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We investigate the interaction between a moving detector and a quantum field, especially about how
the trajectory of the detector would affect the vacuum fluctuations when the detector moves in a quantum
field (the Unruh effect). We focus on two moving detectors system for future application in quantum
teleportation. We find that the trajectory of a uniformly accelerated detector in Rindler space cannot be
extended to a trajectory in which a detector moves at constant velocity. Based on our previous work, we
redo the calculations and find that a term is missing from past calculations, and we also find that there are
some restrictions on the values for the parameters in the solutions. In addition, without inclusion of the
missing term, the variance from the quantum field for the inertial detector will be zero and is unlikely in
such a system. When all these points are combined, there is a difference in the two-point correlation
function between the inertial detector and the accelerated detector in the early-time region. The influence of
proper acceleration can be seen in the two-point correlation functions. This might play a role in the
quantum teleportation process and be worth studying thoroughly.
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I. INTRODUCTION

The Unruh effect was originally proposed for the study
of Hawking radiation near a black hole [1], and it was
found that a uniformly accelerated detector would experi-
ence a thermal bath at temperature TU ¼ ℏa

2πckB
, where a is

the proper acceleration. It involves the interaction between
the background quantum field and a moving detector which
has constant acceleration. It is also known that the accel-
erating charges emit radiation. In the literature [2–9], many
physicists were interested in learning whether there were
any differences between the Unruh effect and the radiation
from accelerated charges in the quantum field; for example,
was the emitted radiation part of the energy flux in the
Unruh effect? Later, this question was extended to the atom
system and to whether an accelerated atom emits radiated
energy. What was the connection to the Unruh effect?
Hu and his collaborators worked on the minimal coupling
model [10–13] and considered what roles the equilibrium
condition and nonequilibrium condition play in an accel-
erated detector [10,11,13,14]. In recent years, the kinds of
influences between the moving detector and a background
quantum field have been applied to certain quantum
teleportation processes. However, the difference between
an inertial trajectory and the uniformly accelerated trajec-
tory for a moving detector is not obvious enough. If we
could clearly see the effect about proper acceleration, it
would be helpful to the understanding of some important
systems, for example, the atomic optical and particle
quantum field systems.

Based on the work in Refs. [10–15], we follow here the
work of Lin and co-workers [16–18], and we recheck the
computation of a uniformly accelerated detector (UAD) [16].
It was originally thought that the solution for a UAD [16]
could be applied to the inertial detector case directly by
taking the limit such that the proper acceleration a → 0 (i.e.,
an inertial detector moves at a constant velocity and therefore
has zero proper acceleration). However, when we check past
results for two-point correlation functions in a UAD, we find
that the previous solution cannot be applied to the inertial
detector case by taking the limit a → 0. As an inertial
detector moves at constant velocity, we need to apply a real
inertial trajectory. In fact, the original goal for our work was
to apply the previous results [16,17] in certain quantum
teleportation processes, but some errors occurred when we
did it, so we have to recheck our setup and calculations.
Therefore, we start from the beginning, where we apply a
real inertial trajectory and another uniformly accelerating
trajectory for the moving detector, solving the solutions for
these two trajectories and then comparing the difference on
the two-point correlation functions between the inertial and
uniformly accelerated detectors.
We find that a term is missing from previous two-point

correlation functions and that it is about the vacuum
fluctuations of the moving detector. Without this term,
we would have a zero variance from the quantum field for
the inertial detector. This was not noticed before. When we
include this term, the strange zero variance issue disappears
and the values of the two-point correlation functions also
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change. This change makes the difference between the
inertial and accelerated detector more clear than in the
previous results. Since we apply perturbations to solve
the equations, assumptions about the perturbation method
also set an allowed region for the values of the parameters
in the solutions. This restriction also affects the solutions
for the two-point correlation functions. When these con-
siderations are included, the difference between the inertial
detector and accelerated detector is more obvious than ever.
To apply our present result to future work about quantum

teleportation, we consider two moving Unruh-DeWitt
detectors in our present model [17]: Alice and Bob. We
assume that Alice is static in space and Bob is moving in
space. Bob’s worldline has two different choices: one is the
trajectory for a uniformly acceleration, while the other is for
a constant velocity motion. For simplicity, we focus here on
the moving detector Bob and study the interaction between
the quantum field and the internal degrees of freedomQ for
detector Bob. We compute the two-point functions hQQiv
and h _Q _Qiv for the two different trajectories (i.e., hQQiv is
the two-point function vacuum fluctuation of the internal
degrees of freedom for Bob), and we then compare the
plots of hQQiv and h _Q _Qiv for the inertial and uniformly
accelerating detectors. We find that these two different
types of detectors have different effects on the curves for
the two-point functions hQQiv and h _Q _Qiv in the early-
time region. Meanwhile, we also write detailed calculations
and point out some key points in the calculations about
obtaining hQQiv and h _Q _Qiv.
To demonstrate the importance of the allowed region on

the values of the parameters in this model, we choose some
improper values for the parameters in the model and
calculate the two-point correlation functions. Improper
values would lead to different trends for the two-point
functions hQQiv and make the Unruh effect unclear.
This paper is organized as follows. In Sec. II we set up

and introduce the model and the method, and some detailed
derivations are placed in the appendixes. In Sec. III we
focus on one detector and investigate the moving detector
Bob in a quantum field and whether it moves at a constant
acceleration or a constant velocity. We solve the solutions
for two different trajectories for the detector Bob and
compute the two-point correlation functions of internal
degree of freedom Q of Bob. We then discuss the allowed
values for the parameters in the solutions and do the
numerical plots for the two-point functions of Q. Later,
we compare the plots and determine the differences
between the inertial detector and accelerated detector.
Section IV is the summary.

II. MODEL

We consider two Unruh-DeWitt detectors Alice and Bob
that are at different spatial points and in different states of
motion. Each detector has an internal degrees of freedomQ

that interacts with a common scalar field Φ. Assuming that
Alice is static and Bob is moving (Bob could be uniformly
accelerated or could move at a constant velocity; we will
calculate the solutions for these two cases later). The
trajectories for Alice and Bob are zμAðtÞ and zμBðτÞ, respec-
tively. The action for this setup is as follows:

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
∂μΦðxÞ∂μΦðxÞ

þ
Z

dτA
m0

2
½ð∂AQAÞ2 −Ω2

0Q
2
A�

þ
Z

dτB
m0

2
½ð∂BQBÞ2 −Ω2

0Q
2
B�

þ λ0

Z
d4x

Z
dtQAðtÞΦðxÞδ4ðxμ − zμAðtÞÞ

þ λ0

Z
d4x

Z
dτQBðτÞΦðxÞδ4ðxμ − zμBðτÞÞ; ð1Þ

where QA and QB are the internal degrees of freedom for
the detectors Alice and Bob. They are assumed to be two
identical harmonic oscillators with mass m0 ¼ 1 with the
bare natural frequency Ω0 [17].
If we assume that the coupling between the detectors and

the field is turned on at the moment when t ¼ τ ¼ 0 (t is the
proper time for Alice and τ is the proper time for Bob), the
state of this combined system is a direct product of a
quantum state jqA; qBi for Alice’s and Bob’s detectors QA
and QB and Minkowski vacuum j0Mi for the field Φ,

jψð0Þi ¼ jqA; qBi ⊗ j0Mi: ð2Þ
Here jqA; qBi is taken to be a squeezed Gaussian state with
minimal uncertainty, represented in the Wigner function as

ρðQA; PA;QB; PBÞ

¼ exp−
1

8

�
β2

ℏ2
ðQA þQBÞ2 þ

1

α2
ðQA −QBÞ2

þ α2

ℏ2
ðPA − PBÞ2 þ

1

β2
ðPA þ PBÞ2

�
; ð3Þ

where QA and QB can be entangled by properly choosing
the parameters α and β.
After quantizing the field Φ and the internal degrees of

freedom QA, QB in the Heisenberg picture (as shown in
Appendix A), the mode functions to the first order Oðλ0Þ
for Φ, QA, and QB are as follows:

ð∂2
τi þΩ2

0ÞqðjÞi ðτiÞ ¼ λ0fðjÞðzμi ðτiÞÞ; ð4Þ

ð∂2
t −∇2ÞfðjÞðxÞ ¼ λ0

�Z
∞

0

dtqðjÞA δ4ðx − zAðtÞÞ

þ
Z

∞

0

dτqðjÞB δ4ðx − zBðτÞÞ
�
; ð5Þ
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ð∂2
τi þ Ω2

0ÞqðþÞ
i ðτi;kÞ ¼ λ0fðþÞðzμi ðτiÞ;kÞ; ð6Þ

ð∂2
t −∇2ÞfðþÞðx;kÞ ¼ λ0

�Z
∞

0

dtqðþÞ
A ðt;kÞδ4ðx − zAðtÞÞ

þ
Z

∞

0

dτqðþÞ
B ðτ;kÞδ4ðx − zBðτÞÞ

�
:

ð7Þ

In future work, we would like to study issues pertaining to
quantum teleportation after we obtain the solutions for Q̂A

and Q̂B in this model. In this work, for simplicity and a
clear picture, we will first look solely at the two-point
functions of the internal degrees of freedom Q of the
moving detector Bob. We will consider two different kinds
of trajectories for Bob: (i) Bob is uniformly accelerated and
(ii) Bob moves at a constant velocity. By calculating the
solutions and the two-point correlation functions for Q
of the detector Bob under these two types of trajectories,
we will understand the features of acceleration and
inertial motion and be able to apply these results to future
applications.

III. TWO-POINT FUNCTIONS OF THE
INTERNAL DEGREES OF FREEDOM Q

FOR A MOVING DETECTOR

We now focus on the moving detector Bob. For sim-
plicity, we consider only the moving detector Bob and
temporarily ignore the static detector Alice in the action S
in Eq. (1). The only action that has a QB part is then the
following:

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
∂μΦðxÞ∂μΦðxÞ

þ
Z

dτB
m0

2
½ð∂BQBÞ2 −Ω2

0Q
2
B�

þ λ0

Z
d4x

Z
dτBQBðτBÞΦðxÞδ4ðxμ − zμBðτBÞÞ: ð8Þ

The Heisenberg equations for the operators and the fields
are written in [16] (we take Q̂B ¼ Q̂ from now on, and
we also take m0 ¼ 1 in a later numerical calculation) are
shown in Appendix B (including the solutions of the
mode functions and the definitions of the states for the
quantum field Φ and the internal degrees of freedom Q̂).
Later, we start with the two-point correlations function
hQðτ − τ0ÞQðτ00 − τ000Þiv for the moving detector Bob.

