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Recent works have explored nonperturbative effects due to the existence of (infinitesimal) Gribov copies
in Yang-Mills-Chern-Simons theories in three Euclidean dimensions. In particular, the removal of such
copies modify the gauge field propagator by a self-consistent dynamically generated mass parameter, the
Gribov parameter. Due to the interplay with the topological mass introduced by the Chern-Simons term, the
propagator features a nontrivial set of phases with poles of different nature, leading to the possible
interpretation of a confinfing to deconfining phase transition. Here, we restore the Becchi–Rouet–Stora–
Tyutin (BRST) symmetry which is softly broken by the elimination of gauge copies and provide a BRST-
invariant discussion of such a transition. In order to make clear all physical statements, we deal with linear
covariant gauges which contain a gauge parameter and therefore allow for an explicit check of gauge
parameter independence of physical results. We also discuss the generation of condensates due to the
infrared relevance of infinitesimal Gribov copies.
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I. INTRODUCTION

A. Gauge-fixing pure Yang-Mills theories
in the infrared

The quantization of Yang-Mills theories1 in a continuum
framework typically requires a gauge-fixing procedure.
In a path-integral quantization, this is achieved by the
celebrated Faddeev-Popov procedure [1]. However, since
the seminal work by Gribov [2] followed by Singer’s
mathematical formalization and generalization [3], it
became clear that gauge fixings, which are continuous in
field space, do not select a single representative per gauge
orbit, in general. The standard situation is that the gauge
fixing section crosses a gauge orbit several times and many
configurations, which obey the gauge condition and belong
to the same gauge orbit (i.e., that can be connected by a

gauge transformation), are picked up by the gauge fixing
procedure. Such spurious configurations are known as
Gribov copies and, in the Faddeev-Popov method, they
are assumed to not exist. Albeit there is no objection about
their existence, one might wonder why perturbative calcu-
lations tacitly ignore such copies and seem to provide results
which agree very well with high-energy experiments.
Despite the possibility that such gauge copies might have
their effect suppressed by somemiraculous cancellation, it is
possible to show that perturbative calculations performed
around the perturbative vacuum, where the gauge field is a
vanishing field configuration, i.e., Aa

μ ¼ 0, gauge copies
seem to not be generated. Geometrically, this has the simple
interpretation that for such a calculation, it suffices to trace a
local section across the orbits, a necessity that can be
achieved. However, the larger the field configuration gets,
one can easily argue that Gribov copies can be generated,
see, e.g., [2,4]. Hence, it can be expected that toward low
energies (or growing coupling constant), the Faddeev-Popov
procedure must be improved and replaced by another
method which takes into account the existence of Gribov
copies. So far, this has been achieved just for the infinitesi-
mal copies, i.e., those generated by infinitesimal gauge
transformations. In fact, those copies are generated by zero-
modes of the Faddeev-Popov operator. As proposed in [2,5],
a possible way to deal with infinitesimal copies is to restrict
the functional integral to a region where the spectrum of the

1We restrict all the statements of this paper to Yang-Mills
theories formulated in Euclidean space.
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Faddeev-Popov operator does not have any zero-modes. In
the Landau gauge, the Faddeev-Popov operator is Hermitian
and it is possible to define a region where such an operator is
positive. This region is the so-called Gribov region Ω and it
features very important geometrical properties [6]. A key
property is that every gauge orbit cross such a region at least
once and, therefore, every configuration outside of it has a
copy that lies inside Ω. Consequently, restricting the path
integral to Ω takes into account all unequivalent field
configurations and eliminate the infinitesimal Gribov cop-
ies. Nevertheless, it should be clear that Ω is not free of
copies, due to the presence of those generated by finite gauge
transformations. A regionwhich is truly free of gauge copies
is the so-called fundamental modular region (FMR) [7]. Up
to now, there is no systematic method that can restrict the
functional integration to the FMR. Thus, restricting to Ω
corresponds to a first step toward the removal of all Gribov
copies from the gauge-fixing procedure.
One practical way of imposing the Gribov restriction to

the path integral, in the Landau gauge, was proposed in [2]
to leading order, and in [5] at all orders, but using a different
implementation. The equivalence of the methods was
proved much later in [8]. For a review, we refer to [9].
Effectively, the restriction to Ω is achieved by the intro-
duction of the so-called horizon function HðAÞ to the
standard Yang-Mills action together with the Faddeev-
Popov gauge-fixing term. Hence, the action that enters the
Boltzmann weight and implements the restriction toΩ, in d
dimensions and for the gauge group SUðNÞ, is2

