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We extend the classification of fermionic Z2 × Z2 heterotic string orbifolds to nonsupersymmetric Pati-
Salam models in two classes of vacua, that we dub S̃ models and S models. The first corresponds to
compactifications of a tachyonic ten-dimensional vacuum, whereas the second corresponds to compacti-
fications of the ten-dimensional tachyon-free SOð16Þ × SOð16Þ heterotic string. In both cases we develop a
systematic method to extract tachyon-free four-dimensional models. We show that tachyon-free
configurations arise with probability ∼0.002 and ∼0.01 in the first and second case, respectively. We
adapt the ‘fertility methodology’ that facilitates the extraction of phenomenological models. We show that
Pati-Salam S̃ models do not contain heavy Higgs scalar representations that are required to break the PS
symmetry to the Standard Model and are therefore not phenomenologically viable. Hence, we argue that in
S̃models the SOð10Þ grand unified theory symmetry must be broken at the string scale to the Standard-like
Model subgroup. We extract tachyon–free three generation models in both cases that contain an equal
number of massless bosonic and fermionic degrees of freedom i.e., with a00 ¼ N0

b − N0
f ¼ 0, and analyze

their one-loop partition function.

DOI: 10.1103/PhysRevD.104.046002

I. INTRODUCTION

The Standard Model of particle physics provides viable
parametrization of most observable subatomic data to date.
Nevertheless, it is clear that the Standard Model (SM) is
merely an effective field theory description, albeit one that
may be effective up to the grand unified theory (GUT) or
Planck scales. The first evidence for the need to go beyond
the Standard Model stems from the observation of non-
vanishing neutrino masses, which requires the augmenta-
tion of the Standard Model spectrum with right-handed
neutrinos, or the introduction of nonrenormalizable inter-
actions, that are suppressed by some cutoff scale, at which
the Standard Model ceases to provide viable parametriza-
tion. Ultimately, the Standard Model is formulated using
the framework of point quantum field theory, which is
fundamentally incompatible with gravity.
An early construction to accommodate nontrivial neutrino

masses was the Pati-Salam (PS) model [1] that sought to
introduce a symmetry between quarks and leptons. This
rightly celebrated insight was vindicated by experiments [2].

It paved the road for the so-called GUTs that aim to unify all
the subatomic gauge interactions into a simple or semisimple
gauge group [3]. Experimental constraints stemming from
proton longevity and suppression of left-handed neutrino
massesmandate that the unification scale ismuchhigher than
the electroweak scale, which is currently being actively
probed by experiments. The GUT scale is in fact an order of
magnitude or two below the Planck scale, the scale at which
the gauge and gravitational interactions are of comparable
strength.
It is therefore sensible to construct GUT models in a

framework that incorporates gravity into the fold. Building
quantum field theory models at a scale which is one or two
orders of magnitude below the Planck scale is fraught with
uncertainties as quantum gravity effects may become dom-
inant. String theory provides a framework that enables the
construction of particle physics models within a perturba-
tively consistent theory of quantum gravity [4]. String theory
gives rise to a large number of vacuum solutions that may
a priori be relevant for the particle physics data. The way
forward is to explore the properties of classes of string vacua
that share some common characteristics and to develop the
tools to discern them from other classes. While the majority
of models studied to date possess N ¼ 1 spacetime super-
symmetry, nonsupersymmetric vacua that correspond to
compactifications of the tachyon-free ten-dimensional
SOð16Þ × SOð16Þ heterotic string have been of interest as
well as [5–10]. It is well known that in addition to the
tachyon-free vacua, string theory gives rise to tachyonic
vacua in ten dimensions [5,11,12]. Recently, it was argued
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that these ten-dimensional vacua may serve as good starting
points for the construction of phenomenological models,
provided that the tachyonic states are projected out from the
physical spectrum in the four-dimensional models, and may
offer some novel perspectives on some of the outstanding
issues in string phenomenology [13–15]. A three generation
Standard-likeModel in this classwas presented in [14], and it
was argued that all the moduli are projected out in the model
and that it may therefore be stable [14].
The free fermionic formulation [16] of the heterotic

string gave rise to a large space of phenomenological string
vacua, which correspond to compactifications of the
ten-dimensional heterotic string on Z2 × Z2 toroidal orbi-
folds. The initial constructions corresponded to isolated
examples with SUð5Þ ×Uð1Þ (FSU5) [17], SOð6Þ × SOð4Þ
(PS) [18], SUð3Þ × SUð2Þ × Uð1Þ2 (SLM) [19,20] and
SUð3Þ × Uð1Þ × SUð2Þ2 (LRS) [21], unbroken subgroups
of SOð10Þ, with the GUT embedding of the electroweak
hypercharge, producing the canonical prediction for the
Weinberg angle sin2 θW ¼ 3=8 at MString. Systematic meth-
ods to classify large numbers of free fermionic models were
developed over the past two decades [22–30]. InRef. [31] the
classification program was extended to tachyon-free models
with unbroken SOð10Þ subgroups that may be regarded as
compactifications of a tachyonic ten-dimensional vacuum.
Numerous models with an equal number of massless bosons
and fermions were found and an analysis of the one-loop
vacuum amplitude was presented. Of particular interest
was the observation of the misaligned supersymmetry
phenomena [32], which guarantees the finiteness of the
string amplitude in the absence of spacetime supersymmetry.
In this paper we extend the free fermionic classification

program to nonsupersymmetric models with PS gauge
symmetry. We develop the classification method both
for compactifications of the SOð16Þ × SOð16Þ heterotic
string as well as for compactifications of the tachyonic
ten-dimensional vacuum. Preliminary development of the
methodology in the first case was carried out in Ref. [10],
but only with respect to simultaneous shifts of tori, whereas
here we include independent shifts with respect to the six
internal circles. In the fermionic language this entails
enlarging the basis vectors that span the models to include
shifts with respect to circles, rather than tori.
We show that the S̃ models cannot in fact give rise to

viable models, due to the absence from the spectrum of the
states required to break the PS gauge group to the Standard
Model. We remark that this result is similar to the absence
of viable supersymmetric models with SOð10Þ → SUð4Þ ×
SUð2Þ × Uð1Þ [33].
A particular focus of our analysis here is the adaptation of

the ‘fertilitymethodology’ to the class of nonsupersymmetric
PS models. These methods were applied in the case of
standard-like models (SLM) [28] and left-right symmetric
(LRS) [30] models and is very efficient in extracting pheno-
menologically viable vacua. The new element of the fertility

methodology in the nonsupersymmetric models involves the
extraction of tachyon-free models, which occur with low
frequency in the total space of vacua. To contrast the cases of
the S̃models with that of theSmodels, we apply a parallel set
of phenomenological criteria, despite the fact that they do not
hold in the case of the S̃models due to the absence of heavy
Higgs scalar representations. In addition we analyze the
partition function of the models. A particular interest is in
models with equal numbers of massless bosons and fer-
mions. We present exemplary three generation S̃ and S
models that satisfy this criteria.
Our paper is organized as follows: in Sec. II we discuss the

general structure of S̃ vs Smodels. In Sec. III we elaborate on
the analysis of the massless spectrum in PS S̃ models,
whereas in Sec. IV we discuss the fertility methodology in
S̃ models. The corresponding analysis in the S models is
discussed in Sec. V. In Sec. VI we discuss the analysis of the
partition functions. Section VII presents the results of the
analysis and Sec. VIII concludes our paper.

II. S vs S̃-MODELS

We will explore four-dimensional nonsupersymmetric
Pati-Salam models via two distinct routes. Firstly, we will
explore those PS models descending from the tachyonic
ten–dimensional heterotic string which utilize the vector S̃.
We will refer to these models as (PS) S̃ models. Secondly,
we will explore models derived from the SOð16Þ × SOð16Þ
heterotic string which contain the SUSY-generating basis
vector S and thus we will refer to these as S models.
String models in the free fermionic formulation are

defined in terms of boundary condition basis vectors and
one-loop generalized GSO (GGSO) phases [16]. The
SOð16Þ × SOð16Þ and E8 × E8 heterotic-models in ten
dimensions are specified in terms of a common set of
basis vectors

v1 ¼ 1 ¼fψμ; χ1;…;6jη̄1;2;3; ψ̄1;…;5; ϕ̄1;…;8g;
v2 ¼ z1 ¼fψ̄1;…;5; η̄1;2;3g;
v3 ¼ z2 ¼fϕ̄1;…;8g; ð2:1Þ

where we employed the common notation used in the free
fermionic models [17,18,20–29]. The spacetime supersym-
metry generator arises from the combination

S ¼ 1þ z1 þ z2 ¼ fψμ; χ1;…;6g: ð2:2Þ
The choice of GGSO phase C½z1z2� ¼ �1 selects between the
E8 × E8 or SOð16Þ × SOð16Þ heterotic strings in ten
dimensions. Equation (2.2) implies that the breaking of
spacetime supersymmetry in ten dimensions is correlated
with the breaking pattern E8 × E8 → SOð16Þ × SOð16Þ.
The would-be tachyons in these models arise from the
Neveu-Schwarz (NS) sector, by acting on the right-moving
vacuum with a fermionic oscillator
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j0iL ⊗ ϕ̄aj0iR; ð2:3Þ

where a ¼ 1;…; 16. The GSO projection induced by the S
vector projects out these NS tachyons, producing tachyon–
free models in both cases.
In lower dimensions Eq. (2.2) does not hold and the two

breakings are not correlated. In lower dimensions the
projection of the N ¼ 1 supersymmetry generator from
the S sector is induced by an alternative phase. In this
manner nonsupersymmetric vacua are constructed. In the
orbifold representation, these free fermion models corre-
spond to compactifications of the ten-dimensional
SOð16Þ × SOð16Þ heterotic string, where the detailed dic-
tionary of Ref. [34], can be used to translate the free
fermion data to the toroidal orbifold data. Tachyon pro-
ducing sectors proliferate in the lower dimensional models
[8], and can be projected out for special choices of the
GGSO projection coefficients.
As discussed in Refs. [13,14,31], the ten-dimensional

tachyonic vacua in the free fermionic formulation are
obtained by removing the S vector from the construction,
or by augmenting it with four periodic right-moving world-
sheet fermions. These ten-dimensional configurations do
contain the NS tachyons appearing in Eq. (2.3) (or a subset
of them) and are connected by interpolations or orbifolds
along the lines of Ref. [12,35]. Similarly, the construction
of the four-dimensional free fermion models that descend
from the ten-dimensional tachyonic vacua amounts to
removing the vector S from the set of basis vectors that
are used to build the models. Alternatively, the S vector can
be augmented with a set of four right-moving periodic
fermions [13,14,31]. A convenient choice is given by

S̃ ¼ fψ1;2; χ1;2; χ3;4; χ5;6jϕ̄3;…;6g: ð2:4Þ

In this case there are no massless gravitinos, and the
untwisted tachyonic states

j0iL ⊗ ϕ̄3;…;6j0iR ð2:5Þ

are invariant under the S̃-vector projection, and therefore
are the NS tachyons that descend from the ten-dimensional
vacuum. We denote the general map, which is induced by
the exchange

S ↔ S̃; ð2:6Þ

as the S̃map. This map was used in the NAHE-based model
of Ref. [14] and in the classification of the SOð10Þ GUT
models in Ref. [31]. As for the S-based models that
correspond to compactifications of the SOð16Þ × SOð16Þ
heterotic string, the tachyonic states in the S̃ models are
projected out for discrete choices of the GGSO projection
coefficients. Thus, these models should be taken on equal
footing as the S models. However, the characteristics of the

spectra in the two cases are different. Our aim here is to
explore these different characteristics.

