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We find the response function and the transition rate for an Unruh-DeWitt detector interacting with a
conformal scalar field in global two-dimensional anti–de Sitter (AdS) spacetime with different boundary
conditions at its conformal infinities. We calculate the particle energy spectrum as seen by subcritical
accelerated detectors and discuss how it depends on the choice of the boundary condition. We show that,
despite this nontrivial dependence on the boundary conditions, the limit when the AdS length scale tends to
zero is well defined and leads to the well-known results of 1þ 1 Minkowski space. One can thus interpret
the AdS energy scale as a natural regulator for the well-known infrared ambiguity of massless scalar fields
in 1þ 1 Minkowski spacetime.
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I. INTRODUCTION

The theory of quantum fields in curved spacetime
provides a well-established prescription for the quantiza-
tion of fields propagating in a classical background
provided by general relativity. In this context, the spacetime
(a solution of the Einstein equations) is treated classically,
while the field propagating in this background is quantized
neglecting the possible effects of backreaction.
In this setup, the concept of particles does not have a

universal meaning, being an observer-dependent concept
[1]. In particular, as stated by Unruh in Ref. [2], the
observation of particles by a particle detector depends on its
state of motion. Since the Minkowski spacetime is max-
imally symmetric, we usually choose the Poincaré invariant
state, j0i, defined by

ak⃗j0i ¼ 0; ∀ k⃗; ð1Þ

as a “natural” vacuum. Here, the field ϕðxÞ is expanded in
terms of Minkowski plane wave modes uk⃗ðxÞ as

ϕðxÞ ¼
X
k⃗

½ak⃗uk⃗ðxÞ þ a†
k⃗
u�
k⃗
ðxÞ�: ð2Þ

It follows that this j0i describes the same vacuum state for
every inertial observer.

Anti–de Sitter (AdS) spacetime is maximally symmetric
as well, having the highest possible degree of symmetries.
Inspired by the above construction, perhaps one could
assume to be straightforward to define an AdS invariant
vacuum state jΨi that would be common to all inertial
observers. However, there is a crucial difference between
Minkowski spacetime and AdS spacetime. AdS spacetime
is not globally hyperbolic and the evolution of fields in this
background is not uniquely defined given the initial data on
any of its spacelike surfaces. In fact, AdS spacetime has a
conformal timelike boundary, where boundary conditions
must be imposed on the fields in order for them to have a
well-defined evolution.
In this paper, we adopt Wald and Ishibashi’s prescription

for the evolution of fields in nonglobally hyperbolic
spacetimes [3–5]. In this setup, the possible sensible
dynamics for the Klein-Gordon field are in one-to-one
correspondence with the positive self-adjoint extensions of
the spatial part of the wave operator. Parametrizing the self-
adjoint extensions by β, the field can be expanded in terms
of the normal modes uβ

k⃗
satisfying the boundary condition

associated with β as

ϕβðxÞ ¼
X
k⃗

½aβ
k⃗
uβ
k⃗
ðxÞ þ aβ†

k⃗
uβ�
k⃗
ðxÞ�: ð3Þ

Once we define the vacuum state j0iβ by

aβ
k⃗
j0iβ ¼ 0; ∀ k⃗; ð4Þ
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it will depend explicitly on β and may even be no longer
AdS invariant [6,7].
We work for simplicity on global AdS2, whose metric is

given by

ds2 ¼ L2

cos2 ρ
ð−dt2 þ dρ2Þ: ð5Þ

We investigate the response function and the transition rate
of a detector following trajectories with constant ρ, which
correspond to inertial (ρ ¼ 0) and uniformly accelerated
(ρ ≠ 0) motion in AdS2. As shown in Refs. [8,9], there is a
threshold for this acceleration above which the temperature
measured by the detector is well defined. In what follows,
we study accelerated observers below this threshold, so that
no thermal spectrum is seen by the particle detector. After
studying the detector’s response in AdS2, we carefully
analyze its L → ∞ limit and relate it to the response of
inertial detectors in Minkowski space.
It is well known that a massless scalar field in

Minkowski spacetime is infrared (IR) divergent. This
divergence can be controlled by an IR cutoff m0 [10],
which introduces an ambiguity in the Wightman function
and hence in the detector’s response function. Nevertheless,
it can be shown that it is possible to extract a physical result
(independent of m0) for the transition rate by considering
ad hoc regularization methods (see, e.g., Ref. [11]). One of
the aims of this work is to show that AdS2 works as a
natural regulator for 1þ 1 Minkowski spacetime. In fact,
we show that the inverse length 1=L is closely related tom0

irrespective of the choice of boundary conditions in AdS
spacetime. It is interesting to note that by considering the
1þ 1 Minkowski spacetime under this kind of limiting
procedure, the arbitrary UV regulator ϵ > 0 is also irrel-
evant. In this way, both the IR and UV divergences are dealt
with at once by this procedure, which may be summarized
by “get the transition rate for AdS2 and take the L → ∞
limit.”
This paper is organized as follows: In Sec. II, we briefly

review a few concepts about Unruh-DeWitt detectors in
curved spacetimes. In particular, we rederive the response
function for the massless scalar field in 1þ 1 Minkowski
spacetime for the casewhen the detector is abruptly switched
on and off. In Sec. III, we motivate our choices for the
boundary conditions at the conformal boundaries in AdS2.
In Sec. IV, we derive expressions for the field modes and
Wightman function for each one of these choices. SectionsV
and VI present the main results of the paper, wherein we
calculate the response function and the transition rates in
AdS2 and consider theirL → ∞ limit. In Sec. VII, we unveil
the relation between1=L andm0 anddiscuss how this throws
light on the results of the previous sections. Finally, in
Sec. VIII we present our main conclusions.

