studied through the structure of
modular Hamiltonian.
We show that mass of graviton m or charge of the

system, q, within the “code subspace”, would decrease the
rate of change of the matrix elements of modular flow
δHmodðsÞ=δs, and bring the bound lower than 2π. As the
mass of graviton corresponds to the viscosity parameter in
the field theory side, one would expect that increasing m
would damp the “modular scrambling modes”.
The change in the modular Hamiltonian of the system

due to the viscosity and dissipations could be tracked by
considering the change in the energy momentum tensor,
which in terms of the viscosity coefficients could be written
as [24]

Tαβ ¼ ρuαuβ þ qαuβ þ qβuα þ ðp − ζΘÞhαβ − 2ησαβ;

ð3:2Þ

where ρ is the energy density, uα is the velocity of the
“comoving” observer, and qα is the spacelike “heat” flux
vector that satisfies qαuα ¼ 0. Also, note that ζ > 0 and
η > 0, which are the bulk and shear viscosity, respectively.
The parameterΘ ¼ uα;α is the expansion and σαβ is the shear
tensor which has the relation

σαβ ¼ 1

2
ðuα;μhμβ þ uβ;μhμαÞ − 1

3
Θhαβ: ð3:3Þ
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The stress tensor could be written as the sum of three
terms in the following form [24]:

Tαβ ¼ Tαβ
pf þ Tαβ

heat þ Tαβ
visc;

where Tαβ
pf ¼ ρuαuβ þ phαβ; Tαβ

heat ¼ qαuβ þ qβuα;

Tαβ
visc ¼ −ζΘhαβ − 2ησαβ: ð3:4Þ

From these relations, one could see that the mass parameter
m can increase the coefficients ζ and η and therefore
decreases the matrix elements of energy momentum tensor
and their derivatives which then leads to the damping of the
modular scrambling modes. Also, the same-sign charge of
the system, due to the repulsions between the internal
degrees of freedom, would lead to the suppression of the
modular scrambling modes.
One may directly calculate the modular Hamiltonian and

the growth rate of modular flows in the presence of these
additional parameters such as charge and mass and so prove
this conjecture. The modular chaos bound could specifi-
cally be calculated for dissipative systems using the field
theory model introduced in [25]. Their structure could

model dissipative systems with gapped momentum states
using the two-field Lagrangian. Using this model, then one
can show how the modular chaos bound would decrease
from the maximum value of 2π, by a factor proportional
to the dissipation parameter τ ¼ η

G, where here η is the
viscosity and G is the shear modulus. Note that due to the
dissipations, the theory would become non-Hermitian.
Also, in these systems, due to the dissipations, the

correlation functions show decaying oscillatory behaviors.
However, we expect that, in these mixed decaying systems,
the JLMS relation [19]

hχijHCFT
mod jχji ¼ hχijHbulk

modjχji; ∀ jχii ∈ Hψ
code; ð3:5Þ

would still hold. In addition, the connections between the
modular flowed operators in each region, ρ−is=2πR OðxBÞρis=2πR

or ρ−is=2πR OðxBÞρis=2πR , and the correlations between the bulk
fields on the RT surfaces and operators on each boundary
region part, similar to the result of [4], could be extended to
the mixed symmetric setup of Fig. 1, and one could get the
following relation for this setup as:

Z
∞

−∞
dsρ−is=2πR OðxAÞρis=2πR ¼ 4π

�Z
∂rA

dYRTA
hΦðYRTA

ÞOðxAÞiΦðYRTA
Þ

þ
Z
∂rB

dYRTB
hΦðYRTB

ÞOðxAÞiΦðYRTB
Þ −

Z
∂rC

dYRTC
hΦðYRTC

ÞOðxAÞiΦðYRTC
Þ

−
Z
∂rD

dYRTD
hΦðYRTD

ÞOðxAÞiΦðYRTD
Þ
�
; ð3:6Þ

where we have used the relation of mutual information between A and B, i.e., I ¼ 2SðlÞ − SðDÞ − Sð2lþDÞ, and also the
Eq. (1.6) of [4]. Note that RTA is the RT surface for only region A, RTB is the RT surface for only region B, RTC is the RT
surface for the part D which passes from the point m, and RTD is the RT surface for the part 2lþD which passes through
the point m0.
The structure of zero modes in the mixed states could further be studied by writing the Eq. (4.33) of [4] for the mixed

setups. For a free theory and for Gaussian states, their result could be extended to our specific mixed setup as

Φ0ðZXÞ ¼ 2

Z
RTA

ffiffiffiffiffiffiffiffiffiffi
hIRTA

q
dYðfΠðYÞΠðYÞ þ fΦðYÞΦðYÞÞ −

Z
IRTC

ffiffiffiffiffiffiffiffiffiffi
hIRTC

q
dYðfΠðYÞΠðYÞ þ fΦðYÞΦðYÞÞ

−
Z
IRTD

ffiffiffiffiffiffiffiffiffiffi
hIRTD

q
dYðfΠðYÞΠðYÞ þ fΦðYÞΦðYÞÞ; ð3:7Þ

where hI is the induced metric on the Hubeny, Rangamani,
Takayanagi (HRT) surface II andΠ ¼ nμ∂μΦ. Using lattice
models, the properties of these relations and the behavior of
zero modes versus length l, distance D or dimension d
could then be studied numerically. Note that for the points
close to the RT surfaces, where Y → YRT , the modular
flow of the operator would behave as limY→YRT

fΠðYÞ ¼
−2πhΦðYRTÞΦðXÞi.

A. Quantum recovery channels versus modular
flows in mixed states

Since both modular Hamiltonians and quantum recovery
channels could model the entanglement wedge recon-
struction, we would expect physical connections between
their formalisms. One should note that both of these
approaches would establish a map between the algebras
that are localized in different subregions of the system.
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The modular Hamiltonian has specifically been used in
formulating many holographic quantum measures such as
relative entropy and also for bulk reconstruction. On the
other hand, the main point of using a universal quantum
recovery channel and quantum error correction formalism
would be related to reconstructing information from the
damaged information, as some partial parts of the infor-
mation of the system would be damaged due to the noise.
As one would expect that modular evolution has memory,
one could imagine that the damaged information are still
encoded in the modular flow which could then be extracted,
and therefore this signals the connection.
First, note that the “classical” channel is a conditional

probability distribution fpYjXðyjxÞgx∈X ;y∈Y , where X is the
input system and Y is the output system which acts over the
alphabets X and Y. Then the reversal channel could be
written as [26]

pXjYðxjyÞ ¼
pXðxÞpYjXðyjxÞP
xpXðxÞpYjXðyjxÞ

: ð3:8Þ

A “quantum” channel N is also a completely positive,
trace-preserving quantum “map”. It is reversible if there
would be another quantum channel R, known as the
recovery channel, which makes the composition R∘N to
act as an identity in the form ofR∘N ½ρ� ¼ ρ. The Petz map
is specifically an example of a recovery channel and is a
function of the quantum channel N , where N is the
generalization of the classical map pYjXðyjxÞ. Also, the
input state to the channel, σ, is the generalization of pXðxÞ.
The Petz map could also be written as

Pσ;N
B→AðωBÞ ≔ σ1=2A N †ðN ðσAÞ−1=2ωBN ðσAÞ−1=2Þσ1=2A ;

ð3:9Þ

which is a function of the quantum state σA. It is also a
function of the quantum channelN A→B which takes system
A to B. Also, ωB is the input density operator. The Petz map
is the composition of three completely positive (CP) maps
which would lead to an indirect procedure for the bulk
reconstruction.
In [11], the twirled Petz map has also been written in the

form of

Rσ;N ≔
Z
R
dtβ0ðtÞσ−it

2Pσ;N ½N ½σ�it2ð:ÞN ½σ�−it
2�σit

2 ; ð3:10Þ

where Pσ;N , is the normal Petz map, i.e., Pσ;N ¼
σ1=2N �½N ½σ�−1=2ð:ÞN ½σ�−1=2�σ1=2, and N � is the adjoint
of channel N . Also β0 is the probability density which is
β0ðtÞ ≔ π

2
ðcoshðπtÞ þ 1Þ−1. For the bulk reconstruction,

any of these two structures could be used, so the con-
nections between modular Hamiltonian and quantum

recovery channels could be traced using any of these
formulations.
In [27], it has been shown how to construct a recovery

channel R∶SðHBÞ → SðHAÞ from any reversible channel
N ∶SðHAÞ → SðHBÞ, where HA and HB are two Hilbert
spaces. Any recovery channel would act approximately as
R∘N ½ρ� ≈ ρ, ∀ ρ ∈ SðHÞ, so it should be able to recon-
struct the original density matrix with sufficient precision.
Since the quality of this approximation would depend on
the behavior of relative entropy under the action of the
channel N [11], then, from the connections between
relative entropy and modular Hamiltonian, the connection
between the quantum recovery channel and modular flows
could be noticed.
When the two subsystems in our setup become closer to

each other, the noise would get greatly increased as more
information would be damaged. Then, from the modular
Berry flow point of view, one could check that the rate of
change of elements of modular Hamiltonian would increase
and the flows would become more chaotic. Another
important point is the monotonicity of the relative entropy
which indicates that acting any quantum channelN on any
two states would decrease the relative entropy between
two states, so we have DðρjσÞ ≥ DðN ½ρ�jN ½σ�Þ, where
again DðρjσÞ≔ Trρ logρ−Trρ logσ is the relative entropy
between ρ and σ.
Then the approximate version developed in [28]

would be

DðρjσÞ −DðN ½ρ�jN ½σ�Þ ≥ −2 logFðρ;Rσ;N ∘N ½ρ�Þ;
ð3:11Þ

where Fðρ; σÞ ≔ j ffiffiffi
ρ

p ffiffiffi
σ

p j1 here is the fidelity. This inequal-
ity then can put a constraint on the holographic bulk
curvatures and modular chaos modes. It is worth mention-
ing here that the parameters such as dissipation, quantified
by the mass of graviton m, or the same-sign charge of the
system q, would make the term Fðρ;Rσ;N ∘N ½ρ�Þ smaller,
as the recovery channel works with less precision.
Another connection between the modular Hamiltonian

and quantum recovery channel in the bulk reconstruction
could be derived by combining the results of [11,23]. In
[11], it has been shown that a boundary operator could be
computed as the response of the modular Hamiltonian of
the specific subregion to a perturbation of the average code
state, which is in the direction of the bulk operator. Also, a
bulk operator could be examined by the response of the
boundary region’s modular Hamiltonian to a perturbation
of the bulk state in the direction of the bulk operator. This is
the noncommutative version of Bayes’s rule and has a
representation in terms of modular flows. Our aim is to
check what the recovery channel would tell us about the
properties of modular flows along the minimal wedge cross
section.
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For all the bulk operators ϕa, with support in the
entanglement wedge a, one could write, [11],

O ≔ R�½ϕa� ¼
1

dcode

Z
R
dtβ0ðtÞe1

2
ð1−itÞHA

× TrĀ½Jðϕa ⊗ 1āÞJ†�e1
2
ð1þitÞHA; ð3:12Þ

where HA ¼ − logðJτJ†ÞA is the boundary modular
Hamiltonian of the subregion A which is associated with
the maximally mixed state τ on the code subspace. In
another way, it could be written as the logarithmic direc-
tional derivative as

OA ¼ R�½ϕa� ¼ −
1

dcode

d
dt

����
t¼0

HA½τcode þ tϕa ⊗ 1ā�:

ð3:13Þ

Using the results of [23] where a bound on the
infinitesimal perturbation of the modular Hamiltonian have
been introduced, one could find a constraint on the
perturbative properties of the quantum channels. Since
we have dHmod ∝ ðdτcode þ dsðϕa ⊗ 1āÞÞ and we can get
the following bound:���� ddt

���
t¼0

loghχjjðJðτcode þ tϕa ⊗ 1āÞJ†Þjχji
���� ≤ 2π

dcode
:

ð3:14Þ

This means that the boundary operator corresponding to ϕA
is related to the response of acting the boundary modular
Hamiltonian HA on the perturbation of the maximally
mixed code state in the direction of the operator ϕa. We also
expect that having the maximum modular flow through the
minimal entanglement wedge cross section would corre-
spond to the most efficient quantum error correction codes.
The relation (3.14), could also specify a bound on the
maximum density of bit threads along the minimal entan-
glement wedge cross section in our setup.
In [26], the connections between Petz recovery channels

and pretty good measurements have been discussed.
Additionally, using pretty good measurements which is a
special case of Petz recovery channel, various aspects of the
connection could be studied. This channel could allow for
near-optimal state discrimination. The error probability of
pretty good measurement (PGM) would satisfy the follow-
ing inequality: PPGM

e ≤
P

i≠j
ffiffiffiffiffiffiffiffiffipipj

p Fðσi; σjÞ, where fσig
is a set of density matrices and pi is the probability that a
quantum state ρ is in state σi and F is the fidelity function.
As the fidelity and complexity are proportional which has
been shown in [29], using volume complexity, this inequal-
ity then could put a bound on the probability PGM.
Therefore, quantities such as capacity of quantum recovery
channels would also be bounded by the computational
complexity of a state. Also, using the gradient of modular

flow, the compressibility of quantum messages and also the
capacity of quantum channels could be estimated.
Another observation is that the bound on quantum error

correction for every channel Λ as

min
jψi∈C⊗2

max
D

hψ jðD∘Λ ⊗ IÞðjψihψ jÞjψi ≥ 1 − ϵ; ð3:15Þ

would be related to the bound on modular Hamiltonian

ke−iHmodseiðHmodþϵδHmodÞsk ≤ 1; ð3:16Þ

for the strip − 1
2
≤ Im½s� ≤ 0. This would indicate the

connections between the upper bound on the changes of
the modular scrambling modes and the maximum precision
of quantum error correction codes. Quantities which sup-
press the modular scrambling modes would decrease the
precision of the code.
Next, the relations between quantum error corrections

and chaos could be considered. In [30], the connections
between chaos, eigenstate thermalization hypothesis (ETH),
and quantum error correction have been discussed. The
eigenstate thermalization hypothesis could be written in
the form

jhEljOjEli − hElþ1jOjElþ1ij ≤ expð−c1NÞ; and

jhEkjOjElij ≤ expðc2NÞ; ð3:17Þ

where c1, c2 > 0 are two constants and El are the energy
eigenstates. The constraint on the modular scrambling
modes growth rate would then also be related to the
approximate version of the Knill-Laflamme condition in
the form of hψ ijEjψ ji ¼ CEδij þ ϵij, where the index i
specifies the codewords that span the code space as
C ¼ spanðfjψ1i;…; jψ2kigÞ. The error in (3.15) would also
have the bound of ϵ ≤ 22ðkþdÞ where d here is the number of
qubits in the system.
By increasing d (the system size), the average error

would decrease as the error here would be proportional to
1ffiffi
d

p . For the modular Hamiltonian, this has the implication

that by increasing the system size, the number of modular
zero modes would increase, which leads to a smoother bulk
geometry, and also the bound (3.16) would get closer to
one. Therefore, the connections between quantum error
corrections, chaos, and modular chaos could be seen from
ETH as well. Considering “all” of the modular flows that
pass through entanglement wedge cross section, corre-
sponds to a “perfect” quantum error correction code. Note
that for the mixed quantum systems with a connected bulk
geometry, which also satisfy ETH, one would have a richer
family of eigenvalues which then would need a bigger
approximate quantum error correction code (AQECC). The
AQECC for the connected versus two disconnected bulk
systems should perform differently, and so it could detect
the phase transitions.
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The difference between the codes in the disconnected
versus connected case could be further examined by
considering the theorem 1 of [30]. If we imagine that in
each strip there are N sites, in the initial state, there would
be a set of energy eigenvalues close to E1 as SE1