III. PATI-SALAM S̃-MODELS

Let us turn our attention to the classification setup for the
Pati-Salam S̃ models which descend from the 10D
tachyonic heterotic string. We can build these models by
first defining a set of 12 basis vectors that generate SOð10Þ
GUT S̃ models which were used in the classification
performed in [31]

1 ¼ fψμ; χ1;…;6; y1;…;6; w1;…;6jȳ1;…;6; w̄1;…;6;

ψ̄1;…;5; η̄1;2;3; ϕ̄1;…;8g;
S̃ ¼ fψμ; χ1;…;6jϕ̄3;4;5;6g;
ei ¼ fyi; wijȳi; w̄ig; i ¼ 1;…; 6

b1 ¼ fψμ; χ12; y34; y56jȳ34; ȳ56; η̄1; ψ̄1;…;5g;
b2 ¼ fψμ; χ34; y12; y56jȳ12; ȳ56; η̄2; ψ̄1;…;5g;
b3 ¼ fψμ; χ56; y12; y34jȳ12; ȳ34; η̄3; ψ̄1;…;5g;
z1 ¼ fϕ̄1;…;4g; ð3:1Þ

where we note that the fyi; wijjȳi; w̄ig are fermionized
coordinates of the internal toroidal Γ6;6 lattice such that
i∂Xi

L ¼ yiwi and the ei’s allow for all symmetric shifts of
the six internal circles. Furthermore, we note the existence
of a vector combination

z2 ¼ 1þ
X6
i¼1

ei þ
X3
k¼1

bk þ z1 ¼ fϕ̄5;6;7;8g ð3:2Þ

in these models, which is typically its own basis vector in
the supersymmetric classifications of [23,25,27–30].
In order to extend this structure to only those models

realizing the SOð6Þ × SOð4Þ PS subgroup of SOð10Þ we
supplement this basis with the vector:

α ¼ fψ̄4;5; ϕ̄1;2g: ð3:3Þ

Having fixed our basis we can now specify a model by
fixing a set of GGSO phasesC½vivj�, which for our Pati-Salam
basis here involves 78 free phases with all others specified
by modular invariance. Hence, the full space of models is of
size 278 ∼ 3 × 1023 models. This is considerably larger than
the space of supersymmetric Pati-Salam models classified
in [25] where supersymmetry constraints reduce the
parameter space.
With the basis and GGSO phases fixed we can then

construct the modular invariant Hilbert space H of states
jSξi for a model through the one-loop GGSO projections
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H ¼ ⨁
ξ∈Ξ

Yk
i¼1

�
eiπvi·Fξ jSξi ¼ δξC

�
ξ

vi

��
jSξi

�
; ð3:4Þ

where the ξ are sectors formed as a linear combination of
the basis vectors which span an additive group Ξ, Fξ is the
fermion number operator and δξ ¼ 1;−1 is the spin-
statistics index.
The sectors in the model can be characterized according

to the left- and right-moving vacuum separately

M2
L ¼ −

1

2
þ ξL · ξL

8
þ NL

M2
R ¼ −1þ ξR · ξR

8
þ NR ð3:5Þ

where NL and NR are sums over left- and right-moving
oscillators, respectively. Physical states must then addition-
ally satisfy the Virasoro matching condition, M2

L ¼ M2
R.

States not satisfying this condition are off shell.
It will be useful to distinguish between those features of

our models depending on the presence of the PS breaking
vector (3.3) and those features present at the level of
SOð10Þ defined by the basis set (3.1) and explored in detail
in our recent work [31]. This distinction will be crucial in
how we define our methodology for efficiently scanning
the space of PS S̃ models using the so-called ‘fertility’
methodology.

A. Gauge group and enhancements

The untwisted sector gauge vector bosons for our PS S̃
models give rise to the gauge group

SOð6Þ × SOð4Þ ×Uð1Þ1 × Uð1Þ2 × Uð1Þ3 × SOð4Þ4:
ð3:6Þ

The gauge group of a model may be enhanced by
additional gauge bosons. The SOð10Þ enhancements arise
from ψμfλ̄igjz1i, ψμfλ̄igjz2i, and ψμjz1 þ z2i sectors,
where λ̄i are right moving oscillators. These were discussed
in Ref. [31] and so we will focus our analysis on enhance-
ments at the PS level arising from

GPS¼

8>>>>>><
>>>>>>:

ψμjαiL⊗fλigjαiR; ψμjz1þαiL⊗fλigjz1þαiR
ψμjz2þαiL⊗ jz2þαiR;

ψμjz1þz2þαiL⊗ jz1þz2þαiR
ψμjS̃þ x̃þz1þαiL⊗ jS̃þ x̃þz1þαiR;

ψμjS̃þ x̃þz1þz2þαiL⊗ jS̃þ x̃þz1þz2þαiR

9>>>>>>=
>>>>>>;
;

ð3:7Þ
where we have made use of the important vector combi-
nation

x̃ ¼ b1 þ b2 þ b3 ¼ fψμ; χ1;2;3;4;5;6jψ̄1;…;5; η̄1;2;3g; ð3:8Þ

the properties of which are discussed in some detail
in Ref. [31].
These enhancements are all ‘mixed’ enhancements in the

sense that they affect both the observable and hidden gauge
group factors. The presence of these gauge bosons is model
dependent since it depends on the survival of the sectors
under the GGSO projections. It turns out that the sur-
vival of ψμjαiL ⊗ fψ̄1;2;3; η̄1;2;3gjαiR and ψμjz1 þ αiL ⊗
fψ̄1;2;3; η̄1;2;3gjz1 þ αiR is correlated exactly with the sur-
vival of the tachyonic sectors jαi and jz1 þ αi. Hence, the
absence of tachyons necessitates the projection of these
mixed gauge enhancements. We note that this is similar to
the result for mixed SOð10Þ enhancements ψμfψ̄agjz1i,
ψμfψ̄agjz2i, a ¼ 1;…; 5, which must be projected for
models free from jz1i and jz2i tachyonic sectors.
However, the other right-moving oscillator cases for these
enhancement sectors have to be checked carefully as they
also can affect the observable gauge group. The analysis of
the level-matched tachyonic sectors in our PS case is
presented in the following section.

B. Analysis of tachyonic sectors

Due to the absence of supersymmetry the analysis of
whether on-shell tachyons arise in the spectrum of our
models is of utmost importance. Since the details of how
to project the tachyonic sectors within the SOð10Þ con-
struction are shown in [31], we will focus on the tachyonic
sectors at thePS level i.e., those arising due to the inclusion of
the α vector. However, there is one amendment to the
projection conditions in Sec. 4 of Ref. [31] required, which
is that we must account for the fact that the α vector can
be used as a projector formany of the tachyonic sectors at the
SOð10Þ level. In particular, it can project any of the tachyonic
sectors except for those involving z1. This is an important
detail when we turn to the fertility analysis in Sec. IV.
Turning our attention to the tachyonic sectors introduced

at the PS level, we note that on-shell tachyonic sectors will
arise when

M2
L ¼ M2

R < 0; ð3:9Þ
which corresponds to left and right products of ξL · ξL ¼
0; 1; 2; 3 and ξR · ξR ¼ 0; 1; 2; 3; 4; 5; 6; 7. The presence of
such tachyonic sectors in the physical spectrum indicates
the instability of the string vacuum with respect to the
background on which the theory is defined.
We can deduce that there are 84 PS tachyonic sectors for

us to consider once the SOð10Þ tachyons are projected.
These sectors are displayed in Table I. In Table II the
conditions on the projection of these tachyonic sectors are
delineated. We only show the cases when i ¼ 1, j ¼ 2 and
k ¼ 3 as the other combinations are similar.

C. Massless sectors

Now that we have a way to check that models are free of
on–shell tachyons, we can turn our attention to the massless
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sectors and their representations. In Sec. 5 of [31] a detailed
analysis of the SOð10Þ massless sectors was presented. In
this section we will only mention the sectors from the
SOð10Þ level relevant for determining the observable
phenomenology of a model. Otherwise we will focus on
the new sectors to the PS models.

1. Observable massless sectors

The spinorial 16=16 representations of SOð10Þ arise
from the 48 sectors (16 from each orbifold plane)

Bð1Þ
pqrs¼b1þpe3þqe4þre5þse6

¼fψμ;χ1;2;ð1−pÞy3ȳ3;pw3w̄3;ð1−qÞy4ȳ4;qw4w̄4;

× ð1−rÞy5ȳ5;rw5w̄5;ð1−sÞy6ȳ6;sw6w̄6; η̄1; ψ̄1;…;5g
Bð2Þ
pqrs¼b2þpe1þqe2þre5þse6

Bð3Þ
pqrs¼b3þpe1þqe2þre3þse4; ð3:10Þ

where p, q, r, s ¼ 0, 1 account for all combinations of shift
vectors of the internal fermions fyi; wijȳi; w̄ig. As in
previous classifications, we can now write down generic
algebraic equations to determine the number of 16 and 16,
N16 and N16

, as a function of the GGSO coefficients. To do
this we first utilize the following projectors to determine
which of the 48 spinorial sectors survive

P1
pqrs ¼

1

24

Y
i¼1;2

�
1 − C

�
B1
pqrs

ei

��� Y
a¼1;2

�
1 − C

�
B1
pqrs

za

���

P2
pqrs ¼

1

24

Y
i¼3;4

�
1 − C

�
B2
pqrs

ei

��� Y
a¼1;2

�
1 − C

�
B2
pqrs

za

���

P3
pqrs ¼

1

24

Y
i¼5;6

�
1 − C

�
B3
pqrs

ei

��� Y
a¼1;2

�
1 − C

�
B3
pqrs

za

���

ð3:11Þ
where we recall that the vector z2 ¼ fϕ̄5;6;7;8g is the combi-
nation defined in Eq. (3.2). Then we define the chirality
phases

X1
pqrs ¼ −C

�
B1
pqrs

b2 þ ð1 − rÞe5 þ ð1 − sÞe6

��

X2
pqrs ¼ −C

�
B2
pqrs

b1 þ ð1 − rÞe5 þ ð1 − sÞe6

��

X3
pqrs ¼ −C

�
B3
pqrs

b1 þ ð1 − rÞe3 þ ð1 − sÞe4

��
ð3:12Þ

TABLE I. Level-matched PS tachyonic sectors and their mass
level, where i ≠ j ≠ k ¼ 1;…; 6.

Mass Level Sectors

ð−1=2;−1=2Þ α, z1 þ α
ð−3=8;−3=8Þ ei þ α, ei þ z1 þ α
ð−1=4;−1=4Þ ei þ ej þ α, ei þ ej þ z1 þ α
ð−1=8;−1=8Þ ei þ ej þ ek þ α, ei þ ej þ ek þ z1 þ α

TABLE II. Conditions on GGSO coefficients for survival of the on-shell PS tachyons for S̃ models.

Tachyonic Sector Survival conditions

α C½ αe1� ¼ C½ αe2� ¼ C½ αe3� ¼ C½ αe4� ¼ C½ αe5� ¼ C½ αe6� ¼ þ1

C½αz2� ¼ C½ α
z1þαþx̃� ¼ þ1

z1 þ α C½z1þα
e1

� ¼ C½z1þα
e2

� ¼ C½z1þα
e3

� ¼ C½z1þα
e4

� ¼ C½z1þα
e5

� ¼ C½z1þα
e6

� ¼ þ1

C½z1þα
z2

� ¼ C½z1þα
αþx̃ � ¼ þ1

e1 þ α C½e1þα
e2

� ¼ C½e1þα
e3

� ¼ C½e1þα
e4

� ¼ C½e1þα
e5

� ¼ C½e1þα
e6

� ¼ þ1

C½ e1þα
b1þz1þα� ¼ C½ e1þα

x̃þz1þα� ¼ C½e1þα
z2

� ¼ þ1

e1 þ z1 þ α C½e1þz1þα
e2

� ¼ C½e1þz1þα
e3

� ¼ C½e1þz1þα
e4

� ¼ C½e1þz1þα
e5

� ¼ C½e1þz1þα
e6

� ¼ þ1

C½e1þz1þα
b1þα � ¼ C½e1þz1þα

x̃þα � ¼ C½e1þz1þα
z2

� ¼ þ1

e1 þ e2 þ α C½e1þe2þα
e3

� ¼ C½e1þe2þα
e4

� ¼ C½e1þe2þα
e5

� ¼ C½e1þe2þα
e6

� ¼ þ1

C½e1þe2þα
b1þz1þα� ¼ C½e1þe2þα

x̃þz1þα � ¼ C½e1þe2þα
z2

� ¼ þ1

e1 þ e2 þ z1 þ α C½e1þe2þz1þα
e3

� ¼ C½e1þe2þz1þα
e4

� ¼ C½e1þe2þz1þα
e5

� ¼ C½e1þe2þz1þα
e6

� ¼ þ1

C½e1þe2þz1þα
b1þα � ¼ C½e1þe2þz1þα

x̃þα � ¼ C½e1þe2þz1þα
z2

� ¼ þ1

e1 þ e2 þ e3 þ α C½e1þe2þe3þα
e4

� ¼ C½e1þe2þe3þα
e5

� ¼ C½e1þe2þe3þα
e6

� ¼ þ1

C½e1þe2þe3þα
x̃þz1þα � ¼ C½e1þe2þe3þα

z2
� ¼ þ1

e1 þ e2 þ e3 þ z1 þ α C½e1þe2þe3þz1þα
e4

� ¼ C½e1þe2þe3þz1þα
e5

� ¼ C½e1þe2þe3þz1þα
e6

� ¼ þ1

C½e1þe2þe3þz1þα
x̃þα � ¼ C½e1þe2þe3þz1þα

z2
� ¼ þ1
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to determine whether a sector will give rise to a 16 or a 16.
With these definitions we can write compact expressions
for N16 and N