II. RESPONSE FUNCTION AND TRANSITION
RATE IN 1+ 1 MINKOWSKI SPACETIME

It is well known that the response function for the Unruh-
DeWitt detector in a general curved spacetime is given by [1]

F ðΩÞ ¼ lim
ϵ→0þ

Z
∞

−∞
dτ

Z
∞

−∞
dτ0e−iΩðτ−τ0Þ

× χðτÞχðτ0ÞWϵðxðτÞ; xðτ0ÞÞ; ð6Þ

where Ω ¼ Ef − Ei is the energy gap between the initial
and final states of the detector, xðτÞ is the detector’s
trajectory as a function of proper time, χðτÞ is the switching
function (which effectively turns the detector on and off),
and Wϵðx; x0Þ ¼ h0jϕðxÞϕðx0Þj0i is the Green-Wightman
function with the standard regularization t → t − iϵ.
The response function given by Eq. (6) is essentially
determined by the Wightman function along the detector’s
trajectory and the switching function. When the Wightman
function is invariant under time translation, i.e., when
WϵðxðτÞ; xðτ0ÞÞ ¼ WϵðΔτÞ (the case of interest in this
paper), it is useful to make a change of coordinates from
(τ; τ0) to (u, s), with u ≔ τ, s ≔ τ − τ0 when τ0 < τ, and
u ≔ τ0, s ≔ τ0 − τ when τ < τ0. This leads to

F ðΩÞ ¼ 2 lim
ϵ→0þ

Z
∞

−∞
du

Z
∞

0

dsχðuÞχðu − sÞ

× Re½e−iΩsWϵðsÞ�: ð7Þ

An abrupt switching function given by χðτÞ ¼
Θðτ − T0ÞΘðT − τÞ represents a detector that is turned
on at time T0 and read at time T. The response function
in this case is given by

F TðΩÞ ¼ 2 lim
ϵ→0þ

Z
T

T0

du
Z

u−T0

0

dsRe½e−iΩsWϵðsÞ�: ð8Þ

The instantaneous transition rate _F TðΩÞ is defined as the
derivative of F TðΩÞ with respect to T and represents the
number of clicks of the detector per unit time. It can be
written as

_F TðΩÞ ¼ 2 lim
ϵ→0þ

Z
T−T0

0

dsRe½e−iΩsWϵðsÞ�: ð9Þ

The choice of the switching function has of course a
nontrivial effect on F ðΩÞ. In a d-dimensional spacetime
with d ≥ 4, an abrupt switching is known to lead to a
divergent response function [12–14]. However, for
3 ≤ d < 6, one can extract physically meaningful transition
rates by (first) carefully removing the UV ϵ > 0 regulator
while maintaining a continuous switching function and
(then) taking the sharp switching limit [13]. For d ¼ 2 the
logarithmic behavior of the Wightman function makes the
integrals (8) and (9) converge so that the UV regularization
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may be forgone (more on this below). There is an important
caveat for d ¼ 2, though. The massless field is IR divergent
and some other type of regularization procedure may be
necessary, as we discuss next. Finally, to overcome possible
transient effects due to the switching on process, it might be
interesting to take T0 → −∞.
We now review some standard results for a massless

scalar field in 1þ 1 Minkowski spacetime. In this case,
the Wightman function for a detector on an inertial path
reads [10]

WMink
ϵ ðΔtÞ ¼ −

1

2π
ln ½m0ðϵþ iΔtÞ�; ð10Þ

where ϵ > 0 is an UV regularization parameter andm0 > 0
is an IR frequency cutoff, which is required for massless
fields. It is easy to show that

je−iΩs ln ½m0ðϵþ iΔtÞ�j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ln ðm0sÞ�2 þ

�
π

2

�
2

s
; ð11Þ

and that the right-hand side of this equation is integrable.
Hence, the limit ϵ → 0þ can be taken under the integral
sign by dominated convergence and, by substituting
Eq. (10) into Eq. (8), we have

FMink
T ðΩÞ ¼ −

Z
T

T0

du
Z

u−T0

0

ds
�
1

2
sin ðΩsÞ

þ 1

π
cos ðΩsÞ ln ðm0sÞ

�
: ð12Þ

Integrating the above expression yields

FMink
T ðΩÞ¼ 1

2πΩ2
f2γ−2þ2ΔTΩSiðΔTΩÞ

−2CiðΔTΩÞ−πΔTΩþπ sinðΔTΩÞ
þ2 lnðm−1

0 ΩÞþ2cosðΔTΩÞ½1þ lnðm0ΔTÞ�g;
ð13Þ

with ΔT≡T−T0, Cið−jxjÞ≡ iπ þ CiðjxjÞ, and lnð−jxjÞ≡
iπ þ ln jxj. SiðxÞ and CiðxÞ are the sine integral and cosine
integral functions, respectively. Equation (13) has an
ambiguity given by the infrared regulator m0. However,

the average rate of transition RMink
T ðΩÞ≡ FMink

T ðΩÞ
ΔT is mean-

ingful in the limit ΔT → ∞ and is given by

RMinkðΩÞ≡ lim
ΔT→∞

FMink
T ðΩÞ
ΔT

¼ −
1

Ω
Θð−ΩÞ: ð14Þ

One can also obtain the same result for _F TðΩÞ using Eq. (9)
in the limit T0 → −∞ by inserting an exponential cutoff
e−s=δ in place of the sharp switching limit [11]. If one takes

the limit m0 → 0 first and then δ → ∞, the ambiguity due
to m0 is eliminated and Eq. (14) is recovered.

