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In this work we consider the generalized zeta function method to obtain temperature corrections to the
vacuum (Casimir) energy density, at zero temperature, associated with quantum vacuum fluctuations of a
scalar field subjected to a helix boundary condition and whose modes propagate in (3þ 1)-dimensional
Euclidean spacetime. We find closed and analytical expressions for both the two-point heat kernel function
and free energy density in the massive and massless scalar field cases. In particular, for the massless scalar
field case, we also calculate the thermodynamics quantities internal energy density and entropy density,
with their corresponding high- and low-temperature limits. We show that the temperature correction term in
the free energy density must suffer a finite renormalization, by subtracting the scalar thermal blackbody
radiation contribution, in order to provide the correct classical limit at high temperatures. We check that, at
low temperature, the entropy density vanishes as the temperature goes to zero, in accordance with the third
law of thermodynamics. We also point out that, at low temperatures, the dominant term in the free energy
and internal energy densities is the vacuum energy density at zero temperature. Finally, we also show that
the pressure obeys an equation of state.
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I. INTRODUCTION

The Casimir Effect was predicted for the first time back
in 1948 by Hendrik Casimir [1]. Ten years later, in 1958, an
experiment conducted by M. Sparnaay [2] showed com-
patibility between Casimir’s theoretical results and exper-
imental data. However, the accuracy of the experiment at
the time was not enough to precisely confirm it. Although
Casimir’s prediction did not receive much attention in its
first years, it began to attract attention even before later
accurate experimental verifications conducted at the end of
the century by Lamoreaux, Mohideen and Roy [3,4] (see
also Refs. [5–8]). The study of this phenomenon have
drawn increasing attention over time, not only for its
theoretical and mathematical aspects but also for the
numerous and pertinent applications given that it is a
quantum effect with macroscopic manifestations [9–12].
The Casimir effect arises due to perturbations in the

vacuum state fluctuations of a given quantum field, gen-
erating a force that could be attractive or repulsive depending

on the conditions that cause the vacuum energy to fluctuate.
The modifications in the fluctuations of the quantum field
can be induced by a series of factors such as the imposition of
boundaries conditions, the spacetime topology and dimen-
sionality, the nature of the background field and as we
discuss in this work, the temperature [9–16].
The analysis of the Casimir forces is conducted by means

of powerful regularization and renormalization techniques
for the vacuum energy. Among them, the ζ-function
provides an elegant approach, which has been extensively
developed and discussed for decades [13–19]. Rigorous
and comprehensive applications of the ζ-function method
can be found in [20]. In particular, as introduced by J. S.
Dowker and R. Critchley [21] and reshaped by Hawking
[17], a connection can be made between a generalized
ζ-function and the determinant of differential operators
such as the D’Alambertian and the Laplace-Beltrami
operators. In this context, the path integral approach shows
to be of great importance since it allows us to obtain a
regularized and, consequently, renormalized expression for
the energy density from the partition function of the field, in
terms of the corresponding operator, providing a way of
exploiting temperature contributions.
As technology advancements set foot into the micro and

nanoscopic scales, the Casimir effect becomes a key
element to understand and predict numerous phenomena.
In biophysics, for instance, as devices approach the single
cell size, recent studies indicate that the Casimir and
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Casimir-like forces may play a significant role on how cells
can adhere to one another (despite the negative charge some
of them carry) or how it may also affect the protein folding,
the wettability of some structures and a number of others
cellular interactions [22–26].
In nanotechnology the development of nanoelectrome-

chanical and microelectromechanical systems brings up the
need to evaluate how the Casimir force acts on material
components depending on their properties, such as geom-
etry and temperature. In such tiny devices the Casimir
forces could cause the mechanical components to collapse
and adhere to nearby surfaces which may result in a device
malfunction, or if properly engineered it can give the device
an “anti-stiction” property. In particular, if one considers
the Casimir effect for nanotubes (cylinder structures at the
nanoscale), the link between the quantum field and the
structure is represented by a quasiperiodic condition where
the phase angle mimics the conductivity properties of the
nanotubes [27,28].
It is clear that understanding the role that boundary

conditions, material properties, geometry and temperature
play on the vacuum state fluctuations is crucial. In this work
we seek to calculate temperature contributions for the
Casimir energy density, in a flat spacetime, arising from
perturbations on the scalar field vacuum as a consequence
of the imposition of a helix boundary condition. There are
numerous structures in nature with a helix geometry such as
the DNA and cell membrane proteins to motivate the
investigation of Casimir forces from such condition. The
force arising from the helix boundary condition at zero
temperature has been considered in Refs. [29–31] where it
was found the vacuum force to be linear in the axis of the
helix for small values of the ratio between its pitch and its
circumference, being in this case very much like the force
on a spring that obeys the Hooke’s law. As this phenome-
non is the consequence of a quantum effect, the structure
that causes it has been called by the authors in [29–31] as
quantum spring.
This work is organized as follows: in Sec. II an overview

of the generalized zeta function method is given, along with
its connection with the thermodynamics quantities, namely,
free energy density, entropy density and pressure. In
addition, in Sec. III, we consider the scalar field in flat
spacetime under the influence of a helix boundary con-
dition. We also calculate the two-point heat kernel function,
the local zeta function and all the relevant thermodynamics
quantities. We also analyze the high- and low-temperature
limits in each case. Finally, in Sec. IV we present our
conclusions. In this paper we use natural units ℏ ¼ c ¼ 1.