16

N16 ¼
1

2

X
A¼1;2;3

p;q;r;s¼0;1

PA
pqrsð1þ XA

pqrsÞ

N
16

¼ 1

2

X
A¼1;2;3

p;q;r;s¼0;1

PA
pqrsð1 − XA

pqrsÞ: ð3:13Þ

In order to describe the phenomenological properties of the
models under consideration we need to also consider what
happens to the components of the 16=16’s as the SOð10Þ
GUT is broken to the PS subgroup.
Recall that the basis vector α (3.3) induces SOð10Þ gauge

symmetry breaking. The spinorial 16=16 representations of
SOð10Þ decompose under the SOð6Þ × SOð4Þ≡ SUð4Þ ×
SUð2Þ × SUð2Þ gauge group as

16 ¼ ð4; 2; 1Þ þ ð4̄; 1; 2Þ ¼ n4L þ n4̄R

16 ¼ ð4̄; 2; 1Þ þ ð4; 1; 2Þ ¼ n4R þ n4̄L: ð3:14Þ

The GGSO projection under α determines which of the two
possible PS representations a particular 16 or 16 will fall
into. Furthermore, we can make the connection to the
Standard Model by noting that after Higgsing the SUð2ÞR
gauge symmetry, the 16 representation decomposes as

16 ¼ Q

�
3; 2;

1

6

�
þ L

�
1; 2;−

1

2

�

þ uc
�
3̄; 1;−

2

3

�
þ dc

�
3̄; 1;

1

3

�
þ ecð1; 1; 1Þ

þ νcð1; 1; 0Þ ð3:15Þ

under the SM gauge group.
A phenomenological issue arises due to the fact S̃ maps

makes the would-be scalar degrees of freedom S̃þ Bi
pqrs

massive. In the supersymmetric models, the 16 and 16
include the scalar superpartners, in particular those of the
n4̄R and n4R, which are used to break the intermediate PS
gauge symmetry down to the Standard Model gauge group.
Since there are no such states for our S̃ models and no
suitable scalar exotic sectors or scalars from higher Kac-
Moody level representations [36], the phenomenology of
these models is seemingly incomplete. In the case of
Standard-like S̃ models such as [14], however, the breaking
of the additional Uð1ÞZ0 may be achieved by a scalar from
the exotic sectors [37]. Despite this gap in the analysis of
these S̃ models we continue with the analysis since our
main aim here is to build up the tools for the classification
for the S̃ and S models of non-SUSY string models and to
do a comparison of their key characteristics.

The other key states for observable physics are obtained
from the vectorial 10 representations of SOð10Þ. We note
that the vector x̃ defined in (3.8) induces a map between the
fermionic spinorial sectors B1;2;3

pqrs and the bosonic vectorial
sectors

Vð1Þ
pqrs ¼ Bð1Þ

pqrs þ x̃

¼ b2 þ b3 þ pe3 þ qe4 þ re5 þ se6

¼ fχ3;4;5;6; ð1 − pÞy3ȳ3; pw3w̄3; ð1 − qÞy4ȳ4; qw4w̄4;

× ð1 − rÞy5ȳ5; rw5w̄5; ð1 − sÞy6ȳ6; sw6w̄6; η̄2;3g;
Vð2Þ
pqrs ¼ Bð2Þ

pqrs þ ex;
Vð3Þ
pqrs ¼ Bð3Þ

pqrs þ ex: ð3:16Þ

The observable states will arise from these sectors when
there is a right moving oscillator of ψ̄að�Þ, a ¼ 1;…; 5. To
determine the number of such observable vectorial sectors
we use the projectors

Rð1Þ
pqrs ¼ 1

24

Y
i¼1;2

�
1þ C

� ei

Vð1Þ
pqrs

�� Y
a¼1;2

�
1þ C

� za

Vð1Þ
pqrs

��

Rð2Þ
pqrs ¼ 1

24

Y
i¼3;4

�
1þ C

� ei

Vð2Þ
pqrs

�� Y
a¼1;2

�
1þ C

� za

Vð2Þ
pqrs

��

ð3:17Þ

Then we can write the number of vectorial 10’s arising from
these sectors as

N10 ¼
X
A¼1;2;3

p;q;r;s¼0;1

RA
pqrs: ð3:18Þ

A GGSO projection with the vector α can then be used to
induce doublet-triplet splitting in these models and tell us
whether a particular 10 produces a bidoublet or a triplet. In
particular, the 10 representation is decomposed under
SUð4Þ × SUð2ÞL × SUð2ÞR as

10 ¼ Dð6; 1; 1Þ þ hð1; 2; 2Þ; ð3:19Þ

where the colored triplets are generated by the ψ̄1;2;3
1=2 =ψ̄�1;2;3

1=2

and the bidoublet is generated by ψ̄4;5
1=2=ψ̄

�4;5
1=2 oscillators. We

can write the number of bidoublets, nh, and number of
triplets, n6, algebraically as

nh ¼
1

2

X
A¼1;2;3

p;q;r;s¼0;1

RA
pqrs

�
1 − C

�
VA
pqrs

α

��

n6 ¼
1

2

X
A¼1;2;3

p;q;r;s¼0;1

RA
pqrs

�
1þ C

�
VA
pqrs

α

��
: ð3:20Þ
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2. Pati-Salam exotics

Having reviewed the key elements of the observable
massless sectors, we can turn our attention to the new
features of the massless spectrum due to the PS vector α.
Such sectors are exotic in the sense they transform under
both the hidden and observable gauge groups and carry
fractional electric charge.
For the purposes of our analysis we will only classify

the fermionic exotic sectors and ensure that any poten-
tially viable models are checked for the absence of
chiral exotics. In a classification of supersymmetric
models it would be sufficient to classify only the
fermionic exotic sectors and then know that the equiv-
alent scalar exotic sectors will be in a model with þS.
However, in our nonsupersymmetric models we have no
control over how many scalar exotics will arise in a
model when we check the fermionic exotic sectors. We
note that the scalar exotics can always gain heavy mass
since they are not chiral. We remark that the Higgs
bidoublet field is also nonchiral with respect to the
Standard Model (SM) gauge group, whereas the mass
of other SM fields is protected by chirality. Keeping
the Higgs bidoublet light requires careful analysis of
the singlet VEVs, which in supersymmetric models are

subjected to F and D flatness constraints. Solutions that
give heavy mass to the exotics, while allowing for the
Higgs doublets to remain light, are found [19].
Furthermore, there are string models in which exotic
states only appear in the massive string spectrum [25],
while the required Higgs fields exist in the massless
spectrum, again indicating that the decoupling of exotic
states can be compatible with the requirement of a light
Higgs field. We note, however, that this question
requires a more detailed analysis in specific models
and goes beyond the scope of our analysis here.
First of all we note two fermionic vectorial exotic sectors

ṼPS ¼ ffλ̄igjS̃þ z1 þ αi; fλ̄igjS̃þ z1 þ z2 þ αig:
ð3:21Þ

Then we have in total 196 fermionic spinorial exotics.
Of these, 96 arise from sectors transforming as ð4; 2; 1Þ;
ð4; 1; 2Þ; ð4̄; 2; 1Þ or ð4̄; 1; 2Þ where 4 and 4̄ are spinorial
and anti–spinorial representations of the observable SOð6Þ,
respectively, and the 2 are doublet representations of either
the first or second hidden SOð4Þ factor. Explicitly, these
sectors are

Eð1Þ
pqrs ¼ Bð1Þ

pqrs þ α

¼ fψμ; χ1;2; ð1 − pÞy3ȳ3; pw3w̄3; ð1 − qÞy4ȳ4; qw4w̄4; ð1 − rÞy5ȳ5; rw5w̄5; ð1 − sÞy6ȳ6; sw6w̄6; η̄1; ψ̄1;2;3; ϕ̄1;2g
Eð2Þ
pqrs ¼ Bð2Þ

pqrs þ α

Eð3Þ
pqrs ¼ Bð3Þ

pqrs þ α

Eð4Þ
pqrs ¼ Bð1Þ

pqrs þ z1 þ α

¼ fψμ; χ1;2; ð1 − pÞy3ȳ3; pw3w̄3; ð1 − qÞy4ȳ4; qw4w̄4; ð1 − rÞy5ȳ5; rw5w̄5; ð1 − sÞy6ȳ6; sw6w̄6; η̄1; ψ̄1;2;3; ϕ̄3;4g
Eð5Þ
pqrs ¼ Bð2Þ

pqrs þ z1 þ α

Eð6Þ
pqrs ¼ Bð3Þ

pqrs þ z1 þ α: ð3:22Þ

A further 96 exotic sectors arise from

Eð7Þ
pqrs ¼ S̃þ Vð1Þ

pqrs þ z1 þ α

¼ fψμ; χ1;2; ð1 − pÞy3ȳ3; pw3w̄3; ð1 − qÞy4ȳ4; qw4w̄4; ð1 − rÞy5ȳ5; rw5w̄5; ð1 − sÞy6ȳ6; sw6w̄6; η̄2;3; ψ̄4;5; ϕ̄5;6g
Eð8Þ
pqrs ¼ S̃þ Vð2Þ

pqrs þ z1 þ α

Eð9Þ
pqrs ¼ S̃þ Vð3Þ

pqrs þ z1 þ α

Eð10Þ
pqrs ¼ S̃þ Vð1Þ

pqrs þ z1 þ z2 þ α

¼ fψμ; χ1;2; ð1 − pÞy3ȳ3; pw3w̄3; ð1 − qÞy4ȳ4; qw4w̄4; ð1 − rÞy5ȳ5; rw5w̄5; ð1 − sÞy6ȳ6; sw6w̄6; η̄2;3; ψ̄4;5; ϕ̄7;8g
Eð11Þ
pqrs ¼ S̃þ Vð2Þ

pqrs þ z1 þ z2 þ α

Eð12Þ
pqrs ¼ S̃þ Vð3Þ

pqrs þ z1 þ z2 þ α ð3:23Þ
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which give representations ðð2; 1Þ; ð2; 1ÞÞ; ðð2; 1Þ; ð1; 2ÞÞ;
ðð1; 2Þ; ð1; 2ÞÞ or (ð1; 2Þ; ð2; 1Þ) under SUð2ÞL × SUð2ÞR×
SOð4Þ3=4.
Finally, there are four additional fermionic spinorial

exotics from the sectors

fS̃þ α; S̃þ z2 þ α; x̃þ α; x̃þ z1 þ αg; ð3:24Þ

which transform as a doublet under one of the observable
SUð2Þ factors and doublets under three of the hidden
SOð4Þ gauge factors.
In regard to phenomenology, we are interested in

ensuring that there are no chiral exotics in our models,
which is why we look at the fermionic exotic sectors
only. In order to check this we can classify the exotics in
Eq. (3.22) with the numbers n4, n4̄ counting the number of
4=4̄’s under the SUð4Þ gauge factor and count the numbers
n2L, n2R of ð1; 2Þ=ð2; 1Þ’s from Eqs. (3.23) and (3.24)
under the SUð2Þ × SUð2Þ gauge factors.

IV. FERTILITY METHODOLOGY IN S̃ MODELS

The application of the fertility methodology was
employed very successfully in the case of the supersym-
metric standard–like models in [28] and left-right sym-
metric models in [30]. The methodology was particularly
useful in these cases due to the scarcity of phenomeno-
logically viable vacua, which was largely due to the
abundance of exotic sectors in these models. The key
notable feature of our S̃ models which make them ripe for a
fertility methodology is the abundance of tachyonic mod-
els. It was noted in [31] that the probability of tachyon-free
SOð10Þ models was ∼5 × 10−3, and we can similarly find
that the probability for PS S̃ models to be tachyon–free is
∼2 × 10−3, i.e., we have to filter out all but around 1 in 500
GGSO configurations.
The fertility methodology involves splitting the full

parameter space of, in this case, PS models into two
components Π ¼ ΠSOð10Þ × Πα and performing a classifi-
cation in two steps. The first step is to take the SOð10Þ
subspace ΠSOð10Þ, which is the space of 266 independent
GGSO phase configurations for the 12 basis vectors (3.1),
and checking for a set of phenomenological conditions
which can solely be evaluated within this subspace. These
conditions we call ‘fertility conditions’ and the SOð10Þ
models satisfying them ‘fertile cores’. The fertility con-
ditions we impose in our analysis of the S̃ models are
listed below.
Once we have these SOð10Þ fertile cores, we perform the

second step which is to evaluate them in the space Πα,
which means iterating over all independent choices of the
GGSO phases involving α around these cores. We then
collect statistics for these PS models and find a much
increased efficiency in finding models satisfying phenom-
enological constraints owing to this fertility methodology,

compared with a random classification in the full space of
PS models.

