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We discuss the generation of field-induced entanglement between two objects, each in a superposition of
two trajectories. The objects have currents coupled to local quantum fields, and the currents are evaluated
around each trajectory of the objects. The fields have only dynamical degrees of freedom and satisfy the
microcausality condition. We find that the superposed state of trajectories cannot be entangled when the
objects are spacelike separated. This means that the quantum fields do not generate spacelike entanglement
in the superposition of two trajectories of each object.
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I. INTRODUCTION

The full picture of quantum gravity [1–4], which unifies
general relativity and quantum mechanics, is still unclear.
This is attributed to the lack of theoretical and experimental
approaches to connect gravitational and quantum phenom-
ena. However, with the recent development of various
quantum technologies [5–8], there have been attempts to
clarify quantum natures of gravity (see, for example, [9] and
the references therein, or the recent works [10–28]). In such
works, the quantum-gravity-induced entanglement of
masses (QGEM) proposal [20,29,30] has been attracting
attention. In their proposal, the authors considered two
objects each in a superposition of two trajectories and
assumed the Newtonian potential between them. The
gravitational interactions generate the entanglement
between the two objects. The detection of gravity-induced
entanglement can be a witness of quantum nature of gravity.
The interesting point in the QGEM proposal is that two

spatially superposed objects can probe quantum entangle-
ment induced by fields. This is analogous to entanglement
harvesting protocols [31–39] by the Unruh-DeWitt detec-
tor. The Unruh-DeWitt detector is constructed using a
particle with internal degrees of freedom, which locally
interacts with a quantum field. In this model, the source of
entanglement is the quantum field. In particular, it is known
that the spacelike entanglement of a vacuum state induces
the entanglement between the two spatially separated
detectors (see, for example, [31]).
In this paper, we investigate how capable two superposed

objects are to probe the entanglement of quantum fields. We
assume that the fields have only dynamical degrees of
freedom and no constraint equations are imposed on the
entireHilbert space of the objects and the fields.We consider
the superposed objects which do not interact with each other

and whose currents locally couple with the fields. By
evaluating the currents along the objects’ trajectory, we
compute the time evolution of the total system. For the case
where the objects are spatially separated, we show that the
state of trajectories remain disentangled if the microcau-
sality condition holds for the quantum fields. In other words,
such quantum fields cannot be mediators of spacelike
entanglement for superposed trajectories of the objects.
Our analysis also presents possible approaches and exten-
sions of the objects’model to verify the spacelike entangle-
ment of fields; use of the internal degrees of freedom and
extended model with multiobjects or multitrajectories.
This paper is organized as follows. In Sec. II, the QGEM

proposal to test quantum gravity and its theoretical
approach are reviewed. In Sec. III, we introduce the model
with the interaction given in a bilinear form of fields and
currents of two objects. We derive the solution of the
Schrödinger equation. In Sec. IV, we investigate the
separability of the two objects based on the solution. We
find the no-go result of generation of spacelike entangle-
ment and discuss its implications. In Sec. V, the conclusion
is devoted. We use the natural units ℏ ¼ c ¼ 1 in this paper.

II. QUANTUM-GRAVITY-INDUCED
ENTANGLEMENT OF MASSES

The experimental setting of two matter-wave interfer-
ometers to test quantum gravity was proposed, which is
called the QGEM proposal [20,29,30]. In each interferom-
eter, a single object is in a superposition of two trajectories.
Figure 1 presents a rough configuration of trajectories of
each object. We assume that the two objects interact with
each other by the Newtonian potential. The Hamiltonian of
the objects is

ĤQGEM¼ ĤAþ ĤBþ V̂AB; V̂AB ¼−
GmAmB

jx̂A− x̂Bj
; ð1Þ
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wheremA andmB are the masses of the objects A and B, x̂A
and x̂B are each position, and the Hamiltonians ĤA and ĤB
determine each trajectory of the objects. Each of the two
objects at t ¼ 0 is in the spatially superposed state,

jψ ini ¼
1ffiffiffi
2

p ðjψRiA þ jψLiAÞ ⊗
1ffiffiffi
2

p ðjψRiB þ jψLiBÞ; ð2Þ

where jψRiA and jψLiA are the states with wave packets
localized around positions x ¼ xAR

ð0Þ and x ¼ xAL
ð0Þ at

t ¼ 0, respectively. Also, jψRiB and jψLiB are defined in
the same manner. Those states satisfy AhψRjψLiA ≈ 0 and