II. GENERALIZED ZETA FUNCTION METHOD

In this section we intend to provide a somewhat detailed
overview about the generalized zeta function method to
implement temperature corrections to the vacuum energy,
or even to calculate it at zero temperature. The generalized

zeta function can be constructed by using the eigenvalues of
a known differential operator, like the Laplace-Beltrami
operator, very common in physics. Let us then generically
consider a four-dimensional operator Â4, with eigenvalues
λj. The generalized zeta function is, thereby, defined as
[17,18,20]

ζ4ðsÞ ¼
X
j

λ−sj : ð1Þ

It converges, in four dimensions, for ReðsÞ > 2 and it is
regular at s ¼ 0. Nevertheless, it can also be analytically
extended to a function of s, with poles at s ¼ 2 and s ¼ 1.
Note that the spectrum of eigenvalues of Â4 may not always
be discrete [20].
Now, we can use the derivative, with respect to s, at

s ¼ 0, of the generalized zeta function (1) and write

e−ζ
0
4
ð0Þ ¼

Y
j

λj ¼ detðÂ4Þ: ð2Þ

This is a particularly useful identity to obtain the partition
function of the system later on, as we shall see.
In order for us to make the connection of the zeta function

(1) with the partition function we need to make use of the
path integral formulation for quantum field theory. In this
sense, first one should remind the reader that, in statistical
mechanics, the partition function is given by [32–34]

Z ¼ Tr½e−βĤ� ¼
Z

dΦhΦje−βĤjΦi: ð3Þ

where Φ is a quantum scalar field, Ĥ is the Hamiltonian
operator and β ¼ 1

kBT
, with T being the temperature. Note

that here, we are only interested in considering scalar field
quantum modes. Note also that the integrand is the prob-
ability amplitude responsible for taking the system from an
initial state at a time ti to a final state at time tf, and must be
integrated over all scalar field configurations. In the process
of explicitly showing the connection of the partition function
(3) with the path integral formulation we need to introduce a
periodicity in time, that is, τ ¼ iðtf − tiÞ ¼ β [17,32].
Consequently, the quantum scalar field Φ must be periodic
in the imaginary time τ, i.e.,

ΦðτÞ ¼ Φðτ þ βÞ: ð4Þ

Moreover, the integral in Eq. (3) can in fact be put in the
form [32–34]

Z ¼
Z

DΦeiIðΦÞ; ð5Þ

which is given in terms of the quadratic Euclidean action
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IðΦÞ ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p
ΦÂ4Φd4x: ð6Þ

From now on we make clear that Â4 is an elliptic, self-
adjoint, second order differential operator and the metric gμν
is Euclidean, with determinant g [17,18,20]. The latter is
used to construct the operator Â4. Typically in physics, we
associate this operator with the D’Alembertian □E in the
four-dimensional Euclidean spacetime, with the imaginary
time τ, that is,

Â4 ¼ ð□E þm2Þ ¼ 1ffiffiffi
g

p ∂i½
ffiffiffi
g

p
gij∂j� þm2; ð7Þ

where m is the mass of the scalar field and the Euclidean
spacetime metric gμν has signature ð−1;−1;−1;−1Þ. One
should note at this point that the present approach can be
extended to fermion fields. In this case, the operator Â4 is of
first order and the fermion field is antiperiodic in the
imaginary time τ [20].
It is possible to solve the Gaussian integral in Eq. (5)–(6)

by noting that the operator Â4 obeys the eigenvalue
equation

Â4ϕj ¼ λjϕj; ð8Þ

with the complete set of eigenfunctions ϕj and eigenvalues
λj. The former, as usual, in the four-dimensional Euclidean
spacetime, can be normalized such that

Z ffiffiffi
g

p
ϕjðxÞϕ�

kðxÞd4x ¼ δjk; ð9Þ

where x ¼ ðx0; x1; x2; x3Þ in the argument of the eigen-
functions represent spacetime coordinates and d4x the
spacetime volume element.
We want now to solve the Gaussian integral in (5)–(6) by

expanding the quantum scalar field Φ in terms of the
eigenfunctions ϕj, that is,

Φ ¼
X
j

ajϕj; ð10Þ

where aj are the coefficients of the expansion. Moreover,
the element DΦ associated with the integration over all
field configurations, consequently, can be written as

DΦ ¼
Y
j

μdaj; ð11Þ

with μ being a constant with dimension of mass, which has
been used to normalize the product in (11).
Upon taking into consideration Eqs. (8)–(11), the path

integral in (5)–(6) is found to be

Z ¼
�
det

�
4

πμ2
Â4

��
−1
2

; ð12Þ

which can be put in the form

lnZ ¼ 1

2
ζ04ð0Þ þ

1

2
ln

�
πμ2

4

�
ζ4ð0Þ: ð13Þ

This expression is particularly useful once one knows
explicitly the eigenvalues of the operator Â4, which is
normally the case in flat spacetime and in some particular
curved spacetimes, like for instance, the one describing a
closed Einstein universe [35–37].
In curved spacetime, where the eigenvalues are not

usually known, the convenient approach to be adopted is
by using the heat kernel, which provides information about
the spacetime where it is defined. Let us then consider,
Kðx; x0; ηÞ, as being the heat kernel obeying the heat
equation

∂
∂ηKðx; x0; ηÞ þ Â4Kðx; x0; ηÞ ¼ 0: ð14Þ

Note that the operator Â4 acts on the Euclidean spacetime
coordinates x, and η is a parameter with dimension of time.
If one considers the eigenvalue equation (8), the solution
for the heat equation above is clearly given by

Kðx; x0; ηÞ ¼
X
j

e−λjηϕjðxÞϕ�
jðx0Þ; ð15Þ

with the initial condition

Kðx; x0; 0Þ ¼ δðx − x0Þ: ð16Þ

Furthermore, upon using the heat kernel expression (15),
along with the normalization condition (9), we are able to
show that

Tr½e−ηÂ4 �≡
Z ffiffiffi

g
p

Kðx; x; ηÞd4x ¼
X
j

e−λjη: ð17Þ

We can now relate the trace above with the generalized zeta
function (1), by means of the Mellin transformation [38]

fðsÞ ¼ 1

ΓðsÞ
Z

∞

0

ηs−1FðηÞdη: ð18Þ

In the case the function fðsÞ is the generalized zeta function
defined in (1) and FðηÞ is given by (17), we have