A. S̃ Fertility conditions

The set of fertility conditions we will use to derive fertile
SOð10Þ S̃ cores can be listed as follows:
(1) Absence of the tachyonic sectors

z1; ei þ z1; ei þ ej þ z1; ei þ ej þ ek þ z1;

i ≠ j ≠ k ¼ 1; 2; 3; 4; 5; 6 ð4:1Þ

using the set of projection conditions delineated in
Sec. 4 of [31].

(2) Constraints on SOð10Þ spinorial states

n4L − n4̄L ¼ n4̄R − n4R ≥ 6; nF
4̄R > 6: ð4:2Þ

The first condition results in a high likelihood of
having (at least) three fermion families and the
second condition is used as a fermionic analogy
to the condition for a heavy Higgs, which would be
nB
4̄R > 1 if the S̃–models had the scalar partners

of Bð1;2;3Þ.
(iii) For the presence of a SM Higgs i.e., nh ≥ 1, and a

Dð6; 1; 1Þ i.e., n6 ≥ 1, we can impose

N10 ≥ 2 ð4:3Þ

at the SOð10Þ level.
(4) Presence of a top quark mass coupling (TQMC)

which amounts to fixing the following GGSO
coefficients

C

�
b1
e1

�
¼C

�
b1
e2

�
¼C

�
b1
z1

�
¼C

�
b1
z2

�
¼−1;

C

�
b2
e3

�
¼C

�
b2
e4

�
¼C

�
b2
z1

�
¼C

�
b2
z2

�
¼−1;

C

�
e5
b1

�
C

�
e5
b2

�
¼C

�
e6
b1

�
C

�
e6
b2

�
¼ 1

C

�
b1
b2

�
¼−C

�
e5
b1

�
C

�
e6
b1

�
; ð4:4Þ

at the SOð10Þ level.
Since z2 is a combination of basis vectors we can

rewrite the conditions C½b1z2 � ¼ C½b2z2� ¼ −1 in terms
of the GGSO phases between basis vectors using the
Eqs. (4.4) and Antoniadis-Bachas-Kounnas rules,
choosing to fix the phases
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C

�
b1
b3

�
¼ −C

�
b1
e3

�
C

�
b1
e4

�

C

�
b2
b3

�
¼ −C

�
b2
e1

�
C

�
b2
e2

�
: ð4:5Þ

Having listed the conditions 1–4, we will now explain them
in more detail.
In regard to condition (1), we should note that these 42

tachyonic sectors (4.1) involving z1 are the only SOð10Þ
tachyonic sectors we can use as a fertility condition, since
the others can be projected by an α GGSO projection as
mentioned in Sec. III B. For example, we could have an
SOð10Þ core with a spinorial tachyon from the z2 sector
which is in fact absent at the PS level due to C½z2α � ¼ −1.
However, the z1 tachyonic sectors must be projected at the
SOð10Þ level as a necessary condition on the absence of all
tachyons at the PS level.
In regard to the second part of condition (2), having a

nB4R − nB
4̄R present we typically call having a heavy Higgs,

where we use the B superscript to make it clear that this is a
bosonic (scalar) sector. However, as already mentioned, the
S̃models have no such scalar components and so we cannot
implement this condition. Instead we implement a con-
dition on having the fermionic representations n4̄R, n4R in
the spectrum in order to draw a parallel with the heavy
Higgs condition which we can implement for the S models
analyzed in the next section. We further must note that the
condition n6 ≥ 1 in (3), relates to the so-called missing
partner mechanism of Pati-Salam models [38] for which we

also require the nðBÞ4R , n
ðBÞ
4̄R

. Again, since we have no heavy

Higgs for the S̃models we implement this n6 ≥ 1 condition
purely to draw the parallel to the methodology we can
apply for the S models. In analogy with the missing partner
mechanism we will say that the requirement of n6 ≥ 1 is
required for a ‘heavy triplet constraint’.
The conditions on the GGSO phases from (4) in

Eqs. (4.4) and (4.5) for the existence of the TQMC is a
necessary condition for the presence of a TQMC at the PS
level and can be made into a sufficient condition by fixing
the phases

C

�
b1
α

�
¼ −C

�
b2
α

�
¼ −1 ð4:6Þ

at the PS level. The derivation of these results in a super-
symmetric PS construction can be found in Ref. [39]. It is
derived through choosing B1

0000 ¼ b1 and B2
0000 ¼ b2 to

survive the GGSO projections (3.11), along with a bidoublet
Higgs from the sector V3

0000 ¼ b1 þ b2 surviving the pro-
jector (3.20). Furthermore, using (3.13)we can ensureb1 and
b2 give rise to 16’s such that X1

0000 ¼ X2
0000 ¼ 1 through the

condition (4.4). Then the GGSO phase conditions (4.6)
ensures that b1 generates a n4Lð4; 2; 1Þ, b2 generates a

n4̄Rð4̄; 1; 2Þ and then b1 þ b2 generates the hð1; 2; 2Þ. We
thus obtain the TQMC via the term

nð1ÞF4L nð2ÞF
4̄R

hð3ÞB ¼ QucHu þQdcHd þ LecHd þ LνcHu:

ð4:7Þ
Since we have guaranteed that a bidoublet Higgs arises

from the sector b1 þ b2 we can note this overlaps with
condition (3) since we automatically have N10 ≥ 1.
Having defined the fertility methodology and the details

of the construction of PS S̃ models, in the next section we
present the construction of the nonsupersymmetric S
models which descend from the nontachyonic SOð16Þ ×
SOð16Þ 10D string. The results of the classification of PS S̃
models and S models are given in Sec. VII.

V. SOð16Þ × SOð16Þ DERIVED 4D MODELS

We now turn to look at what we will refer to as the S
models, which are the nonsupersymmetric class of models
descending from the SOð16Þ × SOð16Þ heterotic string. We
can employ the same basis as used for the classification of
supersymmetric PS models in [25]

1 ¼ fψμ; χ1;…;6; y1;…;6; w1;…;6jȳ1;…;6; w̄1;…;6;

ψ̄1;…;5; η̄1;2;3; ϕ̄1;…;8g;
S ¼ fψμ; χ1;…;6g;
ei ¼ fyi; wijȳi; w̄ig; i ¼ 1;…; 6

b1 ¼ fχ34; χ56; y34; y56jȳ34; ȳ56; η̄1; ψ̄1;…;5g;
b2 ¼ fχ12; χ56; y12; y56jȳ12; ȳ56; η̄2; ψ̄1;…;5g;
z1 ¼ fϕ̄1;…;4g;
z2 ¼ fϕ̄5;…;8g;
α ¼ fψ̄4;5; ϕ̄1;2g ð5:1Þ

We will also make regular use of the combination

x ¼ 1þ Sþ
X6
i¼1

ei þ
X2
k¼1

zk ¼ fψ̄1;…;5; η̄1;2;3g: ð5:2Þ

The non-SUSY models are those in which the gravitino is
projected from the S massless sector. This means, in other
words, that SUSY is broken by a GGSO phase in these S
models. Therefore, the total space of nonsupersymmetric
models is the total space of all PS models which is
213ð13−1Þ=2 ¼ 278 models1 minus the space of supersym-
metric configurations. The necessary and sufficient con-
dition for the presence of supersymmetry is the fixing of the
nine GGSO phases

1The phase C½11� can, without loss of generality, be fixed to þ1
or −1, which just leaves the upper triangle of the GGSO phase
matrix as free phases, with the rest fixed by modular invariance.
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C

�
S

ei

�
¼ C

�
S

zn

�
¼ C

�
S

α

�
¼ −1; ð5:3Þ

with i ¼ 1;…; 6, m ¼ 1, 2 and n ¼ 1, 2. These phase
choices ensure the gravitino is not projected. Therefore the
total space of non–SUSY PS models has size 278 − 278−9∼
3 × 1023.
The untwisted sector gauge vector bosons for these

models generate the gauge group

SOð6Þ × SOð4Þ × Uð1Þ1 × Uð1Þ2 ×Uð1Þ3
× SOð4Þ2 × SOð8Þ: ð5:4Þ

which only differ from the S̃ models in that the gauge
bosons generating the SOð8Þ hidden group factor
ψμϕ̄cϕ̄djNSi, c, d ¼ 5, 6, 7, 8, are unbroken, unlike in
the case of the S̃ projection. Additional gauge bosons arise
from enhanced sectors which are exactly those listed in the
supersymmetric case from Sec. 3.1 of [25].

A. Analysis of Tachyonic Sectors

The tachyonic sectors for the S models are identical to
the S̃ case, however the projection/survival conditions
differ. Having S in our basis (5.1), means it can be used
as a possible projector of all the tachyonic sectors depend-
ing on the GGSO phases involving S. Of course, in the
SUSY case where Eq. (5.3) holds, all the tachyonic sectors

are automatically projected by the S projection, which is the
origin of SUSY models being tachyon free in the free
fermionic construction.
Due to this special property of S, in terms of computa-

tional efficiency it makes sense to implement the S
projection first on all the tachyonic sectors and then only
apply the further GGSO projections to sectors surviving S.
Concretely, for a generic tachyonic sector ξ, in which
Eq. (3.9) holds, we can first check

C

�
ξ

S

�
¼

�þ1 survives

−1 projected
ð5:5Þ

and if ξ survives this then we can move on to check the
other GGSO projections for its survival/absence.
The conditions for the survival of all SOð10Þ tachyonic

sectors are detailed in Tables III and IV before the PS
tachyonic sectors survival conditions are explicated in
Table V.

B. Massless sectors

Since the basis is identical to that analyzed in [25], the
massless sectors are the same, and we will not repeat all the
details here. The aspects of the analysis which deserve
further exploration are those in which the absence of
supersymmetry manifests itself. Of particular interest is
how the breaking of SUSY by a GGSO phase in S models

TABLE III. Conditions on GGSO coefficients for survival of spinorial SOð10Þ level on-shell tachyons for S
models. Only e1; e1 þ e2; e1 þ e2 þ e3 combinations are detailed but other combinations of ei ’s are similar.

Tachyonic Sector Survival conditions

z1 C½z1e1� ¼ C½z1e2� ¼ C½z1e3� ¼ C½z1e4� ¼ C½z1e5� ¼ C½z1e6� ¼ þ1

C½z1S � ¼ C½z1z2� ¼ C½z1b1� ¼ C½z1b2� ¼ C½z1x � ¼ þ1

e1 þ z1 C½e1þz1
e2

� ¼ C½e1þz1
e3

� ¼ C½e1þz1
e4

� ¼ C½e1þz1
e5

� ¼ C½e1þz1
e6

� ¼ þ1

C½e1þz1
S � ¼ C½e1þz1

b1
� ¼ C½e1þz1

z2
� ¼ C½e1þz1

x � ¼ þ1

e1 þ e2 þ z1 C½e1þe2þz1
e3

� ¼ C½e1þe2þz1
e4

� ¼ C½e1þe2þz1
e5

� ¼ C½e1þe2þz1
e6

� ¼ þ1

C½e1þe2þz1
S � ¼ C½e1þe2þz1

b1
� ¼ C½e1þe2þz1

x � ¼ C½e1þe2þz1
z2

� ¼ þ1

e1 þ e2 þ e3 þ z1 C½e1þe2þe3þz1
e4

� ¼ C½e1þe2þe3þz1
e5

� ¼ C½e1þe2þe3þz1
e6

� ¼ þ1

C½e1þe2þe3þz1
S � ¼ C½e1þe2þe3þz1

x � ¼ C½e1þe2þe3þz1
z2

� ¼ þ1

z2 C½z2e1� ¼ C½z2e2� ¼ C½z2e3� ¼ C½z2e4� ¼ C½z2e5� ¼ C½z2e6� ¼ þ1

C½z2S � ¼ C½z2α � ¼ C½z2z1� ¼ C½z2b1� ¼ C½z2b2� ¼ C½z2x � ¼ þ1

e1 þ z2 C½e1þz2
e2

� ¼ C½e1þz2
e3

� ¼ C½e1þz2
e4

� ¼ C½e1þz2
e5

� ¼ C½e1þz2
e6

� ¼ þ1

C½e1þz2
S � ¼ C½e1þz2

α � ¼ C½e1þz2
b1

� ¼ C½e1þz2
x � ¼ C½e1þz2

z1
� ¼ þ1

e1 þ e2 þ z2 C½e1þe2þz2
e3

� ¼ C½e1þe2þz2
e4

� ¼ C½e1þe2þz2
e5

� ¼ C½e1þe2þz2
e6

� ¼ þ1

C½e1þe2þz2
S � ¼ C½e1þe2þz2

α � ¼ C½e1þe2þz2
b1

� ¼ C½e1þe2þz2
x � ¼ C½e1þe2þz2

z1
� ¼ þ1

e1 þ e2 þ e3 þ z2 C½e1þe2þe3þz2
e4

� ¼ C½e1þe2þe3þz2
e5

� ¼ C½e1þe2þe3þz2
e6

� ¼ þ1

C½e1þe2þe3þz2
S � ¼ C½e1þe2þe3þz2

α � ¼ C½e1þe2þe3þz2
x � ¼ C½e1þe2þe3þz2

z1
� ¼ þ1
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causes differences to where it is broken explicitly in the S̃
models.
The way of breaking SUSY in the S models (by a

GGSO phase) allows the possibility of spontaneous SUSY

breaking of Scherk-Schwarz type [40,41], which cannot be
the case for any S̃ models. In particular, it is well known in
orbifold compactifications that if a freely acting orbifold
gives a mass contribution to a gravitino then the SUSY

TABLE IV. Conditions on GGSO coefficients for the survival of vectorial SOð10Þ level on-shell tachyons in S
models. Only e1, e12 ≔ e1 þ e2 and e123 ≔ e1 þ e2 þ e3 combinations are detailed but other combinations of ei ’s
are similar.

