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We study the Schwinger process in a uniform non-Abelian electric field using a dynamical approach in
which we evolve an initial quantum state for gluonic excitations. We evaluate the spectral energy density
and number density in the excitations as functions of time. The total energy density has an ultraviolet
divergence which we argue gets tamed due to asymptotic freedom, leading to g4E4t4 growth, where g is the
coupling and E the electric field strength. We also find an infrared divergence in the number density of
excitations whose resolution requires an effect such as confinement.
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I. INTRODUCTION

The Schwinger effect [1], whereby nonperturbative
quantum effects in a background electric field lead to
electron-positron pair production, has received much atten-
tion (for example, see the reviews [2–6]). Heuristically, the
electric field pulls apart the electron-positron pairs that are
fluctuating in and out of the vacuum. For weak electric field
strength E ≪ πm2

e=e, where e and me are the positron’s
electric charge and mass, the Schwinger process can be
thought of as a quantum tunneling event and is exponen-
tially suppressed in the dimensionless combination of
variables πm2

e=eE. The rate of creation of number density
of electrons is

_n ∝ e2E2 expð−πm2
e=eEÞ: ð1Þ

Schwinger’s original computation deals with the proba-
bility of vacuum persistence1 for spin-0 and spin-1/2 matter
fields and has since been generalized to numerous other
systems besides electromagnetism. Pair creation has also
been studied for massless charges, equivalently for super-
critical electric fields ðeE ≫ πm2

eÞ in 1þ 1 dimensions
[8,9] and graphene [10–12]. In these cases, the exponential
suppression of the original Schwinger effect is not present,
and other techniques have to be employed as pair creation is
no longer a tunneling process that is exponentially sup-
pressed. For example, the massless Schwinger model can
be solved completely, including backreaction on the

electric field, and results in a 1=
ffiffi
t

p
decay of the electric

field strength [8].
In the present workwe are interested in non-Abelian gauge

theory in the background of a homogeneous (color) electric
fieldand theconsequentSchwingerpair creationof“gluons”.2

Theprocesshasbeen investigatedbeforeusingeffectiveaction
techniques to calculate vacuum persistence amplitudes
[13–22] with the result that there is a constant rate of particle
numberdensityproduction,stillgivenby(1)withme ¼ 0.The
result is surprising to us since the Schwinger process can be
viewed as a tunneling process and one might expect that the
Wentzel-Kramers-Brillioun(WKB)[23,24]andotherapprox-
imations used to obtain (1) would break down for massless
gauge fields.For this reasonwewish to reexamine theproblem
using a different approach.
We take a dynamical approach to the problem. (For a

kinetic approach to QED, see [25–30].) At the initial time,
we consider a color electric field background and quantum
excitations in their noninteracting ground state. We then
evolve the system just as one would do for small quantum
excitations in a time-dependent background. We use the
method of Bogoliubov transformations [31,32], recast as a
“classical-quantum correspondence” (CQC) whereby
quantum evolution is described in terms of the classical
evolution of a related classical system [33–36]. The method
is explained in Appendix. Our approach simply evolves an
initial state in contrast to other methods that compute
(noninteracting) vacuum persistence amplitudes.
Our results indeed differ from (1) withme set to zero. We

find that the energy density in excitations, E, grows with
time as E ∝ g4E4t4 where g is the non-Abelian coupling
constant (see also [37,38]). We also examine the number
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1For a nice account on the relation between the vacuum
persistence probability and rate of pair creation see [7].

2We will refer to the model as “pure QCD” even though we
will consider the simpler SU(2) gauge group. The “pure” means
that we will only consider gauge fields and not include any other
fields.
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density of particles in the leading adiabatic approximation
[39] and find that it is not well defined as there is a zero
frequency mode at all times for which the particle number
density diverges. The total number density, found by
integrating over all excitation modes, also diverges.
In Sec. II we set up the basic framework, identifying the

background field and the small excitations. Here we also
discuss some limitations of our setup. Sec. III diagonalizes
the Hamiltonian by expanding the quantum fields in modes.
We find it convenient to discretize the modes for numerical
analysis (Sec. IV). The quantum analysis is reduced to a
classical analysis in Sec. V, following which we numeri-
cally evaluate the spectral energy density and the total
energy in quantum excitations as a function of time in
Sec. VI. The number density of quantum excitations is
discussed in Sec. VII and shown to diverge for all times due
to the presence of a zero-frequency mode. Section VIII
briefly considers the case of adiabatically turning on the
external field. We conclude in Sec. IX.