SnlGZ ¼ SYM þ SFP þ SH; ð1Þ

with

SYM ¼ 1

4

Z
xd
Fa
μνFa

μν: ð2Þ

The Faddeev-Popov action in the Landau gauge is

SFP ¼
Z
xd
ðba∂μAa

μ þ c̄a∂μDab
μ cbÞ; ð3Þ

and

SH ¼ g2γ4
Z
xd
fabcAb

μ½−ð∂αDαÞ−1�adfdecAe
μ ¼ γ4HðAÞ: ð4Þ

The field strength is defined as Fa
μν ¼ ∂μAa

ν − ∂μAa
νþ

gfabcAb
μAc

ν, the covariant derivative in the adjoint repre-
sentation of the gauge group is Dab

μ ¼ δab∂μ − gfabcAc
μ,

with g being the coupling constant, and fabc are the
structure constants of SUðNÞ. The fields ba, c̄a, and ca

are, respectively, the Lagrange multiplier that imposes the
gauge condition, and the Faddeev-Popov ghosts. The
parameter γ is known as the Gribov parameter and is
determined by a gap equation, namely,

hHðAÞi ¼ dVðN2 − 1Þ; ð5Þ

with V being the (regularized) volume of spacetime. As it is
clearly seen in (4), the horizon function is nonlocal.
However, as introduced in [5], the action (1) can be cast
in a local form by the use of a suitable set of auxiliary fields.
In particular, the so-called Gribov-Zwanziger (GZ) action is
written as

SGZ ¼ SYM þ SFP þ s
Z
xd
ω̄ac
μ ∂αDab

α φbc
μ

þ γ2
Z
xd
gfabcAa

μðφ̄þ φÞbcμ ; ð6Þ

where s stands for the nilpotent Becchi–Rouet–Stora–
Tyutin (BRST) operator, which acts on the complete set
of fields as

sAa
μ ¼ −Dab

μ cb; sca ¼ g
2
fabccbcc;

sc̄a ¼ ba; sba ¼ 0;

sω̄ab
μ ¼ φ̄ab

μ ; sφ̄ab
μ ¼ 0;

sφab
μ ¼ ωab

μ ; sωab
μ ¼ 0: ð7Þ

The fields ðφ̄;φÞabμ are commuting ones, while ðω̄;ωÞabμ are
anti-commuting. An important consequence concerning the
construction of the GZ action in the Landau gauge is that it
breaks BRST invariance, i.e.,

sSGZ ¼ γ2
Z
xd
gfabc½−ðDad

μ cdÞðφ̄þ φÞbcμ þ Aa
μω

bc
μ �: ð8Þ

The breaking in Eq. (8) is explicit but soft in the sense that it
is proportional to the Gribov parameter and therefore
vanishes in the deep ultraviolet regime.
Since the standard BRST invariance of the Faddeev-

Popov action is a direct outcome of the Faddeev-Popov
quantization, it can be expected that the BRST symmetry
will be deformed at low energies if the gauge-fixing
procedure is affected in a such energy regime. This was
an open issue for several years and many works were done
in order to better understand the fate of BRST symmetry in
the infrared, see, e.g., [10–29]. In [30], it was realized that
BRST invariance can be achieved by a suitable modifica-
tion of the horizon function which corresponds to a
dressing of the gauge field by a gauge-invariant variable
Ah;a
μ . This has led to the proposal of a nonperturbative

BRST quantization that takes into account the existence
of (infinitesimal) Gribov copies in the gauge-fixing

2We adopt the short-hand notation
R
ddx ¼ R

xd . In three
dimensions—which is the focus of this paper, we simply writeR
d3x ¼ R

x.
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procedure, [31–36]. In the present work, we will apply such
a quantization procedure to Yang-Mills-Chern-Simons
(YMCS) theories quantized in the linear covariant gauges
and inspect the consequences to the spectrum of the theory.