III. BOUNDARY CONDITIONS AND
CONFORMAL FIELDS IN AdS2

As discussed in the Introduction, AdS spacetime is a
nonglobally hyperbolic spacetime: when solving the wave
equation, its solutions are not fully determined by the initial
data. The evolution of a classical wave in AdS spacetime
depends crucially on the exchange of information with the
conformal boundary, which can be modeled by an appro-
priate boundary condition for the field.
Here we follow Wald’s approach [3–5] to tackle this

problem. In this setup, the possible dynamics of a classical
field are in one-to-one correspondencewith the positive self-
adjoint extensions of the spatial part of the wave operator.
Although this is not the only possible prescription, it
provides a very reasonable dynamics respecting causality,
time translation/time reflection invariance, and (what ismost
important) a conserved energy functional [4]. Moreover, the
positivity of the self-adjoint extensions imply stability, with
no generic solutions growing unboundedly in time, and the
quantization process is straightforward.
The two-dimensional AdS spacetime differs from its

higher-dimensional counterparts in that it possesses two
disconnected boundaries. A conformal scalar field propa-
gating in global AdS2 thus behaves like a free field in a box.
It can be shown that, in this case, there are an infinite
number of self-adjoint extensions to this problem para-
metrized by Uð2Þ [15]. In what follows, we will consider
two classes of boundary conditions representing positive
self-adjoint extensions: (i) the first class is given by the
most commonly used Robin boundary conditions; (ii) in the
second class, we (effectively) close the spatial sections by
imposing that the wave function at the two boundaries
differs only by a phase. These two classes illustrate our
main points with relatively simple calculations.
The metric of global AdS2 is given by

ds2 ¼ L2

cos2 ρ
ð−dt2 þ dρ2Þ; ð15Þ

where L is the radius of the hyperboloid, see Fig. 1 (we are
actually considering here the universal covering of AdS2,
with −∞ < t < ∞ and −π=2 < ρ < π=2). We restrict
ourselves to a conformal scalar field propagating in global
AdS2, i.e., a massless minimally coupled field respecting
the Klein-Gordon equation

∂2ϕðt; ρÞ
∂ρ2 ¼ ∂2ϕðt; ρÞ

∂t2 ; −π=2 < ρ < π=2: ð16Þ

This makes it evident that appropriate boundary conditions
are required at ρ ¼ �π=2.
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We are interested in uniformly accelerated trajectories in
AdS2 given by constant ρ ¼ ρ0 in these coordinates,

xðτÞ ¼
�
τ cos ρ0

L
; ρ0

�
; ð17Þ

with a subcritical acceleration [9]

a2 ¼ aμaμ ¼
sin2ρ0
L2

; −π=2 < ρ0 < π=2: ð18Þ

The trajectory given by ρ0 ¼ 0 is inertial, while the
trajectories represented by ρ ≠ 0 are accelerated. It is worth
noting that both the acceleration and curvature scalar
approaches zero when L → ∞, the last of which as

R ¼ −2L−2: ð19Þ

IV. WIGHTMAN FUNCTIONS

Here we consider the Wightman functions associated
with the two classes of boundary conditions described
above.

A. Robin boundary conditions

Robin boundary conditions at both end points are
given by

ϕðt;−π=2Þ − β1
∂ϕðt; ρÞ

∂ρ
����
ρ¼−π=2

¼ 0;

ϕðt; π=2Þ þ β2
∂ϕðt; ρÞ

∂ρ
����
ρ¼π=2

¼ 0; ð20Þ

withβ1;β2 ∈R.We choose, for simplicity, β1 ¼ β2 ¼ β ≥ 0,
which makes the spatial operator

A ¼ −
∂2

∂ρ2 ð21Þ

positive and the system stable [16]. The positive frequency
solutions in this case are then given by

uβωn ¼
sin ½ωnðρþ π

2
Þ� þ βωn cos ½ωnðρþ π

2
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πωn þ 2βωn þ πβ2ω3
n

p e−iωnt; ð22Þ

where ωn is the nth positive root of the equation

sin ðπωÞ þ βω½2 cos ðπωÞ − βω sin ðπωÞ� ¼ 0: ð23Þ

Figure 2 shows the first roots of Eq. (23) for β ¼ 1.
We note that the first root, ω0, tends to zero as β → ∞.

This illustrates the fact that the Neumann boundary con-
dition has a zero mode [17], which breaks time translation
invariance. Since this invariance will be essential in what
follows, we will not deal with this case. On the other hand,
for n ≫ 1, we have ωn ∼ n. Notice that the scale parameter
L does not appear in Eq. (22), since we are dealing with a
conformal field. In this way, both the Robin parameter β
and the roots ωn are dimensionless.