II. SETUP

We will consider a pure SUð2Þ gauge theory with
Lagrangian density,

L ¼ −
1

4
ðWa

μνÞ2; a ¼ 1; 2; 3 ð2Þ

with the field strength defined in the usual way

Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ gϵabcWb

μWc
ν: ð3Þ

We have to make certain approximations to proceed with
our analysis. Our main approximation is that we expand the
fields about a fixed background electric field to quadratic
order in the Lagrangian and ignore higher-order
interactions.
Let us write

Wa
μ ¼ Aa

μ þQa
μ; ð4Þ

where Aa
μ is a classical background and Qa

μ denotes
quantum excitations on top of the classical background.
We will work in temporal gauge, so Wa

0 ¼ 0, and take

Aa
μ ¼ −AðtÞδa3δμ3: ð5Þ

Then there is an externally imposed classical electric field
but no magnetic field,

Ea
i ¼ −∂tAa

i ¼ _AðtÞδa3δi3; Ba
i ¼ 0: ð6Þ

Wewill evolve the quantum variables,Qa
i , assuming that

they are in their noninteracting ground state at t ¼ 0. We
insert (4) in (2), then use the background (5), and expand to
quadratic order in the Qa

μ to obtain,

L ¼ 1

2
ð _Q1

i Þ2 −
1

4
ð∂iQ1

j − ∂jQ1
i − gAðQ2

i δ
3
j − δ3i Q

2
jÞÞ2

þ 1

2
ð _Q2

i Þ2 −
1

4
ð∂iQ2

j − ∂jQ2
i þ gAðQ1

i δ
3
j − δ3i Q

1
jÞÞ2

þ 1

2
ð _Q3

3 − _AÞ2 − 1

4
ð∂iQ3

j − ∂jQ3
i Þ2 þOððQa

i Þ3Þ: ð7Þ

The classical electric field is externally imposed, i.e., there
are external sources that produce and maintain the electric
field E3

3 which is assumed to be constant. Therefore, we
take3

AðtÞ ¼ Et; _A ¼ E: ð8Þ

Then the variables Q3
i decouple from the other quantum

variables. We can calculate the rate of particle production in
a fixed external field by considering the truncated
Lagrangian,

L0 ¼ 1

2
ð _Q1

i Þ2 þ
1

2
ð _Q2

i Þ2 −
1

4
ðQ1

ijÞ2 −
1

4
ðQ2

ijÞ2 ð9Þ

where,

Q1
ij ≡ ∂iQ1

j − ∂jQ1
i − gEtðQ2

i δ
3
j − δ3i Q

2
jÞ;

Q2
ij ≡ ∂iQ2

j − ∂jQ2
i þ gEtðQ1

i δ
3
j − δ3i Q

1
jÞ: ð10Þ

At this level of approximation, the Q1
i and Q2

i fluctuations
do not backreact on the background electric field. The
backreaction will only appear due to the cubic and higher
order terms in the Qa

i in (7).
We will expand the excitations in momentum modes in

the next section. There are quantum issues at both ends of
the spectrum. For modes with low energy, the coupling
constant is strong and confinement should play a role. The
lowest energy excitations will be massive glueballs, not
massless gluons.4 Modes with very high energy are in the
regime of asymptotic freedom as the coupling constant
becomes small. Inclusion of these effects in our calcula-
tions is beyond our reach and we shall proceed based on (9)
as if it is the full story and see if there are any incon-
sistencies. Indeed we will encounter two inconsistencies in
this approach. In Sec. VI Awe will encounter an ultraviolet
divergence that we argue will be resolved by properly
accounting for asymptotic freedom. We will also encounter
a divergence in the number density of excitations at low
energy at all times whose interpretation will change
radically once we take confinement into account.

3We will also consider an adiabatically turned on and off
electric field in Sec. VIII.

4Indeed the assumed background uniform electric field itself
ignores confinement. The spirit of the present work is that we
work as if there is no confinement and study the consequences.
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III. EXPANSION IN MODES