≔
fEk∶Ek ∈ E1 −

ffiffiffiffi
N

p
;E1 þ

ffiffiffiffi
N

p g. Then, when the two
strips get closer enough, as the mutual information and
EoP become nonzero, the sets of energy eigenvalues get
mixed, and a bigger set which its components form around
E2, as SE2

≔ fEj∶Ej ∈ E2 −
ffiffiffiffiffiffiffi
2N

p
;E2 þ

ffiffiffiffiffiffiffi
2N

p g, would
appear. Since there would be more eigenstates and the
distances between them get smaller, the error of AQECC
would become smaller as well. In this case the distance of
the code would change by a factor of Δ ∼ logð2Þ.
When the two subregions are far from each other and the

mutual information between them is zero, in each region,
the eigenstates which have close energies, would form
an approximate quantum error correcting code (AQECC)
which all together reconstruct their own corresponding
bulk dual space. When the two regions get closer enough
to each other, more eigenstates would be available and a
bigger set for AQECCs could emerge, which also is the
case for the linking part of the two subregions, and
therefore the dual “connected” entanglement wedge in
the bulk could be constructed.
There are two reasons one expects that the discussion of

[30] would work for the mixed setup and connected
entanglement wedge reconstruction as well. One is the
invariance of states under modular flow for any subregion,
which could be written as δHmodjψi ¼ 0 or G�jψi ≈ 0.
This would lead to the approximate local isometries of
Lζð�Þgμνðxα ¼ 0; yiÞ ¼ Oðe−2πΛÞ along all the RT surfaces
and even those connecting the two regions [23]. In fact the
existence of this symmetry could ensure the “uniformity”
of spreading of information along the minimal wedge cross
section Γ, and so this symmetry reassures us that even after
mixing, the code would not be corrupted by noise com-
pletely and so is still capable of bulk reconstruction. The
other point is the finiteness of the correlation lengths, which
even in the mixed setup still ensures that the spreading of
information would not diverge and just will be uniform
enough to forge a nice bulk geometry from the mixed
correlations.
Another interesting point about the effects of charges can

be found by studying the connections between quantum
error correction and symmetries in holography. In [31], the
authors studied the approximate error correction in the
presence of continuous symmetries and Haar-random
charged systems and they found a bound on the recovery
error as ϵ≳ Q

n where Q is the total charge of the state and n
is the number of physical subsystems where the system is
made of. Again one could see that by increasing the charge
Q, the minimum error for constructing states would
increase so in the bulk reconstruction, less quantum
recovery channels and fewer gates would be available

for calculation and therefore once again one could see that
charge would decrease the complexity of purification as it
also decreases the correlations among mixed systems.
We could get further connections from other symmetry

generators. The observation in [23], was that the chaotic
properties of the dual boundary CFT theories would lead to
the symmetry generators in the bulk. Near the RT surfaces
in the bulk, as found in [23], the modular Hamiltonian
would act as a geometric boost, i.e., ½δHmod;ϕðxα; yiÞ�∝
2πðζμðþÞ − ζμð−ÞÞ, so the zero modes close to the RT surfaces

would have translation invariance. If the ETH would be
applicable in the system too, then using the result of [30]
for the 2d case one could show that an AQECCwould exist.
This point then would indicate further connections between
modular chaos and quantum error correction codes. The
formation of quantum error correcting codes (QECC) in
chaotic systems in which eigenstates exhibit the eigenstate
thermalization hypothesis could be related to the saturation
of modular scrambling modes, so one expects that in the
bulk reconstruction formalism by quantum recovery chan-
nels, the inequality found in [23] for modular chaos
somehow appears.
As ETH has many significant implications for QECCs,

its implications for EoP and CoP would be notable too.
Then the dynamical properties could also point out to other
connections. For instance, in [32], the fluctuation theorem
has been applied to quantum recovery channels. Their
complex-valued entropy production could detect the rela-
tion between the forward and backward processes through
the quantum channel, so one could propose that the
imaginary part of the complexity of purification is also
related to the symmetry breaking while passing through the
quantum channel.
By changing the parameters of the system, further

connections could be revealed. For example, the parameter
m increases the dissipations in the channel and therefore
decreases the correlations among the two subregions. In
this case, then less modes could pass through the quantum
recovery channels and so increasing m would decrease the
imaginary parts of entanglement and complexity of puri-
fication as we observed in [10]. The same argument could
be applied for the case where the two subregions have a
same sign charge q. As these two quantities increase the
errors in AQECCs, and suppress the flow of modular
modes, and so they decrease EoP and CoP linearly. This
can also be seen from a simple model of Jaynes-Cummings
models in a cavity QED [33],

Hi−f ¼ 1

2ma
½p − qAðxÞ�2 þUðxÞ þ ℏω

�
a†aþ 1

2

�
þHel;

ð3:18Þ
where p, q, x, and ma are momentum, charge, position,
and mass of the atom, and Hel is the Hamiltonian of the
electronic state of the atom. As charge decreases the
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element of this Hamiltonian linearly, we expect its effect
would be linearly decreasing of EoP, CoP, entropy pro-
duction [32], coherence in quantum channel, and the
transition rate between diagonal and off-diagonal of the
system density matrix. It is worth mentioning here that an
interesting question would be to specify the share of the
dual of real versus imaginary entropy production, from the
holographic bulk perspective.
Now we could investigate the relations for the modular

zero modes and the connections with EoP and CoP in more
details. For each subsystem, the zero modes are those
operators QA

i which satisfy the following relation:

½QA
i ; Hmod ;A� ¼ 0; ð3:19Þ

where i indexes the zero-mode subalgebra. Due to the
equivalence between bulk and boundary modular flows
[19], for holographic CFTs which satisfy (3.19), the dual
Bulk operators would be on the RT surfaces which are
anchored on λ.
For the mixed case, one should specify how the

correlation functions “outside” of a CFT subregion A
would change under the unitary evolution which are
generated by the modular zero modes of the system A,
i.e., QA

i . If all the correlation functions stay within the
subregion A, then the evolution is invariant and we get
(3.19). However, since here we are interested in under-
standing how the correlation functions and their relative
bundles connect the subregion A to subregion B, in the
mixed state setup, this relation then should be modified for
the case of entanglement of purification. One then expects
that for the full setup of EoP, one would need to consider
the whole normal modes and not just the zero modes.
So, for the mixed setup, we expect the commutative

relations would be more complicated. For the case
where the distance between the two subsystems is big-
ger than the critical distance D ≥ Dc, the mutual informa-
tion is zero, I ¼ 0, and therefore EoP ¼ 0. In this case, for
each of the two systems of A and B, still ½QA

i ; Hmod;A� ¼ 0

and ½QB
i ; Hmod;B� ¼ 0. However, for D ≤ Dc when the

two systems become correlated, the commutations
become nonzero, i.e., ½QA

i ; Hmod;A� ≠ 0, ½QB
i ; Hmod;B� ≠ 0,

½QA
i ; Hmod;B� ≠ 0, ½QB

i ; Hmod;A� ≠ 0, as they would depend
on the amount of mixing and correlations between the
subsystems, or the mutual information shared among them,
and therefore on the parameters such as l, D, d, etc., which
totally could be quantified by a mixing parameter μ. We
later study this parameter further. Note that, here,QA

i orQB
i

are the generators of the unitary evolutions. For the modular
Hamiltonian of the total system and its zero modes, we
expect though that again the commutation relation would
vanish.
Looking for more connections, we turn again to [7],

where it was suggested that the modular Hamiltonian could
be written as Hmod ¼ U†ΔU, where Δ has the information

of the spectrum and the unitary operators U have the
information of the basis of the eigenvectors. Its derivative
with respect to the modular parameter λ has been written
there as

_Hmod ¼ ½ _U†U;Hmod� þ U† _ΔU; ð3:20Þ
and we expect that this relation would still work for the case
of mixed setup as well.
Now again the main point we want to look for here is

to determine how by changing the charge q, or the
dissipation rate, i.e., changing m, each term of this relation
would be changed as we would like to understand better
the connections between the procedure of quantum recov-
ery channels in entanglement wedge reconstructions and
modular flow by studying the effects of charge and dis-
sipation rate on each method. For studying this problem,
similar to [34], we could consider an out-of-time-order
correlator (OTOC), but now using modular Hamiltonian,
and in the setup of mixed states, so instead of the zero
modes Q0, we need the operators Qx, which has support
near the position x. Then, the OTOC would be [34]

Cðx; sÞ ¼ 1

2
Trρeq½HmodðsÞ; Qx�†½HmodðsÞ; Qx�; ð3:21Þ

where ρeq is a Gibbs state. Using this relation, the Lieb-
Robinson bound in the setup of modular chaos could
be considered and it could be connected to modular
chaos bound.
To make the study simpler we can use the model of the

spin-1=2 chain of length L where the spreading operator
could be written in the basis of 4L Pauli string operators S
which are some products of Pauli matrices on distinct sites.
Similarly it could be done for modular Hamiltonian which
controls the evolution of modular scrambling modes and so
it could be written as HmodðsÞ ¼

P
S aSðsÞS, so the

modular Hamiltonian would be the combination of some
string operators which by evolution of the modular time s
grow in the spatial extent. The OTOC then would be zero at
first, when the two subregions are far away from each other,
but it becomes nonzero as the two subregions get closer.
The effects of mass and charge on modular Hamiltonian
and modular chaos modes could then be seen by consid-
ering their effects on these string operators. The modular
Hamiltonian would satisfy a type of conservation law; the
operator norm Tr½H†

modHmod� should be conserved which
leads to the fact that the total weight of these Pauli stringsP

S jaSj2 would be conserved as well. So for the modular
scrambling modes, similarly, one could imagine a hydro-
dynamical spreading picture. Then, the effects of charge or
dissipation could be observed by using this model and just
by considering their effects on the string operators.
When the left and right systems become close enough to

each other that we get I ≠ 0 and EoP ≠ 0, then the zero
modes would mix with each other, and the strings or the
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Wilson lines between them would become screened. The
dissipation and (same-sign) charge would shrink the string
operators. The charge and dissipation also make the
scrambling time shorter and also the termU† _ΔU in relation
(3.20) would reach to its maximum value faster.
In [7], a projector operator into the zero modes, Pλ

0,
has also been proposed which could separate the contri-
bution of spectrum changing in relation (3.20). It could be
written as

Pλ
0½V�≡ lim

Λ→∞

1

2Λ

Z
Λ

−Λ
dseiHmodðλÞsVe−iHmodðλÞs; ð3:22Þ

or

Pλ
0½V�≡

X
E;qa;q

0
a

jE; qaihE; qajVjE; q0aihE; q0aj; ð3:23Þ

where in (3.23), jE; qai would be the simultaneous eigen-
states of modular Hamiltonian Hmod and a set of commut-
ing zero mode operators Qa. Also, E is the eigenvalue
of Hmod, and qa would be the eigenvalue of Qa.We would
like to raise here, the similarities between the procedure of
applying the projector operator Pλ

0, quantum recovery
channels and also the Wilson line formulations. As men-
tioned, the quantum recovery channel

Pσ;N
B→AðωBÞ ≔ σ

1
2

AN
†ðN ðσAÞ−1

2ω̃BN ðσAÞ−1
2Þσ1

2

A; ð3:24Þ

is a combination of three maps [26],

iÞ ð:Þ → ½N ðσAÞ�−1=2ð:Þ½N ðσAÞ�−1=2; iiÞ ð:Þ → N ð:Þ;
iiiÞ ð:Þ → σ1=2A ð:Þσ1=2A : ð3:25Þ

The combination of the first and third one is similar to the
applying of the projection operator into zero modes, so we
could think of the projector operator applied into the zero-
mode sector of HmodðλÞ as a quantum recovery channel.
Also, the flux of zero modes along the minimal wedge

cross section could be considered by the integral below:

Z
m0

m
dz

dðU† _ΔUÞ
dz

����
Γ
¼

Z
m0

m
dz

dðPλ
0½ _HmodðλÞ�Þ

dz

����
Γ
: ð3:26Þ

So the change of spectrum of zero modes could also be
written in terms of projection operator and rate of change of
modular Hamiltonian. Then, the spectrum complexity part
of complexity of purification [10,35] and its growth rate
could be written in terms of the modular Hamiltonian. We
explain further this point in Sec. III B. Note also that the
mass parameter m and charge, would suppress the rate of
growth spectrum complexity by suppressing the operators
P0 and _Hmod through the suppression of the eigenvalues E
and qa.