ζ4ðsÞ ¼
1

ΓðsÞ
Z

∞

0

ηs−1Tr½e−ηÂ4 �dη: ð19Þ

This expression is an alternative representation for the
generalized zeta function (1), which is sometimes also
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known as global zeta function since it does not depend on
the spacetime coordinates. It is very useful to calculate the
vacuum free energy when the eigenvalues of the operator
Â4, obeying some boundary condition, are explicitly
known. Once one knows the zeta function, of course, we
can use Eq. (13) to calculate the partition function and,
consequently, the vacuum free energy.
In the case the eigenvalues of the operator Â4 are not

explicitly known we can define the local zeta function, in
terms of the heat kernel Kðx; x; ηÞ, i.e.,

ζ4ðx; sÞ ¼
1

ΓðsÞ
Z

∞

0

ηs−1Kðx; x; ηÞdη: ð20Þ

This is connected with the vacuum free energy density [see
Eq. (27)]. One should note that, usually in curved spacetime,
it is not always possible to calculate the vacuum free energy
and in this situation we can only obtain local quantities, as
thevacuumfree energy density. This is the case of the cosmic
string spacetime, see for instance [39,40].
On the other hand, in the case it is possible to obtain the

vacuum free energy one can, by integrating in the space-
time coordinates, x, the local zeta function ζðx; sÞ, calculate
the global zeta function. This is done by combining
Eqs. (20) into (19), that is,

ζ4ðsÞ ¼
Z ffiffiffi

g
p

ζ4ðx; sÞd4x: ð21Þ

Consequently, this integral may be solvable and finite.
Note that, an attempt of integrating the vacuum energy
density in the cosmic string spacetime will provide an
infinite result since it is an idealized cosmic string, without
structure [39,40].
Let us now make use of Eq. (19) to obtain an expression

for the vacuum free energy. In order to do that we should
apply the operator in Eq. (7) on the scalar quantum field
written as

ϕjðxÞ ¼ e−iωnτφlðrÞ; ð22Þ

where φlðrÞ is the spatial part of the solution of the scalar
quantum field ϕjðxÞ, and j ¼ ðn;lÞ are the quantum
modes. One should notice that the present approach for
thermal corrections is more convenient when we have an
ultrastatic spacetime [41–44], in which case we can write
the solution in the form of Eq. (22).
Thereby, the periodicity condition in Eq. (4) provides

ω2
n ¼

�
2πn
β

�
2

⇒ λn ¼ ω2
n þ k2; ð23Þ

with k being the continuum momenta associated with the
spatial coordinates and n ¼ 0;�1;�2;….

Upon substituting (22)–(23) in the expression (19) we
are able to note that the term n ¼ 0 can be extracted from
the sum and, consequently, solved with the help of the
identity [20]

X∞
n¼−∞

e−ηn
2 ¼

ffiffiffi
π

η

r X∞
n¼−∞

e−
π2n2
η : ð24Þ

The zeta function (19) is, then, given by

ζ4ðsÞ ¼
βffiffiffiffiffiffi

4π
p

ΓðsÞ

�
Γðs − 1=2Þζ3ðs − 1=2Þ

þ 2
X∞
n¼1

Z
∞

0

ηs−
3
2e−

ðnβÞ2
4η Tr½e−ηÂ3 �dη

�
; ð25Þ

where the operator Â3 is given by Eq. (7), without the time
derivative. That is, it is only associated with the spatial part
of the derivatives. Note that the zeta function ζ3ðsÞ is given
by Eq. (19) replacing Â4 with Â3. Furthermore, by using
Eq. (13), with (25), the free energy is found to be

F¼−
lnZ
β

¼ 1

2
ζ3ð−1=2Þ−

1ffiffiffiffiffiffi
4π

p
X∞
n¼1

Z
∞

0

η−
3
2e−

ðnβÞ2
4η Tr½e−ηÂ3 �dη: ð26Þ

We should now remember that the total quantities are
obtained from the local quantities by integrating them in the
space coordinates. Keeping that in mind, the free energy
density (26) is now written as

F ¼ 1

2
ζ3ðr;−1=2Þ

−
1ffiffiffiffiffiffi
4π

p
X∞
n¼1

Z
∞

0

η−
3
2e−

ðnβÞ2
4η Kðr; r; ηÞdη; ð27Þ

where we have used Eqs. (20) and (17). Additionally, the
heat kernel Kðr; r; ηÞ can be calculated by using Eq. (15),
with φlðrÞ, and replacing λj with k2.
The free energy density in Eq. (27) can be written more

simply as

F ¼ E0 þ ΔF ; ð28Þ

where E0 is the Casimir energy density at zero temperature
given by the first term on the right-hand side (rhs) of
Eq. (27), andΔF is its temperature corrections given by the
second term.
Once we obtain the free energy density (27) we may be

able to calculate thermodynamics quantities, namely, inter-
nal energy, entropy and pressure [45]. In order to calculate
the internal energy one should consider
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U ¼ −T2
∂
∂T

�
F
T

�
: ð29Þ

As to the entropy and pressure we have, respectively,

S ¼ −
∂F
∂T ; ð30Þ

and

P ¼ −
∂F
∂V ; ð31Þ

which is calculated by taking the derivative of the free
energy with respect to the volume V.
The generalized zeta function method, reviewed in this

section, to calculate the vacuum free energy can be found in
more details in Refs. [17,18,20]. We shall use it in the
next sections to calculate temperature corrections to the
scalar vacuum energy at zero temperature in Minkowski
(Euclidean) spacetime under a helix boundary condition
[29–31].

III. SCALAR FIELD UNDER A HELIX
BOUNDARY CONDITION

In this section we consider the scalar field quantum
modes propagating in the (3þ 1)-Euclidean spacetime
under the following helix boundary condition:

φðxþ a; y; zÞ ¼ φðx; yþ h; zÞ; ð32Þ

where we have only considered the spatial part of the scalar
field given by Eq. (22), h is the pitch of the helix and a its
radius. Note that the helix boundary condition (32) for
the scalar field have been previously considered in
Refs. [29–31] in the context of the Casimir effect. Here
we seek to consider temperature corrections to the Casimir
energy density by using the generalized zeta function
method behind the structure of Eq. (27) for the free energy
density. The latter also allows us to obtain thermodynamics
quantities such as internal energy, entropy and pressure.
The line element describing the (3þ 1)-Euclidean space-

time, in accordance with the formalism presented in the
previous section, is given by

ds2 ¼ −dτ2 − dx2 − dy2 − dz2; ð33Þ

where τ ¼ it is the imaginary time and the range of the
spacetime coordinates is −∞ < t; x; y; z < ∞. The line
element in the form of Eq. (33) is necessary since the
method for temperature corrections to the Casimir effect
shown in the previous section is developed in the Euclidean
spacetime, with imaginary time τ.