A. Trajectory 1: Two-point function for UAD

The two-point correlation function hQðτ − τ0ÞQðτ00 −
τ000Þiv of the internal degrees of freedom for the UAD
Bob, which is along the trajectory zμB ¼ ða−1 sinh aτ;
a−1 cosh aτ; 0; 0Þ with a ≠ 0, is as follows:

hQðτ − τ0ÞQðτ00 − τ000Þiv
¼ ℏ

Z
∞

−∞

d3k
ð2πÞ32ω qðþÞðτ;kÞqð−Þðτ;kÞ

¼ ℏ
2ω

Z
d3k⃗
ð2πÞ3

λ0
m0

X
j¼þ;−

Z
τ

τ0

dτ0cjewjðτ−τ0ÞfðþÞ
0 ðzðτ0Þ; k⃗Þ

·
λ0
m0

X
j¼þ;−

Z
τ00

τ0

dτ000c�j0e
w�
j0 ðτ

00−τ000Þ
f�ðþÞ
0 ðzðτ000Þ; k⃗Þ: ð9Þ

The mode functions qð�Þðτ;kÞ for Q̂vðτÞ [which are
obtained in Eq. (B13) in Appendix B] are

qð�Þðτ;kÞ¼ λ0
m0

X
j¼þ;−

Z
τ

τ0

dτ0cjewjðτ−τ0Þfð�Þ
0 ðzðτ0Þ;kÞ: ð10Þ

When a Fourier transform of fðþÞ
0 is performed,

fðþÞ
0 ðzðτ0Þ; k⃗Þ ¼

Z
dκe−iκτ

0
φk⃗ðκÞ; ð11Þ

the above two-point function is expressed as

hQðτ − τ0ÞQðτ00 − τ000Þiv
¼ λ20

m2
0

X
j;j0¼þ;−

Z
τ

τ0

dτ0cjewjðτ−τ0Þ
Z

dκe−iκτ
0

×
Z

τ00

τ00
0

dτ000c�j0e
w�
j0 ðτ

00−τ000Þ
Z

dκ0e−iκ0τ000 · F; ð12Þ

where F is defined as

F≡ ℏ
2ω

Z
∞

−∞

d3k
2π

φk⃗ðκÞφ�
k⃗
ðκ0Þ: ð13Þ

The Fourier factor φk⃗ðκÞ is

φk⃗ðκÞ ¼
Z

∞

−∞

dτ
2π

e−iωz
0ðτÞþik⃗·z⃗ðτÞ; ð14Þ

and F is then in the following form:
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F ¼ ℏ
ð2πÞ3

Z
2π

0

dϕ
Z

1

−1
dðcos θÞ

Z
∞

0

ω2dω
2ω

Z þ∞

−∞

dt
2π

Z þ∞

−∞

dt0

2π
eiκt−iκ

0t0−iωðz0ðtÞ−z0ðt0Þþiω cos θjz⃗−z⃗0jÞ

¼ ℏ
2π

Z
∞

0

dω
Z þ∞

−∞

dt
2π

Z þ∞

−∞

dt0

2π
eiκt−iκ

0t0−iω½z0ðtÞ−z0ðt0Þ� sinðωjz⃗ðtÞ − z⃗ðt0ÞjÞ
jz⃗ðtÞ − z⃗ðt0Þj

¼ ℏ
ð2πÞ4 limϵ→0

Z þ∞

−∞
dt

Z þ∞

−∞
dt0

eiκðt−iϵ
2
Þ−iκ0ðt0þiϵ

2
Þ

jz⃗ðt − iϵ
2
Þ − z⃗ðt0 þ iϵ

2
Þj2 − ½z0ðt − iϵ

2
Þ − z0ðtþ iϵ

2
Þ�2

¼ ℏ
ð2πÞ4 limϵ→0

Z þ∞

−∞
dt

Z þ∞

−∞
dt0

a2e
ϵ
2
ðκþκ0Þþiκt−iκ0t0

−4sinh2ða
2
ððt − t0Þ − iϵÞÞ

¼ ℏ
ð2πÞ4 limϵ→0

Z þ∞

−∞
dT

Z þ∞

−∞
dΔ

a2e
ϵ
2
ðκþκ0Þþiðκ−κ0ÞTþiΔ

2
ðκþκ0Þ

−4sinh2ða
2
ðΔ − iϵÞÞ

¼ ℏa2

ð2πÞ3 δðκ − κ0Þlim
ϵ→0

Z þ∞

−∞
dΔ

eκϵeiκΔ

−4sinh2 a
2
ðΔ − iϵÞ : ð15Þ

On the third line of the equation, we take t → t − iϵ
2
to suppress the contribution from high-frequency modes of the field, and

this is equal to setting a finite time resolution of the system. On the fifth line of the equation, we take T ≡ tþt0
2
andΔ≡ t − t0,

where the integral is the double complex integral. Note that there are poles at a
2
ðΔ − iϵÞ ¼ �in̄ where n̄ ¼ 0; 1; 2; 3;…;∞.

We then plug F back into the two-point function hQðτ − τ0ÞQðτ00 − τ000Þiv and perform the integration of τ. Thus, we have
the form

hQðτ − τ0ÞQðτ00 − τ000Þiv ¼
λ20
m2

0

X
j;j0¼þ;−

Z
τ

τ0

dτ0cjewjðτ−τ0Þ
Z þ∞

−∞
dκe−iκτ

0
Z

τ00

τ0
0

dτ000c�j0e
w�
j0 ðτ

00−τ000Þ
Z þ∞

−∞
dκ0eiκ0τ000

·
ℏa2

ð2πÞ3 δðκ − κ0Þlim
ϵ→0

Z þ∞

−∞
dΔ

eκϵeiκΔ

−4sinh2 a
2
ðΔ − iϵÞ

¼ λ20
m2

0

ℏ
ð2πÞ2

X
j;j0¼�

�
a2

2π

�
lim
ϵ→0

�Z
∞

0

dκe−iκðτ0−τ
00
0
Þ
Z þ∞

−∞
dΔ

eκϵeiκΔ

−4sinh2 a
2
ðΔ − iϵÞ

þ
Z

0

−∞
dκe−iκðτ0−τ000Þ

Z þ∞

−∞
dΔ

eκϵeiκΔ

−4sinh2 a
2
ðΔþ iϵÞ

�

·
cjc�j0 ðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�

j0 ðτ
00−τ00

0
Þ − eiκðτ00−τ000ÞÞ

ðwj þ iκÞðw�
j0 − iκÞ : ð16Þ

The integrals on the second equal sign in Eq. (16) are
the tricky part (the double complex integrals). Note that
inside the square brackets in Eq. (16), the κ and Δ double
integrals are split into two parts because the sign of κ
determines the contour integration is performed on the
upper half complex plane or the lower half plane. The first
term in Eq. (17) is the Δ contour integral circle on the
upper plane when κ > 0, while the second term is the Δ
contour integral circle on the lower plane when κ < 0.
The main different from previous results is that they did
not separate the double complex integral and handle the
parts separately. If we did not notice this point, we would
have just one term and would ignore the other term, as
was done in the past.
For the double integrations, we have the following two

parts:

Z
∞

0

dκe−iκðτ0−τ000Þ
Z þ∞

−∞
dΔ

eκϵeiκΔ

−4sinh2 a
2
ðΔ − iϵÞ

þ
Z

0

−∞
dκe−iκðτ0−τ000Þ

Z þ∞

−∞
dΔ

eκϵeiκΔ

−4sinh2 a
2
ðΔþ iϵÞ : ð17Þ

There are poles (are shown in Fig. 1) in the denominatior
sinh2 a

2
ðΔ − iϵÞ at Δ ¼ iðϵþ 2πn̄

a Þ and poles in the other
denominator sinh2 a

2
ðΔþ iϵÞ at Δ ¼ −iðϵþ 2πn̄

a Þ. We may
use the identity

csc2πx ¼ 1

π2
X∞
n¼−∞

1

ðx − nÞ2 ; ð18Þ

and the relation sinh2 x ¼ − sin2ðixÞ to expand those poles.
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We expand sinh x in the first integral such that

−1
4sinh2 a

2
ðΔ − iϵÞ ¼

1

4sin2ðiaΔ
2
þ ϵÞ

¼ −1
a2

X∞
n¼−∞

1

ðΔ − iϵþ i2πn=aÞ2 : ð19Þ

In the first integral of Eq. (17), only the poles n ¼
0;−1;−2;…;−∞ are inside the contour. Let n̄ ¼ −n in
the first integral, and rewrite it in the following way:Z

∞

0

dκe−iκðτ0−τ000Þ
Z þ∞

−∞
dΔ

eκϵeiκΔ

−4sinh2 a
2
ðΔ− iϵÞ

¼
Z

∞

0

dκe−iκðτ0−τ000Þ
Z þ∞

−∞
dΔ

X∞
n̄¼0

eκϵeiκΔ

−a2½Δ− iðϵþ2πn̄=aÞ�2 ;

ð20Þ
where the given terms 2π and n are absorbed into ϵ.
Similarly, the second integral in Eq. (17) is expanded in the
same way:

−1
4sinh2 a

2
ðΔþ iϵÞ ¼

1

4sin2ðiaΔ
2
− ϵÞ

¼ −1
a2

X∞
n¼−∞

1

ðΔþ iϵþ i2πn=aÞ2 : ð21Þ

Only the poles n ¼ 0; 1; 2;…;∞ are inside the contour of
the second integral. Therefore, the second integral is
rewritten as

Z
0

−∞
dκe−iκðτ0−τ000Þ

Z þ∞

−∞
dΔ

eκϵeiκΔ

−4sinh2 a
2
ðΔþ iϵÞ

¼
Z

0

−∞
dκe−iκðτ0−τ000Þ

Z þ∞

−∞
dΔ

X∞
n¼0

eκϵeiκΔ

−a2½Δþ iðϵþ2πn=aÞ�2 ;

ð22Þ

In our spacetime diagram a ≤ 1 (we assume the light
speed c ¼ 1, and in actual setup we consider the
acceleration is not very big in the Lab, therefore we
set the proper acceleration limit a < 1). Note that when
a → 0 the poles on the complex Δ plane move to ∞
and the arc integration

R
arc dΔfðΔÞ in Cauchy’s integral

formula is no longer 0 (the arc cannot include the poles
when the poles move to ∞); the integral is ill defined.
And if we think carefully back to Fig. 2 and check
the worldline for the detector Bob, we can see that as
a → 0 Bob is very far from the origin and more close to
∞, and thus Bob cannot exchange the signal with Alice
in a finite time interval. This situation is not the setup
that we want (we need Alice and Bob to be separated
by a proper distance so that they can exchange signals
with each other in a reasonable time interval and we
can study the properties in the quantum teleportation
process in such a setup in future work). Therefore, the
result when a → 0 in Eq. (17) is not the actual setup
that can be extended to the case in which Alice and
Bob have a finite distance between them and exchange
signals when Bob moves at a constant velocity.

FIG. 1. Poles on the complex Δ plane at Δ ¼ iðϵþ 2πn̄
a Þ on the upper complex plane and at Δ ¼ −iðϵþ 2πn̄

a Þ on the lower complex
plane. Where n̄ ¼ 0; 1; 2; 3;…;∞, the poles move to �i∞ as a → 0.
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Plugging Eqs. (20) and (22) back into Eq. (16), we have

−1
a2

lim
ϵ→0

�Z
∞

0

dκ
Z

∞

−∞
dΔ

X∞
n̄¼0

eκϵeiκΔ

½Δ − iðϵþ 2πn̄
a Þ�2 þ

Z
0

−∞
dκ

Z
∞

−∞
dΔ

X∞
n̄¼0

eκϵeiκΔ

½Δþ iðϵþ 2πn̄
a Þ�2

�
: ð23Þ

Performing the Δ integration (taking ϵ ¼ 0 in the end), we then have the following:

−1
a2

�Z
∞

0

dκ
X∞
n̄¼0

ð2πiÞiκeiκiðþ2πn̄
a Þ þ

Z
0

−∞
dκ

X∞
n̄¼0

ð−2πiÞiκeiκið−2πn̄
a Þ
�

¼ −1
a2

�Z
∞

0

dκ
X∞
n̄¼0

ð2πiÞiκeiκið2πn̄a Þ −
Z

0

−∞
dκ

X∞
n̄¼0

ð2πiÞiκe−iκið2πn̄a Þ
�
: ð24Þ

Plugging the above result back into Eq. (16), we obtain the following terms:

−1
a2

�Z
∞

0

dκ
X∞
n̄¼0

ð2πiÞiκeiκið2πn̄a Þ −
Z

0

−∞
dκ

X∞
n̄¼0

ð2πiÞiκe−iκið2πn̄a Þ
�
e−iκðτ0−τ000Þ ·

CjC�
j0 ðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�

j0 ðτ
00−τ00

0
Þ − eiκðτ00−τ000ÞÞ

ðwj þ iκÞðw�
j0 − iκÞ

¼ −1
a2

�Z
∞

0

dκ
X∞
n̄¼0

Xn̄FðκÞ −
Z

0

−∞
dκ

X∞
n̄¼0

X−n̄FðκÞ
�
; ð25Þ

where Xn̄ ¼ e−κ
2π
a and FðκÞ ¼ ð2πiÞiκ · CjC�

j0 ðe
wjðτ−τ0Þ−eiκðτ0−τÞÞðe

w�
j0 ðτ

00−τ00
0
Þ
−eiκðτ

00−τ00
0
ÞÞe−iκðτ0−τ000 Þ

ðwjþiκÞðw�
j0−iκÞ

.