1. The AdS invariant β= 0 (Dirichlet) case

Since the roots ωn satisfy a transcendental equation, a
closed form for the Wightman function,

Wϵðt; ρ; t0; ρ0Þ ¼
X
j

ujðt − iϵ; ρÞu�jðt0; ρ0Þ; ð24Þ

is only available when β ¼ 0, which corresponds to
Dirichlet boundary conditions. We find in this case

uβ¼0
n ¼ sin ½nðρþ π

2
�Þffiffiffiffiffiffi

πn
p e−int; n ¼ 1; 2; 3;…; ð25Þ

with the associated Wightman function given by

0 2 4 6 8 10
−4

−2

0

2

4

FIG. 2. The roots of Eq. (23) are given by the intersection of the
curve fðωÞ ¼ tan ðπωÞ (dashed curve) and gðωÞ ¼ 2βω

β2ω2−1 (solid
curve). The figure illustrates the case of β ¼ 1.

FIG. 1. A hyperboloid representing AdS2 embedded in flat
(1þ 2)-dimensional space. Time t flows round the neck. The
spatial variable ρ goes from −π=2 to π=2, with the throat located
at ρ ¼ 0, where the radius is least and given by L. The uniformly
accelerated trajectories considered in the text correspond
to ρ ¼ ρ0 ¼ const.
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Wβ¼0
ϵ ðt;ρ; t0;ρ0Þ

¼ 1

4π
ln

�ð1þe−iðΔt−Δþρ−iϵÞÞð1þe−iðΔtþΔþρ−iϵÞÞ
ð1−e−iðΔtþΔρ−iϵÞÞð1−e−iðΔt−Δρ−iϵÞÞ

	
; ð26Þ

where Δρ≡ ρ − ρ0 and Δþρ≡ ρþ ρ0.
It is worth noting that the (Dirichlet) vacuum is then AdS

invariant [6] and that Wβ¼0 is only a function of the
geodesic distance s, given by

cosh

�
s
L

�
¼ 1þ s2e

2L2
; ð27Þ

with s2e ¼ 2L2ðcosΔt − cosΔρÞ sec ρ sec ρ0 [18].

B. Pseudoperiodic boundary conditions

These are given by

ϕðt; π=2Þ ¼ eiθϕðt;−π=2Þ;
∂ϕðt; ρÞ

∂ρ
����
ρ¼π=2

¼ eiθ
∂ϕðt; ρÞ

∂ρ
����
ρ¼−π=2

: ð28Þ

Within this class of boundary conditions, there is a net flux of
information between the end points, as if they were con-
nected like a ring. It can be shown that the self-adjoint
extensions in this case are labeled by the phase difference
θ ∈ ½0; 2πÞ. The cases θ ¼ 0 and θ ¼ π correspond to
periodic and antiperiodic boundary conditions, respectively.
For θ ≠ 0; π, the complete set of orthonormal modes

satisfying Eqs. (16) and (28) is given by [19]

uθnðt; ρÞ ¼
exp ½ið2nþ θ

πÞðρþ π
2
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4nπ þ 2θ
p

× exp

�
−i
�
2nþ θ

π

�
t

	
; n ¼ 0; 1; 2;…;

vθnðt; ρÞ ¼
exp ½−ið2n − θ

πÞðρþ π
2
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4nπ − 2θ
p

× exp

�
−i
�
2n −

θ

π

�
t

	
; n ¼ 1; 2; 3;… ð29Þ

and their complex conjugate. With respect to the timelike
Killing field ∂=∂t, uθn and vθn are positive frequency modes
with energies 2nþ θ

π and 2n − θ
π, respectively.

For θ ¼ 0 and θ ¼ π, the spectrum degenerates and the
positive frequency modes are given by

uθ¼0
n ðt;ρÞ¼ exp½2inðρþ π

2
Þ�ffiffiffiffiffiffi

2π
p ffiffiffiffiffiffiffiffi

2jnjp
×exp½−2ijnjt�; n¼�1;�2;�3;…;

uθ¼π
n ðt;ρÞ¼ exp½ð2nþ1Þiðρþ π

2
Þ�ffiffiffiffiffiffi

2π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2nþ1jp

×exp½−jð2nþ1Þjit�; n¼0;�1;�2;…: ð30Þ

A closed form for the Wightman functions for θ ≠ 0; π
can be obtained by the usual representation of the hyper-
geometric function as a Gauss series [20]. This leads to

Wθ
ϵðt;ρ; t0;ρ0Þ

¼ e−
iθðΔt−Δρ−iϵÞ

π

2θ 2F1

�
1;

θ

2π
;1þ θ

2π
;e−2iðΔt−Δρ−iϵÞ

�

þ e−
ið2π−θÞðΔtþΔρ−iϵÞ

π

2ð2π− θÞ 2F1

�
1;1−

θ

2π
; 2−

θ

2π
;e−2iðΔtþΔρ−iϵÞ

�
:

ð31Þ

For the case θ ¼ 0; π, the sum (30) yields [using the
expansions of ln ð1þ zÞ and arctanhðzÞ as Taylor series for
jzj < 1]