A. Equation of motion and heat kernel

The equation of motion for the spatial part of the scalar
field is also obtained by making use of Eq. (7), which in this
case is for the operator Â3 defined only by the spatial part of
Â4. The corresponding eigenvalues, λl, of the operator Â3,
once it acts on the scalar field, φlðrÞ, provides an
eigenvalue equation similar to the one in Eq. (8), i.e.,

�
−

∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 þm2

�
φlðrÞ ¼ λlφlðrÞ; ð34Þ

where l stands for the spatial quantum modes. Note that,
the helix structure of the boundary condition is defined such
that 0 ≤ x ≤ a, −h ≤ y < 0, −L=2 ≤ z ≤ L=2 [29–31].
The general solution for the equation of motion (34),

under the helix boundary condition (32) is given by [29–31]

φðx; y; zÞ ¼ Aeikxxþikyyþikzz ¼ Aeikxðxþ
ay
h Þeikzze−2πin

y
h; ð35Þ

where A is a normalization constant to be determined and
kxa − kyh ¼ 2πn, with n ¼ 0;�1;�2;�3;…. The corre-
sponding eigenvalues are, thus, found to be

λl ¼ k2x þ
�
kxa
h

−
2πn
h

�
2

þ k2z þm2

¼
�
kyh

a
þ 2πn

a

�
2

þ k2y þ k2z þm2: ð36Þ

Since kx and ky are not independent momenta, we can see
now that the spatial quantum modes are defined either as
l ¼ ðn; ky; kzÞ or l ¼ ðn; kx; kzÞ. From now on, we shall
make use of the latter.
In order to calculate the heat kernel we need to determine

the normalization constant A. For this, let us make use of
the completeness relation

X∞
n¼−∞

Z
dkxdkyφlðrÞφ�

lðr0Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

p δ3ðr − r0Þ; ð37Þ

where gð3Þ is the determinant of the spatial part of the metric
present in the line element (33). Upon using the solution
(35) in (37) the normalization constant is obtained as

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð2πÞ2

p : ð38Þ

Therefore, the complete normalized solution of the scalar
field under the helix boundary condition (32) is given by
Eq. (35), with the normalization constant in Eq. (38). The
complete normalized solution makes possible now to
calculate the heat kernel.
We can calculate the heat kernel from Eq. (15), along

with Eqs. (35) and (38). This provides
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Kðr;r0;ηÞ¼ 1

ð2πÞ2he
−m2η

X∞
n¼−∞

e−2πni
Δy
h

Z
∞

−∞
dkx

×
Z

∞

−∞
dkze−k

2
xη−ðkxah −2πn

h Þ2η−k2zηeikxΔuþikzΔz; ð39Þ

where Δu ¼ ðΔxþ a
hΔyÞ. Thereby, by performing the

integrals in the independent momenta kx and in kz, we
obtain

Kðr; r0; ηÞ ¼ a
4πηd

e
−m2η−Δz2

4η −
a2Δu2

4ηd2 ϑðw; rÞ; ð40Þ

with d ¼ ða2 þ h2Þ12 and ϑðw; rÞ is the Jacobi theta function
defined as

ϑðw; rÞ ¼
X∞
n¼−∞

eiπn
2r−2πinw: ð41Þ

Note that in our case, w ¼ ðhΔy−aΔxÞ
d2 and r ¼ 4πηi

d2 . In order to
obtain the Euclidean heat kernel contribution from (40) we
can make use of the identity [20]

ϑðw; rÞ ¼ 1ffiffiffiffiffiffiffi
−ir

p e−iπ
w2
r ϑ

�
w
r
;−

1

r

�
: ð42Þ

Consequently, the heat kernel obtained in Eq. (40) becomes

Kðr; r0; ηÞ ¼ 1

ð4πηÞ32 e
−m2η−Δz2

4η −
a2Δu2

4ηd2
−
a2ðΔy−ahΔxÞ

2

4ηd2

×
X∞
n¼−∞

e−
n2d2
4η −nðhΔy−aΔxÞ

2η : ð43Þ

We can now proceed to take the coincidence limit, r0 → r,
in the above two-point function heat kernel of the scalar
field, φlðrÞ, under the helix boundary condition (32). This
gives

Kðr; r; ηÞ ¼ e−m
2η

ð4πηÞ32
X∞
n¼−∞

e−
n2d2
4η : ð44Þ

It is straightforward to see that the Euclidean heat kernel is
obtained from the term n ¼ 0 [42–44], that is,

KEðr; r; ηÞ ¼
1

ð4πηÞ32 e
−m2η: ð45Þ

The Euclidean heat kernel above gives a divergent con-
tribution for the integral in η present in the zeta function
definition in Eq. (20) and, therefore, should be dropped in
order to obtain a renormalized Casimir energy density.
Moreover, the contribution of the Euclidean heat kernel
(45) for the second term on the rhs of the free energy

density (27) gives the scalar thermal (blackbody) radiation
contribution [17]. As it is known, the latter should be
subtracted providing a finite renormalization for the ther-
mal correction contributions [35,36]. This is necessary if
we want to obtain the correct classical limit at high
temperatures for the free energy density, as we shall
see later.
The subtraction of the Euclidean heat kernel contribution

(45) from (44) allows us to obtain the renormalized heat
kernel for the scalar field, φlðrÞ, under the helix boundary
condition (32), i.e.,

