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In this paper, we study quantum vacuum fluctuation effects on the mass density of a classical liquid
arising from the conical topology of an effective idealized cosmic string spacetime, as well as from the
mixed, Dirichlet, and Neumann boundary conditions in Minkowski spacetime. In this context, we consider
a phonon field representing quantum excitations of the liquid density, which obeys an effective Klein-
Gordon equation with the sound velocity replaced by the light velocity. In the idealized cosmic string
spacetime, the phonon field is subject to a quasiperiodic condition. Moreover, in Minkowski spacetime, the
Dirichlet and Neumann boundary conditions are applied on one and also on two parallel planes. We thus, in
each case, obtain closed analytic expressions for the two-point function and the renormalized mean squared
density fluctuation of the liquid. We point out specific characteristics of the latter by plotting their graphs.
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I. INTRODUCTION

Similar to photons as quantized light waves, phonons are
quasiparticles that may be interpreted as quantized sound
waves due to the atomic lattice’s excitation. Hence, several
properties can be examined in a phonon system related to
relativistic quantum fields. This is particularly notable if the
wavelengths of the quasiparticles are large compared with
the interatomic distances, which means that the phonon
dispersion relation is approximately linear. Although the
term “phonon”was given in 1931 by Igor Tamm, the phonon
theory was developed by Einstein in 1907 [1] and Debye in
1912 [2]. However, only in 1941 was the phonon theory
applied to superfluid by Landau [3], and posteriorly in a
classical liquid context by Percus and Yevick (1958) [4].
Subsequently, many studies of phonon properties in fluids
were published—such as, for instance, superconduction by
phonon-electron interaction [5], phonon-phonon scattering
[6], and in the heat capacity of several fluids [7].
Furthermore, as is well known, the presence of boundary

conditions or spacetime with nontrivial topology may
modify the quantum behavior of the system’s properties.
The case of a classical liquid is not different—that is, the

local changes in its mass density depend on the effective
spacetime geometry and the boundary condition under
which the liquid is submitted. In the related context, Unruh
[8] has proposed an experiment involving sound waves in a
fluid as an analog model to study black hole evaporation.
More recently, from a cosmological and astrophysical point
of view, it was considered a phonon superfluid to study
dark matter [9–11].
Due to similar properties, we can submit phonons to

specific boundary conditions to obtain an analog Casimir
effect [12], as is usual in the context of quantum field
theory. Consequently, considering a liquid that simulates a
background, it is possible to compute density fluctuations
in the same way as is done for the Casimir effect, although
by replacing the speed of light with the speed of sound [13].
Originally, the density fluctuations were calculated by L.
Ford [14,15], not only by considering nontrivial topology
(including that associated with an ideal cosmic string) and
different boundary conditions, but also by considering
changes in the quantum states of the phonon. Cosmic
string spacetime is a nontrivial and interesting topology
proposed by Kibble [16], which is a linelike topological
defect predicted in many extensions of the Standard Model
of particle physics [17–19].
In quantum field theory, phonons are represented by a

real massless scalar field with spin 0. Since the scalar field
may be submitted to boundary conditions, it codifies the
variations in the quantum system, showing its different
characteristics. This has been considered, for instance, by
T. H. Boyer [20], in the case of two parallel plates, where
one of them was a perfect conductor plate, and the other an
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infinitely permeable one. To conduct this study, Boyer used
a mixed boundary condition to represent possible
differences in the properties of the plates and found a
repulsive result in which the force was multiplied by the
factor 7=8, in contrast with the attractive force present
between the plates once they are submitted only to Dirichlet
or Neumann boundary conditions, for instance. Hence, the
difference in the multiplicative factors is attributed to plates
with different properties.
The purpose of this paper is to generalize the result

obtained in Refs. [14,15] for the cosmic string by introduc-
ing the quasiperiodic condition given by Φðt; r;φ; zÞ ¼
e−2πiβΦðt; r;φþ 2π=q; zÞ; therewith, the solution of the
equation of motion will present the explicit dependence on
the parameter β. The parameter q, on the other hand, encodes
the conical structure of the spacetime [17–19]. In
Refs. [14,15], the authors found the renormalized mean
squared density fluctuation for q > 0, considering the
particular case β ¼ 0, which represents a periodic boundary
condition. In this work, we obtain the renormalized mean
squared density fluctuation for the general case, q > 0, and
arbitrary β. Moreover, we study the influence of Dirichlet,
Neumann, and mixed boundary conditions in the density
fluctuations in the cases of one and two parallel planes in
Minkowski spacetime.
The paper is organized as follows: In Sec. II, we give a

brief overview of the phonon theory in a classical liquid. In
Sec. III, we find a closed and exact analytical expression for
the two-point function along with the mean squared density
fluctuation of the liquid, as a consequence of the imposition
of a quasiperiodic condition on the massless scalar field
whose modes propagate in the conical structure of a cosmic
string, or disclination, spacetime. In Sec. IV, we also
explicitly calculate both the two-point function and the
mean squared density fluctuation associated with the
massless scalar field representing phonon modes of the
liquid by imposing Dirichlet, Neumann, and mixed boun-
dary conditions. Finally, in Sec. V, we present our con-
clusions. We have kept all the units of the physical
quantities without working in natural units to have a better
notion of the magnitude of the final results.