Wθ¼0
ϵ ðt; ρ; t0; ρ0Þ

¼ −
ln½1 − e−2iðΔt−Δρ−iϵÞ� þ ln½1 − e−2iðΔtþΔρ−iϵÞ�

4π
;

Wθ¼π
ϵ ðt; ρ; t0; ρ0Þ

¼ arctanh½e−iðΔt−Δρ−iϵÞ� þ arctanh½e−iðΔtþΔρ−iϵÞ�
2π

: ð32Þ

The manifest time dependence only through Δt ¼ t − t0

shows that the vacua defined by the modes uθnðt; ρÞ are
invariant under time translation given by the Killing field
∂=∂t. Moreover, even though ∂=∂ρ is not a Killing field,
the Wightman functions are only sensitive to Δρ ¼ ρ − ρ0,
which reflects the fact that the conformal field is propa-
gating effectively on a ring for this choice of boundary
conditions.

V. RESPONSE OF THE DETECTOR IN AdS2

We proceed to calculate the response function and
transition rate associated with the classes of boundary
conditions considered above.

A. Dirichlet boundary conditions

We start with the Dirichlet boundary condition, for
which there is no net flux of energy through the conformal
boundaries, so that the system spacetimeþ scalar field is
isolated.
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To find the response function, we make use of the
Wightman function given by Eq. (26). Expanding lnð1� zÞ
as a Taylor series around z ¼ 0, the discrete character of the
energy spectrum becomes manifest. It is worth noting
how the ϵ > 0 prescription is crucial here, as the Taylor
series diverges at z ¼ −1 [for lnð1þ zÞ] and z ¼ 1 [for
lnð1 − zÞ]. It follows from Eq. (8) that

F β¼0
T ðΩÞ ¼ lim

ϵ→0þ

X∞
k¼1

2

Z
T

T0

du
Z

u−T0

0

dse−ϵk

×
½1þ ð−1Þkþ1 cosð2kρ0Þ� cos½sðΩþ k cos ρ0

L Þ�
2πk

¼ lim
ϵ→0

�X∞
k¼1

e−ϵk
2½1þ ð−1Þkþ1 cosð2kρ0Þ�

πk

×
sin½ðT−T0Þ

2
ðΩþ k cos ρ0

L Þ�2
ðΩþ k cos ρ0

L Þ2
�
: ð33Þ

This series converges uniformly so that we can interchange
the infinite sum and the ϵ → 0þ limit. As a result, the e−ϵk

term can be set to 1 and we get

F β¼0
T ðΩÞ

¼
X∞
k¼1

2½1þð−1Þkþ1 cos ð2kρ0Þ� sin ½ðT−T0Þ
2

ðΩþ kcosρ0
L Þ�2

πkðΩþ kcosρ0
L Þ2 :

ð34Þ

We see that F β¼0
T ðΩÞ is not defined in the limit

T0 → −∞, which is not a surprise as this also happens
in Minkowski spacetime. To deal with interactions on an
infinite proper time interval and eliminate transient effects,
we consider, as usual, the limit T0 → −∞ in the transition
rate _F β¼0

T ðΩÞ. It follows from Eq. (9) that (in the ϵ → 0þ
limit)

_F β¼0
T ðΩÞ

¼
X∞
k¼1

½1þð−1Þkþ1 cosð2kρ0Þ� sin ½ðT −T0ÞðΩþ kcosρ0
L Þ�

πkðΩþ kcosρ0
L Þ :

ð35Þ

Now the limit T0 → −∞ is well defined and

_F β¼0ðΩÞ ¼ lim
T→∞

_F β¼0
T ðΩÞ

¼
X∞
k¼1

1þ ð−1Þkþ1 cosð2kρ0Þ
k

δ

�
Ωþ k

cos ρ0
L

�
;

ð36Þ

where we have used the identity

lim
a→∞

sin ax
πx

¼ δðxÞ ð37Þ

for the Dirac delta function.
Equation (36) shows that the transition rate is nonzero

only when Ω < 0. This corresponds to the case when the
final energy Ef of the detector is lower than its initial
energy Ei. In other words, there is deexcitation of the
detector, which emits a particle with energy jΩj so that
the field becomes excited. On the other hand, since the
transition rate vanishes for Ω > 0, the detector is never
excited by the field. We emphasize here that this behavior
happens because we are working in the subcritical regime;
this would not be the case for supercritical accelerated
detectors for which a thermal response is expected [9]. In
summary, when Ω ¼ −k cos ρ0=L, k ¼ 1; 2; 3;…, the
detector has a nontrivial probability of spontaneously
emitting a particle with energy k cos ρ0=L.
For the inertial trajectory, given by ρ0 ¼ 0, Eq. (36) reads

_F β¼0ðΩÞ ¼
X∞
k¼0

2

2kþ 1
δ

�
Ωþ ð2kþ 1Þ

L

�
; ð38Þ

which means that the detector is only allowed to decay by
the exchange of an odd energy excitation. A similar
calculation shows that, even if the field is initially in an
excited state j2ki, k ¼ 1; 2;…, it will never excite the
detector. This illustrates how subtle the particle concept is
in curved spacetimes. By adopting the point of view that a
particle is what a detector detects, we see that there is an
infinite number of (even energy) excitations of the field that
evade detection as particles by this inertial observer.
We suspect that this unexpected behavior reflects the fact

that the even energy modes in Eq. (25) violate parity, which
is clearly a symmetry for the inertial detector configuration
in AdS2. Since the Dirichlet vacuum is AdS invariant, every
pointlike inertial observer will be unable to exchange even
energy excitations with the field. Given that parity may be
violated by spatially extended detectors following a generic
timelike geodesic, it would be very interesting to analyze
whether an arbitrary inertial observer will be able to “see”
these missing excitations. We leave this analysis for a
future work.