In this section we expand the fields in modes and
diagonalize the Lagrangian. The calculations are straight-
forward if tedious; the end result for the diagonalized
Lagrangian is given in (34) and (35).
The gauge fields are expanded in the physical transverse

modes as

Q1
μ ¼

Z
đ3pffiffiffiffiffiffiffiffi
2Ep

p X3
r¼0

½arpϵrp;μeip·x þ H:c:�; ð11Þ

where đ3p≡ d3p=ð2πÞ3, Ep ¼ jpj, and the reality of Q1

implies ar�p ¼ ar−p. Similarly,

Q2
μ ¼

Z
đ3pffiffiffiffiffiffiffiffi
2Ep

p X3
r¼0

½brpϵrp;μeip·x þ H:c:� ð12Þ

with br�p ¼ br−p.
The magnetic fields are

ðB1Þi ¼
1

2
ϵijkQ1

jk ¼ ∇ ×Q1 − gEtQ2 × ẑ; ð13Þ

ðB2Þi ¼
1

2
ϵijkQ2

jk ¼ ∇ ×Q2 þ gEtQ1 × ẑ : ð14Þ

Therefore

B1 ¼
Z

đ3pffiffiffiffiffiffiffiffi
2Ep

p X3
r¼0

½ðarpipþ gEtbrpẑÞ × ϵrpeip·x þ H:c:�

≡
Z

đ3pffiffiffiffiffiffiffiffi
2Ep

p X3
r¼0

½arpeip·x þ H:c:�; ð15Þ

where arp ≡ ðarpipþ gEtbrpẑÞ × ϵrp, and

B2 ¼
Z

đ3pffiffiffiffiffiffiffiffi
2Ep

p X3
r¼0

½ðbrpip − gEtarpẑÞ × ϵrpeip·x þ H:c:�

≡
Z

đ3pffiffiffiffiffiffiffiffi
2Ep

p X3
r¼0

½br
peip·x þ H:c:�; ð16Þ

where br
p ≡ ðbrpip − gEtarpẑÞ × ϵrp.

These expressions give

EB1≡1

2

Z
d3xðB1Þ2¼

Z
đ3p
2Ep

X3
r;s¼0

½arp ·as†p þH:c:�: ð17Þ

Note that there are two polarizations and fϵ̂1p; ϵ̂2p; p̂g form a
right-handed orthonormal basis. For example,

ϵ̂1p ¼ ð− cos θ cosϕ;− cos θ sinϕ; sin θÞ; ð18Þ

ϵ̂2p ¼ ð− sinϕ; cosϕ; 0Þ; ð19Þ

p̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ: ð20Þ

We check

ðp × ϵ̂rpÞ · ðp × ϵ̂spÞ ¼ p2δrs ð21Þ

ðẑ × ϵ̂rpÞ · ðp × ϵ̂spÞ ¼ pzδ
rs ¼ p cos θδrs ð22Þ

ðẑ × ϵ̂rpÞ · ðẑ × ϵ̂spÞ ¼ δrs − ðϵ̂rp · ẑÞðϵ̂sp · ẑÞ ð23Þ

and with the choice of vectors in (18)–(20),

ðϵ̂rp · ẑÞðϵ̂sp · ẑÞ ¼ sin2 θδr1δs1: ð24Þ

Therefore

EB1 ¼
Z

đ3p
Ep

X2
r¼1

½p2jarpj2 þ g2E2t2jbrpj2ð1 − sin2 θδr1Þ

− igEtpzðar†p brp − arpb
r†
p Þ�: ð25Þ

Similarly

EB2 ¼
Z

đ3p
Ep

X2
r¼1

½p2jbrpj2 þ g2E2t2jarpj2ð1 − sin2 θδr1Þ

− igEtpzðar†p brp − arpb
r†
p Þ�: ð26Þ

EB1þ2 ¼ EB1 þ EB2

¼
Z

đ3p
Ep

½ðp2 þ g2E2t2 cos2 θÞðja1pj2 þ jb1pj2Þ

− i2gEtp cos θða1†p b1p − a1pb
1†
p Þ

þ ðp2 þ g2E2t2Þðja2pj2 þ jb2pj2Þ
− i2gEtp cos θða2†p b2p − a2pb

2†
p Þ�: ð27Þ

Next let

arp ¼ αrp þ iβrp; brp ¼ γrp þ iδrp; ð28Þ

where αrp, βrp, γrp and δrp are real. The reality conditions,
ar�p ¼ ar−p and br�p ¼ br−p, imply

αrp ¼ αr−p; βrp ¼ −βr−p; γrp ¼ γr−p;

δrp ¼ −δr−p: ð29Þ

For convenience, define

P ¼ gEt; Pz ¼ P cos θ: ð30Þ

Then
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EB1þ2 ¼
Z

đ3p
Ep

½ðp2 þ P2
zÞfðα1pÞ2 þ ðδ1pÞ2g þ 4pPzα

1
pδ

1
p

þ ðp2 þ P2
zÞfðβ1pÞ2 þ ðγ1pÞ2g − 4pPzβ

1
pγ

1
p

þ ðp2 þ P2Þfðα2pÞ2 þ ðδ2pÞ2g þ 4pPzα
2
pδ

2
p

þ ðp2 þ P2Þfðβ2pÞ2 þ ðγ2pÞ2g − 4pPzβ
2
pγ

2
p�:

The energy has separated into four disjoint sectors:
ðα1p; δ1pÞ, ðβ1p; γ1pÞ, ðα2p; δ2pÞ, and ðα2p; δ2pÞ. The ðα1p; δ1pÞ sector
is equivalent to the ðβ1p; γ1pÞ sector under Pz → −Pz which
is the same as g → −g. Similarly for the ðα2p; δ2pÞ and
ðβ2p; γ2pÞ sectors. The ðα1p; δ1pÞ and ðα2p; δ2pÞ sectors look very
similar but they differ in their first terms; the former has Pz
while the latter has P.
The energy in the electric field is

EE1þ2 ¼
1

2

Z
d3x½ð∂tW1Þ2 þ ð∂tW2Þ2�

¼
Z

đ3p
Ep

X2
r¼1

½ð _αrpÞ2 þ ð _βrpÞ2 þ ð_γrpÞ2 þ ð_δrpÞ2�;

and we only need to solve for the dynamics of the two
quantum systems,

L1 ¼
Z

đ3p
Ep

½ð _α1pÞ2 þ ð_δ1pÞ2 − ðp2 þ P2
zÞfðα1pÞ2 þ ðδ1pÞ2g

− 4pPzα
1
pδ

1
p�; ð31Þ

L2 ¼
Z

đ3p
Ep

½ð _α2pÞ2 þ ð_δ2pÞ2 − ðp2 þ P2Þfðα2pÞ2 þ ðδ2pÞ2g

− 4pPzα
2
pδ

2
p�: ð32Þ

As noted above, the Lagrangians for ðβrp; γrpÞ are related to
L1 and L2 by g → −g. Also recall that there is time-
dependence in these Lagrangians because Pz and P grow in
proportion to t as defined in (30).
The Lagrangians can be diagonalized by using linear

combinations

ϕp;� ¼ α1p � δ1pffiffiffi
2

p ; ψp;� ¼ α2p � δ2pffiffiffi
2

p : ð33Þ

Then

L1 ¼
Z

đ3p
Ep

½ _ϕ2
p;þ − ðpþ PzÞ2ϕ2

p;þ

þ _ϕ2
p;− − ðp − PzÞ2ϕ2

p;−�; ð34Þ

L2 ¼
Z

đ3p
Ep

½ _ψ2
p;þ − fðpz þ PÞ2 þ p2⊥gψ2

p;þ

þ _ψ2
p;− − fðpz − PÞ2 þ p2⊥gψ2

p;−�; ð35Þ

where P ¼ gEt, p⊥ ¼ p sin θ, and pz ¼ p cos θ.

Similarly, we can easily write down L3 and L4 for the
ðβrp; γrpÞ sector since these are related to L1 and L2 by
g → −g. The full Lagrangian is given by the sum
of L1;…; L4.

IV. DISCRETIZATION

We now discretize the integrations in (34) and (35). For
example,

L1 ¼
X
p

ðΔpÞ3
Ep

½ _ϕ2
p;þ − ðpþ PzÞ2ϕ2

p;þ

þ _ϕ2
p;− − ðp − PzÞ2ϕ2

p;−� ¼
X
p

L1p ð36Þ

and similarly for L2. The volume element in momentum
space is

ðΔpÞ3 ¼
�
2π

L

�
3

¼ ð2πÞ3
V

; ð37Þ

where L is the size of the (compactified) spatial domain
and V is its volume. The Hamiltonian for each mode
can now be written as that for a simple harmonic
oscillator

H1p ¼ π2pþ
2mp

þmp

2
ðpþ PzÞ2jϕpþj2

þ π2p−
2mp

þmp

2
ðp − PzÞ2jϕp−j2; ð38Þ

H2p ¼ Π2
pþ

2mp
þmp

2
fðpz þ PÞ2 þ p2⊥gjψpþj2

þΠ2
p−

2mp
þmp

2
fðpz − PÞ2 þ p2⊥gjψp−j2; ð39Þ

where πp� and Πp� are conjugate momenta to ϕp� and
ψp�, and

mp ¼ 2
ðΔpÞ3
Ep

¼ 2

p

�
2π

L

�
3

: ð40Þ

Note that mp has dimensions of mass squared (not mass).
As noted at the end of Sec. III, we will also haveH3p and