Note that since there are many poles on the imaginary axis of the κ complex plane, it is difficult to do a contour integration
in the form of Eq. (25). To avoid the difficulty of such a contour integral, we can reshape Eq. (25) in the following way to
avoid the poles:

FIG. 2. The plot of the worldline zμB ¼ ða−1 sinh aτ; a−1 cosh aτ; 0; 0Þ for differing proper acceleration values a. As the proper
acceleration a → 0, the worldline is shifted far away. The proper acceleration of the red line is the largest among all lines, while the
proper acceleration of the purple line is the smallest among all lines.
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−1
a2

�Z
∞

0

dk
X∞
n̄¼0

Xn̄ −
Z

0

−∞
dk

X∞
n̄¼0

X−n̄
�
FðκÞ ¼ −1

a2

�Z
∞

0

dκ
1

1 − X
−
Z

0

−∞
dκ

1

1 − X−1

�
FðκÞ

¼ −1
a2

�Z
∞

0

dκ
1

1 − X
−
Z

0

−∞
dκ

X
X − 1

�
FðκÞ

¼ −1
a2

�Z
∞

0

dκ
1

1 − X
þ
Z

0

−∞
dκ

X − 1þ 1

1 − X

�
FðκÞ

¼ −1
a2

�Z
∞

0

dκ
1

1 − X
þ
Z

0

−∞
dκ

1

1 − X
þ
Z

0

−∞
dκ

X − 1

1 − X

�
FðκÞ

¼ −1
a2

�Z
∞

−∞

dκFðκÞ
1 − X

−
Z

0

−∞
dκFðκÞ

�
: ð26Þ

When we use the above trick (we rewrite the integral region from −∞ to ∞ and include the poles inside the contour in the
first integral), the difficult contour integral from 0 to ∞ is prevented.
We then put the above results back into Eq. (16), and the two-point function in Eq. (16) is thus reshaped as

hQðτ − τ0ÞQðτ00 − τ000Þiv ¼
λ20ℏ

m2
0ð2πÞ2

� X
j;j0¼�

CjC�
j0

Z
∞

−∞

κdκe−iκðτ0−τ
00
0
Þðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�

j0 ðτ
00−τ00

0
Þ − eiκðτ

00−τ00
0
ÞÞ

ð1 − e−2πκ=aÞðwj þ iκÞðw�
j0 − iκÞ

−
X
j;j0¼�

CjC�
j0

Z
0

−∞

κdκe−iκðτ0−τ000Þðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�
j0 ðτ

00−τ00
0
Þ − eiκðτ00−τ000ÞÞ

ðwj þ iκÞðw�
j0 − iκÞ

�
; ð27Þ

and we have two terms in the two-point correlation function. Note that the first term is the old result in the previous work,
while the second term is the new result that is missing from the previous work.
The steps above are the key points in the calculations. To avoid the difficult κ integration (many poles on the imaginary

axis of the κ plane), we thus reshape Eq. (16) into the form of Eq. (27). When we compare this new result to the previous
result, we find that the second term in Eq. (27) is missing from the previous results. This is a careless accident that can occur
when we deal with the double complex integral in Eq. (16). Also, remember that when a ¼ 0 the result of this two-point
function is no longer true, because this result corresponds to the situation in which Bob is very far away, so Bob and Alice
cannot exchange messages within a reasonable time interval. The mathematical reason for this is shown in part of the Δ
contour integration, where the denominator sinh2 a

2
ðΔ − iϵÞ of the Δ integration on the last line of Eq. (16) is no longer a

hyperbolic sine function as a ¼ 0. This corresponds to Fig. 2, in which the worldline of Bob shifts to very far away as
a ¼ 0, and this is not the setup that we want.
The form in Eq. (27) helps us to compare this new result for the two-point correlation function more easily to the previous

one [16], the two-point correlation function is expressed in the following form:

hQðτ − τ0ÞQðτ00 − τ000Þiv ¼
λ20ℏ

ð2πÞ2m2
0

X
j;j0

Z
∞

0

κdκ

1 − e−2πκ=a
cjc�j0e

−iκðτ0−τ000Þ

ðwj þ iκÞðw�
j0 − iκÞ ðe

wjðτ−τ0Þ − e−iκðτ−τ0ÞÞðew�
j0 ðτ

00−τ00
0
Þ − eiκðτ00−τ000ÞÞ

¼ λ20ℏ
m2

0ð2πÞ2
� X
j;j0¼�

CjC�
j0

Z
∞

−∞

κdκe−iκðτ0−τ000Þðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�
j0 ðτ

00−τ00
0
Þ − eiκðτ00−τ000ÞÞ

ð1 − e−2πκ=aÞðwj þ iκÞðw�
j0 − iκÞ

−
X
j;j0¼�

CjC�
j0

Z
0

−∞

κdκe−iκðτ0−τ000Þðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�
j0 ðτ

00−τ00
0
Þ − eiκðτ00−τ000ÞÞ

ðwj þ iκÞðw�
j0 − iκÞ

�

¼ hQQiv1 − hQQiv2: ð28Þ

The first term hQQiv1 is the old result from previous work [16], and the second term hQQiv2 is the missing term (a new
term). The advantage of the two-point function being reshaped in the above manner is that it can be compared and computed
more easily since the poles on the imaginary axis are now included inside the contour and the κ integrations can be done.
Also, we can easily compare this new result to the old result [16] and see the differences between the new and old results
more clearly.
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Here we simple write the results of hQQiv1, and −hQQiv2 in Eq. (28) below; the detailed derivations is written in
Appendix D:

hQQiv1 ¼
2ℏγ

πm0Ω2
θðηÞRe

��
Λ0 − ln

a
Ω

�
e−2γηsin2Ωη

þ a
2
e−ðγþaÞη

�
FγþiΩðe−aηÞ
γ þ iΩþ a

�
−iΩ
γ

�
e−iΩη þ F−γ−iΩðe−aηÞ

γ þ iΩ − a

��
1þ iΩ

γ

�
eiΩη − e−iΩη

��

−
1

4

��
iΩ
γ
þ e−2γη

�
iΩ
γ
þ 1 − e−2iΩη

��
ðψγþiΩ þ ψ−γ−iΩÞ

−
�
−iΩ
γ

þ e−2γη
�
iΩ
γ
þ 1 − e−2iΩη

��
iπ coth

π

a
ðΩ − iγÞ

��
; ð29Þ

−hQQiv2 ¼
−2ℏγ
πm0

Re

�
Λ0v2

−
e−2γðτ−τ0Þ

8Ω2

��
1 −

iΩ
γ
− e2iΩðτ−τ0Þ

�
· ðiπ þ 2 logðγ − iΩÞ þ 2Γð0;−ðγ − iΩÞðτ − τ0ÞÞÞ

þ
�
1þ iΩ

γ
− e−2iΩðτ−τ0Þ

�
· ð−iπ − 2 logðγ þ iΩÞ þ 2Γð0;−ðγ þ iΩÞðτ − τ0ÞÞÞ

�

−
i

8Ωγ

�
−iπ − 2 log

�
γ þ iΩ
γ − iΩ

�
þ 2Γð0; ðγ þ iΩÞðτ − τ0ÞÞ − 2Γð0; ðγ − iΩÞðτ − τ0ÞÞ

��
; ð30Þ

where Λ0 and Λ0v2
are the terms containing the divergent

parts [Γð0; 0Þ and log(0)] as τ00 → τ and τ000 → τ0 and are
absorbed into the renormalized constant or coefficient in
the experiment. Figures 3–5 are the numerical results for
hQQiv1 and −hQQiv2. In the plots, the red line is the term
hQQiv1 (i.e., the old result) and the blue line is the term
−hQQiv2 (i.e., the missing term), while the black line is the
sum hQQiv1 − hQQiv2. The contributions from the vacuum
fluctuations of the two-point function hQQiv (i.e., the black
line) for the internal degrees of freedom Q begin with a
relatively high value, then oscillate and reach a saturated
value at a later time.
In Fig. 3, we change the proper acceleration a and keep

the other parameters the same. We can see that for a ¼ 0.1
and a ¼ 0.001 the black curves have the same shape, but
the values are slightly different. The value of the two-point
function hQQiv for the a ¼ 0.1 curve is higher than the
a ¼ 0.001 curve for only a very small number, 0.00001. If
we think that a uniformly accelerated detector would
experience a different thermal radiance—a different tem-
perature in the background (the Unruh effect)—this differ-
ent background would produce different vacuum
fluctuations for hQQiv. Thus, we can see that although
the difference of the effect from proper acceleration from
a ¼ 0.1 to a ¼ 0.001 UAD is small, it is indeed present.
In Fig. 4, we change the value of the coupling

constant λ0 or, say, the decay parameter γ. This is

because the definition γ ¼ λ2
0

8πm0
and we also use the

perturbation method in these computations. Therefore,
λ0 < 1 is the basic assumption for perturbation (i.e., λ0
is the expansion parameter). The allowed region for γ is
then γ < 0.039. In the previous work [16], we chose
γ ¼ 0.1, which is equal to λ0 ¼ 1.585. This value is too
big and obviously violates the basic assumption of the
perturbation, making the perturbative solutions incon-
sistent with the perturbation method. According to our
experience, a safe choice is to make the expansion
parameter λ0 ≈ 0.1. This is why we choose λ0 ¼ 0.1 and
0.3 (corresponding to γ ¼ 0.000398 and 0.00358) in our
numerical plots.
In Fig. 5, we alter the value of frequency Ω (i.e., the

frequency for the internal degrees of freedom of the
detector) and keep the other parameters the same. We
choose Ω ¼ 2.3 and 1.0, and the magnitude of the two-
point function hQQiv for Ω ¼ 2.3 is larger than in the
Ω ¼ 1.0 case. Also, in the same τ interval, the curve for
the Ω ¼ 2.3 case has more oscillations than the curve for
the Ω ¼ 1.0 case does.
As in the calculations of the two-point function hQQi,

we also compute the two-point function h _Q _Qi, and the
result is listed below. As shown above, there is an extra
term −h _Q _Qiv2 in our new result which is missing from the
previous result [16]:

I-CHIN WANG PHYS. REV. D 104, 045014 (2021)

045014-8



FIG. 3. The plots for hQ2ðηÞiv1 [red line; Eq. (29) with Λ0 excluded], −hQ2ðηÞiv2 [blue line; Eq. (30) with Λ0v2
excluded], and the sum

hQ2ðηÞiv [i.e., black line hQ2ðηÞiv1 − hQ2ðηÞiv2]. Here Ω ¼ 1.0, λ0 ¼ 0.3 (which is γ ¼ 0.00358), and m0 ¼ ℏ ¼ 1. Note that
−hQ2ðηÞiv2 is larger than hQ2ðηÞiv1. The black line [i.e., hQ2ðηÞiv] oscillates at the beginning and arrives at the saturated value later.
When t ¼ 30, the curve for the proper acceleration a ¼ 0.1 arrives at the value 1.24589, while the curve for a smaller proper acceleration
a ¼ 0.001 arrives at the value 1.24588; the difference is only 0.00001. When t ¼ 5000, curves for both small or large proper
acceleration values arrive at the same final magnitude 1.24772.
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h _Q _Qiv1 ¼
2ℏγ