II. PHONON IN A LIQUID

In this section, we give a brief overview of the quantum
density fluctuation theory of a classical fluid, such as a
liquid, coming from the zero-point oscillations, analogous
to that in relativistic quantum field theory. The phonon
theory with phonons as quantized sound waves is built
upon the presence of perturbations in the fluid mass density
which can be written in the form ρ0 ¼ ρ − ρ0, with ρ0 being
a constant mean mass density, and ρ0 being the variation of
the density, which is small ðρ0 ≪ ρ0Þ. Thereby, in order to
find local density fluctuations in the phonon vacuum state,
the perturbed mass density ρ0 can be related to the velocity
v⃗ by the continuity equation in the following form:

∂ρ0
∂t ¼ ∇ · ðρv⃗Þ ≈ −ρ0∇ · v⃗: ð1Þ

The approximation can be made once ρ0 and v⃗ are of the
same order, and the second-order terms are neglected. As a
consequence, the perturbed mass density may be related to
a massless scalar field ϕ according to the equation [21]

∂ρ0
∂t ¼ −ρ0∇2ϕ: ð2Þ

This is essentially the continuity equation for a liquid with
velocity v⃗≡∇ϕ [8], where the real scalar field is the
velocity potential. By following the usual quantization
rules, the quantum description for the liquid is reached once
we replace the classical hydrodynamics quantities with
operators expressed in terms of phonon annihilation and
creation operators ĉk, ĉ†k. They satisfy the following
commutation relation:

½ĉk; ĉ†k0 � ¼ δkk0 ; ð3Þ

with δkk0 being either a Kronecker or a Dirac delta
depending on whether the set of field modes k is discrete
or continuum, respectively. As has been said previously, in
this work, we consider the quantization of sound waves in a
fluid with a linear dispersion relation ω ¼ ujkj, with u
being the sound velocity in the liquid. This is a valid
approximation as long as the wavelengths are much longer
than the interatomic separation.
In order to describe a quantum theory of a fluid, we

should write the physical observables as quantum oper-
ators, Hence, by construction, the density perturbation and
velocity potential operators should also obey the following
commutation rule:

ϕ̂ðr⃗Þρ̂0ðr⃗0Þ − ρ̂0ðr⃗0Þϕ̂ðr⃗Þ ¼ −iℏδ3ðr⃗ − r⃗0Þ; ð4Þ

where δ3ðr⃗ − r⃗0Þ is the Dirac delta function. Note that the
relation between the operators is analogous to the canonical
conjugate of the field and its momentum conjugate
expressed as the time derivative of the field itself in
quantum field theory.
Finally, the density perturbation operator can be

expressed in terms of the time derivative of the velocity
potential operator:

ρ̂0ðt; r⃗Þ ¼ −
ρ0
u2

_̂ϕðt; r⃗Þ: ð5Þ

Clearly, substituting Eq. (5) into Eq. (2) gives the Klein-
Gordon equation for a real massless scalar field given by

�
1

u2
∂2

∂t2 −∇2

�
ϕ ¼ 0: ð6Þ
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The only difference with the relativistic field theory is that
one should consider the sound velocity, u, in the liquid
instead of the light velocity, c, in the vacuum (for more
details, see Ref. [21]).
In the following, we study modifications on the quantum

vacuum fluctuations by considering that the phonon modes
propagate in the (3þ 1)-dimensional cosmic string space-
time under a quasiperiodic condition. We also consider the
phonon modes propagating in Minkowski spacetime obey-
ing mixed, Dirichlet, and Neumann boundary conditions.
Note that the ideal cosmic string geometry can, for
example, appear as a defect in a liquid crystal in the form
of a disclination. We calculate the closed and analytical
expressions for the two-point function and the renormalized
mean squared density fluctuation for each case.

III. PHONONS IN THE COSMIC STRING
SPACETIME

The line element of an effective cosmic string or
disclination spacetime considered in a liquid theory must
contain the sound velocity u replacing the light velocity c.
In this sense, in (3þ 1)-dimensional effective cosmic string
spacetime, we have, in cylindrical coordinates,

ds2 ¼ gμνdxμdxν ¼ u2dt2 − dr2 − r2dφ2 − dz2; ð7Þ

where the spacetime coordinates are defined in the inter-
vals: r ≥ 0, φ ∈ ½0; 2π=q�, and t; z ∈ ð−∞;þ∞Þ. As we
have mentioned before, the parameter q encodes the conical
structure of the spacetime, which becomes a disclination
parameter in condensed matter systems such as systems
involving liquid crystals. In the latter case, the conical
parameter may assume values q > 0 [22]. When q ¼ 1, the
conical structure disappears, and one recovers the
Minkowski spacetime.
The Klein-Gordon equation in cylindrical coordinates,

considering the line element (7), is written as�
1

u2
∂2

∂t2 −
1

r
∂
∂r

�
r
∂
∂r

�
−

1

r2
∂2

∂φ2
−

∂2

∂z2
�
ϕðt; r;φ; zÞ ¼ 0:

ð8Þ

Let us solve the above equation by submitting its solution
to the quasiperiodic condition

ϕðt; r;φ; zÞ ¼ e−2πiβϕðt; r;φþ 2π=q; zÞ; ð9Þ

with 0 ≤ β < 1. The introduction of the parameter β is
motivated by the construction of analog models in some
condensed matter systems, including nanotubes.
Depending on how the carbon sheet is cut, the properties
of the nanotube may change. This can be encoded by the
quasiperiodic boundary condition similar to the one we
imposed here through the phase parameter β [23]. It can
also appear in the field theoretical context when studying
the field aspects of this phase freedom, including the
Casimir effect and vacuum polarization as well as induced
currents, in a cosmic string spacetime (see, for example,
Refs. [24,25] and references therein). One particular choice
studied in literature is the twisted boundary condition,
which may be found by taking β ¼ 1=2. With β ¼ 0, the
effect of the quasiperiodic boundary condition vanishes,
and one recovers the pure topological effect due to the
presence of the cosmic string spacetime.
Thus, for a real massless scalar field in the effective

cosmic string spacetime characterized by the line element
(7), the solution of Eq. (8), under the quasiperiodic
condition (9), is given by [26]