B. YMCS theories and infinitesimal Gribov copies

The YMCS action is defined in three Euclidean dimen-
sions as follows,

SYMCS ¼ SYM þ SCS; ð9Þ

where the Chern-Simons action SCS being

SCS ¼ −iM
Z
x
ϵμρν

�
1

2
Aa
μ∂ρAa

ν þ
g
3!
fabcAa

μAb
ρAc

ν

�
; ð10Þ

with M being a mass parameter and ϵμρν is the totally
antisymmetric Levi-Civita symbol. Due to the topological
nature of the Chern-Simons action, the mass M is also
known as topological mass and it provides a mass to the
gauge field while being compatible with infinitesimal gauge
invariance. In order to achieve the invariance under finite
gauge transformations, it is necessary to impose a constraint
over M, which we do not do it here. Such a system is
particularly interesting since the introduction of a mass
parameter for the gauge field, which is compatible with
gauge invariance, is possible in a local way, [37,38]. This
consists of a rich arena to study the pole structure of the
gauge field propagator in three-dimensional gauge theories,
rendering some understanding that could be lifted to the
four-dimensional at zero or finite temperature. For the
Gribov problem and its resolution, this system is particularly
important due to the fact that for a generic value ofM, gauge
invariance is reduced to the subset of infinitesimal gauge
transformations. Since, at the present moment, we have the
limited understanding of eliminating just infinitesimal
copies, this system is well-suited for studying the conse-
quences of removing all Gribov copies from a gauge theory.
As before, the Faddeev-Popov procedure can be applied.

Since the gauge condition can be taken as Landau gauge
∂μAa

μ ¼ 0, all the discussion made before regarding the
existence and treatment of infinitesimal Gribov copies can
be simply imported to the case of YMCS theories. This was
investigated in [39,40] in the Landau gauge and in [41] in
the maximal Abelian gauge. As a difference with respect to
pure Yang-Mills theories, the topological massM enters the
gap equation that fixes the Gribov parameter as observed in
[41]. See also [42]. In this work we propose the quantiza-
tion of YMCS theories in linear covariant gauges, i.e.,
gauges of the form (11).

∂μAa
μ ¼ αba: ð11Þ

The parameter α is non-negative and the condition (11)
essentially provides a fixed longitudinal part to the gauge

field. Moreover, the removal of infinitesimal Gribov copies
in the gauge (11) requires a complete BRST-invariant
quantization in order to ensure that physical correlators
do not depend on the parameter α. The gauge-fixed YMCS
action in the linear covariant gauges SLCGYMCS is written as

SLCGYMCS ¼ SYMCS

þ
Z
x

�
ba∂μAa

μ −
α

2
baba þ c̄a∂μDab

μ cb
�
: ð12Þ

We emphasize that due to the introduction of the Chern-
Simons action with generic topological mass, the gauge
fixing introduced in (12) is needed to fix just the infini-
tesimal gauge invariance. Thus, for this system, the Gribov
copies that will actually be present are those generated by
infinitesimal gauge transformations. Finite copies are not
redundancies of the full action due to the Chern-Simons
term. Consequently, removing the infinitesimal copies is
more than a first step toward a complete gauge fixing, but
rather a complete gauge fixing in this system. The tree-level
gauge field propagator is,

hAa
μðpÞAb

νð−pÞi ¼
δab

p2 þM2

�
PT

μνðpÞ þ
M
p2

ϵμρνpρ

�

þ δab
α

p2

pμpν

p2
; ð13Þ

where PT
μνðpÞ stands for the transverse projector,

PT
μνðpÞ ¼ δμν −

pμpν

p2
: ð14Þ

For α → 0, Eq. (13) reduces to the tree-level propagator of
the gauge field in YMCS in the Landau gauge, see [39]. If
the Chern-Simons term is removed by taking M → 0, one
recovers the gauge field tree-level propagator in pure Yang-
Mills theories in the Landau gauge. It is clear from Eq. (13)
that M enters as a mass parameter in the gauge-field
propagator. As it was investigated in [39–42], the presence
of the Gribov parameter γ in the gauge-field propagator has
a nontrivial interference with M, which changes the pole-
structure of the gauge-field propagator and the interpreta-
tion of (non)physical excitations in the spectrum of the
theory.
The paper is organized as follows: In Sec. II we

will introduce the nonperturbative BRST quantization of
YMCS theories in the linear covariant gauges, i.e., a local
and BRST-invariant action that effectively restricts the path
integral to a region free of infinitesimal Gribov copies. We
will discuss how the limit α → 0 leads to a BRST-invariant
action which renders physical correlators which are equiv-
alent to those obtained in the BRST-soft broken version of
the theory. Moreover, we collect the tree level gauge-field
propagator. In Sec. III, a discussion regarding further
infrared instabilities due to the elimination of Gribov
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copies is made. This will give rise to a refined version of the
theory in analogy to the pure Yang-Mills case, that we will
shortly review. Finally, in Sect. IV the main results are
collectively discussed, and perspectives for future work
concerning the present model is presented.