πm0Ω2
θðηÞRe

��
Λ1 − ln

a
Ω

�
Ω2 þ

�
Λ0 − ln

a
Ω

�
e−2γηðΩ cosΩη − γ sinΩηÞ2

þ a
2
ðγ þ iΩÞ2e−ðγþaÞη

�
FγþiΩðe−aηÞ
γ þ iΩþ a

�
iΩ
γ

�
e−iΩη þ F−γ−iΩðe−aηÞ

γ þ iΩ − a

��
1 −

iΩ
γ

�
eiΩη − e−iΩη

��

þ 1

4
ðγ þ iΩÞ2

��
iΩ
γ
þ e−2γη

�
iΩ
γ
− 1þ e−2iΩη

��
ðψγþiΩ þ ψ−γ−iΩÞ

−
�
−iΩ
γ

þ e−2γη
�
iΩ
γ
− 1þ e−2iΩη

��
iπ coth

π

a
ðΩ − iγÞ

��
; ð31Þ

−h _Q _Qiv2 ¼
−2ℏγ
πm0

θðηÞRe
�
Λ̃0v2

þ e−2γðτ−τ0Þ

8Ω2

�
ððγ2 þ Ω2Þ

�
1 −

iΩ
γ

�
− ðγ − iΩÞ2e2iΩðτ−τ0ÞÞ

· ð−iπ þ 2 logðγ − iΩÞÞ þ ððγ2 þΩ2Þ
�
1þ iΩ

γ

�
− ðγ þ iΩÞ2e−2iΩðτ−τ0ÞÞ · ðiπ þ 2 logðγ þ iΩÞÞ

�

FIG. 4. The decay parameter γ (γ ¼ λ2
0

8πm0
). The plots for hQ2ðηÞiv1 [red line; Eq. (29) with Λ0 excluded], −hQ2ðηÞiv2 [blue line;

Eq. (30) with Λ0v2
excluded], and the sum hQ2ðηÞiv [black line, which is hQ2ðηÞiv1 − hQ2ðηÞiv2]. Here Ω ¼ 1.0, a ¼ 0.001, and

m0 ¼ ℏ ¼ 1. The decay parameters are different in the plots. The black lines oscillate at the beginning and then arrive at different
saturated values later at proper time τ ¼ 5000 for different λ0. When τ ¼ 50, the final value for γ ¼ 0.000398 is 1.2495, while when
τ ¼ 50 the final value for γ ¼ 0.00358 is 1.24613. When τ ¼ 5000, the final value for γ ¼ 0.000398 is 1.24974, while when τ ¼ 5000
the final value for γ ¼ 0.00358 is 1.24772. A large λ0 (λ0 ¼ 0.3) has a larger value than a smaller λ0 (λ0 ¼ 0.1), while a smaller λ0 arrives
at the same saturated value later than a larger λ0 (λ0 ¼ 0.3). The decay parameter γ affects the saturated time.
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þ ie−ðγþiΩÞðτ−τ0Þ

4Ωγ

�
ðγ − iΩÞ

�
−1

τ − τ0
þ eðγ−iΩÞðτ−τ0Þðγ − iΩÞΓð0; ðγ − iΩÞðτ − τ0ÞÞ

�
− ðγ þ iΩÞ

·

�
−1

τ − τ0
þ eðγþiΩÞðτ−τ0Þðγ þ iΩÞΓð0; ðγ þ iΩÞðτ − τ0ÞÞ

��

þ e−γðτ−τ0Þ

4Ω2

��
ðγ þ iΩÞe−iΩðτ−τ0Þ − γ2 þ Ω2

γ
eiΩðτ−τ0Þ

��
ðγ þ iΩÞðiπ − Γð0;−ðγ þ iΩÞðτ − τ0ÞÞÞ

· e−ðγþiΩÞðτ−τ0Þ −
1

τ − τ0

�
þ
�
ðγ − iΩÞeiΩðτ−τ0Þ − γ2 þΩ2

γ
e−iΩðτ−τ0Þ

�
· ðeð−γþiΩÞðτ−τ0Þð−γ þ iΩÞ

· ðiπ þ Γð0; ð−γ þ iΩÞðτ − τ0ÞÞÞ −
1

τ − τ0

��
þ i
8Ωγ

½ðγ − iΩÞ2ð2 logðγ − iΩÞ þ iπÞ

− ðγ þ iΩÞ2ð2 logðγ − iΩÞ þ 3iπÞ�
�
; ð32Þ

where Λ1, Λ0, and Λ̃0v2
are the terms containing the divergent parts [Γð0; 0Þ and log(0)] as τ00 → τ and τ000 → τ0, and they are

absorbed into the renormalized constant or coefficient in the experiment.

FIG. 5. The frequency Ω. The plot for hQ2ðηÞiv1 [red line; Eq. (29) with Λ0 excluded], −hQ2ðηÞiv2 [blue line; Eq. (30) with Λ0v2

excluded], and the sum hQ2ðηÞiv [black line, which is hQ2ðηÞiv1 − hQ2ðηÞiv2]. Here a ¼ 0.001, λ0 ¼ 0.1 (γ ¼ 0.000398), and
m0 ¼ ℏ ¼ 1. Two values of Ω are chosen (Ω ¼ 2.3 and 1.0). The curves arrive at different saturated values for different Ω. The smaller
Ω (Ω ¼ 1.0) has a higher saturated value than the bigger Ω (Ω ¼ 2.3) at a later time τ ¼ 5000. When τ ¼ 5000, the final value for
Ω ¼ 2.3 is hQ2ðηÞiv ¼ 0.543429, while the final value for Ω ¼ 1.0 is hQ2ðηÞiv ¼ 1.24974. The frequency parameter Ω affects the final
saturated value. Also, a bigger Ω has more vibrations in the same τ region and is more active.
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The above numerical results are plotted in Figs. 6–8.
The red line is the term h _Q _Qiv1, while the green line is
the missing term −h _Q _Qiv2 and the black line is the
sum h _Q _Qiv1 − h _Q _Qiv2.
In Fig. 6, we vary the value a and find the magnitude of

h _Q _Qiv for different a (a ¼ 0.1 or 0.001) at the same time
that τ is unchanged. The effect of the proper acceleration a
is not obvious. The curve at first is arising slightly and then
decreasing and oscillating. The trend for h _Q _Qiv is decreas-
ing and different from hQQiv, which is slightly increasing.
In Fig. 7, we vary the decay parameter γ (which is

equivalent to varying the coupling constant λ0). The curve
for the two-point function h _Q _Qiv also rises slightly in the
beginning and then oscillates and decreases to a saturated
value. The difference is that the curve for γ ¼ 0.00358
arrives at the saturated value earlier than γ ¼ 0.000398.

At the same time τ, the value of the two-point function
h _Q _Qiv for different γ is also slightly different. The reason
for this is that a higher γ value for the two-point function
curve decays to the same value faster than a lower γ
curve does.
In Fig. 8, we alter the frequency of the internal degrees of

freedom for the detector. It is obvious that the magnitude of
h _Q _Qiv changes significantly when the internal frequency
Ω is altered. The trend of both curves is the same in that at
first it has a small rise and then it decays and oscillates to a
saturated value. However, a largeΩ has more oscillations in
its decay curve. A smallΩ is less active than a largeΩ. And
also, a smallΩ curve has a much lower saturated value than
a large Ω curve.
The red lines in the plots represent the old results for the

two-point functions h _Q _Qiv which are displayed as a dotted

FIG. 6. The proper acceleration a. The plots for h _Q2ðηÞiv1 [red line; Eq. (31) with Λ1 excluded], −h _Q2ðηÞiv2 [green line, Eq. (32) with
Λ̃0v2

excluded], and the sum h _Q2ðηÞiv [black line, which is h _Q2ðηÞiv1 − h _Q2ðηÞiv2]. Here Ω ¼ 1.0, λ0 ¼ 0.1 (which is γ ¼ 0.000398),

and m0 ¼ ℏ ¼ 1 The green line −h _Q2ðηÞiv2 is larger than h _Q2ðηÞiv1 in the early-time region. The black line oscillates at the beginning
and later arrives at the saturated value at around τ ≈ 6500. For τ ¼ 11 both the a ¼ 0.1 and a ¼ 0.001 curves arrive at the same value
h _Q2ðηÞiv ¼ 0.497442. When τ ¼ 7000, the a ¼ 0.1 and a ¼ 0.001 curves both arrive at the same value h _Q2ðηÞiv ¼ 0.250765. For
h _Q2ðηÞiv, the difference between the proper accelerations a ¼ 0.1 and a ¼ 0.001 is not obvious, as shown in the plots. However, the
trend of the curve for the two-point function h _Q2ðηÞiv is decreasing and differs from the hQ2ðηÞiv plots.
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line in Fig. 2 of Ref. [16]. The old results do not have the

missing term −h _Q _Qiv2 (the green line). The black line is
the sum h _Q _Qiv1 − h _Q _Qiv2, and it gradually drops to a
steady value at late time. This differs from the old result.
The two-point functions h _Q _Qiv in the old result increase
gradually to a steady value.
Comparing the above plots for the two-point function

h _Q _Qiv to the plots for the two-point function hQQiv, we
find that the difference between hQQiv and h _Q _Qiv is that
the proper acceleration parameter a affects the trend of the
oscillating curve in the early-time region (whether it is
slightly increasing or decreasing). The coupling constant λ0
affects how soon the curve of h _Q _Qi arrives at the saturated
value as shown in Fig. 7. The frequencyΩ affects how large

the final saturated value for h _Q _Qi will be. As shown in
Fig. 8, a smaller Ω has a smaller saturated value.
Next, we will discuss the allowed region for the value

of the coupling constant λ0, which is about the decay
constant γ. This part was not noticed before.