BhψRjψLiB ≈ 0 when each wave packet is sufficiently
separated. The evolved state jψ fi at t ¼ tf is

jψ fi ¼ e−itfĤQGEM jψ ini

¼ e−itfðĤAþĤBÞT exp

�
i
Z

tf

0

dt
GmAmB

jx̂IAðtÞ − x̂IBðtÞj
�
jψ ini

≈
1

2
e−itf ðĤAþĤBÞ

X
P;Q¼R;L

eiΦPQ jψPiAjψQiB; ð3Þ

where T is the time-ordered product and x̂IAðtÞ ¼
eitðĤAþĤBÞx̂Ae−itðĤAþĤBÞ and x̂IBðtÞ¼eitðĤAþĤBÞx̂B×
e−itðĤAþĤBÞ are the position operators in the interaction
picture. The phase shift

ΦPQ ¼
Z

tf

0

dt
GmAmB

jxAP
ðtÞ − xBQ

ðtÞj ð4Þ

is given by the Newtonian potential between the two
objects on the trajectories x ¼ xAP

ðtÞ and x ¼ xBQ
ðtÞ

ðP;Q ¼ R;LÞ. In the expression (3), we omitted the symbol
of the tensor product as j·iA ⊗ j·iB ¼ j·iAj·iB. The approxi-
mation of the third line of Eq. (3) is given as

x̂IAðtÞjψPiA≈xAP
ðtÞjψPiA;

x̂IBðtÞjψQiB≈xBQ
ðtÞjψQiB: ð5Þ

These equations are valid when the size of each wave
packet is larger than the de Broglie wave length of each

object [40,41]. Choosing the masses, the distance between
a pair of trajectories, and the traveling time properly, we
find that the state (3) is entangled. Hence, the gravitational
interaction can generate quantum entanglement. The key
point in the QGEM proposal is that the spatially superposed
objects can probe quantum entanglement. In the following
sections, we will discuss the detection of entanglement of
dynamical fields by using such objects.

III. MODEL HAMILTONIAN FOR FIELDS
AND OBJECTS

In this section, we introduce a model of two objects and
fields to examine the detection of entanglement of the
fields. In the Schrödinger picture, we consider the
Hamiltonian of two objects A and B and fields as

Ĥ ¼ ĤA þ ĤB þ ĤF þ V̂;

V̂ ¼
Z

d3xðĴAðxÞ þ ĴBðxÞÞ · ϕ̂ðxÞ; ð6Þ

where the Hamiltonians ĤA, ĤB, and ĤF determine the
dynamics of the objects A and B and the fields. The vectors
ĴA and ĴB are current operators with respect to the objects
A and B, and ϕ̂ is the field operator. The inner product J · ϕ
is defined by

P
k J

kϕk with labels k.
We assume that the fields have only dynamical degrees

of freedom and that there are no constraint equations on the
entire Hilbert space. The field operators are represented on
a physical Hilbert space HF without negative norm states.
In gauge field theories, there are formalisms using an
unphysical Hilbert space of fields with gauge degrees of
freedom [42]. The fact that there are no negative norm
states will be used to derive our result in the next section.
We note that the Hamiltonian (6) does not completely

represent the one in the linearized Einstein theory. At first
glance, by choosing the component of currents ĴkA and ĴkB
and the fields ϕ̂k as the energy-momentum tensor T̂μν and
the metric perturbation ĥμν properly, the local interaction V̂
seems to be the one in the linearized Einstein theory. This is
not correct since the fields and those Hilbert space HF are
assumed not to have gauge degrees of freedom and negative
norm states. Also, even for the transverse traceless gauge
(ĥμν have only physical modes), the Hamiltonian (6) is not
admitted in the linearized Einstein theory. This is because,
from the constraints of the Einstein equation, the non-
dynamical parts of the metric perturbation give nonlocal
interactions such as the Newtonian potential. However,
there are no nonlocal interactions between the two objects
in our model.
The almost same argument holds for the quantum

electromagnetic dynamics, but we can admit an effective
model described by the Hamiltonian (6). Let us consider
that the objects A and B without total electric charges and