Tachyonic Sector Survival conditions

fλ̄gje1i SO ¼ fC½e1e2�; C½
e1
e3
�; C½e1e4�; C½

e1
e5
�; C½e1e6�; C½

e1
z1
�; C½e1z2�; C½

e1
α �; C½e1b1�; C½

e1
x �g

λ̄ ¼ ψ̄1;2;3=η̄1 C½e1S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 2 s:t: C½e1b1� ¼ C½e1x � ¼ −1
λ̄ ¼ ϕ̄1;2 or C½e1S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 2 s:t: C½e1z1� ¼ C½e1α � ¼ −1
λ̄ ¼ ȳ3;4;5;6 or C½e1S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 2 s:t: C½e1b1� ¼ C½ e1

e3;4;5;6
� ¼ −1

λ̄ ¼ ψ̄4;5 or C½e1S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 3 s:t: C½e1b1� ¼ C½e1x � ¼ C½e1α � − 1

λ̄ ¼ else or C½e1S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 1

fλ̄gje12i SO ¼ fC½e12e3 �; C½
e12
e4
�; C½e12e5 �; C½

e12
e6
�; C½e12z1 �; C½

e12
z2
�; C½e12α �; C½e12b1 �; C½

e12
x �g

λ̄ ¼ ψ̄1;2;3=η̄1 C½e12S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 2 s:t: C½e12b1 � ¼ C½e12x � ¼ −1
λ̄ ¼ ϕ̄1;2 or C½e12S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 2 s:t: C½e12z1 � ¼ C½e12α � ¼ −1
λ̄ ¼ ȳ3;4;5;6 or C½e12S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 2 s:t: C½e12b1 � ¼ C½ e12

e3;4;5;6
� ¼ −1

λ̄ ¼ ψ̄4;5 or C½e12S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 3 s:t: C½e12b1 � ¼ C½e12x � ¼ C½e12α � − 1

λ̄ ¼ else or C½e12S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 1

fλ̄gje123i SO ¼ fC½e123e4
�; C½e123e5

�; C½e123e6
�; C½e123z1

�; C½e123z2
�; C½e123α �; C½e123x �g

λ̄ ¼ ψ̄4;5 C½e123S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 2 s:t: C½e123α � ¼ C½e123x � ¼ −1
λ̄ ¼ ϕ̄1;2 or C½e123S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 2 s:t: C½e123z1

� ¼ C½e123α � ¼ −1
λ̄ ¼ else or C½e123S � ¼ 1 and #ðx ∈ SOjx ¼ −1Þ ¼ 1

TABLE V. Conditions on GGSO coefficients for the survival of spinorial PS level on-shell tachyons in S models.
Only e1, e1 þ e2, e1 þ e2 þ e3 combinations are detailed but other combinations of ei ’s are similar.

Tachyonic sector Survival conditions

α C½ αe1� ¼ C½ αe2� ¼ C½ αe3� ¼ C½ αe4� ¼ C½ αe5� ¼ C½ αe6� ¼ þ1

C½αS� ¼ C½ αz2� ¼ C½ α
b1þz1þα� ¼ C½ α

b2þz1þα� ¼ þ1

z1 þ α C½z1þα
e1

� ¼ C½z1þα
e2

� ¼ C½z1þα
e3

� ¼ C½z1þα
e4

� ¼ C½z1þα
e5

� ¼ C½z1þα
e6

� ¼ þ1

C½z1þα
S � ¼ C½z1þα

z2
� ¼ C½z1þα

b1þα� ¼ C½z1þα
b2þα� ¼ þ1

e1 þ α C½e1þα
e2

� ¼ C½e1þα
e3

� ¼ C½e1þα
e4

� ¼ C½e1þα
e5

� ¼ C½e1þα
e6

� ¼ þ1

C½e1þα
S � ¼ C½ e1þα

b1þz1þα� ¼ C½ e1þα
x̃þz1þα� ¼ C½e1þα

z2
� ¼ þ1

e1 þ z1 þ α C½e1þz1þα
e2

� ¼ C½e1þz1þα
e3

� ¼ C½e1þz1þα
e4

� ¼ C½e1þz1þα
e5

� ¼ C½e1þz1þα
e6

� ¼ þ1

C½e1þz1þα
S � ¼ C½e1þz1þα

b1þα � ¼ C½e1þz1þα
x̃þα � ¼ C½e1þz1þα

z2
� ¼ þ1

e1 þ e2 þ α C½e1þe2þα
e3

� ¼ C½e1þe2þα
e4

� ¼ C½e1þe2þα
e5

� ¼ C½e1þe2þα
e6

� ¼ þ1

C½e1þe2þα
S � ¼ C½e1þe2þα

b1þz1þα� ¼ C½e1þe2þα
x̃þz1þα � ¼ C½e1þe2þα

z2
� ¼ þ1

e1 þ e2 þ z1 þ α C½e1þe2þz1þα
e3

� ¼ C½e1þe2þz1þα
e4

� ¼ C½e1þe2þz1þα
e5

� ¼ C½e1þe2þz1þα
e6

� ¼ þ1

C½e1þe2þz1þα
S � ¼ C½e1þe2þz1þα

b1þα � ¼ C½e1þe2þz1þα
x̃þα � ¼ C½e1þe2þz1þα

z2
� ¼ þ1

e1 þ e2 þ e3 þ α C½e1þe2þe3þα
e4

� ¼ C½e1þe2þe3þα
e5

� ¼ C½e1þe2þe3þα
e6

� ¼ þ1

C½e1þe2þe3þα
S � ¼ C½e1þe2þe3þα

x̃þz1þα � ¼ C½e1þe2þe3þα
z2

� ¼ þ1

e1 þ e2 þ e3 þ z1 þ α C½e1þe2þe3þz1þα
e4

� ¼ C½e1þe2þe3þz1þα
e5

� ¼ C½e1þe2þe3þz1þα
e6

� ¼ þ1

C½e1þe2þe3þz1þα
S � ¼ C½e1þe2þe3þz1þα

x̃þα � ¼ C½e1þe2þe3þz1þα
z2

� ¼ þ1
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breaking is spontaneous and above the gravitino mass scale
SUSY is effectively restored. In such cases, the orbifold
model is an example of a stringy Scherk-Schwarz com-
pactification. In order to see how this is implemented
within our S models, we could transform it into a orbifold
model with freely acting action using the dictionary of [34].
Such an analysis is done explicitly for several SOð10Þ
models in Ref. [10] but doing so for the S models under
analysis is left for future work.
As in the supersymmetric case, spinorial 16=16’s arise

from the sectors

Bð1Þ
pqrs ¼ Sþb1þpe3þqe4þ re5þ se6

¼ fψμ;χ1;2; ð1−pÞy3ȳ3;pw3w̄3;ð1−qÞy4ȳ4;qw4w̄4;

ð1− rÞy5ȳ5; rw5w̄5;ð1− sÞy6ȳ6; sw6w̄6; η̄1; ψ̄1;…;5g
Bð2Þ
pqrs ¼ Sþb2þpe1þqe2þ re5þ se6

Bð3Þ
pqrs ¼ Sþb3þpe1þqe2þ re3þ se4 ð5:6Þ

where p, q, r, s ¼ 0, 1 and b3 ¼ b1 þ b2 þ x and vectorial
10’s from the sectors

VðIÞ
pqrs ¼ BðIÞ

pqrs þ x; I ¼ 1; 2; 3: ð5:7Þ

However, in the SUSY case we know that any states in the
Hilbert space of a model will be accompanied by their
superpartners, generated through the addition of the S
vector. In the non–SUSY case under consideration here,
due to the S projection, the would-be superpartners can
either be projected or have mismatched charges.
Since the same formulas can be found for the SUSY

classifications we will write the equations for the key
classification numbers related to the observable gauge
factors without further explanation. From the spinorial
16=16 we get the PS numbers

n4L ¼ 1

4

X
A¼1;2;3

p;q;r;s¼0;1

PA
pqrsð1þ XA

pqrsÞ
�
1þ C

�
BA
pqrs

α

��
ð5:8Þ

n4R ¼ 1

4

X
A¼1;2;3

p;q;r;s¼0;1

PA
pqrsð1 − XA

pqrsÞ
�
1 − C

�
BA
pqrs

α

��
ð5:9Þ

n4̄L ¼ 1

4

X
A¼1;2;3

p;q;r;s¼0;1

PA
pqrsð1 − XA

pqrsÞ
�
1þ C

�
BA
pqrs

α

��
ð5:10Þ

n4̄R ¼ 1

4

X
A¼1;2;3

p;q;r;s¼0;1

PA
pqrsð1þ XA

pqrsÞ
�
1 − C

�
BA
pqrs

α

��
: ð5:11Þ

where XA
pqrs determines the chirality 16=16 of a B1;2;3

pqrs

sector given by Eq. (5.6) and PA
pqrs are the projectors (3.11)

for B1;2;3
pqrs. Meanwhile, from the 10 we can write the

bidoublet and Dð6; 1; 1Þ numbers as

nh ¼
1

2

X
A¼1;2;3

p;q;r;s¼0;1

RðAÞ
pqrs

�
1 − C

�
VA
pqrs

α

��
ð5:12Þ

n6 ¼
1

2

X
A¼1;2;3

p;q;r;s¼0;1

RðAÞ
pqrs

�
1þ C

�
VA
pqrs

α

��
ð5:13Þ

where RðAÞ
pqrs are the vectorial projectors in this case.

The other important aspects of these models that we will
need for a phenomenological analysis are the absence of
gauge enhancements affecting the observable gauge factors
and the absence of chiral exotic sectors. The exotic sectors
listed in Sec. II of the SUSY PS classification of [25] are
also present in our analysis. However, by analyzing the
fermionic exotics in our S models we cannot say anything
about the would-be superpartner scalar exotics. For exam-
ple, in the SUSY case, if you find an absence of any
fermionic exotic sectors then a model can be declared
exophobic (free of all exotic sectors) since the scalar
superpartners will also be absent. For our purposes we
will not classify these scalar exotic sectors but only seek to
ensure the absence of chiral exotics by inspecting the
fermionic exotics.
A further difference to our exotics analysis is that we

have the exotic sectors

8<
:

fλigjSþ αi; fλigjSþ z1 þ αi
jSþ z2 þ αi; jSþ z1 þ z2 þ αi
jSþ αþ xi; jSþ z1 þ αþ xi

9=
; ð5:14Þ

which in SUSY models are thought of as (gaugino)
superpartners of mixed enhancement sectors generating
additional gauge bosons. In the SUSY case, such sectors
can be assured to be projected out whenever the enhance-
ments are projected. Since the absence of observable
enhancements is a fundamental phenomenological con-
straint to impose, once checked we can be sure that these
sectors (5.14) are projected too. For the non-SUSY case, we
cannot be sure that the absence of enhancements to the
observable gauge group will result in the projection of these
exotic states (5.14) so we must account for them when
looking at the absence of a chiral exotic anomaly.