II. NONPERTURBATIVE BRST QUANTIZATION
OF YMCS THEORIES

A. The local and BRST-invariant action free
of infinitesimal Gribov copies

Following the nonperturbative BRST quantization intro-
duced in3 [30–36], the local action which renders a gauge-
fixed YMCS theory in the linear covariant gauges, and
eliminates infinitesimal Gribov copies in harmony with
BRST invariance, which we shall call the Gribov-
Zwanziger modification to the YMCS action invariant, is

SGZ ¼ SLCGYMCS −
Z
x
ðφ̄ac

μ MabðAhÞφbc
μ

− ω̄ac
μ MabðAhÞωbc

μ Þ þ γ2
Z
x
gfabcAh;a

μ ðφ̄þ φÞbcμ

þ
Z
x
ðτa∂μA

h;a
μ − η̄aMabðAhÞηbÞ: ð15Þ

The localizing fields ðφ̄;φ; ω̄;ωÞabμ are now BRST singlets,
Ah;a
μ is a gauge-invariant field which is defined according to

Ah;a
μ Ta ¼ h†Aμhþ i

g
h†∂μh; ð16Þ

where Ta denotes the generators of the SUðNÞ gauge
group. Moreover,

h ¼ eigξ
aTa ≡ eigξ; ð17Þ

with ξ ¼ ξaTa being a Stueckelberg-like field. In the
Appendix we collect the main ingredients for the con-
struction of the dressed gauge-invariant field Ah

μ. The
operator MabðAhÞ is equivalent to the Faddeev-Popov
operator where the gauge field Aa

μ is replaced by the
dressed field Ah;a

μ , i.e.,

MabðAhÞ ¼ −∂μDab
μ ðAhÞ ¼ ∂μðδab∂μ − gfabcAh;c

μ Þ: ð18Þ

The field τa in Eq. (15) works as a Lagrange multiplier that
imposes the transversality condition over Ah;a

μ , a property
that is explained in the Appendix. Such a constraint, due to
the composite nature of Ah

μ, demands the introduction of a
Jacobian compensator, which is encoded by the extra
ghosts ðη̄; ηÞa. Therefore, the path integral associated with

the Gribov-Zwanziger modification to the YMCS action in
the linear covariant gauges is expressed as

Z ¼
Z

½DΦ�GZe−SGZ−3Vγ4ðN2−1Þ; ð19Þ

with

½DΦ� ¼ ½DA�½Db�½Dc̄�½Dc�½Dφ̄�½Dφ�½Dω̄�½Dω�
× ½Dξ�½Dτ�½Dη̄�½Dη�; ð20Þ

being the new functional measure for the local theory. The
complete set of BRST transformations that leaves the
action (15) invariant is

sAa
μ ¼ −Dab

μ cb; sca ¼ g
2
fabccbcc;

sc̄a ¼ ba; sba ¼ 0;

sφab
μ ¼ 0; sωab

μ ¼ 0;

sω̄ab
μ ¼ 0; sφ̄ab

μ ¼ 0;

shij ¼ −igcaðTaÞikhkj; sAh;a
μ ¼ 0;

sτa ¼ 0; sη̄a ¼ 0;

sηa ¼ 0; sξa ¼ gabðξÞcb; ð21Þ

with

gabðξÞ¼−δabþg
2
fabcξc−

g2

12
famrfmbqξqξrþOðg3Þ: ð22Þ

The transformations (21), together with (22), are generated
by a nilpotent operator s, i.e., s2 ¼ 0. Thus, one sees that
the local BRST-invariant Gribov-Zwanziger action (15) is
composed by the standard Faddeev-Popov gauge-fixed and
BRST invariant action, i.e., the YMCS action together with
the BRSTexact gauge-fixing term. On top of that the BRST
invariant contributions are added, which effectively imple-
ment the elimination of infinitesimal Gribov copies.
Those terms are not BRST exact, but are BRST invariant.
Integrating out the auxiliary fields ðφ̄;φ; ω̄;ω; ξ; τ; η̄; ηÞ,
one obtain the nonlocal horizon function HðAhÞ written as