B. Allowed region for γ: Proper and improper
values for γ concerning the contribution

of the missing term − hQQiv2
The γ value has some restrictions. In Sec. II and

Appendix B, we expand the mode function fð�Þ and
qð�Þ by the order of λ0, then use the perturbative method
to obtain the leading order solutions for qð�Þ. Later, we use
the leading order solution to compute hQ2ðηÞiv to the first

FIG. 7. The decay parameter γ (i.e., the coupling constant λ0). The plots for h _Q2ðηÞiv1 [red line; Eq. (31) with Λ1 excluded],
−h _Q2ðηÞiv2 (green line; Eq. (32) with Λ̃0v2

excluded], and the sum h _Q2ðηÞiv [black line, which is h _Q2ðηÞiv1 − h _Q2ðηÞiv2]. HereΩ ¼ 1.0,

a ¼ 0.1, and m0 ¼ ℏ ¼ 1. The coupling constants λ0 differ in these plots. When τ ¼ 20, h _Q2ðηÞiv ¼ 0.4956 for γ ¼ 0.000398 and
h _Q2ðηÞiv ¼ 0.462788 for γ ¼ 0.00358. At a late time when τ ¼ 8000, h _Q2ðηÞiv ¼ 0.250238 for γ ¼ 0.000398 and h _Q2ðηÞiv ¼
0.248185 for γ ¼ 0.00358. A larger γ has a higher h _Q2ðηÞiv value than a smaller decay parameter γ. The lines oscillate in the early-time
region and then arrive at a saturated value at a late time. A larger γ decays faster than a smaller γ, and the trend of the h _Q2ðηÞiv curve is
decreasing except a very short, small rise at the beginning.
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order Oðλ0Þ. Thus, λ0 is the expansion parameter and it is
supposed to be smaller than 1. While the decay parameter γ

is defined as γ ¼ λ2
0

8πm0
. Therefore, the value of γ has an

allowed region which corresponds to λ0 < 1.
In our previous work [16], we took γ ¼ 0.1. This value

corresponds to λ0 ≈ 1.58 and is apparently larger than 1. In
such a case, the perturbative solution is no longer consistent
with our assumption (i.e., λ0 is smaller than 1) if we take
γ ¼ 0.1. Let us see what will happen if we take γ ¼ 0.1 in
the numerical calculations.
In Fig. 9, we do the numerical calculations for two

cases in which γ ¼ 0.1 (i.e., equal to λ0 ≈ 1.58) and
γ ¼ 0.000398 (i.e., equal to λ0 ¼ 0.1), with the other
parameters Ω ¼ 2.3 and a ¼ 0.001 being the same. In
the γ ¼ 0.1 plot, the missing term hQ2ðηÞiv2 (the blue line)
becomes unimportant very soon. It drops quickly and then
the total effect (the black line) is dominated by the red line
hQ2ðηÞiv1. The trend of the black line is similar to the red

line: both lines are increasing. If we lose the second term
hQ2ðηÞiv2 in our analytic calculations and then would like
to do the numerical integrations at the very beginning as a
double check to get a consistent result (meaning the black
and red lines are similar and follow the same trend since the
numerical calculation in the beginning does not neglect the
missing term and thus will give us the black line), one must
set the parameter value at γ ¼ 0.1 (i.e., λ0 ≈ 1.58). For
γ ¼ 0.1, the numerical result (black line) will show the
same trend as the red line [because the second term
−hQ2ðηÞiv2 is unimportant for such a γ value]. In short,
we must pick a value for γ such that it would make the blue
line value small and unimportant. The value γ ¼ 0.1 fits
this goal. And we would have thought that our analytic
results were correct because both analytic and numerical
calculations gave us similar curves for the two-point
function hQ2ðηÞiv. However, this is just an improper γ
value giving us a misleading result. Thus, we must be

FIG. 8. The frequency parameter Ω. The plots for hQ2ðηÞiv1 [red line; Eq. (31) with Λ1 excluded], −hQ2ðηÞiv2 [green line; Eq. (32)
with Λ̃0v2

excluded], and the sum hQ2ðηÞiv [black line, which is hQ2ðηÞiv1 − hQ2ðηÞiv2]. Here a ¼ 0.1, γ ¼ 0.000398ðλ0 ¼ 0.1Þ, and
m0 ¼ ℏ ¼ 1. A largerΩ has a higher value for the two-point function hQ2ðηÞiv. The black line has a small rise in the beginning and then
decreases to a saturated value. A larger Ω has more oscillations in the same time interval as a smaller Ω. The magnitude of Ω alters the
intensity of the two-point function hQ2ðηÞiv.
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careful about the allowed and not allowed regions for the
parameters in the solutions when we do the numerical
calculations as a double check.
Therefore, if one drops the missing term and chooses

an allowed γ value, as shown in Figs. 3 and 4 (i.e.,
γ ¼ 0.000398), the trends of the black and red lines look
different—the red line is increasing (with some ripples on
it), but the black line looks quite flat. Without noticing the
missing term, one may give up this value for γ and go back
to the not allowed value of γ ¼ 0.1 and think that the
numerical test is consistent with one’s analytic result (i.e.,
dropping the missing term). This case may give one a
misleading double check that one’s analytic and numerical
computations are consistent in terms of the γ value
(γ ¼ 0.1), so one’s analytic results are correct. But in fact
the contribution of the missing term is suppressed in a not
allowed γ region.
In addition, it is important to be careful when choosing a

value of a. If we set the light speed c ¼ 1, then the proper
acceleration a is smaller than 1 (i.e., a < 1). In our present
numerical calculations, we choose the proper acceleration
to be a ¼ 0.1 or 0.001, both of which are smaller than 1. In
our previous work, we chose a ¼ 1, which is not a good

choice if we assume that the light speed c ¼ 1. The value
a ¼ 1 is too large.
Next, we will continue to consider the inertial detec-

tor case.

C. Trajectory 2: Inertial detector

We will now calculate the two-point correlation func-
tions hQ2ðηÞiv and h _Q2ðηÞiv for the inertial detector along
the trajectory z̃μB ¼ ðγτ; γvτ þ xa þ d; 0; 0Þ. This trajectory
is for an observer moving at constant velocity and has a
finite distance d away from the other static detector. This
part differs from that in the previous work in that one
applies the UAD result and takes the limit a → 0 to be the
result for an inertial detector. In this paper, we have already
found that in such a limit a → 0 the UAD Bob is shifted to
very far away and cannot exchange the signal with the
inertial detector Alice in a reasonable time interval.
To get the two-point correlation functions for the inertial

detector Bob, we simply need to plug the inertial trajectory
z̃μB ¼ ðγτ; γvτ þ xa þ d; 0; 0Þ into Eq. (12). The difference
is that z0 and z⃗ in F have changed. As in the derivations of
the UAD part, the integral F for this new trajectory z̃μB is

F ¼ ℏ
ð2πÞ3

Z
2π

0

dϕ
Z

1

−1
dðcos θÞ

Z
∞

0

ω2dω
2ω

Z
∞

−∞

dt
2π

Z
∞

−∞

dt0

2π
eiκt−iκ

0t0−iωðz0ðtÞ−z0ðt0Þþiω cos θjz⃗−z⃗0jÞ

¼ ℏ
2π

Z
∞

0

dω
Z

∞

−∞

dt
2π

Z
∞

−∞

dt0

2π
eiκt−iκ

0t0−iω½z0ðtÞ−z0ðt0Þ� sinðωjz⃗ðtÞ − z⃗ðt0ÞjÞ
jz⃗ðtÞ − z⃗ðt0Þj

¼ ℏ
ð2πÞ4

Z
∞

−∞
dt

Z
∞

−∞
dt0

eiκðt−iϵ
2
Þ−iκ0ðt0þiϵ

2
Þ

jz⃗ðt − iϵ
2
Þ − z⃗ðt0 þ iϵ

2
Þj2 − ½z0ðt − iϵ

2
Þ − z0ðtþ iϵ

2
Þ�2

¼ ℏ
ð2πÞ4

Z
∞

−∞
dt

Z
∞

−∞
dt0

e
ϵ
2
ðκþκ0Þþiκt−iκ0t0

γ2ðτ − τ0 − iϵÞ2ðv2 − 1Þ

¼ ℏ
ð2πÞ4
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Z
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FIG. 9. The plots for the proper and improper γ values. The plots for hQ2ðηÞiv1 [red line, Eq. (31) with Λ1 excluded], −hQ2ðηÞiv2
[green line; Eq. (32) with Λ̃0v2

excluded], and the sum hQ2ðηÞiv [black line, which is hQ2ðηÞiv1 − hQ2ðηÞiv2]. Here a ¼ 0.001,Ω ¼ 2.3,
and m0 ¼ ℏ ¼ 1. γ ¼ 0.1 is the improper γ value, while γ ¼ 0.000398 is the proper value.
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¼ ℏ
ð2πÞ3 δðκ − κ0Þ

Z
∞

−∞
dΔ

eκϵeiκΔ

−ðΔ − iϵÞ2

¼ ℏ
ð2πÞ2 δðκ − κ0Þκ; κ ≥ 0: ð33Þ

Note that F ¼ 0 when κ < 0. The velocity v is canceled out in the denominator and does not appear in the integration
term F, which implies that, no matter how fast or slow the velocity is, the result for F is the same.
As in Eq. (16), plugging F back into the two-point function hQðτ − τ0ÞQðτ00 − τ000Þiv and performing the integration of τ,

we have the two-point function for the inertial detector

hQðτ−τ0ÞQðτ00−τ000Þiv¼
λ20ℏ

ð2πÞ2m2
0

X
j;j0

Z
∞

0

κdκ
cjc�j0e

−iκðτ0−τ000Þ

ðwjþ iκÞðw�
j0 − iκÞðe

wjðτ−τ0Þ−e−iκðτ−τ0ÞÞ ·ðew�
j0 ðτ

00−τ00
0
Þ−e−iκðτ

00−τ00
0
ÞÞ: ð34Þ

Performing the κ integration and then using the same calculation steps for the uniformly accelerated detector that we used
previously in the paper, we obtain the following result for the two-point correlation function of the internal degrees of
freedom Q for the inertial detector Bob:

hQðηÞ2iv ≡ lim
η00→η

1

2
hfQðηÞ; Qðη00Þgiv

¼ 2ℏγ
πm0

θðηÞRe
�
Λ̃0 þ

e−2γðτ−τ0Þ

8Ω2

��
1 −

iΩ
γ
− e2iΩðτ−τ0Þ

�
ðiπ − 2 logðγ − iΩÞ þ Γð0; ð−γ þ iΩÞðτ − τ0ÞÞÞ

þ
�
1þ iΩ

γ
− e−2iΩðτ−τ0Þ

�
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�

þ i
8Ωγ

· ½−2iπ þ 2 logðγ − iΩÞ − 2 logðγ þ iΩÞ − Γð0; ðγ − iΩÞðτ − τ0ÞÞ þ Γð0; ðγ þ iΩÞðτ − τ0ÞÞ�
�
; ð35Þ

where Λ̃0 contains divergent parts [i.e., Γð0; 0Þ and log(0)] as τ00 → τ and τ000 → τ0 and are absorbed into the renormalized
constant or coefficient in the experiment.
Similarly, the result of h _QðηÞ2i is written as

h _QðηÞ2iv ≡ lim
η00→η

1
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where Λ̃0v
contains divergent parts [i.e., Γð0; 0Þ and log(0)]

as τ00 → τ and τ000 → τ0 that are absorbed into the renor-
malized constant or coefficient in the experiment.
Note that the condition κ ≥ 0 in Eq. (33) is very

important. If one does not notice that κ ≥ 0 and takes
the integration region of κ from −∞ to ∞ in Eq. (34) [i.e.,Rþ∞
−∞ κdκfðκÞ], one will have hQðηÞ2iv ¼ 0 in Eq. (35) for
the inertial detector. This implies that the variance from the
background quantum field is zero, which is highly unlikely
because a quantum field always contributes a nonzero
variance. Actually, this strange result is the motivation for
our rechecking the two-point function hQðηÞ2iv for the
UAD and inertial detectors. An interesting point is that
Eq. (34) can be reshaped in the form of Eq. (28) [i.e.,Rþ∞
0 κdκfðκÞ ¼ Rþ∞

−∞ κdκfðκÞ − R
0
−∞ κdκfðκÞ]; thus, the

two-point function hQðηÞ2iv is now nonzero, and the
variance for the inertial detector is nonzero if we insist

on taking the integration region of κ as
Rþ∞
−∞ κdκfðκÞ (i.e.,

this integration region is what we applied in the previous
calculations). Therefore, we think that the second term
hQðηÞ2iv2 is the missing term and is important when we
talk about the variance from the background quantum field
for the inertial detector. The missing term also changes the
trend for the two-point function h _QðηÞ2iv curve in the UAD
case, as shown previously. Later, we will plot the curves
of the two-point functions hQðηÞ2iv and h _QðηÞ2iv for the
inertial detector.
The numerical plots for hQðηÞ2iv and h _QðηÞ2iv are

shown in Figs. 10 and 11. The values for the two-point
functions hQðηÞ2iv and h _QðηÞ2iv follow the same trend.
The values first increase slowly with ripples on the curve,
then reach a saturated value. This differs from the UAD
case; for example, in Fig. 3, the amplitude of the ripples
gradually becomes small. For the UAD case, the early

FIG. 10. The two-point correlation function hQðηÞ2iv for an inertial detector. Here a ¼ 0.001, γ ¼ 0.000398ðλ0 ¼ 0.1Þ, m0 ¼ ℏ ¼ 1,
and Ω ¼ 1. Two different timescales are shown. The value increases slowly in the beginning with ripples on the curve, then reaches a
saturated value later.