H4p corresponding to the ðβrp; γrpÞ sector.
The Hamiltonians in (38) and (39) are those of simple

harmonic oscillators with time-dependent frequencies,

ωϕ;p;� ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� PzÞ2

q
; ð41Þ

ωψ ;p;� ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz � PÞ2 þ p2⊥

q
: ð42Þ
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Theþ signs in the prefactor are to emphasize that we are
taking the positive square root. The structure of the
frequencies is easy to understand because the pz � P
follows from the covariant derivative acting on the
excitations. The different forms of ωϕ;p;� and ωψ ;p;� arise
since the variables ϕp;� are associated with ϵ̂r¼1

p , while
ψp;� are associated with ϵ̂r¼2

p .
An important point for us is that there are certain modes

for which the frequency vanishes. For example, ωϕ;p;− ¼
jp − Pzj and, at any time, the frequency vanishes for
p ¼ Pz ¼ gEt cos θ. (Similarly for ωψ ;p;−.) The frequencies
ωϕ;p;þ and ωψ ;p;þ do not vanish for t > 0. We will return to
this point in our discussion of the particle number density in
Sec. VII.

V. CLASSICAL-QUANTUM CORRESPONDENCE

To obtain particle production of the fields ϕp;�, ψp;� we
will use the CQC. (See Appendix for a summary of the
CQC.) Then the variables ϕp;� and ψp;� are complexified
and we solve the classical equations of motion

ϕ̈p;� þ ðPz � pÞ2ϕp;� ¼ 0 ð43Þ

ψ̈p;� þ fðP� pzÞ2 þ p2⊥gψp;� ¼ 0 ð44Þ

with initial conditions,

ϕp;�ðt ¼ 0Þ ¼ −
iffiffiffiffiffiffiffiffiffiffiffiffi

2mpp
p ¼ ψp;�ðt ¼ 0Þ ð45Þ

_ϕp;�ðt ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffi
p

2mp

r
¼ _ψp;�ðt ¼ 0Þ: ð46Þ

[Note that the simple harmonic oscillator frequencies at
t ¼ 0 are simply p because Pðt ¼ 0Þ ¼ 0.] Using (40) we
write

ϕp;�ð0Þ ¼ −
i
2

�
L
2π

�
3=2

¼ ψp;�ð0Þ; ð47Þ

_ϕp;�ð0Þ ¼
p
2

�
L
2π

�
3=2

¼ _ψp;�ð0Þ: ð48Þ

To calculate the energy density in excitations, we simply
need to evaluate the classical energy in the complexified
ϕp;� and ψp;� as we describe next.

VI. ENERGY DENSITY PRODUCTION

The energy in the complexified variables ϕp;� ψp;�
follows from (34) and (35)

E1 ¼
Z

đ3p
Ep

½j _ϕp;þj2 þ ðpþ PzÞ2jϕp;þj2

þ j _ϕp;−j2 þ ðp − PzÞ2jϕp;−j2�; ð49Þ

E2 ¼
Z

đ3p
Ep

½j _ψp;þj2 þ fðpz þ PÞ2 þ p2⊥gjψp;þj2

þ j _ψp;−j2 þ fðpz − PÞ2 þ p2⊥gjψp;−j2�: ð50Þ

The energies in the ðβrp; γrpÞ sector give identical expres-
sions and wewill include these in the end in the total energy
by multiplying by a factor of two.
The energy expressions in (49) and (50) include the

ground state energy—the ω=2 of the simple harmonic
oscillator—whereas we are interested in the energy of the
excitations only. As described in Appendix, the ground
state energy can be discarded by writing the energies as

∶E1 ≔
Z

đ3p
Ep

½j _ϕp;þ − iωϕ;p;þϕp;þj2

þ j _ϕp;− − iωϕ;p;−ϕp;−j2�; ð51Þ

∶E2 ≔
Z

đ3p
Ep

½j _ψp;þ − iωψ ;p;þψp;þj2

þ j _ψp;− − iωψ ;p;−ψp;−j2�: ð52Þ

The total energy in the excitations is

∶E≔2ð∶E1∶þ∶E2∶Þ¼8π

Z
∞

0

dpp
Z

1

0

du

× ½j _ϕp;þ− iωϕ;p;þϕp;þj2þj _ϕp;−− iωϕ;p;−ϕp;−j2
þj _ψp;þ− iωψ ;p;þψp;þj2þj _ψp;−− iωψ ;p;−ψp;−j2�; ð53Þ

where the factor of two in the first line accounts for the
excitations in the ðβrp; γrpÞ sector, u≡ cos θ, and we have
used the symmetry under u → −u to restrict u to the
interval [0, 1]. We remark that the expressions occurring in
the integrands of (51) and (52), such as _ϕp;þ − iωϕ;p;þϕp;þ,
are the usual Bogolyubov β coefficients up to a factor of
1=

ffiffiffiffi
ω

p
, where ω stands for the frequency.