C. Fertility conditions

We will use a similar fertility methodology as in the S̃
case except in this case we can consistently enforce
conditions on the presence of a heavy Higgs to break
the PS group and have the accompanying missing partner
mechanism. We can list the set of fertility conditions as
follows:
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(1) Absence of the tachyonic sectors

z1; ei þ z1; ei þ ej þ z1; ei þ ej þ ek þ z1

ð5:15Þ

using the set of conditions delineated in Table III.
(2) Constraints on SOð10Þ spinorial states related to the

presence of complete fermion families and a heavy
Higgs

n4L − n4̄L ¼ n4̄R − n4R ≥ 6; nðBÞ
4̄R

> 1: ð5:16Þ

(3) For the presence of a SM Higgs, i.e., nh ≥ 1, and a
Dð6; 1; 1Þ, i.e., n6 ≥ 1, we can impose

N10 ≥ 2 ð5:17Þ

at the SOð10Þ level.
(4) Presence of a top quark mass coupling which

amounts to fixing the following GGSO coefficients
following the methodology of [39]

C

�
ei
b1

�
¼ −C

�
ei
S

�
; i ¼ 1; 2 ð5:18Þ

C

�
ej
b2

�
¼ −C

�
ej
S

�
; j ¼ 3; 4 ð5:19Þ

C

�
zk
b1

�
¼ −C

�
zk
S

�
;

C

�
zk
b2

�
¼ −C

�
zk
S

�
; k ¼ 1; 2 ð5:20Þ

C

�
b1
e5

�
¼ C

�
b2
e5

�
; C

�
b1
e6

�
¼ C

�
b2
e6

�
ð5:21Þ

at the SOð10Þ level, and

C

�
b1
α

�
¼ −C

�
b2
α

�
¼ C

�
S

α

�
ð5:22Þ

at the PS level.
A few comments on these conditions are in order.

In condition (2) the equation nðBÞ
4̄R

> 1 is a necessary, but
not sufficient, condition on the presence of a heavy Higgs
to break the PS gauge symmetry. We specify that these

come from the bosonic sectors Bð1;2;3ÞB
pqrs ¼ Sþ Bð1;2;3ÞF

pqrs . We
note that any such sector, ξ, that survives the GGSO
projections and has a GGSO phase C½ξα� ¼ 1 will give rise
to the scalars with observable representations

��
3

even

�
ψ̄1;2;3

þ
�

3

odd

�
ψ̄1;2;3

��
2

even

�
ψ̄4;5

≕ nðBÞ
4̄R

þ nðBÞ4R ;

ð5:23Þ

where we employ the convenient notation ð 3
evenÞ ¼

fj� � �ij#ðj−iÞ mod 2 ¼ 0g. These nðBÞ
4̄R

þ nðBÞ4R states
are those we want to break the PS gauge group.
Furthermore, with both of them we can allow for breaking
along a D-flat direction, which enables hierarchical SUSY
breaking via Scherk-Schwarz, although this would need to
be evaluated carefully for a specific model.
In condition (3) imposing n6 ≥ 1 is required for the

implementation of the Missing Partner Mechanism of PS
models. This occurs once the PS group is broken and the
heavy Higgs has acquired a VEV. With a (6; 1; 1) triplet/
antitriplet field we induce couplings to d=d̄ SM fields of the
form ∼hn4RidcD3 and ∼hn4Rid̄cD̄3. These form massive
states at the GUT scale which protect proton decay from
happening too quickly.

VI. PARTITION FUNCTION OF
PATI-SALAM MODELS

The analysis of the partition function is particularly
important in nonsupersymmetric constructions, as it gives a
complementary tool to analyze the structure of the theory. It
also provides the necessary tools to count the total number
of states at each mass level and hence check for the
existence of on- and off-shell tachyons in any specific
model. Moreover, its integration over the fundamental
domain corresponds to the cosmological constant.
The partition function for free fermionic theories is given

by the integral

Z ¼
Z
F

d2τ
τ22

ZB

X
α;β

C

�
α

β

�Y
f

Z

�
αðfÞ
βðfÞ

�
; ð6:1Þ

where d2τ=τ22 is the modular invariant measure and ZB is
the bosonic contribution arising from the world-sheet
bosons. The sum gives the contributions from the world-
sheet fermions and involves all combinations of basis
vectors α, β from a given basis set, which in our case
are the ones given in (3.1) and (5.1). The integral is over the
fundamental domain of the modular group

F ¼ fτ ∈ Cjjτj2 > 1 ∧ jτ1j < 1=2g;

which ensures that only physically inequivalent geometries
are counted. The above integral specifically represents the
one-loop vacuum energy Λ of our theory. Note that this is
the cosmological constant from the world-sheet point of
view and hence is a dimensionless quantity [42]. It is
related to the spacetime cosmological constant, λ, by
λ ¼ − 1

2
M4Λ, where M ¼ MString=2π. For simplicity, in
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the following we will refer to Λ as the cosmological
constant.
The best way to perform this integral is as presented

in [31,43] using the expansion of the η and θ functions in
terms of the modular parameter τ, or more precisely, in
terms of q≡ e2πiτ and q̄≡ e−2πiτ̄. This leads to a series
expansion of the one-loop partition function

Z ¼
X
n:m

amn

Z
F

d2τ
τ32

qmq̄n: ð6:2Þ

The benefit of such an expansion to the partition function is
that the amn represent the difference between bosonic and
fermionic degrees of freedom at each mass level, i.e.,
amn ¼ Nb − Nf. As expected, on–shell tachyonic states,
i.e., states with m ¼ n < 0, have an infinite contribution.
On the other hand off–shell tachyonic states may contribute
a finite value to the partition function. It is indeed known
that such off–shell tachyonic states are necessarily present
in the spectrum of non-SUSY theories [43] and so all of our
Pati-Salam models posses such states. It is also important to
note that modular invariance constraints imposed on the
basis and GGSO phases only allows states withm − n ∈ Z.
In theories with spacetime supersymmetry, it is ensured

that the bosonic and fermionic degrees of freedom are
exactly matched at each mass level. That is, we necessarily
have that amn ¼ 0 for all m and n, which in turn causes the
vanishing of the cosmological constant. For nonsupersym-
metric models like the ones introduced in Secs. III and V,
this level-by-level cancellation is not ensured and so in
general produce a nonzero value for Λ. This value,
however, is specific to the fermionic point in the orbifold
moduli space and hence moving away from this point can
in principle change Λ as discussed in [10].
An interesting possibility is to try to suppress the value of

the cosmological constant so that we are guaranteed a small
value. It has been shown in [44–48] that such a mechanism
may be possible for models which satisfy the constraint
N0

b ¼ N0
f or in the above language a00 ¼ 0. These rely on a

Scherk–Schwarz SUSY breaking in which the internal
dimensions of the compactification space R are used to
suppress the next–to leading order contributions to Λ in the
large volume R → ∞ limit. This is because in this setup, the
dependence of the cosmological constant on the compac-
tification radius schematically becomes

Λ ∝ ðN0
b − N0

fÞ
1

R4
þOðe−αR2Þ; ð6:3Þ

and thus in the large R limit, Λ is exponentially suppressed
given that N0

b ¼ N0
f. Thus in our classification program, we

also try to find models which fulfil this condition and so
may be good candidates to further explore this idea. It is
important to note, however, that since the above mechanism
relies on a Scherk-Schwarz breaking, it can only be applied
to (some) S–models. This is because in S̃–models, SUSY is

broken explicitly. Moreover, since in the free fermionic
formulation the models are evaluated at a specific self dual
point in the moduli space, more work needs to be done to
analyze the behavior ofN0

b − N0
f away from this point. This

is indeed possible and requires the translation of the free
fermionic model into the orbifold picture where we can
reintroduce the dependence on the geometric moduli [10].

VII. RESULTS OF CLASSIFICATION

Using the methodology built up in the previous sections,
we can now turn towards analysing samples of PS S̃ and S
models with respect to standard phenomenological criteria.
First of all, we perform a random classification in the space
of PS S̃ and S models. This works by generating random
GGSO phase configurations and classifying according to the
absence of tachyons and the classification numbers: n4L,
n4̄L, n4R, n4̄R, nh, n6, n4, n4̄, n2L, n2R which are common to
S̃ and S models and are defined in previous sections. For the
S̃ models there are a further two classification numbers,
nV2L, nV2R, relating to the vectorial exotics (3.21). The
results of the random classification for a sample of 109

GGSO configurations in both the S̃ and S model cases are
displayed in Tables VI and VII, respectively.
From these results we can first note a higher probability

of ∼0.01 that an S–model is tachyon–free compared with
an S̃model which has probability∼0.002. This is likely due
to the power of GGSO phases involving S in projecting the
tachyons. Another notable result is the absence of PS S̃
models without massless fermionic exotics in the final
criteria (10), whereas we find vacua for the Smodels where
all fermionic exotic sectors are projected. As mentioned in
previous sections, we are not classifying the scalar exotic
sectors here and so we can not say whether there are
exophobic models, which were found in the SUSY PS
classification of [25]. Due to the absence of SUSY it
appears that finding such exophobic models would be
much less likely due to having to check the bosonic exotic
sectors independently to the fermionic ones.
As explained in earlier sections, the PS S̃ model analysis

is unphysical in the sense that we implement the condition
(6) for the presence of nF

4̄R, n
F
4R and condition (8) for the

presence of a Dð6; 1; 1Þ in order to draw an analogy with
the analysis of the S models where a heavy Higgs can be
found from the bosonic component of the 16=16 and a
missing partner mechanism can be implemented requiring
the Dð6; 1; 1Þ state. The difference in condition (6) skew
the numbers a bit since requiring a PS Higgs for the S
models is a weak condition, whereas the symbolic con-
dition for a nF

4̄R, n
F
4R in the S̃ models is stronger.

In order to find more models satisfying our phenom-
enological constraints we can now turn to utilizing the
fertility methodology outlined in Secs. IVA and V C for
the S̃ and S cases, respectively. Explicitly, we do this by

FARAGGI, MATYAS, and PERCIVAL PHYS. REV. D 104, 046002 (2021)

046002-14



implementing the conditions 1–4 in Secs. IVA and V C in
the space of SOð10Þ models, ΠSOð10Þ, and collect 200,000
fertile S̃ SOð10Þ cores and 550,000 S cores. Once we have
the cores, we look at the space Πα and, in particular, we
iterate over all independent choices of α GGSO phases.
When Eqs. (4.6) and (5.22) are accounted for we are left
with ten independent such phases. However, a subtlety
arises here due to how to avoid SUSY configurations in the
S models. We must allow for the possibility that some
SOð10Þ cores are supersymmetric in the S models because
we can still get non-SUSY models in the case where SUSY
is broken by α i.e., C½Sα� ¼ þ1. The logical procedure to
deal with this is to check if the condition (5.3) holds for the
SOð10Þ phases and then fix C½Sα� ¼ þ1 and iterate over the
reduced Πα space spanned by nine independent GGSO
phases involving α. In our sample of S SOð10Þ cores we
extracted 50,000 such SUSY cores and 500,000 non-
SUSY cores.
The results of this fertility classification are displayed in

Tables VIII and IX.
The first thing to note from these results is that owing to

the fertility analysis the number of models meeting the

phenomenological criteria has improved by around 3 orders
of magnitude compared with the random classification.
Furthermore, as expected, we see that all PS models derived
in the fertility methodology will come with a SMHiggs and
TQMC automatically.
The final classificationdatawewill display can be found in

Tables X–XII of the Appendix, where the quantum numbers
formodels satisfying constraints (1)–(9) in TablesVII and IX
are displayed.

A. Results for N0
b −N0

f

As discussed in Sec. VI, the constant term of the partition
function, a00 ¼ N0

b − N0
f, is an important quantity. It quan-

tifies the Bose-Fermi degeneracy at the massless level and so
is of phenomenological significance. It also provides the
leading order behavior of the vacuum energy, and thus
models with N0

b − N0
f can be of particular interest. Thus,

in our classification program we have taken a close look at
this value. Its distribution for a sample of 2 × 103 is shown in
Figs. 1 and 2 for S̃ and S models respectively. We have
included a random sample of nontachyonic vacua along with
a sample of models satisfying the criteria (1)–(9) in order to

TABLE VI. Phenomenological statistics from a sample of 109 randomly generated Pati-Salam S̃ models.

Constraints Total models in sample Probability

No Constraints 109 1

(1) þ Tachyon free 2038657 2.04 × 10−3

(2) þ No Observable Enhancements 2014917 2.01 × 10−3

(3) þ Complete Families 572411 5.72 × 10−4

(4) þ No Chiral Exotics 403989 4.04 × 10−4

(5) þ 3 Generations 3074 3.07 × 10−6

(6) þ nF
4̄R, n

F
4R Present 346 3.46 × 10−7

(7) þ SM Higgs 314 3.14 × 10−7

(8) þ Heavy Triplet Constraint 298 2.98 × 10−7

(9) þ TQMC 289 2.89 × 10−7

(10) þ No Fermionic Exotics 0 0

TABLE VII. Phenomenological statistics from a sample of 109 randomly generated Pati-Salam S models.