Krenðr; r; ηÞ ¼
e−m

2η

4ðπηÞ32
X∞
n¼1

e−
n2ða2þh2Þ

4η : ð46Þ

Let us now turn to the calculation of the free energy
density defined in Eq. (27). The first term on the rhs gives
the contribution to the Casimir energy density at zero
temperature, and can be obtained by substituting the heat
kernel (46) in (20) for s ¼ − 1

2
. This gives

Eren ¼
1

2
ζ3ðr;−1=2Þ ¼ −

m4

2π2
X∞
n¼1

f2ðmndÞ; ð47Þ

where

fμðxÞ ¼
KμðxÞ
xμ

; ð48Þ

with KμðxÞ being the modified Bessel function of the
second kind, also known as the Macdonald function. The
expression in Eq. (47) for the renormalized Casimir energy
density at zero temperature has been obtained previously by
the authors in Refs. [29–31]. So, our result is consistent
with the one from the latter.
The massless scalar field renormalized Casimir energy

density can be obtained from (47) in the limit of small
arguments for the Macdonald function, i.e., KμðxÞ ≃
ΓðμÞ
2
ð2xÞμ [46,47]. Thus, we have [29–31]

E0
ren ¼ −

π2

90d4
; ð49Þ

where we have used the Riemann zeta function ζð4Þ ¼ π2

90

[20,46,47]. A brief discussion on whether the vacuum
energy density (49) would depend on the choice of the
regularization method can be found on Appendix.
We want now to calculate temperature corrections to the

renormalized Casimir energy densities in Eqs. (47) and (49)
for the massive and massless scalar field cases, respectively.
Before doing that, let us remind that although the Euclidean
heat kernel provides a divergent contribution to the Casimir
energy densities (47) and (49), it gives a finite contribution
to the temperature correction expression on the second term
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on the rhs of Eq. (28). By substituting the Euclidean heat
kernel (45) in the expression for ΔF present in Eq. (28) we
obtain

ΔFE¼−
m4

2π2
X∞
n¼1

f2ðmnβÞ; ΔFE ¼−
π2

90
ðkBTÞ4; ð50Þ

for the massive and massless scalar fields, respectively. The
expression on the rhs of Eq. (50) is the massless scalar
thermal (blackbody) radiation contribution [17]. This term
should be subtracted from ΔF in order to obtain, at high
temperature, the correct classical limit [35,36]. This is in
fact a finite renormalization since the expressions in (50) to
be subtracted are not divergent.
The renormalized temperature correction, ΔF ren, to the

Casimir energy density (47) is calculated by using the
renormalized heat kernel (46). This provides

ΔF ren ¼ −
m4

π2
X∞
j¼1

X∞
n¼1

f2½mβðj2 þ n2γ2Þ12�; ð51Þ

where γ ¼ d
β ¼ kBTd. This expression is exponentially

suppressed for large arguments, βm ≫ 1, of the
Macdonald function, i.e., KμðxÞ ≃

ffiffiffiffi
π
2x

p
e−x [46,47]. This

is in fact the limit of low temperatures, kBT
m ≪ 1, for the

expression in Eq. (51), in accordance with the fact that
the temperature corrections must vanish in this regime. On
the other hand, for small arguments, βm ≪ 1, we obtain the
massless expression from the massive thermal correction
(51), that is,

ΔF ren ¼ −
2

π2
X∞
n¼1

X∞
j¼1

1

ðj2β2 þ n2d2Þ2 : ð52Þ

From Eq. (28), the renormalized free energy density is
written as the sum of Eqs. (47) and (51) for the massive
case. This provides

F ren ¼ −
m4

2π2
X∞
n¼1

f2ðmndÞ

−
m4

π2
X∞
j¼1

X∞
n¼1

f2½mβðj2 þ n2γ2Þ12�: ð53Þ

Again, in the limit of large arguments mβ ≫ 1, the second
term on the rhs is exponentially suppressed so that only the
first term, at zero temperature, survives. Thus we recover
the result obtained in Refs. [29–31].
As to the massless case, the sum of Eqs. (49) and (52) is

written as

F ren ¼ −
π2

90d4
−

2

π2
X∞
n¼1

X∞
j¼1

1

ðj2β2 þ n2d2Þ2 : ð54Þ

The temperature corrections present in the free energy
density expressions (53) and (54), to the best of our
knowledge, are new results obtained for the first time here.
In particular, for the massless case, the free energy

density (54) can be further developed in order to obtain the
limits of high and low temperatures. For this purpose, to
perform the sum in j first in Eq. (53) allows us to obtain the
high-temperature limit of the expression (54) while to
perform the sum in n first allows us to obtain its low-
temperature limit. We shall do this analysis next.

B. High-temperature limit

We wish now to consider the high-temperature limit of
the free energy density (54) for the massless scalar field. In
order to do that, it is convenient to perform first the sum in j
present in (52). This can be done by writing the latter in
terms of the Epstein-Hurwitz zeta function ζEHðs;MÞ,
providing

ΔF ren ¼ −
2

π2β4
X∞
n¼1

ζEHðs; nγÞ; ð55Þ

where γ ¼ d
β and

ζEHðs;MÞ ¼
X∞
k¼1

ðk2 þM2Þ−s: ð56Þ

The Epstein-Hurwitz zeta function above is defined for Re
(s) > 1

2
and M2 ≥ 0 [20]. Note that we recover (54) by

taking the limit s → 2 in Eq. (55). However, before doing
that, let us make use of the following analytic continuation
for (56) [20,37,48]:

ζEHðs;MÞ ¼ −
M−2s

2
þ

ffiffiffi
π

p
2

Γðs − 1=2Þ
ΓðsÞ Mð1−2sÞ

þ 2
3
2
−sπ

1
2M1−2s

ΓðsÞ
X∞
k¼1

fð1=2−sÞð2πkMÞ; ð57Þ

which is valid for other values of s. One should remind that
the function fμðxÞ has been defined, in Eq. (48), in terms of
the Macdonald function KμðxÞ, and ΓðxÞ is the gamma
function. Thereby, by substituting (57) in (55), taking the
limit s → 2 and performing the sum in j, we obtain