B. The β > 0 case

For a generic Robin boundary condition parametrized by
β > 0, we can solve Eqs. (8) and (9) by considering the
Wightman function as a sum of modes. The transition
probability and response rate then become

PITELLI, FELIPE, and MOSNA PHYS. REV. D 104, 045008 (2021)

045008-6



F β
TðΩÞ ¼

X∞
n¼0

4fsin ½ωnðρ0 þ π
2
Þ� þ βωn cos ½ωnðρ0 þ π

2
Þ�g2 sin ½ðT−T0Þ

2
ðΩþ ωn cos ρ0

L Þ�2
ðπωn þ 2βωn þ πβ2ω3

nÞðΩþ ωn cos ρ0
L Þ2 ð39Þ

and

_F βðΩÞ ¼
X∞
n¼0

2πfsin ½ωnðρ0 þ π
2
Þ� þ βωn cos ½ωnðρ0 þ π

2
Þ�g2

πωn þ 2βωn þ πβ2ω3
n

δ

�
Ωþ ωn cos ρ0

L

�
: ð40Þ

We see that, in this case, deexcitation of the detector can
only happen when

Ω ¼ −
ωn cos ρ0

L
; ð41Þ

where ωn satisfies Eq. (23).

C. Pseudoperiodic boundary conditions

For the pseudoperiodic boundary conditions, we can
expand the hypergeometric functions as Taylor series (or,
equivalently, use the sum of modes form for the Wightman
function) in Eqs. (31) and (32). After substituting these
expressions in Eqs. (8) and (9), we arrive at

F θ
TðΩÞ ¼

X∞
k¼0

2

π

�
sin2½ðT−T0Þ

2
ðΩþ 2kþ2−θ

π
L cos ρ0Þ�

ð2kþ 2 − θ
πÞðΩþ 2kþ2−θ

π
L cos ρ0Þ2

þ sin2½ðT−T0Þ
2

ðΩþ 2kþθ
π

L cos ρ0Þ�
ð2kþ θ

πÞðΩþ 2kþθ
π

L cos ρ0Þ2
�

ð42Þ

and

_F θðΩÞ ¼
X∞
k¼0

�
1

2kþ 2 − θ
π

δ

�
Ωþ ð2kþ 2 − θ

πÞ cos ρ0
L

�
þ 1

2kþ θ
π

δ

�
Ωþ ð2kþ θ

πÞ cos ρ0
L

�	
: ð43Þ

Once again, an initially excited detector may emit a
particle, whose energy spectrum can now be found analyti-
cally. We immediately see that this is given by jΩj ¼
ð2kþθ

πÞ cos ρ0
L and jΩj¼ð2kþ2−θ

πÞcosρ0
L , k ¼ 0; 1; 2;…, in this case.

It is worth noting that Eqs. (40) and (43) unequivocally
show the nontrivial dependence of the deexcitation energies
with the boundary condition of the field.

VI. THE L → ∞ LIMIT

We proceed to show that the results of the previous
section reproduce the well-known transition rate of
Minkowski spacetime when L → ∞, irrespective of our
choice of boundary conditions. The significance of this
result is then analyzed in the next section.

A. Dirichlet boundary conditions

By splitting Eq. (36) into two sums, of odd and even
terms, respectively, we get

_F β¼0ðΩÞ¼
X∞
k¼0

2cos2 ðð2kþ1Þρ0Þ
2kþ1

δ

�
Ωþð2kþ1Þcosρ0

L

�

þ
X∞
k¼1

2sin2 ð2kρ0Þ
2k

δ

�
Ωþ2k

cosρ0
L

�
: ð44Þ

We define u≡ ð2kþ 1Þ cos ρ0L and v≡ 2k cos ρ0
L in the first

and second lines of Eq. (44), respectively. This yields

1 ¼ Δk ¼ Δu
L

2 cos ρ0
;

1 ¼ Δk ¼ Δv
L

2 cos ρ0
; ð45Þ

so that

_F β¼0ðΩÞ ¼
X∞

u¼cosρ0=L

LΔu
cosρ0

cos2ð uL
cosρ0

Þ
uL=cosρ0

δðΩþuÞ

þ
X∞

v¼cosρ0=ð2LÞ

LΔv
cosρ0

sin2ð vL
cosρ0

Þ
vL=cosρ0

δðΩþvÞ: ð46Þ

In the L → ∞ limit, each sum with steps Δu and Δv turns
into an integral in u and v, respectively. Combining the
integrals, we get, as a result,

_F β¼0ðΩÞ ¼
Z

∞

0

δðΩþ ωÞ
ω

dω ¼ −
1

Ω
Θð−ΩÞ: ð47Þ

This is precisely the transition rate for an inertial detector in
Minkowski spacetime (14).
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B. Robin boundary conditions