Constraints Total models in sample Probability

No Constraints 109 1

(1) þ Tachyon free 10578258 1.06 × 10−2

(2) þ No Observable Enhancements 10246688 1.02 × 10−2

(3) þ Complete Families 2730363 2.73 × 10−3

(4) þ No Chiral Exotics 461666 4.62 × 10−4

(5) þ 3 Generations 3103 3.10 × 10−6

(6) þ PS Higgs 2684 2.68 × 10−7

(7) þ SM Higgs 2263 2.26 × 10−7

(8) þ Partner Mechanism 1934 1.93 × 10−7

(9) þ TQMC 1878 1.88 × 10−7

(10) þ No Fermionic Exotics 36 3.6 × 10−9
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see what effect the imposition of certain phenomenological
features have on this net Bose-Fermi degeneracy. The
distributions show that for both sets of models it should be

possible to find ones which satisfy the condition N0
b ¼ N0

f.
Indeed, from the sample of 2 × 103 we have found 14 such
models for both S̃ and S.

TABLE VIII. Phenomenological statistics for Pati-Salam S̃ models derived from 200,000 fertile SOð10Þ S̃ cores.

Constraints Total models in sample Probability

No Constraints 204800000 1

(1) þ Tachyon free 2417463 1.18 × 10−2

(2) þ No Observable Enhancements 2406298 1.17 × 10−2

(3) þ Complete Families 623004 3.04 × 10−3

(4) þ No Chiral Exotics 438280 2.14 × 10−3

(5) þ 3 Generations 327463 1.60 × 10−3

(6) þ nF
4̄R, n

F
4R 190766 9.31 × 10−4

(7) þ SM Higgs 190766 9.31 × 10−4

(8) þ Partner Mechanism 183753 8.97 × 10−4

(9) þ TQMC 183753 8.97 × 10−4

(10) þ No Fermionic Exotics 0 0

TABLE IX. Phenomenological statistics for 537,600,000 PS S models derived from 550,000 fertile SOð10Þ S
cores.

Constraints Total models in sample Probability

No Constraints 537600000 1

(1) þ Tachyon free 11770044 2.19 × 10−2

(2) þ No Observable Enhancements 11431950 2.12 × 10−2

(3) þ Complete Families 3020242 5.62 × 10−3

(4) þ No Chiral Exotics 723352 1.35 × 10−3

(5) þ 3 Generations 488802 9.09 × 10−4

(6) þ PS Higgs 444454 8.27 × 10−4

(7) þ SM Higgs 444454 8.27 × 10−4

(8) þ Partner Mechanism 384080 7.14 × 10−4

(9) þ TQMC 384080 7.14 × 10−4

(10) þ No Fermionic Exotics 16030 2.98 × 10−5

FIG. 1. The distribution of the constant term a00 ¼ N0
b − N0

f for
a sample of 2 × 103 S̃ models satisfying conditions (1) and
(1)–(9) of Table VIII.

FIG. 2. The distribution of the constant term a00 ¼ N0
b − N0

f for
a sample of 2 × 103 S models satisfying conditions (1) and
(1)–(9) of Table IX.
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B. Example models with N0
b =N

0
f

Having found Oð105Þ S̃ models satisfying all phenom-
enological constraints (1)–(9) in Table VIII we can do a
subsequent search for such models that additionally satisfy

the condition a00 ¼ N0
b − N0

f ¼ 0 which may suppresses
the leading order contribution to the cosmological constant
of the model. The following GGSO phase configuration
meets this condition

C

�
vi
vj

�
¼

1 S̃ e1 e2 e3 e4 e5 e6 b1 b2 b3 z1 α

1

S̃

e1
e2
e3
e4
e5
e6
b1
b2
b3
z1
α

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

−1 1 1 1 −1 −1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 1 −1 1 1 1 −1 −1 1 −1
1 1 −1 −1 −1 1 1 1 −1 −1 −1 −1 1

1 −1 −1 −1 −1 1 −1 −1 −1 −1 −1 −1 1

−1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1
−1 −1 1 1 1 1 1 −1 −1 −1 −1 −1 1

−1 1 1 −1 1 1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1 1

1 −1 −1 −1 −1 −1 −1 −1 1 −1 −1 −1 1

−1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 −1 1

1 −1 −1 −1 −1 −1 1 −1 −1 −1 −1 1 1

−1 −1 1 1 −1 1 1 1 −1 1 −1 −1 −1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð7:1Þ

Furthermore, as desired, it enjoys three chiral generations
with PS quantum numbers n4L ¼ 3, n4̄L ¼ 0, n4R ¼ 1, and
n4̄R ¼ 4. Furthermore, the model has the necessary SM
Higgs and Dð6; 1; 1Þ for the unphysical ‘heavy triplet
constraint’, such that nh ¼ 3 and n6 ¼ 5. The model also
has exotic quantum numbers n4 ¼ n4̄ ¼ 1, n2L ¼ n2R ¼ 6,
and nV2L ¼ nV2R ¼ 0 which allows for the generation of
vectorlike exotics at high mass scale so as not to have
fractionally charged states at lower mass scales which
violates experimental observation. The top quark mass
coupling is guaranteed by the conditions (5.18) and (5.22).
We also note that the x̃ sector arises in the spectrum of this
model. This is important since it is charged under the
observable group and in this case generates four extra n4̄R
and n4R charged under each U1;2;3 factor, leaving the
number of generations still equal to 3. It was noted in
[31] that the x̃ sector corresponds to the sector producing
the fermionic superpartners of the states from the x sector
i.e., Sþ x, which enhance the SOð10Þ symmetry to E6. The
x̃ sector therefore gives rise to the fermionic superpartners
of the spacetime vector bosons from the x sector, which do
not arise in the construction of our S̃ models. We can also
calculate the traces under the Uð1Þi¼1;2;3 associated with
the right-moving currents η̄iη̄i, which are

TrUð1Þ1 ¼ −24; TrUð1Þ2 ¼ −24 and

TrUð1Þ3 ¼ 48; ð7:2Þ

such that the combination Uð1Þ1 þ Uð1Þ2 −Uð1Þ3 is
anomalous and we can chooseUð1Þ1 −Uð1Þ2 andUð1Þ1 þ
Uð1Þ2 þUð1Þ3 as anomaly-free combinations. The parti-
tion function for this model is given by

Z ¼ 2q0q̄−1 þ 0q0q̄0 − 668q1=8q̄1=8 − 4224q1=4q̄1=4

þ 32q3=8q̄−5=8 þ � � � ; ð7:3Þ

where we see that there are no on-shell tachyons and that
we have equal number of bosons and fermions at the
massless level as advertised. We can further note the
off-shell model-independent term 2q0q̄−1 obtained from
the so-called ‘proto-graviton’ resulting from the state
ψμj0iL ⊗ j0iR. This expression (7.3) integrates via (6.2)
to give a cosmological constant

Λ ¼ −166.42:

Recall that, as described in Sec. VI, this is the dimen-
sionless world-sheet vacuum energy and hence has the
opposite sign compared to the 4D spacetime cosmological
constant.
Turning our attention to the analysis of S models, we

can achieve N0
b ¼ N0

f and meet the phenomenological
constraints (1)–(9) with the following GGSO phase con-
figuration

CLASSIFICATION OF NONSUPERSYMMETRIC PATI-SALAM … PHYS. REV. D 104, 046002 (2021)

046002-17



C

�
vi
vj

�
¼

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

1

S

e1
e2
e3
e4
e5
e6
b1
b2
z1
z2
α

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

−1 −1 −1 1 −1 1 −1 −1 −1 1 1 1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 −1 −1
−1 −1 1 −1 1 1 1 −1 1 1 1 1 1

1 −1 −1 −1 1 1 1 1 1 −1 1 1 −1
−1 −1 1 1 1 1 1 −1 −1 1 −1 1 1

1 −1 1 1 1 −1 1 1 −1 1 1 1 −1
−1 −1 1 1 1 1 1 −1 −1 −1 1 −1 1

−1 −1 −1 1 −1 1 −1 1 1 1 −1 1 −1
−1 1 1 1 −1 −1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 1 −1 1 1 1 −1 1 1

1 1 1 1 −1 1 1 −1 −1 −1 1 1 1

1 −1 1 1 1 1 −1 1 1 1 1 1 −1
−1 −1 1 −1 1 −1 1 −1 1 −1 −1 −1 −1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð7:4Þ

which enjoys a PS-breakingHiggswith #ðn4R=n4̄RÞ ¼ 3 and
three chiral generations with quantum numbers n4L ¼ 4,
n4̄L ¼ 1, n4R ¼ 1 and n4̄R ¼ 4. Furthermore, the model
has the necessary SM Higgs and Dð6; 1; 1Þ for the missing
partner mechanism such that nh ¼ 2, n6 ¼ 2. The model
also has exotic quantum numbers n4 ¼ n4̄ ¼ 0 and
n2L ¼ n2R ¼ 4, which ensures the absence of chiral exotic
states.We note that exophobic vacuawithN0

b ¼ N0
f were not

found in our analysis. The top quark mass coupling is
guaranteed by the conditions (5.18) and (5.22). The traces
of Uð1Þ1;2;3 for this model are given by

TrUð1Þ1 ¼ 0; TrUð1Þ2 ¼ 0; and TrUð1Þ3 ¼ 0;

ð7:5Þ

such that each of the Uð1Þ1;2;3 are anomaly free independ-
ently. For Uð1Þ1 this cancellation occurs between the
trace in the observable 16=16 and the trace from hidden
sectors. For the Uð1Þ2 and Uð1Þ3 the cancellation happens
in each type of sectors (observables, hidden, exotics)
independently.
Inspecting the GGSO phase matrix (7.4) we see that

supersymmetry is only broken by one phase C½Sz1� ¼ 1. It is
not too surprising that configurations close to supersym-
metric ones are common origins of potentially viable models
since they preserve some of the benefits from having
supersymmetry. In particular, having most of the GGSO
phases involving S equal to −1 will help to ensure the
absence of tachyons. The gravitino is of course projected but
we note that the following states from the S sector:
fψ̄1;2;3; η̄1;2;3gfϕ̄3;4gjSi and fψ̄4;5gfϕ̄1;2gjSi are retained.

The partition function for this S model is given by

Z ¼ 2q0q̄−1 þ 0q0q̄0 þ 16q1=8q̄1=8 − 192q1=4q̄1=4

þ 192q3=8q̄3=8 − 4q1=2q̄−1=2 þ � � � ; ð7:6Þ
resulting in a world-sheet vacuum energy

Λ ¼ −62.66:

We see that we indeed have N0
b ¼ N0

f, hence the lack of
constant term in both models above. We also observe the
necessary off-shell tachyon at q̄−1 and the lack of physical
tachyons. As eluded to before, the suppression of the
cosmological constant in this S case may be possible in the
large-volume limit, however the above value is evaluated at
the self-dual free fermionic point.