One last point that we would like to mention in this
section is the connection between remaining in the code
subspace along the minimal wedge cross section, which
follows the equation Hmod ¼ PcodeHexact

mod Pcode, and stays
within the distance smaller than Dc in our mixed setup,
where the mutual information is still nonzero, i.e.,
I ¼ SðlÞ þ SðDÞ − Sð2lþDÞ ≠ 0. One could argue that
if the nonlocal effects outside the code subspace could be
considered, the singularities of the first-order phase tran-
sitions shown in Fig. 5 could be removed. In particular,
considering the effects of quantum tunnelings through the
Berry potential could improve the relation for the mutual
information and remove the sudden drop in the phase
diagrams of entanglement and complexity of purification
and make those figures get vanish in late times smoothly.
The quantummutual information would satisfy the inequal-

ity IðA; BÞ ≥ CðMA;MBÞ2
2kMAjj2kMBjj2, where CðMA;MBÞ ≔ hMA ⊗

MBi − hMAihMBi is the correlation function of MA and
MB, [36], so this way by adding the quantum effects to the
relations of mutual information, EoP and CoP the sudden
drops in their phase diagrams will be removed.
Finally, we would like to mention that we expect

HmodðmixedÞ would have more zero modes than the
initial Hamiltonian, and also, when the system become
mixed, the corresponding gauge groups would get larger.
Also, we expect that for the mixed setup we get
½Qi; PcodeHmodeðmixedÞPcode� ≠ 0. Also, charge and dissipa-
tion (the term m) would change the size and the behavior
of projection operators and the code subspace which could
be studied further.

B. Complexity, Berry phase and
modular Hamiltonian

The question of what information modular Berry phase
yield could be studied in the setup of AdS3=CFT2 where it
has been shown in [9] that it has deep connections with the
entanglement and bulk reconstruction. In the bulk and in
the mixed systems, the modular phase is related to the
complexity of purification introduced in our previous
work [10].
For the case of AdS3, as we have seen, CoP would be

constant and its absolute value would be π. For higher
dimensions it would change similarly to the volume as in
Fig. 2. It becomes much bigger as the dimension of space-
times increases which is similar to the behavior of
Berry phase. Also, the behavior of EoP shown in Fig. 3,
could show such connections between the correlations and
modular Berry connection in various dimensions. However,
as we discussed, complexity and CoP would be better
probes of correlations in mixed setup; therefore, one should
also find the connections between CoP and Berry phase. In
[37], the connections between complexity measures in the
path integral optimization proposal and Berry phase have
been depicted. Now here we would find more connections
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between the complexity of purification, basis complexity
and spectrum complexity (defined in [35]) and the Berry
phase by varying the modular Hamiltonian through chang-
ing m and q.
Simply as the modular Hamiltonian has been employed

in the calculation of relative entropy, entropy bounds, or
determining the statistical properties of vacuum CFTs, one
would expect it would be useful in studying holographic
computational complexity as well. In Refs. [38,39], it has
been shown that the Berry curvature and Berry phase would
also play an important role in studying many electronic
properties in molecules and solids. The Berry’s phases of
the many-electron wave function have been related to
several observable phenomena and measurable effects such
as the polarization in the material, various manifestations of
Hall effects, orbital magnetism, and also quantum charge
pumping. One could add to those studies by connecting the
Berry phase of many-body systems to the complexity and
complexity of purification of the system. Specially, con-
nections between quantum charge pumping, the direction
of bit threads, the behavior of correlations between two
mixed systems and purification could be related.

As mentioned, the modular Hamiltonian could be
considered as the Hermitian operator on the CFT and can
be decomposed as Hmod ¼ U†∇U, where in this relation ∇
is a diagonal matrix which determines the spectrum and it
would be connected to the spectrum complexity. The
unitary U specifies the basis of eigenvectors and it would
be connected to the basis complexity. Then from that, one
could get _Hmod ¼ ½ _U†U;Hmod� þ U† _∇U, where the dot is
the derivative with respect to the quantity λ, _≡ ∂λ, which
reparametrizes CFT. Then, in [7], the modular Berry
connection is defined as

Γðλi; δλiÞ ¼ Pλ
0½∂λiU

†U�δλi; ð3:27Þ

where Pλ
0 is the projector which acts only on the zero-mode

sector of HmodðλiÞ. One should note that unlike the case in
[7], in the mixed setups, to connect A and B, the trans-
formation U would be generated not only by the zero

modes but by the whole modes as U0
Q ¼ e−i

P
i
Q0

isi .
Therefore, the form of Hmod for mixed states would not
completely be preserved, but still the change in its form
could be calculated and it would be related to complexity of
purification.
Indeed, it would be interesting to rewrite various

quantum information measures in terms of modular
Hamiltonian. For instance, here one could then connect
modular Hamiltonian to the definition of complexity of
purification defined in [35] which is a summation of two
parts, basis complexity and spectrumcomplexity.Aswehave
mentioned, the complexity of purification could bewritten as

CoP ¼ CB þ Cs; ð3:28Þ

and in the boundary CFT, the change of modular
Hamiltonian could also be decomposed into the change
of basis and change of spectrum as [7]

_Hmod|ffl{zffl}
∝ CoP

¼ ½ _U†U;Hmod�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
∝ CB

þ Pλ
0½ _Hmod�|fflfflfflfflffl{zfflfflfflfflffl}
∝ Cs

; ð3:29Þ
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FIG. 2. The volume VðLÞ corresponding to each length of strip with the width L, for various dimensions d, reprinted with permission
fromM. Ghodrati, X.-M. Kuang, B. Wang, C.-Y. Zhang, and Y.-T. Zhou, J. High Energy Phys. 09 (2019) 009. Copyright 2019, Springer.

FIG. 3. The EoP curves for different dimensions are shown
here. For both cases we took l ¼ 20 and D ¼ 0.3, reprinted with
permission from M. Ghodrati, X.-M. Kuang, B. Wang, C.-Y.
Zhang, and Y.-T. Zhou, J. High Energy Phys. 09 (2019) 009.
Copyright 2019, Springer.
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leading to the desired relations. The part which corresponds
to the change of the spectrum of modular Hamiltonian and
therefore corresponds to spectrum complexity part of CoP,
could also be written in the form of modular flow as [7]

Pλ
0½V�≡ lim

Λ→∞

1

2Λ

Z
Λ

−Λ
dseiHmodðλÞsVe−iHmodðλÞs: ð3:30Þ

Then, in the bulk, this relation could be written in the
following form:

δλζ
M
modðx; λÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
∝ δCoP

¼ ½ξðx; λ; δλÞ; ζmodðx; λÞ�M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∝ rotation of the basis

þ Pλ
0½δλζMmodðx; λÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

∝ change of spectrum

:

ð3:31Þ

These relations could show how changing the modular
Hamiltonian would change basis, spectrum and purification
complexities. Also, the operator _U†ðλÞUðλÞ which corre-
sponds to the basis component of complexity of purifica-
tion could depict the interrelationship of information and
the infinitesimal shape variation.
Note that entanglement entropy and relative entropy pre-

viously have been written in terms of modular Hamiltonian
as well. For instance, for a ball-shaped region A in the CFT,
the first law of thermodynamics would be

d
dϵ

ðhHAi − SAÞ ¼
d
dϵ

SðρAkρð0ÞA Þ; ð3:32Þ

where ρð0ÞA is the density matrix of region A without

perturbation and SðρAkρð0ÞA Þ is the relative entropy between
the perturbed and unperturbed states. This could then be
extended to define a first law of EoP in terms of modular
Hamiltonian as

∂λΔhH0ijλ¼λ0
¼ ∂λΔEoPðA; λÞjλ¼λ0

: ð3:33Þ

The gradient of EoP also could be written in term of the
modular Hamiltonian as

ΔhH0iðA; λÞ ¼ ∂λΔSðA; λÞjλ¼λ0
λ̃þOðλ̃2Þ: ð3:34Þ

Another example is the coherent states, where their
modular Hamiltonian is equal to the canonical energy.
These would not change the bulk von Neumann entropy of
subregion, due to the relation ΔSbulk ¼ 0 [19], which then
would lead to

SbdyðρkσÞ ¼ SbulkðρkσÞ ¼ ΔKbulk − ΔSbulk
¼ ΔKbulk ¼ Ecanonical: ð3:35Þ

So in the case of excitations of coherent states, under
the action of their specific quantum channel, modular
Hamiltonian would not increase. Additionally, the first

law of entanglement entropy in terms of the modular
Hamiltonian could be written as

ΔS ¼ Sðρ1Þ − Sðρ0Þ ¼ hHi1 − hHi0 ¼ ΔhHi: ð3:36Þ

Note that when the Hamiltonian of the system evolves
adiabatically, the system would remain in the n-th eigen-
state of the Hamiltonian, but it would gain a phase factor, so
If we replace the Hamiltonian of the system with the
modular Hamiltonian, similar to the studies of [7–9,23], we
could depict the connection between the Berry curvature
and the modular scrambling modes but for the mixed setup.
For doing that we could take into account the picture we got
in [10] for the minimal wedge cross section through the bit
thread formalism. When the modular evolution is cyclical,
the modular Berry phase would be invariant and could be
an observable of the system and the whole change could
be characterized by this phase term. Using the adiabatic
approximation, the coefficient of the n-th eigenstate under
such adiabatic process would be

CnðsÞ ¼ Cnð0Þ exp
�
−
Z

t

0

hψnðs0Þj _ψnðs0Þi
�

¼ Cnð0ÞeiγmðsÞ ¼ Cnð0ÞeiγmðsÞ; ð3:37Þ

where γmðsÞ is the modular Berry phase with respect to the
modular parameter s. One could change the variable s into
the generalized parameter and then write the modular Berry
phase as

γ½C� ¼ i
I
c
dλðsÞhλ; sjð∇λjλ; sÞi; ð3:38Þ

where R here parametrizes the cyclic adiabatic process. The
term Vn ¼ ihλ; sjð∇λjλ; sÞi is the modular Berry potential
we expect that considering the quantum tunneling through
it would smooth out the phase diagrams of MI, i.e., Fig. 5
and EoP.
So when the modular time s varies in a sufficient slow

manner, if the system was initially in the eigenstate
jnðλð0ÞÞi, it would remain in the instantaneous eigenstate
jnðλðsÞÞi of the modular Hamiltonian HðλðsÞÞ up to a
phase. However, the complexity of state would change;
therefore, in this case, the only parameter of the state
which the complexity could be proportional to would be the
Berry phase. This result would also be related to the Chern
theorem, as the Berry phase could be written in terms of
the integral of Berry curvature ωnðλÞ ¼ ∇λ × VnðλÞ, in the
form of γn ¼

R
S dS:ωnðλÞ, where this integral would be

quantized in units of 2π (Chern number), pointing a
connection between eiγn and complexity of purification
(specifically the basis complexity).
The Chern theorem states that the integral of the Berry

curvature over a closed manifold is quantized in units of 2π.
We found a similar result for the complexity of purification
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(CoP) in [10]. Even the multipartite complexity of purifi-
cation would be an integer multiplet of 2π. The reason that
complexity of purification, Berry curvature, and Chern
number are connected could be explained by the mecha-
nisms that the zero modes in the setup of [7] would create
the curvature of the bulk. In other words, if a state changes
from jψnðaÞi on a path γðsÞ where γð0Þ ¼ a, then one
could write jψðsÞi ¼ eiθnðsÞjψnðγðsÞÞi. The phase could be
divided into two pieces, θn;dynamic and θn;geometric. The
conjecture is that the dynamical part of the change of phase
corresponds to the spectrum complexity part of CoP, and
the geometric part, which is related to the rotation of the
basis and so to Berry connection and Berry phase, would
be related to the basis complexity part of CoP, which
could also be noted from the relations (3.28), (3.29), and
(3.31). The gauge transformation relation jñðλðsÞÞi ¼
e−iβðλÞjnðλðsÞÞi, which for an open path gives the Berry
phase eγnðsÞ ¼ γnðsÞ þ βðsÞ − βð0Þ and for a closed path
would give βðTÞ − βð0Þ ¼ 2πm (m is an integer), then
leads to the result that the Berry phase γn by modulo 2π
would be invariant. This fact points to another connection
between the properties of complexity of purification (see
also the results of [10]) and the Berry phase.
Another connection between complexity and Berry

phase could come from the results of [40] where it has
been suggested that the deformation of Euclidean path
integral which prepares a state and is related to the Berry
phase could provide a new formulation for complexity with
a standard gate counting notion, so, this way, the Liouville
action would be related to the Euclidean analogue of the
Berry phase. Since the connections between Liouville
action and complexity have already been established in
[41,42], this would point out to our desired connec-
tions between Berry phase and complexity. This is because
from the change in the measure of the path integral, one
could get the exponent of the Liouville action. The
procedure would be to act with the operator ρβ in the form
of ρβ ¼ expð−βHÞ, on the vacuum state. Note that H is the
physical Hamiltonian operator of a 2d CFT living on a line.
One could also write ρβ as a circuit in the form of

V ¼ P exp

	
−
Z

tf

ti

dt
Z

dy½aðt; yÞhðyÞ þ ibðt; yÞpðyÞ�


:

ð3:39Þ
So acting by this operator on the vacuum state would
produce states which could be parametrized by the circuit
parameter t. These states would be different from the
vacuum state themselves but will end on the vacuum state
at t ¼ tf, and the change in the measure of path integral
would be the exponent of the Liouville action. This would
lead to the connection between Liouville action and Berry
phase [43].
As we found the connections between modular

Hamiltonian and complexity, the bound that has been

found for modular scrambling modes could be used for
complexity of purification, as the bound of 2π has been
observed for both system, so we get