ΔF ren¼
π2

90d4
−
kBT
2πd3

ζð3Þ

−
kBT
4πd3

X∞
n¼1

n−3
�
2e−πnγ sinhðπnγÞþ2πnγ

sinh2ðπnγÞ
�
; ð58Þ
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where ζðsÞ is the Riemann zeta function [20]. Furthermore,
By using (58), the free energy density (54) may now be
written as

F ren ¼ −
kBT
2πd3

ζð3Þ

−
kBT
4πd3

X∞
n¼1

n−3
�
2e−πnγ sinhðπnγÞ þ 2πnγ

sinh2ðπnγÞ
�
: ð59Þ

The expression above for the free energy density is more
convenient to provide the high-temperature limit γ ≫ 1 or,
putting in another way, kBTd ≫ 1. In this regime we have

F ren ≃ −
kBT
2πd3

ζð3Þ − 2ðkBTÞ2
d2

e−2πγ; ð60Þ

where the second term on the rhs is exponentially sup-
pressed while the first one is the classical limit, which
dominates, as it should be at high temperatures. We should
note that, had we considered the scalar thermal radiation
contribution in Eq. (50) the free energy density (60), at high
temperatures, would not have given correctly only the

classical limit [35,36]. That is why the free energy density
had to suffer a finite renormalization, by subtracting from it
the term proportional to ðkBTÞ4 coming from the scalar
thermal radiation contribution.
Additional thermodynamics quantities of interest can be

calculated, such as internal energy density and entropy
density. Thus, we firstly consider the calculation of the
internal energy density by making use of Eq. (29) and the
renormalized free energy density (59). With this, we obtain

Uren ¼ −
πðkBTÞ3

d

X∞
n¼1

coshðπnγÞ
n sinh3ðπnγÞ : ð61Þ

Its corresponding high-temperature limit is exponentially
suppressed, that is,

U ren ≃ −
4πðkBTÞ3

d
e−2πγ: ð62Þ

As to the renormalized entropy density, it can be
obtained by substituting the renormalized free energy
density (59) in (30). This gives

Sren ¼
kB
2πd3

ζð3Þ − kB
2πd3

X∞
n¼1

n−3e−nπγ
�
−1 − nπγ þ nπγ cothðnπγÞ½−1þ 2nπγ þ 2nπγ cothðnπγÞ�

sinhðnπγÞ
�
; ð63Þ

which at the high-temperature limit provides the dominant
terms

Sren ≃
kB
2πd3

ζð3Þ − 2πkB
d

ðkBTÞ2e−2πγ: ð64Þ

The high-temperature regime exhibited in the above ex-
pression for the entropy density is dominated by the first
term on the rhs since the second term is exponentially
suppressed.

C. Low-temperature limit

Let us now turn to the low-temperature limit, that is,
kBTd ≪ 1 (γ ≪ 1). In order to obtain expressions in this
regime, analogously with what we have done previously for
the high-temperature limit, we need now to solve first the
sum in n present in Eq. (52). Thereby, by writing the latter
in terms of the Epstein-Hurwitz zeta function ζEHðs;MÞ,
we have

ΔF ren ¼ −
2

π2d4
X∞
j¼1

ζEHðs; j=γÞ: ð65Þ

In the expression above, we can now make use of the
analytic extension (57) for Epstein-Hurwitz zeta function.

After doing that, we take the limit s → 2 and perform the
sum in n. This gives

ΔF ren¼
π2

90
ðkBTÞ4−

ðkBTÞ3
2πd

ζð3Þ

−
ðkBTÞ2
4πd2

X∞
j¼1

j−3
�
2γe−

πj
γ sinhðπj=γÞþ2πj
sinh2ðπj=γÞ

�
; ð66Þ

for the renormalized temperature correction to the Casimir
energy density (49) at zero temperature. Thus, the renor-
malized free energy density (54) becomes

F ren ¼ −
π2

90d4
þ π2

90
ðkBTÞ4 −

ðkBTÞ3
2πd

ζð3Þ

−
ðkBTÞ2
4πd2

X∞
j¼1

j−3
�
2γe−

πj
γ sinhðπj=γÞ þ 2πj
sinh2ðπj=γÞ

�
: ð67Þ

Furthermore, the low-temperature limit of the free energy
density above is shown to have the form

F ren ≃ −
π2

90d4
þ π2

90
ðkBTÞ4 −

ðkBTÞ3
2πd

ζð3Þ

−
2ðkBTÞ3

πd
e−

2π
kBTd; ð68Þ
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which is clearly dominated by the first term on the rhs,
corresponding to the Casimir energy density at zero
temperature. Note also that the last term on the rhs is
exponentially suppressed.

Let us turn now to the calculation of both the renor-
malized internal energy density and entropy density.
The former is obtained by using Eqs. (29) and (67),
providing

U ren ¼−
π2

90d4
−
π2

30
ðkBTÞ4þ

ðkBTÞ3
πd

ζð3ÞþkBT
πd3

X∞
j¼1

j−3e−
jπ
γ

�ðjπþ γÞγþ jπ cothðjπ=γÞ½jπþ γþ jπ cothðjπ=γÞ�
sinhðjπ=γÞ

�
: ð69Þ

Its corresponding low-temperature limit is found to be

U ren ≃ −
π2

90d4
−
π2

30
ðkBTÞ4 þ

ðkBTÞ3
πd

ζð3Þ

þ 2ðkBTÞ3
πd

e−
2π

kBTd: ð70Þ

Once again, the Casimir energy density at zero temperature
is the dominant term on the rhs, as it should be, while the
last term is exponentially suppressed.
Finally, we can now calculate the renormalized entropy

density by using Eqs. (30) and (67). This allows us to
obtain

Sren¼−
2π2kB
45

ðkBTÞ3þ
3kB
2πd

ðkBTÞ2ζð3Þþ
kB
2πd3

X∞
j¼1

j−3e−
jπ
γ

�
3γðjπþγÞþjπcothðjπ=γÞ½2jπþ3γþ2jπcothðjπ=γÞ�

sinhðjπ=γÞ
�
: ð71Þ

Its low-temperature limit also contains an exponentially
suppressed term, similarly to the others quantities, i.e.,

Sren ≃ −
2π2kB
45

ðkBTÞ3 þ
3kB
2πd

ðkBTÞ2ζð3Þ

þ 3kB
πd

ðkBTÞ2e−
2π

kBTd: ð72Þ

One should note that the entropy density associated with
the massless scalar field under a helix boundary condition
vanishes when the temperature goes to zero, in accordance
with the third law of thermodynamics (the Nernst heat
theorem) [35,36,49]. One should also note that although we
have considered the convenient expressions (59), (61) and
(63) to obtain the high-temperature limit and the expres-
sions (67), (69) and (71) to obtain the low-temperature
limit, they are all equivalent but only expressed in different
forms.