FIG. 1. A configuration of the trajectories of the objects A and
B. For the QGEM proposal, the entanglement is generated
between the objects by the gravitational interaction.
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with the electric dipole moments d̂A and d̂B, respectively.
For the distant objects, the Coulomb potential between
them is neglected, and the local coupling to an electric field
Ê can be dominant. By assigning the field operator ϕ̂ and
the currents ĴA and ĴB to Ê, d̂Aδ3ðx − xAÞ and
d̂Bδ3ðx − xBÞ, our model describes the objects with the
dipole coupling to the electric field at the positions x ¼ xA
and x ¼ xB. In [35], a model similar to the Unruh-DeWitt
detector model with time-dependent couplings and spa-
tially smearing functions was considered.
Weconsider that each object at t ¼ 0 is in a superposition of

two local states jψRi and jψLi with hψPjψP0 i ≈ δPP0
(P; P0 ¼ R;L). As mentioned above, the interaction term in
the Hamiltonian (6) can describe dipole coupling in the
quantum electrodynamics. Each object may have some
internal degrees of freedom such as electric dipole moments.
We assume that the internal degrees of freedomof each objects
at t ¼ 0 is in states jaiAi and jbiBi, respectively. The objects
move on the trajectories determined by the Hamiltonian ĤA

and ĤB (see Fig. 1). The current operators ĴIAðt; xÞ ¼
eiĤ0tĴAðxÞe−iĤ0t and ĴIBðt; xÞ ¼ eiĤ0tĴBðxÞe−iĤ0t in the
interaction picture defined with Ĥ0 ¼ ĤA þ ĤB þ ĤF are
approximated by the following local values:

ĴIA;Iðt; xÞjψPiA ⊗ jaiAi ≈ jψPiA ⊗ ĵIAP
ðt; xÞjaiAi;

ĴIBðt; xÞjψQiB ⊗ jbiBi ≈ jψQiB ⊗ ĵIBQ
ðt; xÞjbiBi; ð7Þ

where ĵIAP
ðt; xÞ ¼ ŝIAðtÞδ3ðx − xAP

ðtÞÞ and ĵIBQ
ðt; xÞ ¼

ŝIBðtÞδ3ðx − xBQ
ðtÞÞ (P;Q ¼ R;L), with the internal physical

quantities ŝIAðtÞ and ŝIBðtÞ acting on theHilbert spacesHAi and
HBi of internal degrees of freedom, respectively. For example,
if the objects have electric dipole moments and the fields are
electric fields, the classical current ĵIAP

ðt; xÞ of the object A has

the form ĵIAP
ðt; xÞ ¼ d̂IAðtÞδ3ðx − xAP

ðtÞÞ with the electric

dipole d̂IAðtÞð¼ ŝIAðtÞÞ in the interaction picture. The similar
argument is made for object B.
When the fields are in a state jχiF at t ¼ 0, the state of the

objects and the fields at t ¼ 0 is

jΨini ¼ jαiA⊗AijβiB⊗BijχiF; ð8Þ

where

jαiA⊗Ai ¼ ðαRjψRiA þ αLjψLiAÞ ⊗ jaiAi;
jβiB⊗Bi ¼ ðβRjψRiB þ βLjψLiBÞ ⊗ jbiBi ð9Þ

where jαRj2 þ jαLj2 ≈ 1 and jβRj2 þ jβLj2 ≈ 1 holds since
the state jψPi satisfies hψPjψP0 i ≈ δPP0 . Note that the initial
product state may not be valid if there are constraint
equations on the objects and fields. The solution of the
Schrödinger equation is

jΨfi ¼ e−iĤtf jΨini

¼ e−iĤ0tf T exp

�
−i

Z
tf

0

dt
Z

d3xðĴIAðt; xÞ þ ĴIBðt; xÞÞ · ϕ̂Iðt; xÞ
�
jΨini

≈ e−iĤ0tf
X

P;Q¼R;L

αPβQjψPiAjψQiB ⊗ ÛPQjχiFjaiAijbiBi; ð10Þ

where ϕ̂Iðt; xÞ ¼ eiĤ0tϕ̂ðxÞe−iĤ0t. In the third line, we used
the approximations (7) assigning the local currents and
defined the unitary operator as

ÛPQ¼Texp

�
−i

Z
tf

0

dt
Z

d3xðĵIAP
ðt;xÞþ ĵIBQ

ðt;xÞÞ ·ϕ̂Iðt;xÞ
�
:

ð11Þ

The unitary operator ÛPQ acts not only on the field’s state
jχiF but also the states of the internal degrees of freedom of
the objects jaiAi and jbiBi.
In the next section, we examine the entanglement

between the two objects A and B using Eq. (10). We will
show no generation of entanglement for the trajectories of
objects which are in spacelike regions. This argument
follows by the microcausality of fields, which is indepen-
dent of the dynamics of the fields.