���� dds logFijðsÞ
���� ∝ CoP; where again∶

FijðsÞ ¼ jhχijeiHmodsδHe−iHmodsjχjij: ð3:40Þ

In [10], as mentioned, we also found that in 2d CFTs the
complexity of purification between two mixed states would
be smaller than 2π where quantities such as mass m or
charge qwould decrease CoP. Here we make the conjecture
that this bound is related to the bound for modular
Hamiltonian for two regions as kΔis

ψ ðR2ÞΔ−is
ψ ðR1Þk ≤ 1

for − 1
2
≤ Im½s� ≤ 0. We also expect that dissipation (mass)

and charge would decrease this bound by changing the
complex modular time s. This means that by the effects of
the mass of graviton and charge, the growth rate of modular
Hamiltonian would become suppressed and the internal
modular time would “click” more slowly. This then affects
entanglement and complexity of purification between the
two mixed states.
Furthermore, recently in [37], more direct connections

between circuit complexity and Berry phase have been
discussed, as the computational cost function has been
related to Berry connection, and the Berry phase could be
written in terms of Virasoro circuit complexity. For a
general path, this relation has been written as

Bh;c½g�ðτÞ ¼ −Ch;c½g�ðτÞ
− i loghhjÛ½ðg−1ð0Þ; 0Þ:ðgðτÞ; 0Þ�jhi: ð3:41Þ

In fact, the computational cost function has been related to
the Berry connection in the unitary representation of the
Virasoro group. This can be extended to complexity of
purification and a corresponding Berry connection for
mixed states could be proposed. The relations between
Berry phase and the group representation of other field
theories, such as Kac-Moody algebra for the case of warped
CFTs as in [42,44] could also be studied.
The links between the geometric phase and complexity

could further be understood intuitively. For instance, when
an electron is spiraling along a wormhole passing through
one side of a thermofield double state to the other side, the
geometric phase that it would pick would be related to the
size of the wormhole and therefore to the volume complex-
ity. On the other hand Berry curvature is also the only
gauge-invariant quantity related to the geometric properties
of the wave functions in the parameter space, and so the
links could be evident. In addition, using the Berry phase,
and similar to the Bohr-Sommerfeld quantization condi-
tion, complexity could also be quantized. We could have
the relation
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ℏ
I

ds:k − e
I

ds:V þ ℏγ ¼ 2πℏðnþ 1=2Þ; ð3:42Þ

where γ is the geometric phase which the electron picks up
along the closed loop of the cyclotron orbit and V is the
Berry potential. For free electrons, we get γ ¼ 0, while for
the electrons in graphene, it would be γ ¼ π. In terms of the
energy level, these values are related to α ¼ 1=2 for free
electrons in the vacuum with the relation E ¼ ðnþ αÞℏωc,
or α ¼ 0 for electrons in graphene with the relation for the
energy levels as E ¼ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ αÞeBℏp

.
Also, as we mentioned before, the modular Berry

curvature could be written as the sum over all the
eigenstates as

ωn;μνðλðsÞÞ

¼ i
X
n0≠n

hnjð∂H=∂λμÞjn0ihn0jð∂H=∂λνÞjni − ðν ↔ μÞ
ðϵn − ϵn0 Þ

:

ð3:43Þ

For a general background which is mixed, considering “all”
the eigenvalues with the right degeneracies would be
essential for the reconstruction of bulk geometry, similar

to the case of reconstructing any function using Fourier
expansions. So one would expect that instead of the
definition of index just based on the number of zero modes,
which would be invariant under all continuous transforma-
tions, for the case of mixed states and their purifications,
one should add all the modes to define the index which
subsequently could be used for bulk reconstruction and
defining EoP and Cop. For the case of the symmetric setup
of Fig. 8, however, one could just “add” the two terms in
Eq. (3.43), then divide the result by two, in order to find a
new quantity which contains all the normal modes and
would be more suitable in reconstructing the wedge cross
sections of mixed states. Additionally, in QCD and in
heterotic string theory, the index is the number of gen-
erations minus the number of antigenerations of leptons
and quarks, so, for mixed setups, to consider the effects of
all EPR pairs, one needs to make the sum over all the
eigenstates in (3.43), and then the result divided by two
would be proportional to complexity of purification in [10].
Note also that using the “Atiyah-Singer index theorem”,
one could specify the relations between fermionic zero
modes, the topology of spacetime with various genera, and
the anomalies. Moreover, note that the zero modes could
tell how the object moves in space, or superspace in the
case of fermions. In the case of instantons, its zero modes
would determine how the size or shape would change and
this is related to the holographic complexity.
From other parameters of the CFT one could get further

information. For instance, the behavior of EoP and CoP for
various values of the mass of gravitonm, has been shown in
Figs. 4–7. So the mass, similar to charge would decrease
both EoP and CoP and this could imply that in a gravity
background when the graviton is massive, the modular
Berry connection, Berry curvature, and Berry phase would
be smaller than the massless case. This is because in such
systems, when varying the HamiltonianHðλðtÞÞ, the charge
or mass could decrease the rate of the process. Comparing
the diagrams of EoP versus CoP, one could also deduce that
the modular Berry connection is more interconnected to
CoP than to EoP, as CoP probes deeper in the bulk. That is
the reason that at d ¼ 2, q ¼ 0, and m ¼ 0, CoP is very
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FIG. 4. EoP as a function of l with D ¼ 0.1, reprinted with
permission from M. Ghodrati, X.-M. Kuang, B. Wang, C.-Y.
Zhang, and Y.-T. Zhou, J. High Energy Phys. 09 (2019) 009.
Copyright 2019, Springer.
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FIG. 5. The CoP as a function of D with l ¼ 0.8 (left) and l ¼ ∞ (middle), and CoP as a function of l with D ¼ 0.1 (right) is shown
here, reprinted with permission fromM. Ghodrati, X.-M. Kuang, B. Wang, C.-Y. Zhang, and Y.-T. Zhou, J. High Energy Phys. 09 (2019)
009. Copyright 2019, Springer.
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close to π but it would not be the case for EoP. By
increasing the charge q, for the case of three-dimensional
bulk metric, CoP decreases from π to a lower value. This
could indicate that modular Berry connection creates a
potential wall which its height decreases by increasing the
charge of the system. This observation has been established
by studying complexity growth rate in charged black holes,
[45,46], so charge would decrease the modular Berry
curvature. Additionally, using the idea of [7], which
considers modular Berry connection as a sewing kit for
the entanglement wedge, and also the idea of quantum error
connections [2,3,47] and the conditions for having a well
defined spacetime [48], one could see that the patches of
spacetimes which contain the same sign charge would
become less correlated. This is also true for the back-
grounds where the graviton is massive, as the dissipations
also make the patches less correlated and lower the modular
Berry connections compared to the scenarios with the
massless gravitons.
In the setup of mixed states of two strips, there would be

a lot of degeneracies. The Berry transformations, acting by
automorphisms of energy eigenspace, can rotate these
degenerate eigenstates into one another [9,49]. The charge

or mass could then add additional terms to the initial gauge
due to the zero modes and therefore could increase or
decrease the holonomy and so the Berry curvature. Any
conserved charge would produce new sets of modular zero
modes [7], and then these modes holographically would be
mapped to the edge modes of the dual bulk gauge fields and
then the changes in the modular Berry curvature would
change the local field strengths of the gauge fields along the
HRRT surface [10,50]. So as we study the changes of EoP
and CoP when a gauge field turns on, we also study how
these conserved charges would change the modular zero
modes along HRRT surfaces or even along the minimal
wedge cross section Γ and their effects on the correlations,
modular curvature, complexity, and CoP. The behavior of
gravitational edge modes and soft modes along the minimal
wedge cross section would be dual to the behavior of the
correlations of mixed states in the boundary. Also, if one
considers the case of instantons in gauge theories, addi-
tional terms would be added and new operators would be
built which have new sets of zero modes and normal
modes. In the region where the instantons are located, the
zero modes will be nonzero and nontrivial, so the instan-
tons will induce multiproduct interactions, which in the
bulk can change the holonomy of space time in a nontrivial
way, and back in boundary side would be translated as the
change in entanglement and complexity of purification as
we observed in [10].
As a side note, in [51], a quantity using the ratio of N

M
where N comes ðjψiABhψ jÞ⊗N and M from ðjψiAhψ jÞ⊗M

(for one of the regions A or B in the symmetric case) has
been used to define a new quantity for mixed entanglement/
complexity. In [51], the minimal area in Euclidean time
dependent case has been dubbed pseudo entanglement and
pseudo complexity. In addition to complexity of purifica-
tion (CoP), other quantities such as these new measures or
quantities such complexity of randomness which is also
called unitary t-design, could be related to modular chaos
and modular scrambling modes and bulk reconstruction.
In [23], the modular Berry transport which is being

generated by two operators G� and the modular Berry
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FIG. 6. The relationship between EoP and l with D ¼ 0.3,
reprinted with permission from M. Ghodrati, X.-M. Kuang, B.
Wang, C.-Y. Zhang, and Y.-T. Zhou, J. High Energy Phys. 09
(2019) 009. Copyright 2019, Springer.
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scrambling modes which could be written as
e−iHmodδHmodeiHmods ∼ eλsGþ, has been discussed. If similar
to [23], the Hermitian operator which encodes the
“stripped” matrix elements of δHmodðsÞ at large s is being
considered, then one could see that the dissipation would
suppress these “stripped” matrix elements Gþ, as it would
also suppress CoP. The relation ½Hmod; Gþ� ≈ eλsGþ, how-
ever, would still work for the mixed systems.
In our setup, the holonomy for the space of RT surfaces

for this specific case which has a gradient, see Fig. 8, could
then be calculated. This holonomy would depend on the
geometric component of the modular Berry curvature [7].
With an infinitesimal Virasoro excitation, the modular
Hamiltonian would be perturbed with the element of
Y þ Ȳ, which Y has the form Y ¼ R

dxþfðxþÞTþþðxþÞ,
and similarly for Ȳ. When considering the massive and
charged case, where m is the mass of graviton and q is the
charge on each boundary, we expect to get

Yλ ¼
Z

dxþð1 − cos xþÞ1þfðmÞþgðqÞ
2

× ð1þ cos xþÞ1−fðmÞ−gðqÞ
2 TþþðxþÞ: ð3:44Þ

In the next sections, we discuss the specific form of
modular Hamiltonian in several cases in more details.

C. Modular Hamiltonian, connected
vs disconnected regions

One might wonder what would be the modular
Hamiltonian for connected versus the disconnected regions.
The modular Hamiltonians for Euclidean path integral
states have been studied recently in [52], and the exact
formulation derived, could point out to some analytical
expressions for these two cases.
To get intuition of the correlations behavior and modular

flow in our setup, first we could imagine that both regions
just be the half space and in the beginning they are far away.
The subregion in the left could be considered as the sources
λi for the local operators Oi which are distributed along
the half-space, left strip, and they excite the modular
Hamiltonian and change the modular flow of the subregion
in the right half, as shown in Fig. 9. As found in [52], the
operators then could only be the function of Lorentzian

time. Then, if we assume that the two regions move very
slowly toward each other as in Fig. 9, we could use the
results from the shape deformation section of [52] to get an
intuition of how modular Hamiltonian and modular flow
would change.
First, note that themodular Hamiltonian andmodular flow

for the two disconnected regions would have a stable
structure. When one of two regions moves toward the other,
if they are close enough but still the distance be bigger than
Dc, the modular flow could “oscillate” but the scrambling
modes of the components of modular Hamiltonian would
still have an upper bound of 2π. When some parts of the two
regions get closer thanDc to each other, the modular flow of
one region would “flow” toward the other one to form a
narrow bridge connecting the two regions. At this stage of
phase transition, from the disconnected entanglement wedge
to the partially connected case, the speed of formation and the
rate of change of the components of modular Hamiltonian
would be greater than 2π. When the entanglement wedge
becomes connected and the states become mixed, the non-
local part of modular Hamiltonian would get mixed and
produce a bigger holonomy in the bulk.
In the perturbation regime, the expression found for the

modular Hamiltonian is [52]

Kλ ¼ cλ þ K þ
X∞
n¼1

1

n!
δnK;

δnK ¼ n!
ð−iÞn−1
ð2πÞn−1

Z
dμn

Z
∞

−∞
ds1…

Z
∞

−∞
dsnfðnÞ

× ðs1 þ iτ1…; ; sn þ iτnÞOðs1; Y1Þ…Oðsn; YnÞ;
ð3:45Þ

FIG. 9. Perturbing the modular Hamiltonian and modular flow
by bringing the two strips closer to each other infinitesimally and
slowly.