D. Pressure and equation of state

Let us now consider the massless scalar field expression
for the renormalized free energy density in Eq. (54) to
calculate the pressure and show that it satisfies an equation
of state. We, then, start by defining the renormalized free
energy from Eq. (54) as

Fren ¼ d3F ren ¼ E0
ren −

2

π2d
fðγÞ; ð73Þ

where V ¼ d3 is considered as being the volume and E0
ren is

the renormalized Casimir energy given by

E0
ren ¼ −

π2

90d
: ð74Þ

Additionally, we define the function fðγÞ as

fðγÞ ¼
X∞
n¼1

X∞
j¼1

�
j2

γ2
þ n2

�−2
: ð75Þ

Consequently, the pressure can be obtained from Eq. (31),
which we can write in the form

Pren ¼ −
∂Fren

∂V ¼ −
1

3d2
∂Fren

∂d : ð76Þ

By substituting the renormalized free energy (73) in the
above equation we have

Pren ¼
1

3
E0
ren −

2

3π2d4
fðγÞ þ 2kBT

3π2d3
∂fðγÞ
∂γ : ð77Þ

Note that this expression is a closed form for the pressure.
We could still go further and perform either the sum in j or
in n present in the function fðγÞ, as we have previously
done, and develop even more the expression in Eq. (77).
However, we want to focus here in showing that the
renormalized pressure obeys an equation of state.
The internal energy density can alternatively be obtained

by using Eqs. (29) and (54), that is,
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U ren ¼ −T2
∂
∂T

�
F ren

T

�

¼ E0
ren −

2

π2d4
fðγÞ þ 2kBT

π2d3
∂fðγÞ
∂γ : ð78Þ

By comparing Eqs. (77) and (78) we can show that

Pren ¼
1

3
U ren; ð79Þ

which is the wanted equation of state.
It is clear that the generalized zeta function method to

calculate the Casimir energy density, as well as its temper-
ature corrections, is an elegant and precise method. The
latter has allowed us to obtain temperature corrections to
the Casimir energy density associated with the scalar field
under a helix boundary condition, along with the high- and
low-temperature limits. Although the Casimir energy den-
sities (47) and (49) have previously been obtained in
Refs. [29–31], their temperature corrections along with
the high- and low-temperature limits for the massless scalar
field case have been obtained, to the best of our knowledge,
for the first time here. We would like to stress that the
importance of conducting the present investigation of
the Casimir effect, with temperature corrections, relies
on the fact that a helix geometry can represent an DNA
structure and cell membrane proteins. Furthermore, the
need for improvements in nano-electromechanical and
micro-electromechanical systems, along with applications
in nanotubes, reinforces the importance of studying,
as a whole, quantum vacuum fluctuation effects of
Casimir-type.

IV. CONCLUSIONS

In this work we have overviewed how the partition
function can be obtained from the path integral for the
scalar field and how it is connected with the generalized
zeta function by means of Eq. (13). By linking the
generalized zeta function with the partition function we
have been able to obtain the closed expressions (26) and
(27) for the free energy and free energy density, respec-
tively. These expressions explicitly show that they are
composed by a term for the zero temperature obtained from
the usual calculations for the vacuum energy, and a term for
temperature corrections—these are important expressions
since experiments are normally performed at a finite
temperature. The equation for the free energy density
has allowed us to obtain regularized thermodynamical
quantities from the partition function such as the free
energy, pressure, entropy and internal energy.
To further our analysis, by making use of the generalized

zeta function method we have considered the nontrivial
topology of the helix boundary condition in a (3þ 1)-
dimensional Euclidean spacetime. We were able to obtain
the renormalized heat kernel (46) and, upon taking the

coincidence limit we could see that it produces a sum with
the n ¼ 0 term corresponding to the Euclidean contribution
(45). When applied to the free energy density at zero
temperature the Euclidean heat kernel produces a divergent
term and for that, it should be subtracted. On the other
hand, for the thermal corrections, the Euclidean heat kernel,
gives a finite contribution to the massive scalar field and the
blackbody radiation contribution for the massless scalar
field [see Eq. (50)]. Although these contributions are finite
we have shown that they should also be subtracted in order
to obtain the correct classical limit at high temperature for
the massless scalar field case and, hence, occurring a finite
renormalization of the free energy density. The renormal-
ization procedure for both the vacuum energy at zero
temperature and for its thermal corrections allowed us to
obtain closed and analytical expressions for the renormal-
ized free energy densities (53) and (54) for the massive and
massless scalar fields, respectively.
We have also shown that the massless free energy density

(54) has a particularity: for asymptotic behaviors with
respect to the temperature, the resulting free energy density
is conveniently expressed to analyze the high- and low-
temperature limits depending on which index of the double
sum is performed first. Hence, by performing first the sum
over j we have been able to obtain the renormalized free
energy density (59) and its high-temperature limit (60).
With this asymptotic expression we have seen that it
provides the correct classical limit, proportional to kBT,
which would not be possible had we considered the
blackbody scalar radiation contribution (54). The thermo-
dynamics quantities, namely, internal energy density (61),
entropy density (63) and their corresponding high-temper-
ature limits (62) and (64) have also been calculated.
On the other hand, by performing first the sum over n in