Now all that is required is to solve the equations of
motion in (43) and (44), insert the solutions in the energy
expressions above, and perform the integrations. The first
step is formally accomplished since the solutions to the
equations of motion can be written in terms of parabolic
cylindrical functions. However, we have found it more
practical to solve the differential equations numerically
followed by numerical integration.

A. Numerical evaluation of the energy

We have numerically solved the differential equations
in (43) and (44) for u ∈ ½0; 1� and p ∈ ½0; pc� where
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pc ≫ gEt is a momentum cutoff. As we solve the differ-
ential equations, we also numerically evaluate the energy in
(53). In the numerical computations we choose units so
that gE ¼ 1.
We define the spectral energy density, ρðp; tÞ, via

∶ E ∶
L3

¼
Z

∞

0

dpρðp; tÞ; ð54Þ

or explicitly,

ρðpÞ ¼ 8πp
L3

Z
1

0

du
X
s¼�

½j _ϕp;s − iωϕ;p;sϕp;sj2

þ j _ψp;s − iωψ ;p;sψp;sj2�: ð55Þ

In Fig. 1 we plot the spectral energy density rescaled by
t−3, i.e., t−3ρðp; tÞ, as a function of p=t at three different
times. It is clear that the peak of the spectrum ρ grows as t3

and the width grows as t, implying that the total energy in
excitations grows as t4.
The linear growth of the width of ρðp; tÞ follows from the

form of the oscillation frequencies in (41) and (42). For
very large values of p, the time dependence of the
frequencies can be ignored. Then the solutions for ϕp;�
and ψp;� are simply trigonometric functions for which
there is no contribution to the energy. Hence there is no
particle production for p ≫ gEt; there is only particle
production for p≲ gEt and so the width in p contributing
to particle production grows linearly in t. To understand the
growth of the peak of ρðp; tÞ that goes as t3, we note that
the peak is located at p ≈ gEt=2. Thus the p prefactor in
(55) contributes one factor of t. In the integrand, the initial
conditions for the variables _ϕp;� and _ψp;� are proportional
to p as in (48) and since the p that contributes to the energy
integral grows proportional to t, and the variables enter
quadratically in the energy integral, the peak of the spectral
energy density grows as t3.

The t4 growth of the total energy density is further
confirmed in Fig. 2 where we plot the total energy density
divided by t4 vs time.
To obtain the total energy density, ∶E∶, we have

integrated over p ∈ ½0; pc� where pc ≫ gEt is a cutoff.
To study the dependence of our result on the cutoff, we
zoom into the large p behavior of ρðp; tÞ, shown in Fig. 3.
This gives ρðp; tÞ ∝ 1=p at large p and the total energy
diverges logarithmically as the cutoff pc is taken to infinity.
However this ultraviolet divergence will be controlled once
asymptotic freedom is taken into account. To see this in
more detail, note that ρðp; tÞ in Fig. 1 has a dominant peak
structure followed by the 1=p falloff, which after integra-
tion over p, lead to an asymptotic contribution to the energy
density given by g4 logðpc=MÞ, where M is a renormaliza-
tion scale. However the asymptotic value of the coupling
constant at the cut-off scale evolves from its value gM at the
renormalization scale as [40]

10 20 30 40
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15

20

25

30

35

FIG. 1. ρðx; tÞðtf=tÞ3 vs x ¼ pðtf=tÞ for tf ¼ 20 and
t ¼ tf=2; 2tf=3, and tf. There are three curves in the plot but
they all overlap. The peak in ρðp; tÞ is located at p ≈ gEt=2.
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FIG. 2. Energy density rescaled by t4, ∶ E ∶=ðL3t4Þ, vs time in
the ϕ excitations (blue curve), ψ excitations (red curve), and in
total (black curve). The flat curves at late times confirm that
∶ E ∶ ∝ t4 as also indicated in Fig. 1.
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FIG. 3. Log-log plot showing the asymptotic behavior of
ρðp; tÞ vs p for t ¼ 2tf=3 with tf ¼ 20. The dashed line shows
a 1=p falloff.
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g2 ¼ g2M
1þ g2M logðpc=MÞ ; ð56Þ

implying,

lim
pc→∞

g4 logðpc=MÞ → 0: ð57Þ

Hence the 1=p tail contribution to the integration vanishes
in the pc → ∞ limit once we take the running of g2, i.e.,
asymptotic freedom, into account.