FIG. 8. The modular flow and edge modes along the minimal wedge cross section could be studied to depict the relation between the
flow of modular zero modes, the holonomy which they create, and their effects on EoP and CoP of mixed states, reprinted with
permission from M. Ghodrati, X.-M. Kuang, B. Wang, C.-Y. Zhang, and Y.-T. Zhou, J. High Energy Phys. 09 (2019) 009. Copyright
2019, Springer.
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and K is the vacuum modular Hamiltonian, Y is the spatial
coordinate on the half-space subregion, c is constant, and τ
is the angular coordinate around the entanglement cut
which parametrizes the vacuum modular flow. Also, dμn ¼Q

n
i¼1 dτid

d−1Yiλðτi; YiÞ contains n powers of the source λ.
The function in the modular flowed operator relation also
would be

fðnÞðs1;…snÞ

¼ 1

2nþ1

1

sinhðs1
2
Þ sinhðs2−s1

2
Þ… sinhðsn−sn−1

2
Þ sinhðsn

2
Þ : ð3:46Þ

Using the above relation, the difference between the
connected versus disconnected case could be studied.
One could see that the main factor in changing the modular
Hamiltonian during the phase transition is the singularity of
the function fðnÞ which make δnK discontinuous.
As another observation, note that the dissipation param-

eter m and charge q would increase the boost or Rindler
times si, and also the Euclidean angular or modular times
τi, and therefore they would decrease the function fðnÞ and

therefore the smearing function FðλÞ
n , and som and q would

suppress the excitation terms in the modular Hamiltonian as
one expected. For this configuration, the operators could
also be replaced as

OðsiÞ → að−esiTþþ þ e−siTþ−ÞesiþiτiðþδDÞ
þ að−e−siT−− − e−siTþ−Þe−si−iτið−δDÞ: ð3:47Þ

We could assume that as this deformation is null, the
modular Hamiltonian could be written as

K ¼ 2π

Z
dd−2x⃗

Z
∞

δD⃗
dxþðxþ − δD⃗ÞTþþðxþ; 0; x⃗Þ þ cV:

ð3:48Þ
The first order correction of modular Hamiltonian would be

δ1K ¼ −2π
Z

dd−2x⃗
Z

∞

0

dxþVþðx⃗ÞTþþðxþ; x⃗Þ

− 2π

Z
dd−2x⃗

Z
−∞

0

dx−V−ðx⃗ÞT−−ðx−; x⃗Þ: ð3:49Þ

The derivative of this relation, would be related to the Berry
phase and therefore to the complexity of purification.
Also note that when the eigenstate of the initial

Hamiltonian changes from jEi ¼ jEðλð0ÞÞi to

exp

�
−i

Z
T

0

Eðλðt0ÞÞdt0
�
× exp

�
i
I

Γλdλ

�
jEi;

where Γλ ¼ ihEðλÞjd=dλjEðλÞi; ð3:50Þ

the mass and charge would decrease both the Berry
connection, Γλ, and the second phase of the above relation

of the closed integral, which is the Berry phase. This could
simply be explained by the fact that when varying the
system adiabatically, if one has a charged or dissipative
system, the gradient d=dλjEðλÞi would be smaller. Note
that as mentioned in [9], the second factor of (3.50), would
indeed arise from the “precession” of the instantaneous
Hamiltonian eigenbasis. So when the graviton is massive or
for same sign-charged background, this precession would
be smaller which leads to a smaller Berry phase.

D. The effects of dissipation and charge
on CC flow and kink transform

Now we turn to other mathematical tools for bulk
reconstructions, such as Connes cocycle flows, OPE
blocks, and Uhlmann holonomy.
At the cut between two CFTs, a stress tensor shock by

the Connes cocycle (CC) flow could appear. The boundary
CC flow or one-sided modular flow is dual to the bulk kink
transform as shown in [53]. In the dual bulk then there
would be a Weyl tensor shock. This unitary cocycle could
be written as

Uψ2ψ1
ðsÞΔis

ψ1
OΔ−is

ψ1
U†

ψ2ψ1
ðsÞ ¼ Δis

ψ2
OΔ−is

ψ2
; ∀O ∈ A:

ð3:51Þ

The operator Δψ ¼ S†ψSψ is a positive operator called
modular operator and SΨ is an antilinear operator acting
as SΨOjΨi ¼ O†jΨi; ∀O ∈ AðRÞ. Note that the unitary
cocycle flow would also act as a quantum recovery channel
and these two would be related through the Hadamard
three-line theorem and complex interpolation. The appli-
cability of using Petz map for recovering quantum infor-
mation which would be dual to remaining in the code
subspace would also be related to structure of quantum
Markov chain, meaning for the cases close enough to the
code subspace, then we could model the local correlations
similar to the quantum Markov chains. The connections
between cocycle flow and quantum recovery channel could
also be observed from the result of [54], where they found
that the commutator

Csee ¼ hψ j½Õ;Δ−is
ψ ;AϕΔ

is
ψ ;A�jψi

¼ hψ jΔis
ψ ;AΔ

−is
Ω;AOΔis

Ω;AΔ
−is
ψ ;Ajψi; ð3:52Þ

could detect the information beyond the causal wedge. All
of these cocycle flows would be added together to build up
the final modular flow. The quantum recovery channels
could also be modeled using them. Therefore, similar to the
work of [55], the quantum recovery channels in the bulk
reconstruction procedure, could also bring operators out
from entanglement islands.
From the symmetries of the modular scrambling modes,

δHmodjψi ¼ 0, which would lead to G�ψ ≈ 0, and their
duals which are proposed to be the local Poincaré
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symmetry groups of the bulk, one could see that the change
in modular Hamiltonian and the application of cocycle
flow is dual to the change in the curvature of the bulk. The
bigger the change of modular flow, the deeper the quantum
circuit would be with higher complexity, and with more
quantum recovery channels which then would lead to
bigger curvatures in the bulk. Therefore, black holes are
the systems with the ability to change the modular flow
fastest, which then means highest cocycle flows. By
passing more “modular time”, s, extracting the geometric
quantities would become more precise and one could get
closer to the RT surface and could zoom-in further.
Using the boundary Connes cocycle flow of jψi as

the toy model a family of states jψ si could be generated
as jψ si ¼ ðΔ0

ΩÞisðΔ0
ΩjψÞ−isjψi, where the relative modular

operator is Δψ jΩ ≡ S†ψ jΩSψ jΩ. Note that the modular

Hamiltonian here could be written as K̂V0
¼ − logΔΩ;AV0

.

The parameters such as charge or dissipation could change
this flow through changing the modular parameter s and
the matrix elements of S. For the arbitrary cuts of Rindler
horizon one would have the simpler relation

ΔhK0
V0
i ¼ −2π

Z
dy

Z
V0

−∞
dv½v − V0ðyÞ�hTvviψ ; ð3:53Þ

where the effects of dissipation and charge on modular
Hamiltonian, only through the effects on “energymomentum
tensor” components could be observed, and then their effects
on CC flow could be found out. One could see that both of
these parameters would suppress the CC flow.
We could write the following relation for the CC flow of

stress tensor as:

hψ sjTvvjψ sijv<V0

¼ e−4πshψ jTvvðV0 þ e−2πsðv − V0ÞÞjψijv<V0
: ð3:54Þ

So, one could see here too that the dissipation and same
sign charge would increase s and matrix elements of T and
therefore the CC flow. Also, the shape derivatives of
modular Hamiltonian which could be written as

δhK0
Viψ

δV

����
V0

¼ 2π

Z
V0

−∞
dvhTvviψ ð3:55Þ

would be suppressed, since the components of energy
momentum tensor would become smaller due to the effects
of dissipation and same-sign charges.
Then, note that the dual of CC flow which is the bulk

“kink transform” [53] could be written in the form of

ðKΣÞab → ðKΣs
Þab ¼ ðKΣÞab − sinhð2πsÞxaxbδðRÞ:

ð3:56Þ

These transformations then, by combinations of modular
operators could generate some sequences of global states
ψ s. These then could point out to its relation to complexity
of building states using the intuitions from [56]. The
rapidity, 2πs, which is being formed by the relative boost
which glues entanglement wedges A and its complement A0
would be connected to the value of 2π in 2d that we found
for the complexity of purification. The effects of the
dissipation parameters m and the same-sign charge could
be also be seen using the relation (3.56). Again one could
see, through their effects on “s”, these two parameters
would suppress the kink transform.

E. Entanglement wedge cross section
from OPE blocks

In this section, we investigate the “geodesic operator/
OPE block dictionary” to understand the complexity of
purification, mixed state correlations of two strips, the bit
thread structure, and wedge reconstruction further.
On the boundary CFT, the zero modes ofHmodðλÞ would

make the OPE blocks, which come from two spacelike
separated local operators in the form of

OLðxLÞORðxRÞ ¼
X
Δ
jxR − xLj−ΔL−ΔRcLRijxR − xLjΔðOΔ

þ descendantsÞ; ð3:57Þ
where the OPE blocks are the second part, jxR − xLjΔðOΔþ
descendantsÞ. For a finite transformation s0, the OPE
blocks transform as Bκ

ΔðλÞ → es0κBκ
ΔðλÞ which is a change

of normalization.
The holographic dual of a scalar OPE block is a bulk

operator in the form [9,12,57]

Bκ
ΔðλÞ ¼ N

Z
½λ�
dsϕΔðsÞe−κς; ð3:58Þ

where here ς is the proper length parameter along the bulk
geodesic [λ] (in the units of LAdS) and ϕΔ is the bulk
operator dual to OΔ.
Any product scalar of two operators O1ðx1Þ and O2ðx2Þ

could be expanded in terms of the OPE blocks. These
blocks are some primary operators that are being smeared
in a causal diamond ⋄12 and so could be written as [12],

Bkðx1; x2Þ ¼
Γð2hkÞΓð2h̄kÞ
ΓðhkÞ2Γðh̄kÞ2

Z
⋄12

dwdw̄

×

�ðw − z1Þðz2 − wÞ
z2 − z1

�
hk−1

×

�ðw̄ − z̄1Þðz̄2 − w̄Þ
z̄2 − z̄1

�
h̄k−1

; ð3:59Þ

where the left and right moving conformal weights are
hk ¼ 1

2
ðΔk þ lkÞ and h̄k ¼ 1

2
ðΔk − lkÞ, and Δk and lk are
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the scaling dimension and spin of the quasiprimary
operators Ok. The parameter which is being changed by
the mass of graviton m or charge q would be hk which
changes the nature of OPE blocks in the bulk reconstruc-
tions formalism.
The complexity of purification for the mixed states

would then be related to the number of quasiprimary
operators, Ok, which are needed to produce ⋄12 with
enough, desired precision. The sewing of patches of various
causal diamonds ⋄ would create the bulk entanglement
wedge. So the similarities between the summation of causal
diamonds and other bulk reconstruction methods such as
recovery channels and modular flows could be seen here.
Note that in the bulk, the dual of the boundary causal

diamond would be a geodesic operator. Then, there is the
equality of OPE blocks and the X-Ray/ Radon transforms,
which even in higher dimensions, and for timelike sepa-
rated pairs, the OPE blocks could be considered as a surface
Witten diagram which could be written as

gkðu; vÞ ¼
1

ðcςΔÞ2
Z
σ12

dd−2z
Z
σ34

dd−2z0Gbbðz; z0;mkÞ:

ð3:60Þ

Here, x1, x2 and x3, x4 are the endpoints of the two
intervals. This nonlocal quantity, could be considered
similar to our notion of volume interval (VI) [10] as a
measure of complexity of purification of mixed states. Note
that the appearance of OPE blocks in various measures such
as EoP [58] or odd entanglement entropy [58] has been
discussed. Therefore, the connections between these new
quantities and modular flow, quantum recovery channels
and CoP could be considered. We expect that the integral of
bulk fields along the minimal wedge “cross section”, and
therefore the OPE blocks would be proportional to the
entanglement of purification as we have

cΔBkðx1; x2Þ ¼ ϕ̃kðγ12Þ ¼
Z
Γ
dsϕðzÞ; ð3:61Þ

where cΔ ¼ ΓðΔ
2
Þ2=2ΓðΔÞ here is a constant. Then, the

relationship between the space of causal diamond which is
a coset space and is being defined as

K ¼ SOð2; 2Þ
SOð1; 1Þ × SOð1; 1Þ ¼

SOð2; 1Þ
SOð1; 1Þ ×

SOð2; 1Þ
SOð1; 1Þ ; ð3:62Þ

and the minimal entanglement wedge cross section and
the flow of modular zero modes BiðλÞ and Berry flow
could then be considered. We conjecture that the tips of
all causal diamonds have a decreasing flow from the
point m to m0 and also as the OPE block transform as
Bκ
ΔðλÞ → eς0κBκ

ΔðλÞ, the parameter ς0 becomes smaller
when moving from the point m to the point m0.

Another point worth mentioning is that a 2d causal
diamond would be stabilized by an SOð1; 1Þ × SOð1; 1Þ
group. The antisymmetric combination of these two
SOð1; 1Þ labeled PDðλÞ in [9], satisfies the relation
½PD;OLOR� ¼ iκOLOR, where κ ¼ ΔR − ΔL. Note that
the dissipation parameter and the same sign charge would
suppress κ as they could suppress the dilatation and
transformation generated by PD.
A related point is that when considering the light-cone

cuts as in [59,60], in the bulk of two points of p and q, i.e.,
C−ðpÞ and C−ðqÞ would be intersected at a single point X
and they would be regular at that point; then these two
points p and q are null-separated. From the data of the
boundary mixed CFTs, then one could determine the cut in
the bulk, as whether it would be a connected one if its radial
coordinate is above the point m0, i.e., zm0 < z < zm, or
disconnected, if z < zm, or nonexistent, if z > zm0 .
The connections between the causal wedge and mutual

information could also point out the way to reconstruct the
dual of mixed states. In a recent paper [61], the connections
between entanglement wedge reconstruction and mutual
information through the holographic scattering has been
discussed. Using the null vectors, the light cone cuts could
be constructed for the boundary strips which would lead to
various forms of the mixed diamonds between the two
states as shown in Fig. 10. Using the OPE block structure
the position of mutual diamond inside the entanglement
wedge could be studied. We leave the detailed numerical
calculations of these studies to future works.