SLCGH ¼ g2γ4
Z
x
fabcAh;b

μ ½M−1ðAhÞ�adfdecAh;e
μ

¼ γ4HðAhÞ: ð23Þ

In eq. (23), Ah;a
μ is a nonlocal expression of Aa

μ, which is
presented in the Appendix. Hence, the horizon function in
the linear covariant gauges features two sources of non-
localities: The one coming from Ah;a

μ and the other, which is
the same as in expression (4), namely, due to the inverse of
MðAh

μÞ. The horizon function (23) can be viewed as a
dressing of (4), where the gauge field Aa

μ is replaced by a
3See [43,44] for earlier attempts to deal with the Gribov

problem in the linear covariant gauges.

FERREIRA, GRANADO, JUSTO, and PEREIRA PHYS. REV. D 104, 045007 (2021)

045007-4



gauge-invariant composite operator Ah;a
μ . Geometrically,

the horizon function (23) has the role of restricting the path
integral domain to the region Ωh which is defined by

Ωh ¼ fAa
μ; ∂μAa

μ ¼ αbaj∂μDab
μ ðAhÞ > 0g: ð24Þ

The operator ∂μDab
μ ðAhÞ is Hermitian due to the trans-

versality of Ah;a
μ , see Appendix. Thereby, the partition

function (19) is equivalent to

Z ¼
Z
Ωh
½DΦ�YMCSe

−SLCGYMCS−3Vγ
4ðN2−1Þ; ð25Þ

where ½DΦ�YMCS is the measure with the standard field
content of gauge-fixed YMCS theories.
One can easily obtain the Gribov-Zwanziger modifica-

tion to the YMCS theory in the Landau gauge by taking
α → 0. However, from Eq. (15), one does not recover (6)
immediately. Nonetheless, those actions are connected at
the level of the nonlocal horizon function by a redefinition
of the ba field due to the observation that the dressed field
Ah;a
μ is related to the gauge field by the structure,

Ah;a
μ ¼ Aa

μ −Rab
μ ðAÞð∂αAb

αÞ; ð26Þ

where Rab
μ ðAÞ is a nonlocal expression of the gauge field,

see Appendix. The presence of a divergence of the gauge
field ensures that, in the Landau gauge, all the nonlocalities
can be absorbed in the b-field redefinition. Alternatively,
one sees that the dressed field collapses to the gauge field
when the gauge condition is applied to Eq. (26). In
summary, the dressed horizon function can be reduced
to the Landau gauge horizon function (4) due to the
transversality of Ah;a

μ . For more details we refer the reader
to [30,36].
The tree-level gauge-field propagator arising from the

GZ modification of the YMCS in the linear covariant
gauges is

hAa
μðpÞAb

νð−pÞi ¼ δab
�

p2ðp4 þ 2g2γ4NÞ
ðp4 þ 2g2γ4NÞ2 þM2p6

�
PT

μνðpÞ

þ Mp2

p4 þ 2g2γ4N
ϵμλνpλ

�
þ α

p2

pμpν

p2

�
:

ð27Þ

As it is clear from Eq. (27), the parity-preserving part of the
propagator has just the transverse components, i.e., those
proportional to PT

μνðpÞ affected by the introduction of the
horizon function. The rest of the parity-preserving compo-
nents, the longitudinal part, remains the same as with
γ ¼ 0. Later on, it will be shown that this property is
preserved at all orders in perturbation theory. The parity-
violating part is directly affected by the elimination of

infinitesimal Gribov copies. Comparing Eq. (13) to (27)
shows explicitly that the pole structure of the gauge-field
propagator is affected by the presence of the Gribov
parameter γ. As a consistency check, if γ → 0, one recovers
(13) and if M → 0, it coincides with the tree-level gauge-
field propagator in the linear covariant gauges, see, e.g.,
[31]. Moreover, the parity-preserving and transverse part of
(27) does not depend on α at the tree level and coincides
with the result in [39]. Therefore, there is no need to repeat
the analysis of the pole structure inhere. However, we
should emphasize that when loop corrections are consid-
ered, the transverse part of the propagator will receive
α-dependent contributions. Nevertheless, as discussed in
[34], the poles are gauge parameter independent.
The Gribov parameter γ is not free, but it is fixed in terms

of the initial parameters of the theory by a gap equation. In
particular, the Gribov parameter γ in Eq. (15) does not enter
as the BRST variation of anything, i.e.,