FIG. 11. The two-point correlation function h _QðηÞ2i for an inertial detector. Here a ¼ 0.001, γ ¼ 0.000398ðλ0 ¼ 0.1Þ, m0 ¼ ℏ ¼ 1,
andΩ ¼ 1. These plots are similar to those for the hQðηÞ2i case. Two different timescales are shown. The value of the two-point function
increases slowly in the beginning with ripples on the curve, then reaches a saturated value later.
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amplitude is larger than the later amplitudes. Note that the
value for the two-point correlation functions of UAD
changes only slightly relative to the inertial detector. The
curve for UAD is quite flat. The magnitude of hQðηÞ2iv for
the inertial detector has an obvious change from the
beginning to the end. Besides, the ripples on the inertial
detector curve of the two-point function hQðηÞ2iv has the
same oscillating amplitude on the ripples until it reaches
the saturated value. The effect of acceleration is clear in the
early-time region if we compare the UAD detector curve to
the inertial detector curve.
Figure 11 shows h _QðηÞ2i for an inertial detector. When

we compare it to Fig. 6 [i.e., h _QðηÞ2i for UAD], the curve
for UAD decreases to a saturated value, which differs from
the inertial case. This feature can be seen with the term
hQðηÞ2i; for example, in Fig. 3 the amplitude of the
oscillations gradually becomes small, which implies that
the changes of h _QðηÞ2i also become small as τ increases. A
clear feature of a UAD is that its magnitude of h _QðηÞ2i
decreases in the early-time region.
In Figs. 3–11 we can see that the difference between the

inertial detector and the UAD is clear in the plots for the two-
point correlation functions hQðηÞ2i and h _QðηÞ2i. For the
two-point function hQðηÞ2i of the UAD, the curve has larger
oscillations at first and then experiences smaller oscillations,
and the magnitude does not change much from beginning to
the end. On the contrary, the amplitude of the oscillations of
the two-point function hQðηÞ2i for the inertial detector does
not shrink in the beginning, and the magnitude increases
from the beginning until it reaches the saturated region. For
the two-point function h _QðηÞ2i, the difference between the
UAD and the inertial detector is more obvious that the curve
for h _QðηÞ2i of the UAD decreases to a saturated value, while
the curve for the inertial detector increases. The effect of
proper acceleration is evident in the two-point correlation
functions hQðηÞ2i and h _QðηÞ2i. We think that the difference
is from the Unruh effect in that the uniformly accelerated
detector would experience a thermal bath at temperature
TU ¼ ℏa=ð2πckBÞ, where a is the proper acceleration. This
thermal bath changes the two-point correlation functions.

IV. SUMMARY

In this paper, we investigate the two moving detectors
Alice and Bob in a quantum field. In this system, Alice is
static while Bob either accelerates uniformly or moves at a
constant velocity. We apply two different types of trajec-
tories for such a setup and calculate the solutions for the
internal degrees of freedom Q for the moving detector Bob
under the influence of the background quantum field. In
this work, we find the following points:
(1) The inertial worldline that we need for two moving

detectors to exchange the signals within a reasonable finite
time interval cannot be replaced by the UAD trajectory in

Rindler space zμB ¼ ða−1 sinh aτ; a−1 cosh aτ; 0; 0Þ by set-
ting the proper acceleration a ¼ 0. When the proper
acceleration in the Rindler space goes to zero, the UAD
worldline is shifted to very far away such that Alice and
Bob no longer exchange signals within a reasonable time
interval. Therefore, we need to apply a true trajectory z̃μB ¼
ðγτ; γvτ þ xa þ d; 0; 0Þ for a detector moving at constant
velocity. By using the trajectory z̃μB, Bob is separated from
Alice at the distance d in the beginning so that they can
exchange the signal in a finite time interval. We can apply
this trajectory to compute the two-point functions hQðηÞ2i
and h _QðηÞ2i for the inertial detector, then compare the
two-point correlation functions hQðηÞ2i and h _QðηÞ2i for the
UAD and inertial detector.
(2) We find that a term was missing from both two-point

correlation functions hQðηÞ2iv and h _QðηÞ2iv in the previous
calculations. Without this term, the variance from the
background quantum field part of the inertial detector is 0
[i.e., hQðηÞ2iv ¼ 0], which is highly unlikely. However, if
the missing term is included, the variance from the back-
ground quantum field for the inertial detector is nonzero,
which is what we expect when a moving detector interacts
with a quantum field. The missing term also changes the
behavior of the two-point correlation functions hQðηÞ2iv and
h _QðηÞ2iv for UAD; this point was not noticed previously.
(3) The values of the parameters in this model are in an

allowed region. We apply the perturbation method to obtain
the solutions for Q; therefore, the parameters in this model
should obey the basic assumption for perturbations that the
next to leading order must be smaller than the leading order.
In the previous work, we did not notice this and took
the decay parameter γ to be γ ¼ 0.1, which means that the
expansion parameter λ0 is larger than 1 (when γ ¼ 0.1, the
coupling constant λ0 ≃ 1.58). This value of γ is inconsistent
with the basic assumption of the perturbation and will give
us an artifact. And this will lead to misleading results
pertaining to the effects of proper acceleration.
(4) Including the above considerations, the UAD and

inertial detector result in different behaviors in hQðηÞ2iv
and h _QðηÞ2iv. In the early-time region the two-point
function hQðηÞ2iv for UAD has a quite flat curve, while
the inertial detector has an increasing curve. The amplitude
of those oscillations on the ripples of the UAD curve
gradually shrinks, while the amplitude of the oscillations on
the ripples of the inertial detector does not change. For the
two-point function h _QðηÞ2iv, the difference is more clear
than it is for hQðηÞ2iv. The curve for h _QðηÞ2iv of the UAD
is high at first and then decreases until it reaches the
saturated value. However, the curve of h _QðηÞ2iv for the
inertial detector increases until it reaches the saturated
value. This part is quite different from the previous result.
We think that this implies that the proper acceleration a has
some effect on the vacuum state of Q and thus affects the
vacuum fluctuations of the UAD (the Unruh effect).
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The foundations of the calculations were built by Lin and
Hu [16], who used the quantum field theory method and
then applied it to the two moving detector system by Lin
et al. [17]. These are not easy calculations. Here, based on
their work, we redo the calculations and modify them.
Since the calculation is tricky, we write the detailed
calculations here for those who are interested.
In the future, we would like to apply these results to

the quantum teleportation issue, for example, the two
moving detector system in which Alice and Bob
have relativistic motion with each other. We would like
to see whether the Unruh effect may play a role in the
quantum teleportation process for two relatively moving
detectors.
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APPENDIX A: QUANTIZATION

We quantize the fieldΦ and the harmonic oscillatorsQA,
QB in the Heisenberg picture. The conjugate momentum
ðPðτÞ,ΠðxÞÞ of these canonical coordinate and momentum
ðQðτÞ;ΦðxÞÞ are

PdðτÞ ¼
δS

δ _QdðτÞ
¼ _QdðτÞ; d ¼ A; B; ðA1Þ

ΠðτÞ ¼ δS
δ∂tΦðxÞ ¼ ∂tΦðxÞ: ðA2Þ

The equal time commutation relations of these dynamical
variables are

½Q̂dðτÞ; P̂dðτÞ� ¼ iℏ; d ¼ A;B; ðA3Þ

½Φ̂ðt;xÞ; Π̂ðt;x0Þ� ¼ iℏδ3ðx − x0Þ: ðA4Þ

According to the Heisenberg equations of motion, one can
write the equation of motions for Q̂ and Φ̂ as

∂2
τQ̂dðτÞ þ Ω2

0Q̂dðτÞ ¼ λ0Φ̂dðτ; zðτÞÞ; d ¼ A; B; ðA5Þ

ð∂2
t −∇2ÞΦ̂dðxÞ ¼ λ0

Z
∞

0

dτQ̂dðτÞδ4ðx − zðτÞÞ: ðA6Þ

The operators Q̂dðτdÞ and Φ̂dðxdÞ are expanded by the
mode functions and the creation (annihilation) operators as

Q̂iðτiÞ ¼
ffiffiffiffiffiffiffiffi
ℏ

2Ωr

s X
j

h
qðjÞi ðτiÞâj þ qðjÞ�i ðτiÞâ†j

i

þ
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
ℏ
2ω

r h
qðþÞ
i ðτi;kÞv̂k þ qð−Þi ðτi;kÞv̂†k

i
;

ðA7Þ

Φ̂ðxÞ ¼
ffiffiffiffiffiffiffiffi
ℏ

2Ωr

s X
j

h
fðjÞðxÞâj þ fðjÞ�ðxÞâ†j

i

þ
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
ℏ
2ω

r h
fðþÞðx;kÞv̂k þ fð−Þðx;kÞv̂†k

i
;

ðA8Þ

where i; j ¼ A, B, τA ¼ t, τB ¼ τ, qðjÞi , qð�Þ
i , fðjÞ,

and fð�Þ are the c-number mode functions. The conjugate
momenta are P̂AðtÞ ¼ ∂tQ̂AðtÞ, P̂BðτÞ ¼ ∂τQ̂BðτÞ, and
Π̂ðxÞ ¼ ∂tΦ̂ðxÞ. The equations of motion for the mode
functions are as follows:

ð∂2
τi þΩ2

0ÞqðjÞi ðτiÞ ¼ λ0fðjÞðzμi ðτiÞÞ; ðA9Þ

ð∂2
t −∇2ÞfðjÞðxÞ ¼ λ0

�Z
∞

0

dtqðjÞA δ4ðx − zAðtÞÞ

þ
Z

∞

0

dτqðjÞB δ4ðx − zBðτÞÞ
�
; ðA10Þ

ð∂2
τi þ Ω2

0ÞqðþÞ
i ðτi;kÞ ¼ λ0fðþÞðzμi ðτiÞ;kÞ; ðA11Þ

ð∂2
t −∇2ÞfðþÞðx;kÞ ¼ λ0

�Z
∞

0

dtqðþÞ
A ðt;kÞδ4ðx − zAðtÞÞ

þ
Z

∞

0

dτqðþÞ
B ðτ;kÞδ4ðx − zBðτÞÞ

�
:

ðA12Þ

APPENDIX B: THE EQUATIONS OF MOTION,
MODE FUNCTIONS AND STATES

The equations of motion of one moving detector for the
Lagrangian in Eq. (8) are as follows:

∂2
τQ̂ðτÞ þΩ2

0Q̂ðτÞ ¼ λ0Φ̂ðτ; zðτÞÞ; ðB1Þ

ð∂2
t −∇2ÞΦ̂ðxÞ ¼ λ0

Z
∞

0

dτQ̂ðτÞδ4ðx − zðτÞÞ: ðB2Þ
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We assume that the system is prepared before τ ¼ 0 and
that the coupling is turned on at τ ¼ 0 when we allow all
the dynamical variables to begin to interact and evolve
under the influence of one another. The time evolution of
Φ̂ðxÞ is a linear transformation in the phase space spanned
by the orthonormal basis ðΦ̂ðxÞ; Π̂ðxÞ; Q̂; P̂Þ, and Φ̂ðxÞ can
be expressed in the form