F. Uhlmann holonomy for mixed states

In this section, we turn to another tool in studying the
wedge reconstruction. In [13], it has been proposed
that the dual of the symplectic form of the bulk fields in
any entanglement wedge would be the curvature of the
Uhlmann phase. In another word, for the mixed states,
the symplectic form of the bulk fields would be dual to the
Uhlmann holonomy of the parallel transport of purifica-
tions of density matrices of the boundary which is the
maximization of the transition probabilities.
The symplectic form of the fields in the bulk is in the

form of Ω ¼ R
Σ ω, which is the integral of

FIG. 10. Various conditions for the shape of mutual diamond
between two subregions. It could either be completely inside the
entanglement wedge or partially inside it, depending the size of
strips and the distance between them.
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ω½ϕ; δ1ϕ; δ2ϕ� ¼ δ1ðθ½ϕ; δ2ϕ�Þ − δ2ðθ½ϕ; δ1ϕ�Þ
− θ½ϕ; ½δ1ϕ; δ2;ϕ��; ð3:63Þ

and the parameters could be defined by the variation of the
Lagrangian as

δL ¼ L½ϕþ δϕ� − L½ϕ� ¼ δϕ:Eþ dθ: ð3:64Þ

On the other hand, in the dual boundary theory, for two
states with parallel purifications, the fidelity would be
jhψ2jψ1ij ¼ trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ1
p

ρ2
ffiffiffiffiffi
ρ1

pp Þ, and the replicated fidelity
could be defined as Fk ¼ trðð ffiffiffiffiffi

ρ1
p

ρ2
ffiffiffiffiffi
ρ1

p ÞkÞ. Considering a
closed curve C∶S1 → H and the sequence of n states in
the form of jψ1i; jψ2i;…:; jψni, for the limit of n → ∞
where the states jψ ii covers the curve C, one would get
hψ1jψnihψnjψn−1i…hψ3jψ2ihψ2jψ1i→ expðiγÞ, where the
Berry phase (or the Uhlmann phase) is γ ¼ H

C a and a is
defined as a ¼ ihψ jdjψi, which is a real 1-form. The Berry
connection is defined by the transformation a → a − df
which is a Uð1Þ connection, and the Berry curvature which
is gauge-invariant is defined as da ¼ idhψ j ∧ djψi. One
question is that how much this phase (in the bulk
side) would change with changing the position of the
curve C with respect to the two correlated intervals that we
consider.
Using holography, the boundary replicated fidelity for

the case of k ¼ 1=2, could be written in terms of an on-shell
gravitational action where the sources are on the boundary.
Therefore, the bulk symplectic form and the boundary
Uhlmann phase would be connected to each other holo-
graphically. The curvature of the integral of the Abelian
connection which is the Berry phase along the Uhlmann
parallel path would then be the symplectic form of the
entanglement wedge and consists of flux tubes between the
mixed states. The relative (total)-mode frames would then
be related to the modular Uhlmann connection. In each
side, the effects of dissipation, or m, and charge, q, on the
bulk symplectic form and on boundary Uhlmann phase
could then be considered. Since these two would suppress
δϕ, they would then suppress δL and then the fidelity
between two states, and as the result the Uhlmann phase
would be suppressed in which again the duality is being
checked this way.
In [62] also a method for observing the topological

Uhlmann phase with superconducting qubits for topologi-
cal insulators has been reported. They used an ancillary
system and some particular interferometric techniques. The
single qubit density matrix could be written in terms of
θðtÞj1t¼0 as ρθ ¼ ð1 − rÞj0θih0θj þ rj1θih1θj, where r quan-
tifies the mixedness between the two states of j0θi and j1θi.
These two states are kind of a transmon qubit introduced in
[63]. The evolution of the purification of ρθ would then be
in the following form:

jΨθðtÞi ¼
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
USðtÞj0iS ⊗ UAðtÞj0iA

þ ffiffiffi
r

p
USðtÞj1iS ⊗ UAðtÞj1iA; ð3:65Þ

where j0i ¼
�
1

0

�
and j1i ¼

�
0

1

�
are the basis, S stands

for the system, and A for the ancilla. Then, the Uhlmann
parallel transport condition is satisfied when the distance
between the two infinitesimally close purifications,
kjΨθðtþdtÞi − jΨθðtÞik2, becomes minimum, which physi-
cally means that the accumulated phase which is the
Uhlmann phase ΦU would be completely geometrical
and not dynamical. So, due to the holographic duality,
this interferometric technique of observing Uhlmann
phase could show a way to measure the properties of
the symplectic form and quantum gravity characteristics
in the bulk. Therefore, this method could paint the CFT
entanglement structures and the bulk gravity curvature
properties in more details, as we also did some few steps
in [64].
These studies could then point out to some specific

intrinsic properties of space-time and gravity and specially
topological gravity, which is independent of the dynamics
of the system as Berry phase and Uhlmann phase are so too.
For example the connections between some differential
geometric properties of bulk could further be examined by
studies of Uhlmann phase. Case in point, the extremum of
the Kähler potential, K ¼ loghαjαi, corresponds to the
minimum of the entanglement wedge cross section for two
mixed states. The connections between Kähler potential
and Berry curvature and complexity then could be speci-
fied. The Kähler potential is a real-valued function, being
denoted by f and is defined on a Kähler manifold for which
the Kähler form ω could be written as ω ¼ i∂∂̄f, where
∂ ¼ P ∂

∂zk dzk and ∂̄ ¼ P ∂
∂zk dz̄k. The Berry curvature in

terms of the Kähler potential could then be written as

A ¼ i
2
∂αiKdαi −

i
2
∂αi�Kdαi� ¼

i
2
ð∂ − ∂�ÞK: ð3:66Þ

For the minimum entanglement wedge cross section, this
Berry curvature becomes zero.
Also, note that the relative modular frame along the RT

surface is encoded in the connection of the relevant bundle.
For the mixed states, the mode frames along the minimal
wedge cross section Γ would create the modular Uhlmann
connection. However, the strength of this connection
depends on the mutual information and therefore on the
distance between the two subregions. So the gradient of the
modes along Γ depends on dI

dDx
jΓ or dEW

dDx
jΓ. This pattern is

the same pattern of the Wilson lines which are also being
dictated by the pattern of entanglement of purification and
mutual information among the subsystems. The form of the
dressing of gauges, which is dual to the pattern of EoP,
would dictate the structure of curvature in the bulk.
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The pattern of the mutual information and the entangle-
ment of purification between the two subsystems are being
determined by the pattern of the physical Wilson lines
“dressed in gauge theories”. Wilson lines could be written
in the form of

U½xi; xf;C� ¼ P exp

�
i
Z

τf

τi

dτ
dxμ

dτ
AμðxðτÞÞ

�

¼ P exp

�
i
Z

xf

xi

A

�
: ð3:67Þ

Moreover, as mentioned in [9], the modular Berry
transformations could recognize the bulk operators which
are localized on the RT surfaces. So for two subregions of A
and B which correspond to two mixed states, the RT
surfaces which probe the entanglement wedge cross section
between them as shown in the Fig. 8, where the bit threads
and the bulk operators are located, would be related to
the CFT modular Berry transformations, so this way the
modular Berry transformation would be related to the bit
thread structures as well.

IV. CORRELATION MEASURES FOR MIXED
STATES AND QUANTUM DISCORD

In this section, we aim to study the nature of correlations
among mixed systems further. Using some new correlation
measures, we also study the effects of dissipation and
charge in our setup as well. As a first step, note that the
relative entropy which is a measure of distinguishability
between two states which could be a reference vacuum
state σ and another state ρ is defined as SðρjσÞ ¼
Tr½ρ log ρ − ρ log σ�. This quantity would have some con-
nections with strength of correlation and therefore the
purification (EoP/CoP). Note that this quantity would be
related to the free energy difference between ρ and vacuum
at temperature β ¼ 1. For stronger correlations, the free
energy that one would be able to extract would be lower.
Therefore, EoP and relative entropy would have an inverse
behavior relative to each other.
One then can define various measures for quantum

correlations. For instance, in [65], the Uhlmann fidelity

was proposed for Gaussian states. The form of their
quantity NG;A

F ðρABÞ is

NG;A
F ðρABÞ ¼ supU∈UρAB

C2ðρAB; ðU⊗ IÞρABðU† ⊗ IÞÞ
¼ supU∈UρAB

f1−FðρAB; ðU⊗ IÞρABðU† ⊗ IÞÞg;
ð4:1Þ

where, as mentioned before, the Uhlmann fidelity,
Fðρ; σÞ ¼ ðTr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pp Þ2, is a measure of closeness
between the two states, the sine metric is
Cðρ; σÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Fðρ; σÞp
, and also the supremum should

be taken over all Gaussian unitary operators, U ∈ UρAB .
After applying any Gaussian channel, Φ, N would

decrease as NG
FðI ⊗ ΦðρABÞÞ ≤ NG

FðρABÞ, which means
that this measure is nonincreasing under any Gaussian
quantum channel. For our setup of two strips of A and B,
the parts which are further away from each other and
therefore less correlated would have smaller NG

FðI ⊗
ΦðρABÞÞ which corresponds to the regions where more
quantum channels have been applied to the subsystems and
the density of modular flow would be lower there.
Then, for the case of (1þ 1)-mode “symmetric squeezed

thermal state (SSTS)” ρABðn; μÞ of [65], in their Eq. (4), the
relations between the correlation measure NG;A

F and the two
parameters denoted by n and μ have been derived. Actually,
μ is the mixing parameter where 0 ≤ μ ≤ 1 and n would be
the mean photon number for each part. In Fig. 11, we
present several plots to show the relations between the
correlation measure NG;A

F versus the parameters μ and n.
It could be seen that the mixing parameter μ would

increase this correlation measure. We expect that param-
eters such as mass of graviton modeling dissipation and the
same sign charge, which can decrease the mixing param-
eter, would also decrease this specific correlation measure.
As both EoP/CoP are two other measures of correlation
between mixed systems, we see that since m and q would
decrease μ, therefore, these quantities also decrease EoP
and CoP as well [10].
Another point comes from the definition of the channel

capacitywhich is in the form ofCEðN Þ¼maxallpi;qi IðA∶BÞ,
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FIG. 11. The relation between the correlation measure NG;A
F versus μ and n.
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where the maximization is over all input ensembles of the
mutual information between the two systems. As the
parameters m and q of the boundary would decrease
IðA∶BÞ, and also the mixing parameters, we could see that
they also decrease the capacity of the quantum channels.
Therefore, EoP and CoP behave the same way as the
quantum channel capacity under changing charge and
dissipation, as these would decrease the mixing parameter.
Decreasing the quantum channel capacity then decreases the
modular flows between the two subregions.
This could also be seen from the definition of modular

flow being written as

UσðsÞALU
†
σðsÞ ¼ AL; UσðsÞARU

†
σðsÞ ¼ AR;

UσðsÞ≡ Δ−is
σ ; ð4:2Þ

where

KR
σ ¼ − log ρRσ ; KL

σ ¼ − log ρLσ ;

KL
σ ¼ JσKR

σ JΩ; Δσ ¼ ρLσ ⊗ ðρRσ Þ−1: ð4:3Þ

Generally dissipation makes the eigenvalues of the density
matrix smaller. Also, the same sign charge suppresses the
operator Δ as it decreases the entanglement between
the physical modes among L and R, and therefore q
would suppress the modular flow. This is also the case
for the relative entropy between two states jΨi and
jΩi, DðρjσÞ ¼ −hρj logΔσρjρi.
These results about the effects of m and q are also true

for the difference between two modular operators, which
could be seen from relations (3.34)–(3.43) of [66], as
charge and dissipation increase the “distance” between
the clicks of modular time and therefore decrease the

terms gϵðtiþ1−tiÞ
coshðπtiÞ coshðπtiþ1Þ.

Also, as NG;A
F qualitatively behaves very similar to

various measures of quantum discord, we expect that these
discussions also apply for them too. This could be seen
from Fig. 12, which, as one could check, the behavior is
qualitatively similar to NG;A

F .
Another quantity, the Gaussian quantum discord, could

also be written as [65]

DðρABÞ ¼ SðρAÞ − SðρABÞ þ inf
Π

Z
pðzÞSðρBðzÞÞdz;

ð4:4Þ

where Π ¼ fΠðzÞg is a collection of positive operators in
the form ΠðzÞ ¼ DðzÞτD†ðzÞ. Here DðzÞ are the Weyl
operators and τ is a n-mode Gaussian state. Additionally,
pðzÞ ¼ TrðρABΠðzÞ⊗ IÞ. From these plots again one could
see that increasing mixing parameter would increase the
discord. So, as dissipation and same sign charge would
decrease the mixing parameter μ, therefore they decrease
the quantum discord between the two systems which then
would decrease both the EoP and CoP. However, the
behavior versus the mean photon number is opposite of
the case of NG;A

F .

V. MODULAR HAMILTONIAN IN QCD

When the system is mixed, it could be simulated using
some aspects of QCD models. Some interesting properties
of these models could be seen in the connections between
CFT characteristics and bulk reconstruction models. For
instance, in these models, for various quantities such as
Roberge-Weiss (RW) periodicity in lattice QCD or perio-
dicity for μI=T ¼ θ, or for pressure, entropy density, etc.
[67], always a 2π periodicity is being observed, similar to
CoP. These mixed states could be modeled by dual quark
condensations as [67] σðnÞ ¼ R

2π
0

dϕ
2π σðϕÞeinθdϕ, where

σðϕÞ is the chiral condensate and the phase of the boundary
condition is in the range of 0 ≤ ϕ ≤ 2π. Note that this
phase is related to the dimensionless imaginary chemical
potential, ϕ ¼ θ þ π. Some notion similar to the imaginary
chemical potentials could also be defined for modular flows
and modular Hamiltonians.
The mechanism of getting information from the confin-

ing phase, using modular flow, would be similar to what has
been employed in [55]. In the exact moment of transitions
between confining and deconfining phases, the quark-
gluon plasma phase could be considered as the island
and the deconfined surrounding gas as the heath bath, so
the mechanisms of extracting information from the island
to the bath using modular flow could give information
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FIG. 12. The behavior of the geometric quantum discord versus μ and n.
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about the interactions of information and modular flow
in QCD as well. Note the quasilocalness of modular
Hamiltonian would have a significant role in the behavior
of QCD. The nonlocal piece of modular Hamiltonian for
free fermions has been found as