VII. NUMBER DENSITY PRODUCTION

The number density of produced particles, n, is ambigu-
ous at intermediate times though there is no ambiguity in
the infinite time limit if the electric field is switched off
[39]. Here we adopt the definition that the number density
is given by the energy density for each mode divided by the
frequency of that mode. Then using (53) we have

n ¼ 8π

Z
∞

0

dpp
Z

1

0

du
X
s¼�

�j _ϕp;s − iωϕ;p;sϕp;sj2
ωϕ;p;s

þ j _ψp;s − iωψ ;p;sψp;sj2
ωψ ;p;s

�
: ð58Þ

The expressions for the frequencies are given in (41) and
(42). The issue is that at any given time there is a
momentum mode for which the frequency vanishes.
Thus the integrand in (58) is singular at all times.
To determine if the singularity is integrable, we focus our

attention on the ϕp;− sector for which the number density is

nϕ;− ¼ 8π

Z
∞

0

dpp
Z

1

0

du
j _ϕp;− − ijp − gEtujϕp;−j2

jp − gEtuj :

ð59Þ

First consider the numerator of the integrand. For p ¼ gEtu
it is simply j _ϕp;−j2. Nonvanishing energy in the ϕp;−

excitations implies that j _ϕp;−j2 ≠ 0. So the singularity
structure of the integral is

nϕ;− ¼ 8πhpj _ϕp;−j2i
Z

∞

0

dq
Z

1

0

du
1

jq − uj ; ð60Þ

where q≡ p=gEt and h·i denotes an effective value along
the singular curve, p ¼ gEtu (or q ¼ u), in the integration
plane. By transforming integration variables to x� ¼ q� u
it is clear that the integral is logarithmically divergent due
to the singularity along x− ¼ 0.
We note that the divergence in particle number density

arises at low energy where the frequencies vanish. It is
worth emphasizing that this is a particular behavior of the
massless theory and will not be present in massive cases

such as QED. In the full interacting theory we can expect
this infrared divergence to be resolved due to confinement
effects. At such low frequencies, the “soft” gluons are
confined and are only present in massive glueball states. In
our analysis, as discussed in Sec. II, we are examining
where the road goes when we ignore confinement effects. It
is interesting that the calculation without confinement leads
to a divergent number density of excitations, suggesting a
self-inconsistency.

VIII. ADIABATIC CASE

Often in the Bogoliubov method, the background is
taken to turn on adiabatically, survive for a certain time
period, and then slowly turn off. Then the asymptotic vacua
are unambiguously defined and the total energy density of
particles produced is evaluated at t → ∞.
We have also treated the adiabatic case. Now our choice

for AðtÞ is

AðtÞ ¼ Eτ

�
tanh

�
t − tE
τ

�
− tanh

�
−tE
τ

��
; ð61Þ

where tE is some large time at which the electric field is
maximum and τ is the duration for which the field is turned
on. The electric field is given by

_A ¼ Esech2
�
t − tE
τ

�
: ð62Þ

Our analysis from the previous sections remains unchanged
except that the frequencies in (63) and (64) now become

ωϕ;p;� ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� gAðtÞuÞ2

q
; ð63Þ

ωψ ;p;� ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz � gAðtÞÞ2 þ p2⊥

q
: ð64Þ

We have repeated the numerical analysis in this case and
show the results for the energy density versus τ in Fig. 4.
Once again we find ∶E∶ ∝ τ4.

2 5 10 20

1

10

100

1000

104

Energy density

FIG. 4. Log-log plot of ∶E∶ vs τ for the adiabatic case.
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We can also consider the number density of particles in
the adiabatic case. From Eq. (63) we see that the mode with
p ¼ gAð∞Þu has vanishing frequency ωϕ;p;− as t → ∞.
Similarly the mode with pz ¼ gAð∞Þ, p⊥ ¼ 0 has vanish-
ing frequency ωψ ;p;− as t → ∞. Therefore the singularity
discussed in Sec. VII is present even with the short duration
electric field of (62).