Unfortunately, the calculation above is not easily gen-
eralizable for a Robin boundary condition parametrized by
β > 0. However, we show next by a semianalytical pro-
cedure that the same result as before holds here.
By integrating _F βðΩÞ given by Eq. (39) from Ω < 0 to

Ω ¼ 0, we obtain the step function fðΩÞ given by

fðΩÞ ¼
Z

0

Ω
_F βðΩ̃ÞdΩ̃

¼
Xb −ΩL
cosρ0

c

ω¼ω0

2πfsin ½ωnðρ0 þ π
2
Þ� þ βωn cos ½ωnðρ0 þ π

2
Þ�g2

πωn þ 2βωn þ πβ2ω3
n

;

ð48Þ
where bxc is the floor function and ωn can be obtained
numerically from Eq. (23). When ΩL ≫ 1, the heights and
widths of each step tend to zero so that fðΩÞ can be
approximated by a continuous function f̃ðΩÞ. We numeri-
cally show in Fig. 3 that this continuous function is actually
given by

fðΩÞ∼ f̃ðΩÞ¼ ln

�
−LΩ
cosρ0

�
þ constant; ΩL≫ 1; ð49Þ

where the constant in the above equation depends on β, L,
and ρ0, but not on Ω.
Moreover, fðΩÞ is clearly zero for Ω > 0 from

the previous section, since there is no spontaneous exci-
tation. By taking the derivative of f̃ðΩÞ, we recover the
transition rate for an inertial detector in 1þ 1 Minkowski
spacetime,

_F βðΩÞ ¼ −
1

Ω
Θð−ΩÞ: ð50Þ

C. Pseudoperiodic boundary conditions

Proceeding by analogy with the Dirichlet case, we define

u≡ ð2kþ2−θ
πÞ

L cos ρ0 and v≡ ð2kþθ
πÞ

L cos ρ0. This yields again
Eqs. (45) which, when substituted into Eq. (43), leads to

_F θðΩÞ ¼
X∞

u¼ð2−θ
πÞ

cos ρ0
L

LΔu
2 cos ρ0

cos ρ0
uL

δðΩþ uÞ

þ
X∞

v¼θ
π
cos ρ0
L

LΔv
2 cos ρ0

cos ρ0
vL

δðΩþ vÞ: ð51Þ

As a result, the limit L → ∞ once again yields

_F θðΩÞ ¼
Z

∞

0

δðΩþ ωÞ
ω

dω ¼ −
1

Ω
Θð−ΩÞ: ð52Þ

VII. AdS SPACETIME AS A NATURAL
INFRARED REGULATOR

It is well known that the calculation of the Wightman
function for the massless scalar field in 1þ 1 Minkowski
spacetime suffers from an inherent infrared ambiguity. As
we briefly reviewed in Sec. II, the response rate for the
Unruh-DeWitt detector in this case can only be calculated
by means of an arbitrary infrared frequency cutoff m0. On
the other hand, we have seen in the previous section that the
conformal scalar field in AdS2 is free from this ambiguity
and recovers the Minkowski result in the limit of L → ∞. It
must be the case, then, that the energy scale 1=L is
effectively playing the role of m0 as an infrared regulator.
We show next that this is indeed the case and that, apart
from some numerical factors depending on the specific set
of boundary conditions for AdS2, 1=L acts exactly the same
way as m0 to that end.
In order to simplify our analysis, we henceforth take

T0 ¼ −T (this choice does not affect our results sincewe are
only considering translationally invariant configurations).

A. Dirichlet boundary condition

Restoring the units in Δt and ϵ by writing Δt ¼
Δτ cos ρ0=L and ϵ ¼ ϵ̄ cos ρ0=L in Eq. (26), and consid-
ering the Δτ=L → 0 limit, we have the following expan-
sions for the arguments of the logarithms in Eq. (26):

1� e−iðΔt−Δþρ−iϵÞ

∼ 1� e−2iρ0
�
1þ iΔτ cos ρ0

L
−
ϵ̄ cos ρ0

L

�
;

1� e−iðΔt−Δρ−iϵÞ

∼ 1�
�
1þ iΔτ cos ρ0

L
−
ϵ̄ cos ρ0

L

�
: ð53Þ

Since the Wightman function has the form

=1

=5
=10

0 50 100 150 200
0

2

4

6

8

FIG. 3. Comparison between the values of the step function
fðΩÞ given by Eq. (48) and the continuous function f̃ðΩÞ (solid
curves) for ρ0 ¼ π=4 and β ¼ 1, 5, 10. The constant term in
Eq. (49) was numerically found by fitting f̃ðΩÞ to fðΩÞ.
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Wβ¼0
ϵ ¼−

1

2π
ln

�½1þe−iðΔt−Δþρ−iϵÞ�½1−e−iðΔtþΔþρ−iϵÞ�
½1þe−iðΔt−Δρ−iϵÞ�½1−e−iðΔtþΔρ−iϵÞ�

�−1
2

;

ð54Þ

we have

Wβ¼0
ϵ ∼ −

ln ½ 1
2L ðϵ̄þ iΔτÞ�

2π
: ð55Þ

Comparing the above equation with Eq. (10), we conclude
that

m0 ∼
1

2L
; ð56Þ

i.e., 1=2L plays, in this context, the exact same role as the
infrared frequency cutoff m0. Notice that this regulator is
independent of the value of ρ0.
To further check this result, we numerically consider the

case of finite time in Fig. 5(a), where we plot F β¼0
T ðΩÞ

given by Eq. (35) and FM
T ðΩÞ given by Eq. (13), with

2T ¼ 2π and L ¼ 200 ≫ 2T.