H0 ¼ −2πi
Xn
l¼1

1

x − y

�
dz
dy

�
−1
δðy − xlðzðxÞÞ;

xlðzðxÞÞ ≠ x; ð5:1Þ

which agrees with our expectations from the behavior of
entanglement structures for mixed states and intuitions
from the bit threads construction.
Note that many aspects of QCD could also be modeled

by many-fermion systems. For instance in [68], it has been
shown that the Casimir energy of free fermions and
holographic CFTs (which correspond to strongly coupled
systems) behave very similarly. As the Casimir energy and
modular Hamiltonian are directly related [69], one could
propose that modular Hamiltonian of QCD system, which
could be derived by using holography, could be modeled by
modular flow and modular Hamiltonian of the free fermion
systems on two infinite strips which are close enough to
each other to form a nonzero mutual information. The
modular flow of such a system could approximately model
the modular flow of QCDs. Using the results of [55,70] for
free fermions in 2d, the plots of various trajectories of left-
moving operators during the flow have been shown in
Fig. 13. One interesting observation is that the modular
flowed operators and the correlations among them could
frame the structures of entanglement and complexity of

purification. This could be seen from the relations (4.2),
(4.5), and (4.9) of [52], and (19), (21), and (57), (58) of
[18]. For our case, we should consider various operators at
the same modular times but distributed along the minimal
wedge cross section Γ, where the distribution function of
the source have the form

gðs; sþ iτ0Þ ¼ −
1

2

sinhðs
2
Þ

sinhðsþiτ0
2
Þ sinhðiτ0

2
Þ : ð5:2Þ

If we consider two operators in the two regions, they are
timelike separated and we could have still the following
relations for the modular time as:

s0�;� ¼ sþ logðα�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

p
Þ; α ¼ x21 þ z21

x1z1
: ð5:3Þ

Note that the entanglement cut could be approached by
setting x1 → 0 and α → ∞. On the minimal wedge cross
section, the modular time would have the same structure as
those approaching the entanglement cut, x1 → 0, so it
would be like a boost operator but multiplied by a factor of
two. Also, modular flow would act as a local boost on the
minimal wedge cross section line, Γ. For the two regions in
pure AdS3, this then would lead to the following relation
for the entanglement of purification as:

EwðρABÞ ¼
c
6
logð1þ 2zþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðzþ 1Þ

p
Þ; where

z ¼ ða2 − a1Þðb2 − b1Þ
ðb1 − a2Þðb2 − a1Þ

; ð5:4Þ

FIG. 13. Various trajectories of left-moving operators during the flow, with different initial values for xðτ ¼ 0Þ and zð0Þ for the setup
of two intervals of ½−1;−0.1� ∪ ½0.1; 1� in the top-left part, ½−2;−1� ∪ ½1; 2� in the top-right part, ½−2;−0.1� ∪ ½0.1; 2� in the down-left
part, and ½−3;−1� ∪ ½1; 3� in the down-right part.
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where the two regions are A ¼ ½a1; a2� and B ¼ ½b1; b2�,
where a1 < a2 < b1 < b2. The fact that, along the imagi-
nary axis, the modular cuts would be repeated with period
of 2π is related to the fact that in 2d, the CoP would be 2π.
This would also be related to the periodicity of QCD
potential which is proportional to 2π, as we will explain
further in the next part.
For more examinations, our specific setup would be two

intervals of ½−1;−0.1� ∪ ½0.1; 1�. This simple example
could act as a toy model to further understand the behaviors
of modular flow and the mechanisms of extraction of
information from the islands. When the intervals are closer
to each other, or when their widths are bigger, the modular
flows are stronger. The system with a stronger flow is
shown in the down-left part of Fig. 13 and the weaker one is
shown in the top-right. As for the QCD, these observations
could denote that the parameters which make the confined
phase more compressed, such as pressure, then make
pulling information out of islands more difficult.
The relation for the angle θðτÞwhich determines how the

fermion operator would flow under modular Hamiltonian
as in [55] is

θðτÞ ¼ arctan
ðb1 þ b2 − a1 − a2Þx1ðτÞ þ ða1a2 − b1b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb1 − a1Þða2 − b1Þðb1 − a1Þðb2 − a2Þ
p

− arctan
ðb1 þ b2 − a1 − a2Þx1ð0Þ þ ða1a2 − b1b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb1 − a1Þða2 − b1Þðb1 − a1Þðb2 − a2Þ
p ;

ð5:5Þ

where x1ðτÞ ∈ ½a1; b1� and zðτÞ ¼ zð0Þ þ 2πτ.
From Figs. 13 and 14, it could be seen that when the

intervals are closer to each other or when the widths of them
are bigger, the maximum point of tan½θðτÞ� would become
higher. This then means that more information would be
pulled out from one interval into the other, which then leads
to the bigger values for entanglement and complexity of
purification, as the modular flow through the minimal
entanglement wedge cross section would be higher, so EoP
and CoP would be proportional to θ. From Fig. 14, it could

be also seen that increasing the length of the intervals
would increase the maximum of tan½θðτÞ�, but it does not
change the minimum much. However, one could note that
still bigger intervals would have slightly bigger minimums.
Next, note that the operator reconstruction in entangle-

ment wedge using modular evolved boundary operators
would be written as

Ψ̃1ðzð0ÞÞ ¼
1

sin θðτÞ e
−iKτΨ̃2ðzðτÞÞeiKτ

−
1

tan θðτÞ Ψ̃2ðzð0ÞÞ þOð1=cÞ: ð5:6Þ

The structure of this relation is again two maps which used
the modular flow and modular Hamiltonian and also a
projection. This combination is what we have seen for the
bulk reconstruction from quantum recovery channels such
as Petz map and Connes cocycle flows. These operations
indeed bring the information out to reconstruct the bulk.
The main point is that, the bigger the angle θ, the easier
these projections would be performed and therefore the
easier the modular flow and the bulk reconstruction would
be. For the Petz map, these projections would be done by
σA, so if the angle between ωB and σA be bigger, it would be
easier to “see” the information inside the peninsulas, and
therefore the Petz map and recovery channel could be
implemented easier. This makes EoP and CoP bigger as the
result.

VI. DYNAMICS OF CORRELATION
EXCHANGES

For studying the “dynamics” of correlations among
mixed systems, various models such as shock waves, void
formation, numerical models of quenches, etc., could be
used, and here we employ some of them to get various
results in our setup. One motivation to study the dynamics
would be to get further information on how gauge con-
nections and curvature in the bulk would be related. For
instance, in various setups such as quenches with different

FIG. 14. The plot of tan½θðτÞ� of [55] for various lengths of strips where the flow is left mode and is passing from the midpoint of
the strip.
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speeds, one could study the emergence of the dynamics of
gauge fields and compare with the dynamics in the bulk.
Using the connections between modular chaos and
Riemann curvature, one could also understand better
how information between mixed states would propagate
through the quantum channels and the recovery ones.
For studying the dynamical setup of [7] and how the

excitations of CFT states would affect the modular
Hamiltonians in the future causal cone, the Berry con-
nection and the associated Berry phase, one could study
the change of complexity of purification during quench
similar to [71]. Then, using the quench setup, one could
check how Berry connection could be promoted to a
dynamical object. One could also do a similar study for
the QCD case and check how confinement could change
the holonomy and modular Berry curvature. Again, we
expect that studying the EoP and CoP for this case gives us
further information on the relations between gauge con-
nection and bulk curvature.

A. Information speed in mixed setup

First, we consider various measures for the speed of
information and correlation exchanges among the mixed
system. For example, our setup of moving these two strips
closer to each other could be modeled by passing a shock
wave. Then, using the results of [72], we could notice that
the holonomy of the edge modes would measure the soft
graviton component of the two shock wave commutators.
The spreading of information inside quantum channels is in
“ballistic” form, with the speed of butterfly velocity “vB”.
The speed of spreading of the modular chaos would then be
lower than vB, since first these modes should create the
bulk spacetimes and then the entanglement could spread
inside it. For tracking of the spreading of quantum
information in mixed and pure states, we could also use
properties of modular scrambling modes and its relation
with the speed of information vI , entanglement speed vE,
and the butterfly speed vB, so one could try to depict a
connection between these various speeds and the properties
of the modular flow and modular Berry curvature.
Our setup of Fig. 1 could be modeled by considering the

subsystem A as the input one where via the quantum
channels the information contained in it would expand
ballistically toward the subsystem B and bounce back via
the recovery channels. These spreads of modular scram-

bling modes would be with the speed of vB ¼
ffiffiffiffiffiffiffiffiffiffiffi

d
2ðd−1Þ

q
, and

entanglement and mutual information would spread with

the speed of vE ¼
ffiffi
d

p ðd−2Þ12−1d
½2ðd−1Þ�1−1d

. It is expected that the

information and modular chaos modes scramble with
velocity vB, but the minimum entanglement wedge and
the cross section Γ would be created with velocity vE, as it
is related to the network depth and “vertical” direction of
the channel. Note that in most cases we have vE ≤ vB.

Also, the signature of the information speed of the
dynamics of bulk curvature could be detected on the
boundary CFT.
Similar to the studies of [71], the change of complexity

and complexity of purification during a thermal quench
could be considered, which give intuitions on the speed of
correlation exchanges between mixed systems. In [71,73],
entanglement of purification in the background of Vaidya-
AdS spacetime has been worked out, where the metric is

ds2 ¼ 1

z2

�
−fðv; zÞdv2 − 2dzdvþ dx2 þ

Xd−2
i¼1

dy2i

�
;

fðv; zÞ ¼ 1 −mðvÞzd: ð6:1Þ

The AdS radius is set to one and the mass function is
taken as mðvÞ ¼ M

2
ð1þ tanh v

v0
Þ, where v0 determines the

quench speed.
In [71], for this background, the authors found that

during the thermal quench, the critical separationDc would
initially increase with time and then decrease to a smaller
value in the late times. They have also found that the
holographic mutual information at first grows by time but
then decreases to a smaller value than the initial one. These
processes could be explained by void formations which we
will explain in the next subsection. Initially, voids would be
created when the system could exchange information but
then they would get absorbed. These processes could also
be explained using the zero modes and modular flows. So,
first, the flow of modular zero modes increases and it would
reach to a maximum, and then when most of the mutual
information has been exchanged, it would decrease. As has
been found in [71], the equilibrium time would be
approximately lþD=2, which is the time needed for
the HRT surface of 2lþD and so S2lþDðtÞ to reach the
equilibrium. At this time the voids would have the
maximum sizes. During the thermal quench, one could
also track the changes in the holonomy and the change of
the modular flow and as the result the change in the Berry
curvature of the bulk, which in this case would be similar to
the passing of a shock wave in the geometry of the bulk,
making the curvature to increase at first and then it would
decrease.
By considering the process using the behavior of

quasiparticles, one could get into more details to check
how information would become scrambled between the
two intervals. In [74], the behavior of quantum information
scrambling after a quantum quench has been studied. It was
shown there that the behavior of the decay would be
different for the integrable versus nonintegrable systems; as
for the later case, the decay would be much faster. This then
would lead to the point that void formations and the
stability of voids would be higher in integrable systems
compared to the nonintegrable ones. As the quasiparticles
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are nonstable or have short lifetime, voids would get
absorbed faster as well.
The general point here is to understand how information

from the initial state would spread throughout the system.
For doing that one could study different quench scenarios
in various setups. One important aspect of the dispersion of
quantum information is that entanglement and correlations
would disperse globally and in a nonlocal way, a fact that
we have used in our new definition of volume interval in
[10] as a definition of complexity of purification for mixed
states.
In [74], it was proposed that in integrable systems, the

“quasiparticles” would move ballistically and this way they
would spread the initial correlations. This is also what we
have observed by using the bit thread picture. However,
note that after some time, the initial correlation would get
dressed by the “many-body effects” and the thermodynam-
ics of the system.
In integrable systems, after a quantum quench, the late

time behavior of the quasiparticles could be described by
the “emergent thermodynamic macrostates or Generalized
Gibbs Ensemble (GGE)”, while for the nonintegrable
systems itwouldbe a thermal ensemble and the entanglement
entropy of EPR pairs becomes the “thermodynamic” entropy
of the stationary ensemble. Generally, the nonintegrable
systems are better scramblers as there are no stable quasi-
particles. The connections between quasiparticles and
mutual information could then be studied using this. In fact,
there are infinite species of quasiparticles in integrable
models where in [74] they were labeled by an integer n
and the quasiparticles of the same species were identified
by the parameter “rapidity” λ, which for noninteracting
particles would just be the momentum. In various condensed
matter systems, where there are many degeneracies, bound
Majorana fermions as the quasiparticle excitations could
appear which instead of acting as a single particle, would
behave collectively with a “monoidal” or non-Abelian
statistic [75]. These non-Abelian anyons have practical
applications in building topological quantum computers
using the fractional quantum Hall effect.
In Fig. 15, in our setup, we considered the case where

each qubit at position xi has a frequency ωi and therefore
has a localized lump of energy Ei ¼ ℏωi. The solutions
with ω ¼ 0, i.e., the zero modes, would lie on the
corresponding HRRT surface which is along the thread
connecting it to its pair. Going from one bit thread to
another needs at least additional energy of ΔE ¼ ℏΔω and
therefore one needs to consider all the normal modes. These
additional energies then create the curvature gradient in the
bulk along the surface Γ. Note that the gradient of the flow
of the modular zero modes would also be related to multi-
scale entanglement renormalization ansatz (MERA) and
the tensor network structure. If the qubits have additional
charge or mass, then ΔE would be different, and therefore
the bulk curvature and its gradient along Γ would change,
and as the result, EoP and CoP would also change.