Eq. (54) we have been able to obtain the renormalized free
energy density (67) and its low-temperature limit (68),
providing that the dominant term is the vacuum energy at
zero temperature. We have also obtained the internal energy
density (69), entropy density (71) and their corresponding
low-temperature limits (70) and (72). These asymptotic
expressions showed that the internal energy density provide
the vacuum energy density at zero temperature as the
dominant term, and that the entropy goes to zero as the
temperature vanishes, in accordance with the third law of
thermodynamics. We have pointed out that Eqs. (59), (61),
(63) and (67), (69), (71) are all equivalent. They are only
expressed in different and convenient forms, in order to
analyze the high- and low-temperature limits.
Moreover, in order to show that the pressure obeys an

equation of state, we have defined the free energy (73) and
calculated the pressure in Eq. (77). With this, it was
straightforward to compare the latter with the internal energy
density expression (78) to obtain the equation of state (79).
It is interesting to note that, as a starting point approxi-

mation, one could use the Casimir energy density (49), at
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zero temperature, to see whether it can significantly induce
genetic mutations on the DNA or RNA. The DNA is
formed by a double sugar-phosphate strand linked to one
another by hydrogen bonds of its nitrogen bases that shapes
the DNA in something like a twisted ladder. For the most
common type of DNA, known as the B-DNA, the pitch of
each single strand structure is approximately 3.4nm con-
taining ten nucleotides with 0.34nm separation and about
2nm distance between each strand [50]. Those are exactly
the length scales where the Casimir effect may play a
significant role. As for the RNA, the single strand length
can vary through a wide range of nucleotide number
[51,52]. Hence, this data can be used to estimate the
Casimir energy density in a cylinder-unit of DNA or
RNA. In order to also estimate the chance of a mutation
to occur as a consequence of the Casimir energy density
(49) a cutoff energy should be adopted. In this sense, the x-
ray radiation energy, which may induce genetic mutations,
can be used for this purpose. Of course, DNA and RNA are
not found in vacuum neither influenced only by the scalar
field vacuum state, since there are other quantum fields that
might influence the results. Also, the environmental var-
iables such as the composition of the cell, organelles and
surrounding structures should be taken into account to see
whether the Casimir effect arising from the helix condition
will be able to significantly induce genetic mutations or not.
However, a simple application of the Casimir energy
density (49), as described initially, can provide a good
first approximation and open news ways to see how we
could take into account other important components which
might influence the occurrence of genetic mutations. This
is in fact, a work in progress.
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APPENDIX: THE CUTOFF METHOD

The zeta function method presented in this paper directly
provides a way of regularize and, consequently, renorm-
alize the vacuum energy density, as seen in the calculation
of Eq. (49), and apparently does not take into account the
energy outside the boundary, that is, the pure Minkowski
spacetime contribution. This happens as a consequence of
the analytical continuation property that the zeta function
possesses [53]. We want now, however, to check whether
the calculation of the vacuum energy density (49) would
depend on the regularization method, as it does, for
instance, on the case of the rectangular box when one
makes use of the cutoff method [14,54]. We will show

below, for the massless scalar field case, that this does not
seem to be the case for the helix boundary condition.
The vacuum energy density, at zero temperature, for the

massless scalar field, in (3þ 1)-dimensional spacetime, can
be calculated by considering the eigenfrequencies (36) as
[9,29–31]

E0¼
1

2h

Z
dkxdkz
ð2πÞ2

X∞
n¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþ

�
kxa
h

−
2πn
h

�
2

þk2z

s
: ðA1Þ

Next, as it is usually done when one uses the cutoff method,
we must introduce in the integral above a damping function

of the form e−δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþðkxah −2πn

h Þ2þk2z
p

, where δ is a regularization
parameter with dimension of length. This is necessary in
order to make both the integral and summation to converge
in Eq. (A1). After introducing the damping function we are
able first to solve the integral and last the sum, leading to
the regularized vacuum energy density

E0ðδÞ ¼
1

πd3δ3ðe2πδ
d − 1Þ3

�
cosh

�
3πδ

d

�
þ sinh

�
3πδ

d

��

×

�
d2 cosh

�
3πδ

d

�
− ðd2 − 4π2δ2Þ cosh

�
πδ

d

�

þ 4πdδ sinh

�
πδ

d

��
; ðA2Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
. Note that the vacuum energy density

should not depend, in principle, on the regularization
parameter δ so that we must take the limit δ → 0 at some
point. However, before taking the limit δ → 0 in the
expression above we must first identify the divergent
contribution by expanding (A2) in series for small values
of δ, that is,

E0ðδÞ ¼
3

2π2δ4
−

π2

90d4
þ 2π4δ2

315d6
þOðδ4Þ: ðA3Þ

We should note that second order terms, or higher, in δ go to
zero as we remove the damping factor (δ → 0). Moreover,
the first term on the rhs of Eq. (A3) is the divergent
contribution and should be removed as we shall show
below. It is in fact the Minkowski contribution, the one
outside the boundary. The second term as we can notice, is
the finite vacuum energy density obtained in Eq. (49).
Let us show that the first term on the rhs of Eq. (A3) is in

fact the Minkowski contribution. Consider then the expres-
sion (A1) but with all continuum momenta [9], i.e.,

E0M ¼ 1

2

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
: ðA4Þ

By adding the correspondent damping function the result
yields
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E0MðδÞ ¼
1

2

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
e−δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2yþk2z

p

¼ 3

2π2δ4
; ðA5Þ

which matches exactly the divergent term present in
Eq. (A3). The formal procedure to obtain the renormalized
vacuum energy density is performed as follows:

E0
ren ¼ lim

δ→0
½E0ðδÞ − E0MðδÞ�: ðA6Þ

Of course, by using Eqs. (A3) and (A5) in the above
expression we correctly obtain the renormalized vacuum
energy density

E0
ren ¼ −

π2

90d4
; ðA7Þ

which is exactly the same as the one obtained by using the
zeta function method in Eq. (49). This shows that at least
when compared to the cutoff method the vacuum energy
density does not show any dependency on the regulariza-
tion method adopted, as it does in Refs. [14,54].
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