ϕðt; r;φ; zÞ ¼ Ae−iωkteiνzeiqðnþβÞφJqjnþβjðηrÞ: ð10Þ

The parameter A in the above solution is a normalization
constant, ω2

k ¼ u2ðν2 þ η2Þ is the dispersion relation, k ¼
ðn; η; νÞ is the set of quantum numbers, and JμðxÞ is the
Bessel function of first kind.
As is known, phonons can be viewed as sound wave

excitations of a real massless scalar field. These excita-
tions are formally constructed once we quantize the real
massless scalar field in terms of phonon annihilation and
creation operators ĉk and ĉ†k, respectively. Thereby, the
field operator is written as

ϕ̂ðt; r;φ; zÞ ¼
X
fkg

h
Akĉke−iωktþiνzþiqðnþβÞφ þ A�

kĉ
†
ke

iωkt−iνz−iqðnþβÞφ
i
JqjnþβjðηrÞ; ð11Þ

where

X
fkg

¼
Z

∞

−∞
dν

Z
∞

0

dη
X∞
n¼−∞

ð12Þ

is the sum over all quantum numbers.
The normalization constant A can be obtained by

considering the commutation rule (4) as well as the relation

between the density perturbation operator and the scalar
field given by Eq. (5). As a result, we have

jAkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
quℏη

8π2ρ0ωk

s
: ð13Þ

Let us now turn to the calculation of the two-point
function Gðw;w0Þ, where w≡ ðt; r;φ; zÞ. The two-point
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function is important to calculating the renormalized mean
squared density fluctuation, which is the physical observable
of interest in our investigation. We can then make use of the
field operator (11) to calculate Gðw;w0Þ according to [27]

Gðw;w0Þ ¼ hϕ̂ðwÞϕ̂�ðw0Þi;¼
X
k

ϕkðωÞϕ�
kðω0Þ; ð14Þ

where hi is the vacuum expectation value, and ϕkðωÞ and
ϕ�
kðωÞ are the positive and negative frequency modes of

the operator [Eq. (11)]. Equation (14) is also known as the
Wightman function, in which one needs to replace the
solution of the Klein-Gordon equation [27]. The substitution
of Eq. (11) into Eq. (14) provides

Gðw;w0Þ ¼
X
fkg

quℏη
8π2ρ0ωk

eiνΔzþiqðnþβÞΔφ−iωkΔt

× JqjnþβjðrηÞJqjnþβjðr0ηÞ; ð15Þ

with Δt ¼ t − t0, Δφ ¼ φ − φ0, and Δz ¼ z − z0.
Furthermore, in order to solve the integrals in ν and η
present in the two-point function [Eq. (15)], we can make the
Wick rotation iΔt ¼ Δτ and use the following identity:

e−ωkΔτ

ωk
¼ 2ffiffiffi

π
p

Z
∞

0

dse−s
2ω2

k−Δτ
2=4s2 : ð16Þ

The integral in η can, then, be obtained by making use of
Eq. (21) from Ref. [28], given byZ

∞

0

dηηJqjnþβjðrηÞJqjnþβjðr0ηÞe−s2η2

¼ 1

2s2
e−

ðr2þr02Þ
4s2 Iqjnþβjððrr0=2s2Þ; ð17Þ

where IαðxÞ is the modified Bessel function of the first kind.
Thus, the two-point function (15) becomes

Gðw;w0Þ ¼ quℏ
8π2ρ0

eiqβΔφffiffiffi
π

p
Z

∞

−∞
dνeiνΔz

×
Z

∞

0

ds
s2

e−s
2ν2−Δζ2

4s2Iðβ;Δφ; xÞ; ð18Þ

where Δζ2 ¼ Δτ2 þ r2 þ r02, x ¼ rr0=2s2, and

Iðβ;Δφ; xÞ ¼
X∞
n¼−∞

einqΔφIqjnþβjðxÞ: ð19Þ

Finally, we can observe that there are still integrals in s and
ν and a sum in n to be performed. The integral in ν is a
Gaussian-type integral and can easily be obtained.
Moreover, the sum in n can be worked out by using the
summation formula [28]

Iðβ;Δφ; xÞ ¼ 1

q

X
n

ex cosð2nπ=q−ΔφÞeiβð2nπ−qΔφÞ −
1

2πi

X
j¼�1

jejiπqβ
Z

∞

0

dy
cosh½qyð1 − βÞ� − coshðqβyÞe−iqðΔφþjπÞÞ
ex cosh y½coshðqyÞ − cosðqðΔφþ jπÞÞ� : ð20Þ

Note that the sum in n in the above expression is restricted
to the interval [26,28,29]

−
q
2
þ Δφ

φ0

≤ n ≤
q
2
þ Δφ

φ0

: ð21Þ

Subsequently, after making use of the summation for-
mula (20) in Eq. (18), the integral in s can be solved, which
provides the closed and exact form for the two-point
function—i.e.,