∂SGZ
∂γ2 ¼

Z
x
gfabcAh;a

μ ðφ̄þ φÞbcμ ≠ sð…Þ; ð28Þ

and thereby can enter correlation function of gauge-
invariant operators. In a local setting (19), the gap equation
is formulated by an extremization of the vacuum energy Ev
of the theory,

e−V Ev ¼
Z

½DΦ�GZe−SGZþ3Vγ4ðN2−1Þ; ð29Þ

at vanishing sources and fields, i.e.,

∂Ev

∂γ2 ¼ 0: ð30Þ

At one-loop order it leads to the gap equation,

2Ng2

3

Z
d3p
ð2πÞ3

p4 þ 2g2γ4N
ðp4 þ 2g2γ4NÞ2 þM2p6

¼ 1: ð31Þ

Such an equation fixes γ as a function of M and g. In three
dimensions this integral is convergent and can be solved
directly. The explicit result is not particularly useful here
since it is a complicated expression which involves two free
parameters g and M that cannot be fixed by any external
data available. In contrast to the case of pure Yang-Mills
theories without the Chern-Simons term, the presence of
the massive parameterM generates a natural mass scale for
the theory. Progress in the direction of solving the gap
equation in the presence of M can be found in [42].
Moreover, at one loop the gap equation does not depend on
the gauge parameter α. This is completely expected since
the gap equation in the nonlocal form is written as

hHðAhÞi ¼ 3VðN2 − 1Þ; ð32Þ
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which is manifestly gauge invariant and independent of the
gauge parameter α. Moreover, since γ can enter gauge-
invariant correlation functions, it carries a physical char-
acter and should not be α-dependent.

B. Exactness of the longitudinal part of the
gauge field propagator

In the above discussions about the tree-level gauge-field
propagator, we have seen that the longitudinal parity-
preserving sector is always fixed to α=p2. Even after the
elimination of infinitesimal copies, such a result was
unchanged. It turns out that this is an exact result, which
can be derived by an explicit use of the BRST invariance of
the theory. In particular, had the BRST symmetry been
violated, such a property would not be valid and the
longitudinal piece would pick nontrivial dependencies at
higher order loops.
The two-point function hbaðxÞbbðyÞi can be computed

by inserting the standard sources coupled to the fields in the
partition function and taking two derivatives of it with
respect to the source coupled to the field b, which is
denoted by JðbÞ, i.e.,

hbaðxÞbbðyÞi ¼
Z

½DΦ�GZ
δ2

δJaðbÞðxÞδJbðbÞðyÞ
e−Σ

����
J¼0

; ð33Þ

with

Σ½Φ; J� ¼ SGZ½Φ� þ Ssources½J� þ 3Vγ4ðN2 − 1Þ: ð34Þ

However, since ba enters in the action at most at quadratic
power, it can be integrated out from the path integral
leading to the following contribution in the Boltzmann
weight of the partition function,

Σ½Φ; J� ∼
Z
x

�ð∂μAa
μÞ2

2α
þ 1

α
JaðbÞ∂μAa

μ þ
JaðbÞJ

a
ðbÞ

2α

�
: ð35Þ

The action of the functional derivatives as in (33) leads to

hbaðxÞbbðyÞi

¼ −δab
δðx − yÞ

α
þ 1

α2
∂x
μ∂y

νhAa
μðxÞAb

νðyÞi: ð36Þ

On the other hand, the BRST invariance ensures that

hbaðxÞbbðyÞi ¼ hsðc̄aðxÞbbðyÞÞi ¼ 0; ð37Þ

and thereby

1

α
∂x
μ∂y

νhAa
μðxÞAb

νðyÞi ¼ δabδðx − yÞ: ð38Þ

In the momentum space it translates to

pμpνhAa
μAb

νiðpÞ ¼ δabα: ð39Þ

Decomposing the propagator in its general tensor structure,

hAa
μAb

νiðpÞ ¼ δab
�
A
�
δμν −

pμpν

p2

�
þ Bpμpν þ Cϵμλνpλ

�
;

ð40Þ

and using (39), one obtains

pμpνhAa
μAb

νiðpÞ ¼ δabp4B ¼ δabα; ð41Þ

which implies that

B ¼ α

p4
: ð42Þ

As a conclusion, the BRST invariance (37) leads to the
conclusion that the longitudinal parity-preserving part of
the gauge-field propagator is exact and it does not feel the
elimination of infinitesimal Gribov copies as long as it does
not affect BRST invariance.