IV. NO GENERATION OF SPACELIKE
ENTANGLEMENT BETWEEN TWO OBJECTS

In this section, we investigate the generation of entan-
glement between the two objects. Before mentioning
our result, we focus on two origins of the generation of
entanglement.
First, it is important to consider whether or not the

unitary evolution gives correlations between the objects.
The Hamiltonian Ĥ0 ¼ ĤA þ ĤB þ ĤF yields independent
dynamics of each system which give no correlations. On
the other hand, the unitary evolution ÛPQ [Eq. (11)] given
by the local interaction V̂ leads to the following process: the
object A locally excites the fields, and the excitations then
propagate to object B and alter the potential around it. This
process gives effective interactions and induces correlations
between objects A and B. In fact, there are no such effects
when the two objects are in spacelike separated regions
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(see Fig. 2). If the fields in spacelike regions commute with
each other (the microcausality condition; see, for example,
[43]), we have�Z

d3xĵIAP
ðt; xÞ · ϕ̂Iðt; xÞ;

Z
d3yĵIBQ

ðt0; yÞ · ϕ̂Iðt0; yÞ
�
¼ 0;

ð12Þ
where we note that ĵIAP

ðt; xÞ ¼ ŝIAðtÞδ3ðx − xAP
ðtÞÞ and

ĵIBQ
ðt0; yÞ ¼ ŝIBðt0Þδ3ðy − xBQ

ðt0ÞÞ with the internal quan-
tities ŝIAðtÞ and ŝIBðtÞ of each object. Then the unitary
operator ÛPQ is factorized into the local unitaries,

ÛPQ ¼ ÛAP
⊗ ÛBQ

; ð13Þ

where ÛAP
and ÛBQ

are

ÛAP
¼ T exp

�
−i

Z
tf

0

dt
Z

d3xĵIAP
ðt; xÞ · ϕ̂Iðt; xÞ

�
; ð14Þ

ÛBQ
¼ T exp

�
−i

Z
tf

0

dt0
Z

d3yĵIBQ
ðt0; yÞ · ϕ̂Iðt0; yÞ

�
: ð15Þ

The local unitaries ÛAP
and ÛBQ

act on the Hilbert spaces
HAi ⊗ HFA and HBi ⊗ HFB , where the total Hilbert space
HF of the fields is described by HF ¼ HFA ⊗ HFB. There
are no interactions induced by the fields for the factorized
evolution in Eq. (13), which does not generate entangle-
ment between the two objects.
Another important point is quantum entanglement of the

field’s state. A previous work [31] showed that a pair of
Unruh-DeWitt detectors, even if they are spacelike sepa-
rated, become entangled due to the entanglement of the
vacuum of a relativistic field. Also, there are many works
about the generation of entanglement for spacelike sepa-
rated detectors in the context of the entanglement harvest-
ing protocol [32–35]. These works indicate that the
entanglement of the state jχiF of the fields can be a source
of entanglement of the objects.
However, in the following we find that the spacelike

entanglement of fields cannot be generated in the state of
the trajectories. The definition of entanglement is as
follows: a given state is not entangled if the density
operator ρ of a system has a separable form [44–46],

ρ ¼
X
i

piρi ⊗ σi; ð16Þ

where pi is a probability and ρi and σi are density operators
of the subsystems. A state which cannot be written in such a
form is called entangled. We show that the state of the
objects’ trajectories is written in a separable form. Tracing
out the fields and the internal degrees of freedoms from the
evolved state (10) for the case where the objects are in
spacelike regions, the reduced density operator for the
trajectories is

ρ ¼
X

P;P0¼R;L

X
Q;Q0¼R;L

αPα
�
P0βQβ

�
Q0 hχ0jÛ†

AP0
ÛAP

⊗ Û†
BQ0

ÛBQ
jχ0ijψPiAhψP0 j ⊗ jψQiBhψQ0 j; ð17Þ

where we used Eq. (13) and introduced jχ0i ¼
jχiFjaiAijbiBi as a short notation. The evolution operator
e−iĤ0tf was ignored because each degree of freedom simply
evolves independently of the free Hamiltonian Ĥ0. The
unitary operator V̂A