Gðw;w0Þ ¼ quℏeiqβΔφ

8π2ρ0rr0

�
1

q

X
n

eiβð2πn−qΔφÞ
1

σn
−

1

2πi

X
j¼þ;−

jeijqβπ
Z

∞

0

dy
1

σy

cosh½qyð1 − βÞ� − coshðqβyÞe−iqðjπþΔφÞ

coshðqyÞ − cos½qðΔφþ jπÞ�
�
; ð22Þ

where

σn ¼
Δζ2

rr0
þ Δz2

2rr0
− cosð2πn=q − ΔφÞ;

σy ¼
Δζ2

rr0
þ Δz2

2rr0
þ cosh y: ð23Þ

One should also note that for q < 2, the only contribution
in the first term on the rhs of Eq. (22) comes from the term
n ¼ 0, which is the Minkowski contribution to the two-

point function. As is widely known, the latter diverges in
the coincidence limit w0 → w, and it should be subtracted
through a regularization scheme to calculate the physical
observables. The regularization scheme is formally per-
formed according to

Gregðw;w0Þ ¼ Gðw; w0Þ −GMðw; w0Þ; ð24Þ

where GMðw;w0Þ is the n ¼ 0 term of the sum in Eq. (22)
and represents the Minkowski contribution given by
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GMðw;w0Þ ¼ uℏ
8π2ρ0rr0

1

σ0
; ð25Þ

with σ0 given by Eq. (23). We can see that the Minkowski
contribution above is clearly divergent in the coincidence
limit w0 → w. We shall see in the next section that the
regularized two-point function (24), in the coincidence
limit w0 → w, provides a renormalized mean squared
density fluctuation. We should point out that except for
the constants associated with the phonon system, the two-
point function in Eq. (22) is similar to the Wightman
function in Ref. [26] for the massless case, showing the
consistency of our result.

A. Mean squared density fluctuation

The local effect on the mean squared density fluctuation
due to the quasiperiodic condition [Eq. (9)] in a cosmic
string spacetime [Eq. (7)] can be computed by using
Eq. (5). The vacuum expectation value hρ̂ðwÞi vanishes
due to the fact that the operator ρ̂ðwÞ is linear in the
annihilation and creation operators ĉ†k and ĉk. To compute
the mean squared density fluctuation, we have to consider
the product

ρ̂ðwÞρ̂ðw0Þ ¼ ρ20
u2

∂2

∂t∂t0 ½ϕ̂ðwÞϕ̂ðw
0Þ�: ð26Þ

Thus, taking the vacuum expectation value of the above
expression, one can find the two-point function mean
squared density fluctuation, in terms of Gðw;w0Þ, in the
form

hρ̂ðwÞρ̂ðw0Þi ¼ ρ20
u2

∂2

∂t∂t0Gðw;w
0Þ: ð27Þ

Now, by making use of the regularized two-point function
(24), in the coincidence limit w0 → w, we can finally find a
closed form for the renormalized mean squared density
fluctuation:

hρ2iren ¼
ρ20
u2

lim
w0→w

∂2

∂t∂t0 Gregðw;w0Þ

¼ −
ℏρ0

32π2ur4

�
2
X �
½q=2�

n¼1

cosð2βπnÞ
sin4ðπn=qÞ

−
q
π

Z
∞

0

dy
Mðy; β; qÞ
cosh4ðy=2Þ

�
; ð28Þ

where the function Mðy; β; qÞ is defined as

Mðy;β;qÞ

¼ coshðqβyÞsin½qπð1−βÞ�þcosh½qyð1−βÞ�sinðqβπÞ
coshðqyÞ−cosðqπÞ :

ð29Þ

It is worth mentioning that ½q=2� in the sum present in the
renormalized squared density fluctuation [Eq. (28)] repre-
sents the integer part of q=2, and the sign ð�Þ means that in
the case of an integer q, the sum in n must be replaced by

X½q=2�
n¼1

→
1

2

Xq−1
n¼1

: ð30Þ

One should note that the mean squared density fluctuation
is an elementary function of r—that is, hρ2iren ∝ r−4,
which means the expression (28) diverges when r → 0 and
goes to zero when r → ∞. In the absence of the cosmic
string (i.e., q ¼ 1), the only contribution is due to the
quasiperiodic condition (9), originating from the second
term on the rhs of Eq. (28). On the other hand, in the
absence of the quasiperiodic condition (i.e., β ¼ 0), the
effect on the mean squared density fluctuation is entirely
due to the nontrivial topology of the cosmic string. In
Fig. 1, we have plotted the mean squared density fluc-
tuation presented in Eq. (28) as a function of the parameter
β for several values of the cosmic string parameter q.
Notice that if we set q ¼ 1 and β ¼ 0 in Eq. (28)—i.e., in
the absence of any boundary condition—the renormalized
mean squared density fluctuation vanishes, as it should.

B. Particular cases

Let us now turn our attention to three particular cases for
the mean squared density fluctuation obtained in Eq. (28):

FIG. 1. Dimensionless renormalized mean squared density
fluctuation [Eq. (28)] in terms of β, considering different values
for the cosmic string parameter q.
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namely, the cases β ¼ 0 (only cosmic string), q ¼ 1 (only
periodic-condition), and β ¼ 1

2
.