III. INFRARED INSTABILITIES AND THE
EMERGENCE OF CONDENSATES

A. Short overview of the refined
Gribov-Zwanziger origins

In its original formulation [5] the Gribov-Zwanziger
action, constructed to eliminate infinitesimal Gribov copies
in pure Yang-Mills theories, has a striking property:
The gluon propagator, in the Landau gauge, exactly
vanishes at zero momentum. This has been known as
the scaling solution of the gluon propagator in the Landau
gauge and it has been obtained by other methods that access
the infrared behavior of Yang-Mills theories [45–48].
However, more recent gauge-fixed lattice simulations have
revealed a finite value at zero momentum for the gauge-
field propagator [49–52]. In order to circumvent this issue
within the Gribov-Zwanziger scenario for pure Yang-Mills
theories, it was observed in [53,54] that nontrivial con-
densates are formed due to infrared instabilities of the GZ
action [55]. By taking into account such condensates from
the beginning, this leads to the so-called refined Gribov-
Zwanziger (RGZ) action [54] and the tree-level gauge
field propagator agrees very well with lattice simulations.
Moreover, such a framework gives rise to reasonable
predictions for the glueball spectrum [56], and the correct
sign for the Casimir energy in the MIT bag model [57].
In the Landau gauge the RGZ action is written as

SYMRGZ ¼ SYMGZ þm2

2

Z
xd
Aa
μAa

μ

− μ2
Z
xd
ðφ̄ab

μ φab
μ − ω̄ab

μ ωab
μ Þ; ð43Þ
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where m2 and μ2 are mass parameters which are fixed by
their own gap equations and the localizing auxiliary fields
enter as BRST-quartets as in (7). The RGZ action in (43) is
local, renormalizable at all orders in perturbation theory
and effectively implements the restriction to the path
integral of Yang-Mills theories in d > 2 to the Gribov
region Ω. In d ¼ 2, the condensates are not formed due
to the typical infrared divergences in two dimensions.
However, the action (43) breaks the BRST invariance
explicitly, but in a soft way. As in the case of the GZ
action, the BRST invariance is restored by the use of the
gauge invariant composite field Ah;a

μ . In [30–34,36], the
BRST-invariant RGZ action, in the linear covariant gauges,
was formulated and evidence for the formation of the
condensates was provided. Its renormalizability was proven
in [35].
In order to provide evidence for the formation of

condensates in the GZ modification of YMCS in the
linear covariant gauges, we introduce the local composite
operators,

OA2 ¼ Ah;a
μ Ah;a

μ ; ð44Þ

and

Oaux ¼ φ̄ab
μ φab

μ − ω̄ab
μ ωab

μ ; ð45Þ

where the auxiliary fields are now the BRST singlets as in
(21), to the GZ action modification to the YMCS and
compute the vacuum energy in the next subsection.

B. Formation of condensates

We introduce the operators (44) and (45) to SGZ defined
in (15) by coupling them to the sources J and ρ as follows,

Σ½Φ� ¼ SGZ½Φ� þ J
Z
x
Ah;a
μ Ah;a

μ

− ρ

Z
x
ðφ̄ab

μ φab
μ − ω̄ab

μ ωab
μ Þ: ð46Þ

At the level of the vacuum energy Ev, the contribution of the
condensates is evaluated by,

−
∂Ev

∂J
����
J¼ρ¼0

¼ hAh;a
μ Ah;a

μ i; ð47Þ

and

∂Ev

∂ρ
����
J¼ρ¼0

¼ hφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ i: ð48Þ

The vacuum energy at one-loop, in the presence of
J and ρ, is

Ev ¼
1

2V
Tr ln;Δab

μν ð49Þ

with

Δab
μν ¼ δab

�
δμν −

�
1 −

1

α

�
þMϵμλνpλ

þ 2PT
μνðpÞ

�
J þ g2γ4N

p2 þ ρ

��
: ð50Þ

Therefore,

hAh;a
μ Ah;a

μ i ¼ 2ðN2 − 1ÞðI1ðγ;MÞ þ I2ðγ;MÞÞ; ð51Þ

with

I1ðγ;MÞ ¼
Z
p

2g2γ4Nðp4 þ 2g2γ4NÞ
p2ððp4 þ 2g2γ4NÞ2 þM2p6Þ ; ð52Þ

and

I2ðγ;MÞ ¼
Z
p

M2p6

p2ððp4 þ 2g2γ4NÞ2 þM2p6Þ : ð53Þ

As for the other condensate Oaux one obtains

hφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ i ¼ −ðN2 − 1ÞI1ðγ;MÞ: ð54Þ