IX. CONCLUSIONS

We have considered the fate of a uniform color electric
field in a pure gauge Yang-Mills theory with SU(2) gauge
group.5 Our approach assumes initial conditions with a
uniform electric field and quantum excitations in their
noninteracting ground state. We then truncate the excita-
tions to quadratic order in the action and evolve the system
using the CQC.
We find that there is rapid particle (gluon) production for

which we are able to characterize the energy spectrum and
its time dependence as shown in Fig. 1. Production occurs
for modes in a range p ∈ ½0; gEt� with peak production at
p ≈ gEt=2. The amount of energy produced in an interval
dp grows as t3. We can understand this growth in terms of
phase space factors that give one power of t, and the square
of the amplitude of vacuum fluctuations that are propor-
tional to p2, and hence grow as t2. The t4 dependence we
find is in sharp contrast to usual Schwinger pair production,
as in (1), for which the energy grows linearly with time.
However, in contrast to the usual Schwinger pair produc-
tions of massive particles, gauge excitations are massless
and this may be sufficient to explain the different produc-
tion rates.
To the order in which we perform our calculations, the

coupling constant does not run with energy scale. However,
we encounter an ultraviolet divergence in our calculation of
the energy produced in excitations. We have argued that the
divergence would get controlled if we were to properly
account for the running of the coupling constant at high
energies (asymptotic freedom). In calculating the particle
number density we also encounter an infrared divergence
that we argue will be absent in the confining theory. In other
words, if we ignore confinement, our analysis implies that
the particle number density diverges, which we interpret as
an indication of a lack of self-consistency of the unconfined
assumption.
Our analysis leaves open several directions of interest

such as the backreaction of particle production on the
background color electric field. If we simply use energy
conservation as a guide, the background electric field has an
energy density proportional toE2 whereas the energy density
in excitations grows as g4E4t4. Equating these two gives the
decay time for the electric field to be τ ∼ ðg ffiffiffiffi

E
p Þ−1.

However, we cannot exclude the possibility that the electric
field will be antiscreened as argued for non-Abelian gauge
theories (see for example Sec. 16.7 of [40]), in which case
the electric field strength would actually increase with time.
We hope to investigate this issue by a more detailed analysis
in the future.
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APPENDIX: CLASSICAL-QUANTUM
CORRESPONDENCE

The CQC is equivalent to the Bogoliubov transformation
method for calculating particle production in the case of a
time-dependent but spatially-homogeneous background.
Once the model is discretized, each mode is equivalent
to a simple harmonic oscillator as in Sec. IV. So we only
need to demonstrate the method for a simple harmonic
oscillator.
Consider the Hamiltonian for a simple harmonic oscil-

lator of mass m—which can also be time dependent in the
general case—with an arbitrary time dependent frequency
ωðtÞ,

H ¼ p2

2m
þm

2
ω2ðtÞx2: ðA1Þ

Then the quantum operators x and p can be written as

x ¼ z�a0 þ za†0; p ¼ mð_z�a0 þ _za†0Þ; ðA2Þ
where a0 and a†0 are the initial annihilation and creation
operators defined in terms of the initial-position operator x0
and momentum operator p0,

a0 ¼
p0 − imω0x0ffiffiffiffiffiffiffiffiffiffiffiffi

2mω0

p ; a†0 ¼
p0 þ imω0x0ffiffiffiffiffiffiffiffiffiffiffiffi

2mω0

p ; ðA3Þ

where ω0 is the frequency at the initial time, and zðtÞ is a
complex-valued c-number function of time. Using the
Heisenberg equations for x and p we find that zðtÞ must
satisfy

̈zþ ω2z ¼ 0: ðA4Þ
The initial conditions follow from the above relations and
are

z0 ¼
−iffiffiffiffiffiffiffiffiffiffiffiffi
2mω0

p ; _z0 ¼
ffiffiffiffiffiffiffi
ω0

2m

r
: ðA5Þ5The gauge group is not important for our analysis since

SU(N) models have SU(2) subgroups.
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The Wronskian is constant and fixed by the initial con-
ditions,

mðz� _z − z_z�Þ ¼ i: ðA6Þ

Other quantum operators can be rewritten in terms of
zðtÞ, x0 and p0. Expectation values are written entirely in
terms of zðtÞ. In particular, the energy is

hHi ¼ 1

2
mj_zj2 þ 1

2
mω2jzj2: ðA7Þ

This can also be written as

hHi ¼ m
2
j_z − iωzj2 − i

2
mωðz� _z − z_z�Þ: ðA8Þ

The second term is the Wronskian and hence is a constant
determined by the initial conditions. In the quantum simple
harmonic oscillator this term corresponds to the ground
state energy ω=2. So the energy in the excitations is given
by

∶E ≔
m
2
j_z − iωzj2; ðA9Þ

which is what we use in (51) and (52).
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