For a purely cosmic string conical topology contribution,
β ¼ 0, from Eq. (28), we have

hρ2iren ¼ −
ℏρ0

32π2ur4

×

8<
:2

X �
½q=2�

n¼1

1

sin4ðπn=qÞ −
q
π

Z
∞

0

dy
Mðy; 0; qÞ
cosh4ðy=2Þ

9=
;:

ð31Þ

Furthermore, if we consider only integer values of q in
Eq. (31), the integral term vanishes, and the only contri-
bution comes from the first term on the rhs. Thus, by using
Eq. (30), we are able to perform the sum in n to obtain

hρ2iren ¼ −
ℏρ0

1440π2ur4
ð−11þ 10q2 þ q4Þ; ð32Þ

which is always negative for any value of q. In fact, the
above expression for the mean squared density fluctuation
is an analytic function of q, and consequently can be
extended to any value of q besides the integer values. This
can be verified by numerically checking that both expres-
sions (31) and (32) provide the same result for any value of
q. Note that Eq. (32) vanishes for q ¼ 1 as expected, since
the cosmic string topology disappears. Note also that
Eq. (32) is consistent with the result found in Ref. [14].
In the case where we have only fluctuation effects due to

the quasiperiodic condition [Eq. (9)], by taking q ¼ 1 in
Eq. (28), only the second term on the rhs gives a
contribution—that is,

hρ2iren¼
ℏρ0

64π3ur4

Z
∞

0

dy
sinðβπÞðcoshðβyÞþcosh½yð1−βÞ�Þ

cosh6ðy=2Þ
¼ ℏρ0
48π2ur4

βðβ2−1Þðβ−2Þ; ð33Þ

where the integral in y has been exactly solved. The result
above, for the nonzero mean squared density fluctuation as
a consequence of the quasiperiodic condition, is exact, and
it vanishes for β ¼ 0.
Finally, we consider the case where β ¼ 1=2—i.e., the

twisted scalar field. From Eq. (28), we then have

hρ2iren¼−
ℏρ0

32π2r4u

×

8<
:
X �
½q=2�

n¼1

2cosðnπÞ
sin4ðπn=qÞ−

q
π

Z
∞

0

dy
Mðy;1=2;qÞ
cosh4ðy=2Þ

9=
;:

ð34Þ

Furthermore, let us take only integer values of the cosmic
string parameter q. In this case,Mðy; 1=2; qÞ ¼ 0, and as a
consequence, only the first term on the rhs of Eq. (34)
contributes to the mean squared density fluctuation. This
gives

hρ2iren ¼ −
ℏρ0

16π2ur4
Xq−1
n¼1

ð−1Þn
sin4ðπn=qÞ

¼ ℏρ0
11520π2ur4

ð88þ 40q2 þ 7q4Þ; ð35Þ

where we have used Eq. (30). Although we have obtained
the above result considering integer values of q, Eq. (35) is
an analytic function of q and can be extended for all values
of the cosmic string parameter. In fact, a numerical check
shows that Eqs. (34) and (35) give the same result for any
value of q. Moreover, as can be seen, the expression (35) is
always positive for phonons in a conical spacetime. Note
that by comparing Eq. (33), for β ¼ 1=2, with Eq. (35), for
q ¼ 1, one can also see that they provide the same result,
once again showing the consistency of our results. In the
context of liquids, and considering phonon excitations, the
results in Eqs. (28), (33), and (35) have been obtained for
the first time here, to the best of our knowledge.

IV. DIRICHLET, NEUMANN AND MIXED
BOUNDARY CONDITIONS

In this section, we concentrate on the study of phonon
modes subjected to Dirichlet, Neumann, and mixed boun-
dary conditions in Minkowski spacetime. These boundary
conditions will be taken by considering one and two
parallel planes, consequently showing modifications on
the mean squared density fluctuations of the liquid.

A. One plane

Let us start by considering Dirichlet and Neumann
boundary conditions applied on a plane placed at the point
z ¼ 0. Thereby, the normalized scalar field operator sol-
ution to the Klein-Gordon equation, □ϕ̂ðxÞ ¼ 0, under
Dirichlet and Neumann boundary conditions, is straightfor-
ward and is given by

ϕ̂ðwÞ ¼
X
fkg

�
ℏu

ð2πÞ3ωkρ0

�1
2ðckeiωkt−ikxx−ikyy

þ c†ke
−iωktþikxxþikyyÞ

�
sinðkzzÞ
cosðkzzÞ

�
; ð36Þ

where w stands for the flat spacetime Cartesian coordinates
ðx; y; zÞ, fkg stands for the set of continuum quantum
numbers ðkx; ky; kzÞ, ω2

k ¼ u2ðk2x þ k2y þ k2zÞ is the
dispersion relation, and the functions sinðnzÞ and
cosðnzÞ represent the Dirichlet and Neumann boundary
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conditions, respectively. The two-point function in these
cases is found to be

Gðw;w0Þ ¼ uℏ
4π2ρ0

�
1

Δz2 − Δζ2
� 1

ðzþ z0Þ2 þ Δζ2

�
; ð37Þ

with Δζ2 ≡ Δx2 þ Δy2 − Δt2. Note that the minus and
plus signs stand for Dirichlet and Neumann boundary
condition solutions, respectively. The first term on the
rhs is the divergent Minkowski contribution in the coinci-
dence limit w0 → w and should be subtracted in the
regularization process in order to provide a renormalized
observable. Hence, from Eqs. (27) and (37), the renormal-
ized mean squared density fluctuation is given by

hρ2iren ¼ � ℏρ0
32uπ2

1

z4
; ð38Þ

where z is the distance from the boundary. Note that the
above result, for Dirichlet and Neumann boundary con-
ditions, diverges on the boundary plane. In particular, the
expression for the Neumann boundary condition is con-
sistent with the result obtained in Refs. [14,15].