P0P ¼ Û†
AP0

ÛAP
appearing in Eq. (17)

satisfies

V̂A
RR ¼ V̂A

LL ¼ ÎA; V̂A
LR ¼ V̂A†

RL ¼ ðV̂A
RLÞ−1; ð18Þ

and hence all of the unitaries V̂A
RR; V̂

A
RL; V̂

A
LR, and V̂A

LL

commute with each other. This means that V̂A
P0P has the

following spectral decomposition:

V̂A
P0P ¼

Z
eiθP0PðλÞdμ̂Ai⊗FAðλÞ; ð19Þ

where μ̂Ai⊗FA is an operator-valued measure on the Hilbert
space HAi ⊗ HFA . The real phase θP0PðλÞ has the antisym-
metric property θP0PðλÞ ¼ −θPP0 ðλÞ, which reflects Eq. (18).
As the number of trajectories for each object is two, the
number of independent components of θP0PðλÞ is one.
Hence, the phase is always written as

θP0PðλÞ ¼ θRLðλÞðnP − nP0 Þ; ð20Þ

where nR ¼ 0 and nL ¼ 1. From the above facts, we find
that the reduced density operator ρ is separable,

FIG. 2. A configuration of trajectories of each object, which is
in spatially separated regions.
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ρ ¼
X

P;P0¼R;L

X
Q;Q0¼R;L

αPα
�
P0βQβ

�
Q0 hχ0jV̂A

P0P ⊗ Û†
BQ0

ÛBQ
jχ0ijψPiAhψP0 j ⊗ jψQiBhψQ0 j

¼
X

P;P0¼R;L

X
Q;Q0¼R;L

αPα
�
P0βQβ

�
Q0

×
Z

eiθRLðλÞðnP−nP0 Þhχjdμ̂Ai⊗FAðλÞ ⊗ Û†
BQ0

ÛBQ
jχiFjψPiAhψP0 j ⊗ jψQiBhψQ0 j

¼
Z

dμðλÞjψðλÞiAhψðλÞj ⊗ σBðλÞ; ð21Þ

where we used Eqs. (19) and (20) and defined the probability measure μ with dμðλÞ ¼ hχ0jdμ̂Ai⊗FAðλÞjχ0i, and the state
jψðλÞiA and the density operator σBðλÞ as

jψðλÞiA ¼
X
P¼R;L

αPeiθRLðλÞnP jψPiA; ð22Þ

σBðλÞ ¼
1

dμðλÞ
X

Q;Q0¼R;L

βQβ
�
Q0 hχ0jdμ̂Ai⊗FAðλÞ ⊗ Û†

BQ0
ÛBQ

jχ0ijψQiBhψQ0 j: ð23Þ

Here, we emphasize that the Hilbert space HF of the fields
has no negative norm states, which was mentioned below
Eq. (6). The fact leads to the inequalities μðλÞ ≥ 0 and
σBðλÞ ≥ 0 and guarantees that μðλÞ and σBðλÞ are a
probability measure and a density operator, respectively.
Hence, the separability of the state of the objects’ trajecto-
ries holds. If gauge degrees of freedom are included in the
fields, the Hilbert spaceHF may have a negative norm state
and the separability is not always guaranteed.
The separability of the objects does not depend on the

dynamics of fields or the details of classical trajectories.
Also, the separability holds even for the case where the
object’s state of the internal degrees of freedom and the
fields are initially in a mixed state. Our result indicates that
the fields do not play a role of quantum mediators to

generate the spacelike entanglement among the trajectories
of such objects.
We compare our result with the no-go theorems in

[30,47] on the generation of entanglement. The theorem
in [30] argued that two systems mediated by classical
systems with only a single observable (this is the meaning
of “classical” for that claim) have no entanglement. For our
model, the mediators are the fields, which may have
noncommutative observables, for example, the field oper-
ator and its conjugate. In this sense, the fields can be
quantum systems in general. However, there are no gen-
erations of spacelike entanglement.
The no-go theorem in Ref. [47] elucidates our result.