B. Robin boundary condition

For generic Robin boundary conditions, we do not have
the Wightman function in closed form. This makes the
procedure above impracticable. However, we can still find
the relationship between m0 and 1=L by resorting to
numerics. For each value of ρ0 and β, we define
m0ðρ0; βÞ ¼ 1

gðρ0;βÞL. We then find gðρ0; βÞ by fitting the

truncated sum in Eq. (39) with the Minkowski response
function given by Eq. (13). In Fig. 4, we plotted gðρ0; βÞ as
a function of β for several values of ρ0. Notice that in all
cases gðρ0; βÞ → 2 as β → 0, as expected by Eq. (56). We
also note that gðρ0; βÞ grows faster when we are closer to
the conformal boundary ρ0 ¼ π=2.

As an example, we choose β ¼ 1 and ρ0 ¼ π=4. The sum
(39) produces the continuous curve in Fig. 5(b). We see that
the Minkowski response function (dashed curve) given by
Eq. (13) adjusts very well to these points when m0 is
given by

m0 ∼
1

4.3L
: ð57Þ

0 1 2 3 4 5
0

10

20

30

40

FIG. 4. The plot shows gðρ0; βÞ as a function of β for
ρ0 ¼ 0; π=8, π=4, and 3π=8 [recall that m0ðρ0; βÞ ¼ 1

gðρ0;βÞL].

(a)

(b)

(c)

FIG. 5. Comparison between the response function in AdS2
(solid curves) in the regime of L ≫ 2T and the response function
in 1þ 1Minkowski space (dashed curves), which depends on the
IR cutoff m0 (see text). In all cases, we considered L ¼ 200 and
2T ¼ 2π so that L ≫ 2T. (a) The Dirichlet case (β ¼ 0) along
with the Minkowski result with m0 given by Eq. (56). (b) The
case of a generic Robin boundary condition by considering β ¼ 1
and m0 given by Eq. (57). The AdS curve was obtained by
computing a truncated sum in Eq. (39). (c) The case of
pseudoperiodic boundary conditions by considering θ ¼ π=2
and m0 given by Eq. (60).
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C. Pseudoperiodic boundary condition

This case may be analyzed by writing Δt ¼ Δτ cos ρ0=L
and ϵ ¼ ϵ̄ cos ρ0=L in Eq. (31). We can then make use of
the formula [20]

2F1ða; b; aþ b; zÞ

¼ −
Γðaþ bÞ½lnð1 − zÞ þ ψðaÞ þ ψðbÞ þ 2γ�

ΓðaÞΓðbÞ ; ð58Þ

for j argð1 − zÞj < π, j1 − zj < 1, where ψðxÞ is the poly-
gamma function and γ is the Euler-Mascheroni constant,
and then consider the limit Δτ=L → 0. This leads to

Wθ
ϵ ∼ −

2 ln½2ðϵ̄þiΔτÞ cos ρ0
L � þ ψð θ

2πÞ þH− θ
2π
þ γ

4π
; ð59Þ

whereHn is the harmonic number. Comparing this result to
Eq. (26) yields

m0 ∼
2 exp ½1

2
ðψð θ

2πÞ þH− θ
2π
þ γÞ� cos ρ0

L
: ð60Þ

We see that, in this case, the regulator has a nontrivial
dependence on ρ0. Figure 5(c) shows the response function
given by Eq. (42) along with the response function for the
Minkowski spacetime with regulator given by Eq. (60).

VIII. CONCLUSIONS

We studied the response of the Unruh-DeWitt detector
coupled to a conformal scalar field in AdS2 spacetime.
In particular, we calculated the transition probability and
the transition rate for two classes of boundary conditions
at the conformal infinities of AdS2, namely Robin and
pseudoperiodic boundary conditions. In both cases, the
spatial part of the Klein-Gordon equation turns out to be

positive and self-adjoint so that the associated field quan-
tization is well defined.
We showed that the transition rate for a detector switched

on in the infinite past is given by a sequence of delta
functions. These delta functions are supported on a discrete
set that depends on the quantum number that characterizes
the field modes, on the detector’s acceleration, on the AdS
energy scale L, and on the boundary conditions. We
showed that when the energy scale 1=L approaches zero
the transition rate for an inertial detector in 1þ 1
Minkowski spacetime is recovered, irrespective of our
choice of boundary condition.
A similar conclusion was drawn in Ref. [21] for AdS3

with a massless field satisfying Dirichlet, Neumann, and
transparent boundary conditions. However, we showed that
in AdS2 the Wightman function resembles its Minkowski
counterpart, with the mass scale playing the role of an IR
regulator. This gives us a deeper understanding on how and
why these limits work.
Finally, the same idea may be applied to supercritical

accelerated detectors, where one should recover the usual
thermal spectrum for the Unruh effect. We leave this
analysis for a future work.
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