Φ̂ðt;xÞ ¼
Z

d3x0½fΦðt;x;x0ÞΦ̂ð0;x0Þ

þ fΠðt;x;x0ÞΠ̂ð0;x0Þ� þ fQðxÞQ̂ð0Þ
þ fPðxÞP̂ð0Þ: ðB3Þ

Here fΦðx;x0Þ; fΠðx;x0Þ; fQðxÞ, and fPðxÞ are c-number
functions. Similarly, the operator Q̂ðτÞ can be expressed as
follows:

Q̂ðτÞ ¼
Z

d3x0½qΦðτ;x0ÞΦ̂ð0;x0Þ þ qΠðτ;x0ÞΠ̂ð0;x0Þ�

þ qQðτÞQ̂ð0Þ þ qPðτÞP̂ð0Þ; ðB4Þ

with c-number functions qQðτÞ, qPðτÞ, qΦðτ; x0Þ, and
qΠðτ; x0Þ.
For the case in which initial operators are the free field

operators, namely, Φ̂ð0;xÞ ¼ Φ̂0ðxÞ, Π̂ð0;xÞ ¼ Π̂0ðxÞ,
Q̂ð0Þ ¼ Q̂0, and P̂ð0Þ ¼ P̂0, one can go further by intro-
ducing the following complex operators v̂k and â:

Φ̂0ðxÞ ¼
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
ℏ
2ω

r h
eik·xv̂k þ e−ik·xv̂†k

i
; ðB5Þ

Π̂0ðxÞ ¼
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
ℏ
2ω

r
ð−iωÞ

h
eik·xv̂k − e−ik·xv̂†k

i
; ðB6Þ

with ω≡ jkj, and

Q̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2Ωrm0

s
ðâþ â†Þ; P̂0 ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏΩrm0

2

r
ðâ − â†Þ:

ðB7Þ

Note that, instead of Ω0, we use the renormalized natural
frequency Ωr [to be defined in Eq. (C14)] in the definition
of â. Then the commutation relations (A3) and (A4) give

½â; â†� ¼ 1; ½v̂k; v̂†k0 � ¼ ð2πÞ3δ3ðk − k0Þ; ðB8Þ

and the expressions (B3) and (B4) can be rewritten as

Φ̂ðt;xÞ ¼ Φ̂vðxÞ þ Φ̂aðxÞ; ðB9Þ

Q̂ðτÞ ¼ Q̂vðτÞ þ Q̂aðτÞ; ðB10Þ

where

Φ̂vðxÞ ¼
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
ℏ
2ω

r
½fðþÞðt;x;kÞv̂k þ fð−Þðt;x;kÞv̂†k�;

ðB11Þ

Φ̂aðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2Ωrm0

s
½faðt;xÞâþ fa�ðt;xÞâ†�; ðB12Þ

Q̂vðτÞ ¼
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
ℏ
2ω

r
½qðþÞðτ;kÞv̂k þ qð−Þðτ;kÞv̂†k�;

ðB13Þ

Q̂aðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2Ωrm0

s
½qaðτÞâþ qa�ðτÞâ†�: ðB14Þ

The entire problem, therefore, can be transformed by solving
c-number functions fðxÞ and qðτÞ from Eqs. (B1) and (B2)
with suitable initial conditions. Since Q̂ and Φ̂ are
Hermitian, one has fð−Þ ¼ ðfðþÞÞ� and qð−Þ ¼ ðqðþÞÞ�.
Hence, it is sufficient to solve the c-number functions
fðþÞðt;x;kÞ, qðþÞðτ;kÞ, faðt;xÞ, and qaðτÞ. To place this
in a more general setting, let us perform a Lorentz trans-
formation shifting τ ¼ 0 to τ ¼ τ0, and let us define

η≡ τ − τ0: ðB15Þ

Now the coupling between the detector and the field would
be turned on at τ ¼ τ0. We are looking for solutions with the
initial conditions such as the following:

fðþÞðtðτ0Þ;x;kÞ ¼ eik·x;

∂tfðþÞðtðτ0Þ;x;kÞ ¼ −iωeik·x;

qðþÞðτ0;kÞ ¼ _qðþÞðτ0;kÞ ¼ 0; ðB16Þ

faðtðτ0Þ;xÞ ¼ ∂tfaðtðτ0Þ;xÞ ¼ 0;

qaðτ0Þ ¼ 1; _qaðτ0Þ ¼ −iΩr: ðB17Þ

The solutions for fðþÞ
0 , fðþÞ, qðþÞ, fa, and qa are as

follows (detailed calculations for one moving detector
Bob are written in Appendix C). The general solution
for fðþÞ reads

fðþÞðx;kÞ ¼ fðþÞ
0 ðx;kÞ þ fðþÞ

1 ðx;kÞ; ðB18Þ

where

fðþÞ
0 ðx;kÞ≡ e−iωtþik·x ðB19Þ

is the free field solution and
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fðþÞ
1 ðzðτÞ;kÞ ¼ λ0

4π
½ΛζqðþÞðτ;kÞ− ∂τqðþÞðτ;kÞ þOðΛ−1Þ�;

ðB20Þ

where ζ ¼ 27=4Γð5=4Þ= ffiffiffi
π

p
and Λ is about the regulariza-

tion scheme.
The mode function of the internal degrees of freedom Q̂

about the vacuum fluctuations part is

qðþÞðτ;kÞ ¼ λ0
m0

X
j¼þ;−

Z
τ

τ0

dτ0cjewjðτ−τ0ÞfðþÞ
0 ðzðτ0Þ;kÞ;

ðB21Þ

where c� ¼ � 1
2iΩ, w� ¼ −γ � iΩ, with Ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
r − γ2

p
:

faðxÞ ¼ λ0θðη−Þ
2πaX

qaðτ−Þ; ðB22Þ

where X is as defined in Appendix C.
The mode functions of the internal degrees of freedom Q̂

about the intrinsic part are

qaðτÞ ¼ 1

2
θðηÞe−γη

��
1 −

Ωr þ iγ
Ω

�
eiΩη

þ
�
1þ Ωr þ iγ

Ω

�
e−iΩη

�
: ðB23Þ

Above is the general form of the solutions. The explicit
solutions will depend on the specific worldline of the
detector (the trajectory for the moving detector in
spacetime).
As is shown above, when Q̂ evolves, some nonzero

terms proportional to Φ̂ and Π̂ will be generated. Suppose
that the detector is initially prepared in a state that can be
factorized into the quantum state jqi for Q and the
Minkowski vacuum j0Mi for the scalar field Φ, that is,

jτ0i ¼ jqij0Mi: ðB24Þ

The two-point function of Q will then split into two parts,

hQðτÞQðτ0Þi ¼ h0Mjhqj½Q̂vðτÞþ Q̂aðτÞ�
× ½Q̂vðτÞþ Q̂aðτÞ�jqij0Mi

¼ hqjqihQðτÞQðτ0ÞivþhQðτÞQðτ0Þiah0Mj0Mi;
ðB25Þ

where, from Eq. (B10),

hQðτÞQðτ0Þiv ¼ h0MjQ̂vðτÞQ̂vðτ0Þj0Mi; ðB26Þ

hQðτÞQðτ0Þia ¼ hqjQ̂aðτÞQ̂aðτÞjqi: ðB27Þ

Similar splitting happens for every two-point function
of Φ̂ðxÞ.
Observe that hQðτÞQðτ0Þiv depends on the initial state of

the field, or the Minkowski vacuum, while hQðτÞQðτ0Þia
depends on the initial state of the detector only. One can
thus interpret hQðτÞQðτ0Þiv as accounting for the response
to the vacuum fluctuations, while hQðτÞQðτ0Þia corre-
sponds to the intrinsic quantum fluctuations in the detector.
Here we will focus on the hQðτÞQðτ0Þiv part (the response
to the vacuum fluctuations) and demonstrate the explicit
forms of the two-point correlation functions.

APPENDIX C: SOLVING FOR f ð+ Þ0 , f ð + Þ,
qð+ Þ, f a, AND qa

The method for obtaining f and q is analogous to what
we did in classical field theory [16]. We first find an
expression relating the harmonic oscillator to the field
amplitude right at the detector. Substituting this relation
into the equation of motions for the oscillator, we then
obtain the equation of motion for q using the information
from the field. We then solve this equation of motion for q
and, from its solution, determine the field f consistently.
Eq. (B2) implies that

ð∂2
t −∇2ÞfðþÞðx;kÞ ¼ λ0

Z
∞

τ0

dτδ4ðx − zðτÞÞqðþÞðτ;kÞ:

ðC1Þ

The general solution for fðþÞ reads

fðþÞðx;kÞ ¼ fðþÞ
0 ðx;kÞ þ fðþÞ

1 ðx;kÞ; ðC2Þ

where

fðþÞ
0 ðx;kÞ≡ e−iωtþik·x ðC3Þ

is the free field solution and

fðþÞ
1 ðx;kÞ≡ λ0

Z
∞

τ0

dτGretðx; zðτÞÞqðþÞðτ;kÞ ðC4Þ

is the retarded solution, which looks like the retarded field
in classical field theory. Here ω ¼ jkj and the retarded
Green’s function Gret in Minkowski space is given by

Gretðx; x0Þ ¼
1

4π
δðσÞθðt − t0Þ; ðC5Þ

with σ ≡ −ðxμ − x0μÞðxμ − x0μÞ=2. Applying the explicit
form of the retarded Green’s function, one can go further
to write

fðþÞ
1 ðx;kÞ ¼ λ0θðη−Þ

2πaX
qðþÞðτ−;kÞ; ðC6Þ
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where

X ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−UV þ ρ2 þ a−2Þ2 þ 4a−2UV

q
; ðC7Þ

τ− ≡ −
1

a
ln

a
2jVj ðX −UV þ ρ2 þ a−2Þ; ðC8Þ

η− ≡ τ− − τ0; ðC9Þ

with ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x32

p
, U ≡ t − x1, and V ≡ tþ x1.