B. Two parallel planes

Now, we wish to consider the phonon scalar field modes
subject to mixed, Dirichlet, and Neumann boundary con-
ditions on two parallel planes at z ¼ 0 and z ¼ a. As
expected, these boundary conditions cause the quantum
vacuum fluctuations of the phonon scalar field to be
modified, resulting in a nonzero mean squared density
fluctuation, as we shall see below.

1. Mixed boundary condition

In order to analyze the mixed boundary condition effects
on the phonon modes, we consider two parallel planes at
the points z ¼ 0 and z ¼ a, where we require the scalar
field to obey the Dirichlet boundary condition at the former
point and the Neumann boundary condition at the latter
one, i.e.,

ϕðt; x; y; z ¼ 0Þ ¼ 0; ∂zϕðt; x; y; zÞjz¼a ¼ 0: ð39Þ

The normalized scalar field operator solution to the Klein-
Gordon equation, under the mixed boundary condition
above, is written in terms of the phonon annihilation and
creation operators, ck and c†k, in the form

ϕ̂ðwÞ ¼
X
fkg

�
ℏu

8aπ2ωkρ0

�1
2ðcke−iωktþikxxþikyy

þ c†ke
iωkt−ikxx−kyyÞ sinðknzÞ; ð40Þ

where the momentum in the z direction has been dis-

cretized—that is, kn ¼ ð2nþ1Þπ
2a , with n ¼ 0; 1; 2;… [30].

Note also that fkg stands for the quantum numbers
ðkx; ky; nÞ, and ω2

k ¼ u2ðk2x þ k2y þ k2nÞ is the dispersion
relation.
As before, in order to obtain the mean squared density

fluctuation, we need to find the two-point function.
Therefore, by using the scalar field solution operator,
Eq. (40), in Eq. (14), for the two-point function, we have

Gðw;w0Þ ¼ ℏu
4aπ2ρ0

Z
dkxdkye−ikr cos θ

×
X∞
n¼0

eiωnΔt

ωn
sinðknzÞ sinðknz0Þ

¼ ℏu
2aπρ0

Z
∞

0

dk k J0ðkrÞ

×
X∞
n¼0

eiωnΔt

ωn
sinðknzÞ sinðknz0Þ; ð41Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p
. To obtain the result in

Eq. (41), we have used polar coordinates for kx and ky, and
solved the angular integral in θ which gave rise to the
Bessel function J0ðkrÞ of the first kind. Note that in this
equation, there remain still both the integral in k and the
summation in n to be solved. The latter can be worked out
by applying the following Abel-Plana formula [30]:

X∞
n¼0

f

�
nþ 1

2

�
¼

Z
∞

0

dxfðxÞ − i
Z

∞

0

dx
fðixÞ − fð−ixÞ

e2πx þ 1
:

ð42Þ

With this method, the divergent Minkowski contribution
becomes evident, and we can regularize the two-point
function by removing this term. To follow the procedure,
we substitute Eq. (41) into the above Abel-Plana formula,
resulting in

Gðw;w0Þ ¼ ℏu
2aπρ0

Z
∞

0

dk k J0ðkrÞ
�Z

∞

0

dx
eiωxΔt

ωx
sinðαzÞ sinðαz0Þ

− 2

Z
∞

ka=π
dx

coshðΔ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − k2

p
Þ

e2πx þ 1

sinðiαzÞ sinðiαz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − k2

p
�
; ð43Þ
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where ωx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ α2

p
, and α ¼ xπ

a . The expression above
for the two-point function includes the divergent
Minkowski contribution coming from the first term on
the rhs, as well as the finite contribution in the second
term. Thus, the regularized two-point function can be
written as

Gregðw;w0Þ≡Gðw;w0Þ − GMðw;w0Þ; ð44Þ

with GMðw;w0Þ being the divergent Minkowski con
tribution, which we shall calculate below. For this

purpose, let us consider the first term on the rhs of
Eq. (43)—i.e.,

G1ðw;w0Þ ¼ ℏu
2πaρ0

Z
∞

0

dx sinðαzÞ sinðαz0Þ

×
Z

∞

0

dk k J0ðkrÞ
eiΔt

ffiffiffiffiffiffiffiffiffi
k2þα2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ α2

p : ð45Þ

By using Euler’s formula, the integral in k can be solved
(see Ref. [31]1). This provides

G1ðw;w0Þ¼ ℏu
2π2aρ0

Z
∞

0

dx sinðαzÞsinðαz0Þe
−α

ffiffiffiffiffiffiffiffiffiffiffi
r2−Δt2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−Δt2

p ¼ ℏu
4π2ρ0

Z
∞

0

dα ½cosðαðz−z0ÞÞ

−cosðαðzþz0ÞÞ�e
−α

ffiffiffiffiffiffiffiffiffiffiffi
r2−Δt2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−Δt2

p ¼ ℏu
4π2ρ0

�
1

Δz2þΔζ2
−

1

ðzþz0Þ2þΔζ2

�
; ð46Þ

where Δζ2 ¼ r2 − Δt2. The first term on the rhs of Eq. (46) is the Minkowski contribution, GMðw; w0Þ, which should be
removed, since it diverges when we take the coincidence limit w0 → w. One should note that the second term is finite in the
coincidence limit and is the contribution due to the presence of the Dirichlet boundary condition applied on the first plane.
Now, we can proceed with the second term on the rhs of Eq. (43)—that is,