VIII. CONCLUSIONS

The free fermionic representation of the heterotic string
in four dimensions gave rise to an abundance of three
generation models with varying unbroken SOð10Þ sub-
groups and the canonical GUT embedding of the weak
hypercharge. These models correspond toZ2 × Z2 orbifold
of six-dimensional compactified tori at special points in the
moduli space [34,49]. The free fermionic formalism was
used to develop a systematic classification of the Z2 × Z2

toroidal orbifolds, leading to numerous fundamental obser-
vations, among them: the construction of the first known
string models that produce in the low energy effective field
theory solely the spectrum of the minimal supersymmetric
Standard Model [20], the discovery of spinor-vector duality
in the space of Z2 × Z2 orbifold compactifications [24,50],
the discovery of exophobic string models [25].
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In this paper we extended the systematic classification
of free fermionic Z2 × Z2 orbifolds to nonsupersymmetric
Pati-Salam models. We pursued the construction of such
models via two routes, based on the S̃ models and S
models, where the first class descend from a tachyonic
ten-dimensional vacuum, whereas the second correspond to
compactifications of the ten-dimensional nonsupersymmet-
ric SOð16Þ × SOð16Þ heterotic string. A first task in the
construction of nonsupersymmetric models is to ensure that
all the physical tachyonic states are projected out from the
physical spectrum. Systematic classification rules were
developed to analyze the tachyon producing sectors and
to extract tachyon-free vacua in the two classes of models.
Tachyon-free models were found with probability 0.002
and 0.01 in S̃ and S models, respectively. To facilitate the
extraction of phenomenological vacua merits the develop-
ment of the ‘fertility methodology’ [28,30] that preselects
SOð10Þ preserving GGSO configuration that are amenable
for producing viable phenomenological models. We dem-
onstrated that application of the ‘fertility methodology’
increases the frequency of models that satisfy key phe-
nomenological criteria by three orders of magnitude. We
note that whereas S models contain the heavy Higgs scalar
representations required to break the Pati-Salam gauge
symmetry down to the Standard Model gauge group, they
are in fact absent in Pati-Salam S̃ models. Construction
of S̃ models that satisfy this criteria is only possible by
breaking the SOð10Þ gauge symmetry to the Standard
Model subgroup directly at the string scale. This follows
from the fact that the heavy Higgs scalar representations are
also absent in SUð5Þ ×Uð1Þ S̃ models, as well as in those
with SUð3Þ ×Uð1Þ × SOð4Þ unbroken SOð10Þ subgroup,
whereas the Standard-like models utilize Standard Model
singlet states that are obtained from exotic sectors, as
shown in Ref. [14]. Additionally, we analyzed the partition
function several exemplary models and demonstrated
the existence of three generation models that satisfy the
desired criteria a00 ¼ N0

b − N0
f ¼ 0 i.e., with equal number

of bosonic and fermionic massless degrees of freedom. The
fermionic Z2 × Z2 orbifolds provide the tools to develop
the phenomenological approach to string theory. With an
abundance of models and tools to explore this space of
string vacua, the stage is now ripe to explore the larger
space of unviable constructions, à la Ref. [51] and the
dynamics that may lie behind the string vacuum selection.
We would like also to comment on several issues that

warrant further analysis in nonsupersymmetric string con-
figurations. It is well known that in the minimal super-
symmetric Standard Model (MSSM) the gauge couplings of
the Standard Model tend to merge together at a scale of the
order of the GUT scale, whereas they do not if the spectrum
consists solely of the Standard Model states [52]. While the
naive MSSM realization of supersymmetry is under increas-
ing strain fromexperimental observations, itmaywell exist at
scales beyond those of contemporary experiments, and serve

tomitigate the unification of the couplings at the string scale.
In this respect we note that the picture in nonsupersymmetric
string vacua is more complex. In the first place, many
observable sectors in the string models may still exhibit
Bose-Fermi degeneracy of the Standard Model states, while
differing in their charges under some other symmetries of the
models [8]. Because supersymmetry is broken, these states
canno longer sit in super-multiplets, but as far as theStandard
Model charges are concerned they appear just as in the
supersymmetric models. Furthermore, there may be inter-
mediate states between the string and electroweak scale that
modify the naive picture of the MSSM, resulting in agree-
ment of the string scale coupling unification with the low
energy data [53]. The issue of gauge coupling unification can
therefore only be examined on a model by model basis and
cannot be addressed in a broad classification, such as the one
that we presented here.
Another problem of interest in nonsupersymmetric string

vacua is the existence of large tadpole diagrams that are
generated due to the nonvanishing vacuumenergy and reflect
the instability of the string vacuum. As we cautioned above,
in our view any argument of stability in nonsupersymmetric
string vacua is at best speculative. Nevertheless, we can
propose a possibility of how the issue of tadpole diagrams
might be addressed in the class ofmodels under investigation
here. As is well known, heterotic-stringmodels often contain
an anomalous Uð1ÞA symmetry. This anomalous Uð1ÞA
generates a nonvanishing amplitude at one-loop order in
string perturbation theory, and one can envision that it can be
used to cancel the one-loop diagram arising from the non-
vanishing vacuum energy. While this can be expected in
general, its realization can only be implemented in case by
case basis, as is the case in supersymmetric vacua. There are
subtleties associated with the calculation in nonsupersym-
metric backgrounds, that we hope to return to in a future
publication.

ACKNOWLEDGMENTS

The work of V. G. M. is supported in part by EPSRC
Grant No. EP/R513271/1. The work of B. P. is supported in
part by STFC Grant No. ST/N504130/1.

APPENDIX: KEY CLASSIFICATION
NUMBER TABLES

TABLE X. Main characteristic quantum numbers of S̃ models
satisfying all constraints (1)–(9) from Tables VII and IX.

n4L n4̄L n4R n4̄R nh n6 No Fermionic Exotics Frequency

3 0 1 4 5 3 False 50988
4 1 1 4 5 5 False 27602
3 0 1 4 3 5 False 25090

(Table continued)
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TABLE XI. Part 1: Main characteristic quantum numbers of
411578 Smodels satisfying all constraints (1)–(8) from Tables VII
and IX.

n4L n4̄L n4R n4̄R nh n6 No Fermionic Exotics Frequency

3 0 1 4 5 3 False 31059
4 1 0 3 5 3 False 31044
3 0 1 4 3 1 False 28885
4 1 0 3 3 1 False 28510
3 0 0 3 2 2 False 20833
3 0 1 4 3 5 False 18083
4 1 0 3 3 5 False 17269
4 1 1 4 3 3 False 16309
4 1 1 4 1 1 False 16230
4 1 1 4 5 5 False 14956
3 0 1 4 3 3 False 11068
4 1 0 3 3 3 False 11033
3 0 1 4 1 1 False 10871
3 0 0 3 3 3 False 10614
4 1 0 3 1 1 False 10379
3 0 1 4 1 3 False 9237
3 0 0 3 1 1 False 9045
4 1 0 3 1 3 False 8610
4 1 0 3 4 2 False 8317
3 0 1 4 4 2 False 8098
4 1 1 4 2 2 False 6928
4 1 1 4 5 5 True 5841
4 1 0 3 7 1 False 4658
3 0 1 4 7 1 False 4512
4 1 1 4 4 4 False 3616
4 1 0 3 2 4 False 3111
3 0 1 4 2 2 False 3043
3 0 1 4 2 4 False 2897
4 1 1 4 6 4 False 2742
4 1 0 3 5 1 False 2508
4 1 0 3 2 2 False 2439
3 0 1 4 5 1 False 2379
3 0 0 3 5 5 False 1992
4 1 1 4 3 3 True 1960
4 1 0 3 5 3 True 1944
3 0 0 3 4 4 False 1918
5 2 1 4 3 1 False 1692
4 1 2 5 3 1 False 1656
3 0 1 4 5 3 True 1564
5 2 0 3 7 3 False 1382
3 0 2 5 7 3 False 1366
3 0 0 3 3 1 False 1227
3 0 1 4 1 7 False 1188
3 0 1 4 1 5 False 1164
4 1 0 3 1 7 False 1090
4 1 0 3 1 5 False 1084
4 1 1 4 3 1 False 1053
4 1 2 5 1 1 False 996
4 1 0 3 3 5 True 974
4 1 1 4 6 6 False 903

(Table continued)

TABLE X. (Continued)

n4L n4̄L n4R n4̄R nh n6 No Fermionic Exotics Frequency

3 0 1 4 3 1 False 12526
3 0 1 4 3 3 False 10259
4 1 1 4 3 3 False 8450
3 0 1 4 4 2 False 6717
3 0 1 4 7 1 False 4618
3 0 1 4 1 3 False 4568
4 1 1 4 6 4 False 3934
4 1 1 4 1 1 False 3753
3 0 2 5 7 3 False 3294
3 0 1 4 2 4 False 2496
3 0 1 4 1 1 False 2418
3 0 1 4 2 2 False 1997
3 0 1 4 5 1 False 1951
4 1 1 4 4 6 False 1620
3 0 2 5 3 7 False 1278
3 0 2 5 3 3 False 1137
3 0 1 4 1 7 False 1052
3 0 1 4 1 5 False 904
3 0 2 5 5 1 False 834
4 1 1 4 4 4 False 578
4 1 1 4 2 2 False 571
5 2 1 4 7 5 False 555
4 1 1 4 5 1 False 530
4 1 1 4 9 1 False 493
4 1 2 5 7 5 False 493
4 1 1 4 3 1 False 336
5 2 1 4 5 7 False 334
4 1 1 4 1 5 False 287
3 0 2 5 1 5 False 267
3 0 2 5 1 1 False 244
4 1 2 5 5 7 False 240
5 2 1 4 1 1 False 219
4 1 2 5 1 1 False 209
4 1 1 4 6 6 False 176
5 2 1 4 5 5 False 162
4 1 2 5 5 5 False 120
4 1 1 4 1 9 False 108
4 1 1 4 7 7 False 104
3 0 2 5 6 2 False 80
4 1 2 5 6 4 False 78
5 2 1 4 6 4 False 67
4 1 2 5 3 1 False 59
3 0 2 5 2 6 False 55
5 2 1 4 3 1 False 52
3 0 2 5 2 2 False 39
4 1 2 5 4 4 False 26
5 2 1 4 4 6 False 22
4 1 2 5 4 6 False 20
4 1 1 4 7 5 False 16
4 1 2 5 1 3 False 11
3 0 3 6 3 1 False 11
3 0 3 6 3 9 False 3
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TABLE XI. (Continued)

n4L n4̄L n4R n4̄R nh n6 No Fermionic Exotics Frequency

5 2 1 4 1 1 False 890
4 1 1 4 1 1 True 824
4 1 1 4 4 6 False 778
3 0 2 5 3 3 False 760
3 0 0 3 5 1 False 757
5 2 0 3 3 3 False 705
5 2 1 4 7 5 False 690
3 0 2 5 5 1 False 662
4 1 2 5 7 5 False 660
5 2 0 3 5 1 False 660
5 2 0 3 1 1 False 660
3 0 0 3 4 2 False 643
5 2 0 3 3 7 False 620
3 0 1 4 3 5 True 592
4 1 1 4 5 1 False 580
3 0 2 5 3 7 False 528
3 0 0 3 5 5 True 512
4 1 2 5 6 4 False 502
4 1 2 5 1 3 False 499
4 1 0 3 3 1 True 468
5 2 1 4 1 3 False 456
3 0 1 4 3 1 True 452
4 1 2 5 5 7 False 440
3 0 2 5 1 1 False 420
3 0 0 3 3 3 True 415

TABLE XII. Part 2: Main characteristic quantum numbers of
411578 Smodels satisfying all constraints (1)–(8) from Tables VII
and IX.

n4L n4̄L n4R n4̄R nh n6 No Fermionic Exotics Frequency

5 2 1 4 5 7 False 348
4 1 1 4 9 1 False 328
4 1 1 4 7 7 False 320
4 1 2 5 5 5 False 314
5 2 1 4 6 4 False 302
4 1 1 4 1 5 False 252
3 0 2 5 1 5 False 210
5 2 1 4 7 5 True 208
4 1 2 5 7 5 True 200
5 2 0 3 6 2 False 188
5 2 1 4 3 1 True 180
3 0 0 3 1 3 False 177
4 1 2 5 4 6 False 168
5 2 2 5 1 1 False 168

(Table continued)

TABLE XII. (Continued)

n4L n4̄L n4R n4̄R nh n6 No Fermionic Exotics Frequency

5 2 0 3 1 5 False 163
3 0 2 5 6 2 False 148
4 1 0 3 1 3 True 132
5 2 1 4 5 7 True 120
3 0 1 4 1 3 True 116
4 1 2 5 3 1 True 112
4 1 2 5 5 7 True 112
5 2 1 4 5 5 False 108
4 1 1 4 1 9 False 102
5 2 0 3 2 6 False 98
3 0 0 3 7 3 False 92
4 1 1 4 7 5 False 86
5 2 1 4 1 3 True 84
5 2 1 4 4 6 False 80
3 0 0 3 7 7 True 80
5 2 2 5 2 2 False 72
3 0 1 4 4 2 True 72
3 0 3 6 3 1 False 72
4 1 0 3 4 2 True 72
3 0 0 3 5 3 False 71
5 2 0 3 2 2 False 68
6 3 0 3 3 1 False 62
3 0 0 3 6 6 False 60
3 0 0 3 6 2 False 58
3 0 2 5 2 2 False 54
6 3 0 3 1 1 False 48
4 1 1 4 2 2 True 48
3 0 0 3 2 4 False 45
3 0 3 6 1 1 False 44
4 1 2 5 4 4 False 36
3 0 0 3 1 5 False 33
3 0 0 3 7 7 False 24
3 0 0 3 9 1 False 24
6 3 0 3 2 8 False 24
3 0 3 6 3 9 False 20
4 1 2 5 1 3 True 16
6 3 0 3 3 9 False 14
3 0 2 5 2 6 False 12
6 3 0 3 1 3 False 10
3 0 3 6 1 3 False 10
3 0 3 6 1 9 False 10
3 0 1 4 2 4 True 8
4 1 2 5 6 4 True 8
5 2 1 4 6 4 True 8
4 1 0 3 2 4 True 8
5 2 1 4 4 4 False 4
3 0 0 3 1 1 True 4
6 3 0 3 1 11 False 4
3 0 0 3 3 5 False 3
6 3 0 3 1 9 False 2
3 0 0 3 11 3 False 2
3 0 0 3 4 4 True 1
3 0 0 3 2 2 True 1
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