The formal retarded solution (C6) is singular on the
trajectory of the detector. To deal with the singularity, note
that the UAD here is a quantum mechanical object, and
also that the detector number would always be 1. This
means that at the energy threshold of detector creations,
there is a natural cutoff of the frequency, which sets an
upper bound on the resolution to be explored in our theory.
Thus, it is justified to assume here that the detector has a
finite extentOðΛ−1Þ, which will introduce the backreaction
on the detector.
Let us regularize the retarded Green’s function by

invoking the essence of effective field theory:

GΛ
retðx; x0Þ ¼

1

4π

ffiffiffi
8

π

r
Λ2e−2Λ

4σ2θðt − t0Þ: ðC10Þ

(For more details on this regularization scheme, see
Refs. [14,19].) Taking this, right on the trajectory, the
retarded solution for large Λ is

fðþÞ
1 ðzðτÞ;kÞ ¼ λ0

4π
½ΛζqðþÞðτ;kÞ− ∂τqðþÞðτ;kÞ þOðΛ−1Þ�;

ðC11Þ

where ζ ¼ 27=4Γð5=4Þ= ffiffiffi
π

p
. Substituting the above expan-

sion into Eq. (B1) and neglecting the OðΛ−1Þ terms, one
obtains the following equation of motion for qðþÞ with
backreaction:

ð∂2
τ þ 2γ∂τ þ Ω2

rÞqðþÞðτ;kÞ ¼ λ0
m0

fðþÞ
0 ðzðτÞ;kÞ: ðC12Þ

Fortunately, there is no higher derivative of q present in the
above equation of motion. Now qðþÞ behaves like a damped
harmonic oscillator driven by the vacuum fluctuations of
the scalar field, with the damping constant

γ ≡ λ20
8πm0

; ðC13Þ

and the renormalized natural frequency

Ω2
r ≡Ω2

0 −
λ20Λζ
4πm0

: ðC14Þ

In Eq. (C12), the solution for qðþÞ compatible with the
initial conditions qðþÞðτ0;kÞ ¼ _qðþÞðτ0;kÞ ¼ 0 is

qðþÞðτ;kÞ ¼ λ0
m0

X
j¼þ;−

Z
τ

τ0

dτ0cjewjðτ−τ0ÞfðþÞ
0 ðzðτ0Þ;kÞ;

ðC15Þ

where fðþÞ
0 was given in Eq. (C3) and c� and w� are

defined as

c� ¼ � 1

2iΩ
; w� ¼ −γ � iΩ; ðC16Þ

with

Ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

r − γ2
q

: ðC17Þ

Throughout this paper we consider only the underdamped
case with γ2 < Ω2

r , so Ω is always real.
Similarly, from Eqs. (B1), (B2), (B9), and (B10), the

equations of motion for fa and qa read

ð∂2
t −∇2ÞfaðxÞ ¼ λ0

Z
dτδ4ðx − zðτÞÞqaðτÞ; ðC18Þ

ð∂2
τ þΩ2

0ÞqaðτÞ ¼
λ0
m0

faðzðτÞÞ: ðC19Þ

The general solution for fa, as in Eq. (C2), is

faðxÞ ¼ fa0ðxÞ þ λ0

Z
∞

τ0

dτGretðx; zðτÞÞqaðτ−Þ: ðC20Þ

However, according to the initial condition (B17), one has
fa0 ¼ 0; hence,

faðxÞ ¼ λ0θðη−Þ
2πaX

qaðτ−Þ: ðC21Þ

Again, the value of fa is singular right at the position of the
detector. Performing the same regularization as was given
for qðþÞ, Eq. (C19) becomes

ð∂2
τ þ 2γ∂τ þΩ2

rÞqaðτÞ ¼ 0; ðC22Þ

which describes a damped harmonic oscillator free of
driving force. The solution consistent with the initial
condition qaðτ0Þ ¼ 1 and _qbðτ0Þ ¼ −iΩr reads

qaðτÞ ¼ 1

2
θðηÞe−γη

��
1 −

Ωr þ iγ
Ω

�
eiΩη

þ
�
1þ Ωr þ iγ

Ω

�
e−iΩη

�
: ðC23Þ
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APPENDIX D: THE INTEGRATION OF κ

The steps and results of the κ integrations from Eq. (28) to Eq. (29), Eq. (30) are written down as follows,

hQðτ − τ0ÞQðτ00 − τ000Þiv ¼
λ20ℏ

2m2
0ð2πÞ2

� X
j;j0¼�

CjC�
j0

Z
∞

−∞

κdκe−iκðτ0−τ000Þðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�
j0 ðτ

00−τ00
0
Þ − eiκðτ00−τ000ÞÞ

ð1 − e−2πκ=aÞðwj þ iκÞðw�
j0 − iκÞ

−
X
j;j0¼�

CjC�
j0

Z
0

−∞

κdκe−iκðτ0−τ000Þðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�
j0 ðτ

00−τ00
0
Þ − eiκðτ00−τ000ÞÞ

ðwj þ iκÞðw�
j0 − iκÞ

�

¼ hQQiv1 − hQQiv2; ðD1Þ

hQQiv1 ¼
λ20ℏ

2m2
0ð2πÞ2

X
j;j0¼�

CjC�
j0

Z
∞

−∞

κdκe−iκðτ0−τ000Þðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�
j0 ðτ

00−τ00
0
Þ − eiκðτ00−τ000ÞÞ

ð1 − e−2πκ=aÞðwj þ iκÞðw�
j0 − iκÞ

¼ λ20ℏ
2m2

0ð2πÞ2
X
j;j0¼�

CjC�
j0

wj þ w�
j0

Z
∞

−∞

dκ

1 − e−2πκ=a

�
wj

κ − iwj
þ w�

j0

κ þ iw�
j0

�
ðe1 þ e2 þ e3 þ e4Þ

¼ P1 þ P2 þ P3 þ P4; ðD2Þ

e1 ¼ e
−iκðτ0−τ000Þþwjðτ−τ0Þþw�

j0 ðτ
00−τ00

0
Þ
; ðD3Þ

e2 ¼ −ewjðτ−τ0Þþiκðτ00−τ0Þ; ðD4Þ

e3 ¼ −ew
�
j0 ðτ

00−τ00
0
Þ−iκðτ−τ00

0
Þ
; ðD5Þ

e4 ¼ eiκðτ00−τÞ; ðD6Þ

where

P1 ¼
λ20ℏ

2m2
0ð2πÞ2

X
j;j0¼�

CjC�
j0

wj þ w�
j0

Z
∞

−∞

dκ

1 − e−2πκ=a

�
wj

κ − iwj
þ w�

j0

κ þ iw�
j0

�
e
−iκðτ0−τ000Þþwjðτ−τ0Þþw�

j0 ðτ
00−τ00

0
Þ

¼ λ20ℏ
2m2

0ð2πÞ2
X
j;j0¼�

CjC�
j0

wj þ w�
j0
e
wjðτ−τ0Þþw�

j0 ðτ
00−τ00

0
Þ
· ð−2πiÞ·

×

�
a
2π

X−1
n¼−∞

�
wj

ina − iwj
þ w�

j0

inaþ iw�
j0

�
e−naðτ0−τ000Þ þ wjewjðτ0−τ000Þ

1 − e−2iπw
�
j =a

�

¼ λ20ℏ
2m2

0ð2πÞ2
X
j;j0¼�

CjC�
j0

wj þ w�
j0
e
wjðτ−τ0Þþw�

j0 ðτ
00−τ00

0
Þ
·

×

�
wje−aðτ0−τ

00
0
Þ

1þ wj=a
Fwj

ðe−aðτ0−τ000ÞÞ þ w�
j0e

−aðτ0−τ000Þ

1 − w�
j0=a

F−w�
j0
ðe−aðτ0−τ000ÞÞ − 2πiwjewjðτ0−τ000Þ

1 − e−2iπwj=a

�
; ðD7Þ
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P2 ¼
−λ20ℏ

2m2
0ð2πÞ2

X
j;j0¼�

CjC�
j0

wj þ w�
j0

Z
∞

−∞

dκ

1 − e−2πκ=a

�
wj

κ − iwj
þ w�

j0

κ þ iw�
j0

�
ewjðτ−τ0Þþiκðτ00−τ0Þ

¼ −λ20ℏ
2m2

0ð2πÞ2
X
j;j0¼�

CjC�
j0

wj þ w�
j0
ewjðτ−τ0Þ · ð2πiÞ ·

�
a
2π

X∞
0

�
wj

ina − iwj
þ w�

j0

inaþ iw�
j0

�
e−naðτ0−τ0Þ þ w�

j0e
w�
j0 ðτ

00−τ0Þ

1 − e
2iπw�

j0=a

�

¼ −λ20ℏ
2m2

0ð2πÞ2
X
j;j0¼�

CjC�
j0

wj þ w�
j0
ewjðτ−τ0Þ ·

�
wje−aðτ

00−τ0Þ

1 − wj=a
F−wj

ðe−aðτ00−τ0ÞÞ þ w�
j0e

−aðτ00−τ0Þ

1þ w�
j0=a

Fw�
j0
ðe−aðτ00−τ0ÞÞ þ 2πiw�

j0e
w�
j0 ðτ

00−τ0Þ

1 − e
2iπw�

j0=a

�
:

ðD8Þ

Since e3 ¼ e�2jτ↔τ0;τ0↔τ0
0
, we have P3 ¼ P�

2jτ↔τ0;τ0↔τ0
0
. And

P4 ¼
λ20ℏ

2m2
0ð2πÞ2

X
j;j0¼�

CjC�
j0

wj þ w�
j0
·

�
wje−aðτ0−τ

00
0
Þ

1þ wj=a
Fwj

ðe−aðτ0−τ000ÞÞ þ w�
j0e

−aðτ0−τ000Þ

1 − w�
j0=a

F−w�
j0
ðe−aðτ0−τ000ÞÞ − 2πiwj0ewjðτ0−τ000Þ

1 − e−2iπwj=a

�
: ðD9Þ

We use the following formula to show our results:

X∞
n¼1

¼ e−nx

nþ y
¼ e−x

1þ y 2F1ð1þ y; 1; 2þ y; e−xÞ≡ e−x

1þ y
Fayðe−xÞ: ðD10Þ

When we combine P1, P2, P3, and P4 and define η≡ τ − τ0, η00 ≡ τ00 − τ000 , the two point function hQðηÞQðη00Þiv1 is

hQðηÞ; Qðη00Þiv1 ≡ 1

2
hQðηÞQðη00Þ þQðη00ÞQðηÞiv1 ¼ RefP1 þ P2 þ P3 þ P4g; ðD11Þ

hQðηÞ2iv1 ≡ lim
η00→η

1

2
hfQðηÞ; Qðη00Þgiv1 ¼ lim

η00→η
RefP1 þ P2 þ P3 þ P4g

¼ ℏγ
πm0Ω2

θðηÞRe
��

Λ0 − ln
a
Ω

�
e−2γηsin2Ωη

þ a
2
e−ðγþaÞη

�
FγþiΩðe−aηÞ
γ þ iΩþ a

�
−iΩ
γ

�
e−iΩη þ F−γ−iΩðe−aηÞ

γ þ iΩ − a

��
1þ iΩ

γ

�
eiΩη − e−iΩη

��

−
1

4

��
iΩ
γ
þ e−2γη

�
iΩ
γ
þ 1 − e−2iΩη

��
ðψγþiΩ þ ψ−γ−iΩÞ

−
�
−iΩ
γ

þ e−2γη
�
iΩ
γ
þ 1 − e−2iΩη

��
iπ coth

π

a
ðΩ − iγÞ

��
: ðD12Þ

Here ψ s ≡ ψð1þ s
aÞ and Λ0 ≡ −γE − lnΩjτ0 − τ00j as η0 → η:

−hQQiv2 ¼
−λ20ℏ

2m2
0ð2πÞ2

X
j;j0¼�

cjc�j0
Z

0

−∞

κdκe−iκðτ0−τ000Þðewjðτ−τ0Þ − eiκðτ0−τÞÞðew�
j0 ðτ

00−τ00
0
Þ − eiκðτ00−τ000ÞÞ

ðwj þ iκÞðw�
j0 − iκÞ

¼ −λ20ℏ
2m2

0ð2πÞ2
X
j;j0¼�

cjc�j0
wj þ w�

j0

Z
0

−∞
dκ

�
wj

κ − iwj
þ w�

j0

κ þ iw�
j0

�
ðe1 þ e2 þ e3 þ e4Þ

¼ −P̃1 − P̃2 − P̃3 − P̃4; ðD13Þ
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P̃1 ¼
λ20ℏ

2m2
0ð2πÞ2

X
j;j0¼�
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wj þ w�

j0

Z
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−∞
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�
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; ðD14Þ
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λ20ℏ
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λ20ℏ
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As η → η00 (that is, τ00 → τ and τ000 → τ0),

−hQ2ðηÞiv2 ¼ − lim
η00→η

hfQðηÞ; Qðη00Þgiv2 ¼ − lim
η00→η
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1
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�
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ðD18Þ

where Λ0v2
contains the divergent parts Γð0; 0Þ and log(0) as τ00 → τ and τ000 → τ0 and is absorbed into the renormalized

constant or coefficient in the experiment.
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