We can rewrite Eq. (10) for the spacelike separated two
objects as

jΨfi ¼ e−iĤ0tf
X

P;Q¼R;L

αPβQjψPiAjψQiB ⊗ ÛPQjχiFjaiAijbiBi

¼ e−iĤ0tf
X

P;Q¼R;L

αPβQjψPiAjψQiB ⊗ ðÛAP
⊗ ÛBQ

ÞjχiFjaiAijbiBi

¼ e−iĤ0tf

� X
P¼R;L

jψPiAhψPj ⊗ ÛAP
⊗ ÎFB ⊗ ÎB

�
⊗

�
ÎA ⊗

X
Q¼R;L

jψQiBhψQj ⊗ ÎFA ⊗ ÛBQ

�
jΨini; ð24Þ

where we used Eq. (13), and jΨini is the initial state given in
Eq. (8). In this formula, we find the controlled unitary ÛAF,

ÛAF ¼
X
P¼R;L

jψPiAhψPj ⊗ ÛAP
⊗ ÎFB : ð25Þ

Exactly speaking, ÛAF has inverse only when it acts on the
subspace spanned by jψRiA and jψLiA of the Hilbert space
HA. In Ref. [47], Simidzija et al. showed that the unitary
evolution Û ¼ ðÛAS ⊗ ÎBÞðÎA ⊗ ÛBSÞ with the exponen-
tial of a Schmidt rank-1 operator ÛAS ¼ e−im̂A⊗X̂S does
not generate entanglement between the systems A and B.
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The systems A, B, and S correspond to the objects A and B
and the fields F in our model. The controlled unitary ÛAF is
rewritten in the form

ÛAF ¼ ÛAR
ðjψRiAhψRj ⊗ ÎFA ⊗ ÎFB

þ jψLiAhψLj ⊗ V̂A
RL ⊗ ÎFBÞ

¼ ÛAR
e−im̂A⊗X̂F ; ð26Þ

where V̂A
RL ¼ Û†

AR
ÛAL

, the self-adjoint operator X̂F satisfies

e−iX̂F ¼ V̂A
RL⊗ ÎFB , and m̂A¼0×jψRiAhψRjþ1×jψLiAhψLj.

Since the entanglement between the two objects is invariant
under the local unitary transformation ÛAR

, the controlled
unitary ÛAF plays the same role as the exponential of a
Schmidt rank-1 operator. Thus, our no-go result on gener-
ation of spacelike entanglement is a consequence of the no-
go theorem in [47]. Note that the no-go theorem can be
applied under the approximation assigning local currents (7)
and for the states of trajectories satisfying hψPjψP0 i ≈ δPP0 . If
these conditions do not hold, we need a further study of
entanglement generation.
We comment on the extension of our model. It is well

known that the spacelike entanglement of a field is
extracted by the Unruh-DeWitt detectors [31]. Further, in
Refs. [38,39], the authors discussed an entanglement
harvesting protocol using the Unruh-DeWitt detectors with
quantum superpositions of trajectories. The critical differ-
ence is that the states of trajectories are focused only on
showing the separability. This means that the information
of internal degrees of freedom are necessary for an
extraction of spacelike entanglement from the fields.
Further, it is worth considering a multipartite [27] or
multitrajectory [28] extended model of the QGEM pro-
posal, since our result is based on the fact that each of the
two objects is superposed in two classical trajectories. It is
interesting to characterize the advantage of many objects or

trajectories for the generation of spacelike entanglement of
fields.

V. CONCLUSION

In the QGEM proposal, it was demonstrated that two
spatially superposed objects can be a probe of gravity-
induced entanglement. We discussed how such objects
probe state entanglement of quantum fields. We considered
a pair of objects in a superposition of local states which
couple with quantum fields. In this system, there are no
constraints for the entire system and the fields have only
dynamical degrees of freedom. From the entanglement
analysis for the objects with the approximated currents
evaluated on each trajectory, we found that the state of the
trajectories cannot be entangled if the objects are in
spacelike regions. This result is independent of the dynam-
ics of fields and details of the objects’ trajectories, which
holds if the commutator of fields vanishes for spacelike
separated regions (microcausality). The limitation for
entanglement generation characterizes the behavior of
the fields as quantum mediators between the two super-
posed objects. In other words, the position space of such
objects cannot store the spacelike entanglement of fields.
We can imagine several strategies: use of information about
trajectories and internal degrees of freedom, and extensions
with multiple objects and an object superposed in multiple
trajectories. It is important to discuss how the extensions
are effective for the detection of spacelike entanglement.
We need further research on quantum objects, which play a
crucial role in probing the quantum nature of fields.
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