G2ðw;w0Þ ¼ ℏu
πρ0a

Z
∞

0

dkkJ0ðkrÞ
Z

∞

ka=π
dx

coshðΔt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − k2

p
Þ

e2πx þ 1

sinðiαzÞ sinðiαz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − k2

p

¼ ℏu
πρ0a

Z
∞

0

dx
sinðiαzÞ sinðiαz0Þ

e2πx þ 1

Z
α

0

dk k J0ðkrÞ
cosðiΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − k2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − k2
p : ð47Þ

The integral in k in the above two-point function contri-
bution can be solved by employing the same method as in
Ref. [31].2 Hence, it results in the following expression:

G2ðw;w0Þ¼ ℏu
π2ρ0

Z
∞

0

dα
sinðiαzÞsinðiαz0Þ

e2aαþ1

sinðα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−Δt2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2−Δt2
p :

ð48Þ
Finally, from Eq. (44), the regularized two-point function

is found by collecting the second term on the rhs of Eq. (46),
along with the expression in Eq. (48). This leads to

Gregðw;w0Þ ¼ −
ℏu
π2ρ0

�
1

4

1

½ðzþ z0Þ2 þ Δζ2�

−
Z

∞

0

dα
1

e2aα þ 1

sinðα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − Δt2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − Δt2
p

sinðiαzÞ sinðiαz0Þ
�
: ð49Þ

For completeness, let us also consider both parallel
planes subject to either the Dirichlet or Neumann boundary

condition. In this case, the scalar field operator solution to
the Klein-Gordon equation is given by

ϕ̂ðwÞ ¼
X
fkg

�
ℏu

4π3ωkρ0

�1
2ðckeiωkt−ikxx−ikyy

þ c†ke
−iωktþikxxþikyyÞ

�
sin nπ

a z

cos nπa z

�
; ð50Þ

where sin nπ
a z ðn ¼ 1; 2; 3;…Þ indicates the solution under

the Dirichlet boundary condition, and cos nπa z ðn ¼
0; 1; 2; 3;…Þ indicates the solution under the Neumann
boundary condition [30]. Hence, by following the same
steps shown above, for the mixed boundary condition case,
the result for either Dirichlet or Neumann applied on the
two parallel planes is given by

Gregðx; x0Þ ¼
ℏu
π2ρ0

�
∓ 1

4

1

½ðzþ z0Þ2 þ Δζ2�

þ
Z

∞

0

dα
1

e2aα − 1

sinðα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − Δt2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − Δt2
p

×

�
sinðiαzÞ sinðiαz0Þ
cosðiαzÞ cosðiαz0Þ

��
; ð51Þ1Pg. 203, Sec. 2.12.23, Eq. (8).

2Pg. 201, Sec. 2.12.21, Eq. (6).
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where we have used the Abel-Plana formula presented in
Ref. [30] (see Eq. (2.16)). In what follows, we shall use the
two-point function in Eq. (49) for the mixed boundary
condition case, and that in Eq. (51) for either the Dirichlet
or Neumann boundary conditions, to calculate the mean
squared density fluctuation.

2. Mean squared density

In order to find the renormalized mean squared density
fluctuation, hρ2iren, as a result of the implementation of the
mixed boundary condition, we make use of Eqs. (27) and
(49). This gives

hρ2iren¼
ℏρ0

32π2uz4
−

ℏρ0
2π2u

Z
∞

0

dαα3
coshð2αzÞ−1

3e2aαþ3
: ð52Þ

The integral in α above can be divided into two integrals.
The first one is given by

Z
∞

0

dα
α3

3e2aα þ 3
¼ 7π4

5760a4
¼ 7ζð4Þ

64a4
; ð53Þ

where ζð4Þ ¼ π4

90
is the Riemann zeta function. On the other

hand, the second integral can be computed as [31]

Z
∞

0

dαα3
coshð2αzÞ
3e2aα þ 3

¼ ∂3

∂z3
Z

∞

0

dα
sinhð2αzÞ

8ð3e2aα þ 3Þ

¼ ∂3

∂z3
X∞
n¼0

Z
∞

0

dα
1

8ð3e2aα þ 3Þ
ð2αzÞ2nþ1

ð2nþ 1Þ!

¼ 1

16z4
−

π4

96a4
cosðπz=aÞ
sin4ðπz=aÞ ðcos

2ðπz=aÞ þ 5Þ; ð54Þ

where we have used the Taylor series expansion for the
hyperbolic function sinhðxÞ. Consequently, we have solved
the integral in the second line first, performed the summa-
tion in n next, and taken the derivatives with respect to z.
Finally, with the integrals in Eqs. (53) and (54), the mean
squared density fluctuation [Eq. (52)] is written as

hρ2iren ¼
ℏρ0π2

192ua4

�
7

60
þ cosðπz=aÞ
sin4ðπz=aÞ ðcos

2ðπz=aÞ þ 5Þ
�
:

ð55Þ

In Fig. 2, we have plotted the dimensionless mean squared
density fluctuation for the mixed boundary condition case
given above, as a function of the dimensionless parameter
z=a, where one of the planes passes the point z ¼ 0 and the
other the point z ¼ a. It is straightforward to see that, up to
numerical constants, Eq. (55) diverges as 1=z4 near the
plane at z ¼ 0 with Dirichlet, and as −1=ðz − aÞ4 near the

plane at z ¼ a with Neumann boundary conditions. This is
evident in Fig. 2.
Let us now consider the mean squared density fluc-

tuation for Dirichlet and Neumann boundary conditions.
Thanks to the renormalized vacuum expectation value
found in Eq. (27) with the two-point function in
Eq. (51), we end up with the final result

hρ2iren ¼ −
ℏρ0π2

96ua4

�
1

15
� 3 − 2 sin2ðπz=aÞ

sin4ðπz=aÞ
�
; ð56Þ

where, once again, the minus and plus signs are associated
with the Dirichlet and Neumann boundary conditions,
respectively. As one can see, for the Neumann boundary
condition case, the mean squared density fluctuation is
always negative, which is in agreement with the result in
Refs. [14,15]. However, for the Dirichlet boundary con-
dition, the second term is dominant, and as a consequence,
the mean squared density fluctuation is always posi-
tive, consistent with the result for the same boundary
condition on one plane. We have plotted in Fig. 3 the
dimensionless mean squared density fluctuation [Eq. (56)]
as a function of z=a in both the Dirichlet and Neumann
cases. As in the mixed boundary case, we observe that, up
to numerical constants, the renormalized mean squared
density fluctuation diverges as 1=z4 in the limit z → 0 and
as 1=ðz − aÞ4 in the limit z → a in the case of the Dirichlet
boundary condition imposed on both planes. In contrast,
considering the Neumann boundary condition, the mean
squared density diverges with the opposite sign in both
limits. This behavior is shown in Fig. 3.
Let us emphasize that both of the results for mixed and

Dirichlet boundary conditions, found, respectively, in
Eqs. (55) and (56), have been obtained here for the first
time, in the context of quantum vacuum fluctuations of

FIG. 2. Dimensionless renormalized mean squared density
fluctuation [Eq. (55)], as a consequence of a mixed boundary
condition, in terms of z=a.
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phonons originating from liquid density fluctuation. The
result in Eq. (56) for the mean squared density fluctuation
under the Neumann boundary condition has been previ-
ously studied in Refs. [14,15]. It is clear that the study of
phonons representing quantum excitations of a classical
liquid’s velocity potential, represented by a real scalar field,
once subjected to boundary conditions such as mixed,
Dirichlet, and Neumann, as well as the nontrivial topology
of a cosmic string, produce a nonzero renormalized mean
squared density fluctuation, analogous to the Casimir effect
in quantum field theory [32].

V. CONCLUSION

This paper has investigated the effects in a classical
liquid created by boundary conditions and the nontrivial
topology of an ideal cosmic string in the mean squared
density fluctuation. Considering the regime in which the
wavelengths are much longer than the interatomic separa-
tion, we have assumed that the linear phonon dispersion
relation is valid. Promoting the classical hydrodynamics
quantities to second quantized operators as well as relating
the second quantized density fluctuations to the scalar
velocity potential, the problem turns into the known Klein-
Gordon for a massless scalar field with the light velocity
replaced by the sound velocity. In this scenario, phonons
represent quantum excitations of a real massless scalar field
associated with the classical liquid’s velocity potential.
Furthermore, we have studied the quantized phonon field

in the presence of the nontrivial topology of a cosmic
string, as well as in the presence of Dirichlet, Neumann,
and mixed boundary conditions in Minkowski spacetime.
In the ideal (3þ 1)-dimensional cosmic string spacetime,
with conical parameter q > 0, we have also considered the
phonon modes obeying a quasiperiodic condition, charac-
terized by the parameter β. The case q ¼ 1 gives the results
in the absence of the conical structure. Under the conditions

mentioned above, the Klein-Gordon equation was solved,
and the complete normalized solution is shown in Eq. (11).
The solution then was used to obtain an exact and analytical
expression for the two-point function—that is, Eq. (22),
which is in agreement with Ref. [26].
The closed expressions for the two-point function paved

the path to obtaining the renormalized mean squared
density fluctuation of the liquid given in Eq. (28). We
have verified that in the case of β ¼ 0, our results agree
with previous results found in the literature [14,15].
Moreover, we have also shown that the renormalized mean
squared density fluctuation is nonzero, even in the absence
of the conical defect due to the quasiperiodicity condition.
However, when q ¼ 1 and β ¼ 0, it vanishes, as expected.
As is usual in the cosmic string spacetime, as a result of it
being ideal, the renormalized mean squared density fluc-
tuation diverges on the defect. A plot of the dimensionless
renormalized mean squared density fluctuation in terms of
the quasiperiodic parameter β is shown in Fig. 1.
Additionally, we have investigated the phonon modes

obeying mixed, Dirichlet, and Neumann boundary con-
ditions, imposed on one and on two parallel planes in
Minkowski spacetime. We have, then, found an analytical
form for the two-point functions in each case—that is,
Eqs. (49) and (51), as well as the renormalized mean
squared density fluctuation in Eqs. (55) and (56). We have
shown that the boundary conditions modify this physical
quantity, as expected, since the phonon quantum excita-
tions in a liquid are analogous to those in quantum field
theory in the presence of parallel plates with the same
boundary conditions. We have obtained that the renormal-
ized mean squared density fluctuation is always positive for
the planes with the Dirichlet boundary condition and
negative for those with the Neumann boundary condition,
regardless of the system’s parameters. However, in the
mixed boundary case, it can be negative or positive
depending on the distance from the planes, characterized
by the parameter a. This is consistent, because the
renormalized mean squared density fluctuation is positive
when one considers only a plane with Dirichlet, and
negative when one considers only Neumann. In all these
cases, the renormalized mean squared density fluctuation
diverges on the planes. This is shown in the plots of Figs. 2
and 3.
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