For a single quasiparticle with fixed velocity vðλÞ ¼ v,
the mutual information is

IA1∶A2
¼ max

�
d
2
; vt

�
þmax

�
dþ 2l

2
; vt

�

− 2max

�
dþ l
2

; vt

�
; ð6:2Þ

which is nonzero only for d=ð2vÞ < t < ðdþ 2lÞ=ð2vÞ. Its
maximum is at t ¼ ðdþ lÞ=ð2vÞ and its height is propor-
tional to l which is the same result coming from holog-
raphy. For the general case of quasiparticles with nontrivial
dispersion, the contribution of all the species of quasipar-
ticles could be derived as

IA1∶A2
¼

X
n

IðnÞ ¼
X
n

Z
dλsnðλÞ

�
max

�
d
2
; vnðλÞt

�

þmax

�
dþ 2l

2
; vnðλÞt

�

− 2max

�
dþ l
2

; vnðλÞt
��

: ð6:3Þ

It has been shown that in integrable models, the scrambling
modes would follow the exponential behavior and the
nonintegrable cases would follow the algebraic behavior.
One would expect that systems which have long-lived, but
unstable quasiparticles such as confining models, have a
cross over behavior between algebraic and exponential
decay which could also be noticed from the behavior of
modular Hamiltonian and void formations in QCD models.
In [76], the speed that quantum information would

spread in chaotic systems has been discussed. The three
speeds were, information speed vI , entanglement speed vE,
which is related to the growth rate of entanglement after a
quantum quench, and, third, the butterfly speed vB, which
is related to the growth rate of perturbations in space. In
[76], it has been shown that the relationship between these

speeds would follow the relation vI ¼ vEðϵ;fÞ
1−f . Here, ϵ is the

FIG. 15. In an integrable model, the mutual information
behavior for two separated strips, IA∶B has been shown by the
red line [74]. At each time t, IA∶B would be proportional to the
width of the darker region.
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energy density of the initial state and f is the entanglement
fraction. The entanglement speed vI has a range between
vEðf ¼ 0Þ to vBðf ¼ 1Þ. The range for the speed of
modular chaos could then be found and its relationship
with such speeds could be investigated. In [23], a bound for
the speed of spread of modular scrambling modes has been
found. As mentioned previously, after a perturbation, in the
limit of s → �∞, the matrix elements of the modular
Hamiltonian of a QFT subregion could not grow faster than
e2πs. For holographic CFTs, during the modular time of
1 ≪ 2πs ≪ logN, the growth of code subspace matrix
elements of δHmodðsÞ has the bound [23]

lim
1≪N

1≪2πjsj≪logN

���� dds logFijðsÞ
���� ≤ 2π;

FijðsÞ ¼ jhχijeiHmodsδHmode−iHmodsjχjij:

There is a connection between this bound of 2π on the
maximum rate of growth of modular scrambling modes and
entanglement and information speed which were men-
tioned before. Using that, the connections between
Hayden-Preskill protocol [77] which tracks information
as a function of time, and modular scrambling modes in
modular time could be studied.
Finally note that at the critical distance between the

intervals, and in the phase transition moment, the modular
change, and the formation of the new structure for the
modular flow would happen by the “tsunami velocity”
which is bounded by the speed of light. Also as found in
[78], the spread of the entanglement and also the modular
flow would be highly sensitive to the initial entanglement
pattern.

B. Void formation in mixed states

In [79], the void formation in CFTs and its links to black
hole entropy and entanglement have been studied. These
void formations would have interesting implications for the
multipartite structure of entanglement entropy and mutual
information. In chaotic systems the distribution of voids
would be random, but in our mixed state setup, the structure
of such voids would be integrable, or even just plain
“linear”. Therefore, further analysis of this void distribution
in mixed states and the connections with EoP and CoP of
entanglement wedge would be interesting.
During the evolution of the system, the void formation is

responsible for generating mutual information and multi-
partite entanglement among the disjoint intervals, so it is
expected that entanglement and complexity of purification
would be directly related to the probability of void
formation as well. So the bigger the voids, the higher
the mutual information between separated regions and also
the higher the entanglement and complexity of purification
would be. Also, the volume of the voids, and complexity or
CoP, would be interconnected as well. On the other side,

void formation could also be characterized and quantified
by the number of quantum gates needed to purify the
systems and therefore by the EoP and CoP. Also, for the
same-sign charged and also dissipative systems, we would
expect that the probability of void formations would be
lower. So, again we would arrive to the results we already
got: that these parameters would decrease EoP and CoP as
we have observed in [10] and also from other models
studied here.
The probability of void formation for any operator O to

form a void in any subsystem A or B is related to the
correlations as [79]

PðAÞorðBÞ
O ðtÞ ¼ Tr½ðOð1ÞðtÞÞ†Oð1ÞðtÞ�

TrðO†ðtÞOðtÞÞ ; ð6:4Þ

where the time-evolved operator OðtÞ could be written as
OðtÞ ¼ O1ðtÞ þO2ðtÞ;O1ðtÞ ¼ ÕĀ ⊗ 1A. The probability
of evolution of an operator Oα to another operator Oβ and
also the capacity of quantum error correction channels are
actually related. Under the time evolution we have

OαðtÞ ¼ U†ðtÞOαUðtÞ ¼
X
β

cβαðtÞOβ; ð6:5Þ

and jcβαðtÞj2 is the probability of evolution, which we
conjecture is directly related to the channel capacity,
implying the connections between void formation and
quantum error correction. This number would also be
related to the complexity and complexity of purification.
More precisely related to NAðtÞ≡P

α∈I
P

β∈A jcβαðtÞj2,
introduced in Eq. (2.11) of [79], which is the expec-
ted number of operators in the set I contained in A after
passing the time t. It is also connected to the complexity
of state with density matrix ρAðtÞ. Also, the number
NðA;B; tÞ≡P

α∈I∩B
P

β∈A jcβαðtÞj2, characterizes the
number of initial operators in I from the region B which
at time t would become contained in A. This number then
would be related to the complexity of purification between
regions A and B.
Another point worth mentioning here is related to the

linear growth of entanglement and complexity due to the
“ballistic” operator growth, which would be true in both
chaotic and integrable systems. This ballistic behavior of
operators is also responsible for the decreasing behavior of
EoP and CoP after decreasing the same sign-charges q and
the dissipative parameter m. Similarly, for other correlation
measures, the number

P
α∈I∩B POðAÞ

α
ðtÞ could be used.

We can simulate our setup of two strips and the
correlation evolution among them using the model of void
creation. One could imagine that at first, i.e., t ¼ 0, when
the two subregions are far away from each other, the
density operator for each one could be written as
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ρ0A ¼ jψihψ j ¼ 1

d
1þ ρ̂0A; Trρ̂0A ¼ 0;

ρ0B ¼ jψihψ j ¼ 1

d
1þ ρ̂0B; Trρ̂0B ¼ 0: ð6:6Þ

Then, after they become close enough to each other, similar
to [79], one could write

ρ̂ðtÞ ¼ 1A ⊗ OB þOA ⊗ 1B þ ÕA ⊗ ÕB: ð6:7Þ

The first term corresponds to the void formation in A, and
the second one corresponds to the void formation in the
subsystem B. Then, similar to the case of void formation
between black hole and its radiation in [80], one could write
ρA ¼ 1

dA
1A þ dBOA; ρB ¼ 1

dB
1B þ dAOB. The reduced den-

sity matrix in the system A is related to the void formation
in its complement part including the system B, and vice
versa. Then, the EoP, CoP, and modular flow evolution
could be modeled by the probability plus the higher
moments of these void formations. For the EoP case, the
probability of void formation between A and A0 to find ρAA0

and also between A and B to determine ρAB can be
calculated. The first one would be proportional to 1

d2B
and

the second one would be proportional to 1
dAdB

, where d here
denotes the dimension of the Hilbert space.
Similar to the story of the Page curve, the phase

transitions between the two structures of RT extremal
surface, and the sudden appearance of the EW case in
the lower picture, could be related to the change of
dominance between the identity and the void formation
parts, as shown in Fig. 16. So considering

e−ðn−1ÞS
ðAþBÞ
n ¼ 1

dn−1A
þ 1

dn−1B
þ � � � þ dnATrBO

n
B þ dnBTrAO

n
A;

ð6:8Þ

the first two terms would be dominant before the phase
transition and the last two terms would dominate after the
phase transition when the mutual information and EoP
become nonzero as the two intervals get closer to each other
to form mixed correlations, so different parts of the reduced
density matrix in these series would become dominant at
different stages. As one would expect, this behavior of the

correlations in mixed setups would be similar to the
behavior of replica wormholes in JT gravity studied in [15].
The modular operators mixing and the correlation

exchange and also the jump in the mutual information
between the two strips at the phase transition point, as
shown in Fig. 16, would be due to the transferring of
information from the first strip to the second one, and then
one could track information using the Hayden-Preskill-like
process. The second situation, could be considered as a
typical state similar to black hole (BH) case and the results
could be derived by averaging over the Hilbert space of the
subsystems. We expect that if the two subregions become
close to each other fast enough, some aspects of modular
chaos would behave similar to vortices where such new
mathematical structures could be formulated using vortex
dynamics. Also, the butterfly effects in modular chaos
could be noted there. For any numerical simulation of the
dynamics of exchange of correlations, operators, and
information between these states, one could model these
states using the quantum Markov chains [81] where their
patterns of correlations are very orderly. We leave the
detailed numerical calculations for the future projects.

VII. DISCUSSION

In this work, various models of bulk reconstruction and
the connections between them have been studied, specifi-
cally for a setup of mixed states of two intervals, entangle-
ment wedge reconstruction through modular Hamiltonian
and modular flows, and also quantum recovery channels
have been investigated. Also, their connections with the
behavior of mutual information, entanglement, and com-
plexity of purifications have been explored. Specifically,
we used the results for EoP and CoP of charged and
massive gravity backgrounds and compared various results
with each other. The structures of zero modes and modular
flows through minimal wedge cross section, explicitly for
cases with dissipations and same sign charges have been
probed. The interconnections between quantum recovery
channels, in particular the Petz map, and modular flow have
also been looked into where ideas such as eigenstate
thermalization hypothesis have been employed.
Furthermore, the links between modular Berry phase and

complexity were probed where the already known behav-
iors of EoP and CoP have been used along the way. Also,
we compared the structure of the modular Hamiltonians for

BA BDc

FIG. 16. The creation of correlations at DC is shown. This structure could also be explained using the void formation of [79].
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the connected versus disconnected entanglement wedges
and specially the effects of singularities have been tracked.
In addition, the effects of dissipations and charge on CC
flows and kink transforms have been studied. Then, models
of OPE block and the duality of geodesic operator/OPE
block for the bulk reconstruction have been applied. Also,
the “CFT Uhlmann phase/bulk symplectic form” dictionary
has been used to study the mixed entanglement wedge
constructions and also the effects of dissipations and charge
on each side have been discussed. We also commented on
the connections with the quantum capacity and modular
Hamiltonian.
Next, to get better intuitions of the quantum correlations

of mixed states in our setup, we studied a particular
correlation measure and studied the effects of parameters
such as mixing and mean photon numbers. We also studied
some exact forms of modular Hamiltonian in simple
models and numerically investigated the effects of param-
eters such as lengths of strips and the distance between
them. We also commented on various information speeds in
our mixed setup and the relationships among them and also
the connections with the bound on modular scrambling
modes. In the study of the dynamical behaviors of
correlations, we also considered void formations and the
role they play in the phase transitions.
Our studies was specifically for CFTs. These studies

could also be done for warped CFTs as well. So, for
instance the holonomy of Berry connection along the path
in theUð1Þ × SLð2; RÞ group manifold and the Berry phase
on Virasoro-Kac-Moody orbits [82] could be studied. In
[82], using the Maurer-Cartan form of the Virasoro group,
the Berry phase had been computed. Using these calcu-
lations, the same could be done for the case of Kac-Moody
as well and the results could be compared with what we
have found for complexity in warped CFTs [42,44].
Also, recent ideas of the relationships between connect-

ing CFTs and the dual domain walls in the AdS [83,84], in
our setup of entanglement wedge reconstruction, right in
the moment when the two boundary regions become close
enough could be studied. One could imagine that the two
regions are separated by some type of co-dimension-one
brane and when the two regions become close enough, the
two corresponding branes collapse and merge with each
other as shown in [83]. Similar to [83], the bulk region dual
for each CFT could have matters and at the interface, one
could consider a Gibbons-Hawking-York boundary term
and another action for the matter on the brane. In [83] the
tension of the interface brane is constant, but, based on our
analysis in [10], this could not be true and the tension
should have a profile with a decreasing gradient.
These modular flows could also have some similarities

with the “fracton” quantum matter states. The implications
of Majorana islands could also be investigated for the case of
modular flows in the mixed setups. Specially for the case of
massive gravity, the interactions between the fractons and

gravitons would be very interesting; see [85,86]. The
connections between these models and the quantum univer-
sal recovery channels and modular Berry flows and also the
bit-thread models could also be investigated.
Defining a notion of entanglement “monodromy”, spe-

cially for studying the structure of entanglement around
singularities, similar to the notion of entanglement “holon-
omy” of [8], would also be interesting. The connection
between emergence of space, modular Berry flow, and other
novel and interesting ideas such as AdS/Deep Learning or
AdS/CFT as a deep Boltzmann machine [87] could be
studied. There should also be a connection between the
applicability of replica trick and the specific properties
of modular Hamiltonian, which lead to the entanglement
wedge reconstruction and the validity of Hayden-Preskill
decoding criterion [14,88]. The existence of multiple rep-
licas, the ability of modular Hamiltonian to sew field
theories, and the connectivity of geometries could be studied.
The Markovian properties of Hawking radiation and the
modular Hamiltonian for the vacuum would support our
guess. The symplectic form for the correlation between
multipartite systems or between wormholes could also be
studied. The connections between all these arguments and
the bulk reconstruction using Hartle-Hawking wave function
[89] would be compelling. The Wheeler-DeWitt wave
function and its formalism could also be another method
of bulk reconstruction. In the picture of traversable worm-
hole of [90], the coupling in the form of V ¼ g

n

P
n
i¼1 Z

L
i Z

R
i

has been added where g is small and n is large, which in the
bulk has the net effect of pushing the signal down and make
the teleporting between the two boundaries possible. The
effects of such terms in our structure, for transformation of
information between the two subsystems and the net effects
on the phase transitions could also be studied. Very recently,
in [91], a new formula for the massive modular Hamiltonian
of a unit space ball has been found. It has been noted that the
mass parameter there would also decrease the matrix
elements of modular Hamiltonian. It would be interesting
to check how in their setups the mass parameter also affects
various mixed correlations, CC modular flow, scrambling
modes, quantum recovery channels. Also, note that there the
Green’s function has a form of Yukawa potential e−mr=4πr,
which could then be used for removing the singularity of
phase diagrams of mutual information. These methods of
entanglement wedge reconstruction and emergence of bulk
spacetimes could also be connected to the new studies of
mechanism of precision microstates counting of black hole
entropy using topologically twisted index [92], localization
techniques, Bethe-ansatz formulation and I-extremization.
This point came to mind because of the procedure they
employed as they used imaginary chemical potentials to find
the number of black hole microstates which then would lead
to the imaginary result for the complexity of purification of
mixed states. We hope to address some of these problems in
future works.
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