From Eqs. (52) and (53), we see that the integrals that
enter the evaluation of the condensates are convergent.
Moreover, I1ðγ;MÞ is proportional to the Gribov parameter
γ. Hence, as long as the elimination of infinitesimal Gribov
copies is employed, the condensates are generated, see (51)
and (54). Furthermore, the integral I2ðγ;MÞ, which enters
the condensate hAh;a

μ Ah;a
μ i, is such that if γ → 0, it still leads

to a nonvanishing condensate due to the presence of the
topological mass parameterM. If M → 0, then this integral
also vanishes and, at one-loop, there is no evidence for
the formation of condensates. The explicit solutions of the
integrals (52) and (53) are not useful for the scope of this
paper. They will depend on g, M, and γ which is also a
function of g andM. Not having any particular results to fit
the values of g andM the explicit expressions will not bring
any relevant insight. However, the convergence of the
integrals is a key property to emphasize the generation
of the condensates.
Due to the previous discussions, we can write the refined

Gribov-Zwanziger modification to the YMCS theory in the
linear covariant gauges,

SRGZ½ϕ� ¼ SGZ½ϕ� þ
m2

2

Z
x
Ah;a
μ Ah;a

μ

− μ2
Z
x
ðφ̄ab

μ φab
μ − ω̄ab

μ ωab
μ Þ; ð55Þ
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with SGZ given by (15). Action (55) is invariant under (21)
and the mass parameters m2 and μ2 are determined by their
own gap equation. Moreover, since they are not coupled do
BRST-exact terms, they can enter correlation functions of
gauge-invariant operators.

hAa
μðpÞAb

νð−pÞi ¼ δabDðp2Þ½PT
μνðpÞ − Gðp2Þϵμλνpλ�

þ δab
α

p2

pμpν

p2
; ð56Þ

with

Dðp2Þ

¼ ðp2 þ μ2Þ½ðp2 þm2Þðp2 þ μ2Þ þ 2g2γ4N�
½ðp2 þm2Þðp2 þ μ2Þ þ 2g2γ4N�2 þM2p2ðp2 þ μ2Þ2 ;

ð57Þ
and

Gðp2Þ ¼ Mðp2 þ μ2Þ
ðp2 þm2Þðp2 þ μ2Þ þ 2g2γ4N

: ð58Þ

Once again, one sees that due to theBRST-invariance of (55)
the parity-preserving longitudinal part of the gauge-field
propagator is the same as the one of YMCS theory in linear
covariant gauges without the elimination of infinitesimal
copies. This is a powerful property that follows from the
BRST invariance of the entire construction. The inclusion
of condensates will affect the pole structure of the gauge
field propagator. However, it is beyond the scope of the
present paper to solve the gap equations, which determines
the corresponding gap equations associated to each mass
parameter. Therefore, we have several parameters which
would be treated as free parameters making the analysis
cumbersome and not so informative. Hence, we leave
this for future work. Nonperturbative propagators in linear
covariant gauges were reported also by different methods in
pure Yang-Mills theories, see [58–61].

IV. CONCLUSIONS

Three dimensional non-Abelian gauge theories can
combine the nontrivial dynamics of Yang-Mills theories
with the Chern-Simons action. The YMCS features infini-
tesimal gauge invariance when the topological Chern-
Simons mass is unconstrained and, therefore, requires a
gauge-fixing procedure for practical calculations of quan-
tum effects in the continuum. The existence of Gribov
copies in the Faddeev-Popov method and their manifesta-
tion in the low-energy regime of the theory suggest that the
gauge-fixing prescription is amended in the infrared. For
such a model, this was explored in [39–41] in the Landau
and maximal Abelian gauges. In this work, we extended
the elimination of infinitesimal Gribov copies in the linear
covariant gauges. While in the Landau and maximal
Abelian gauges the elimination breaks BRST invariance,

in this work we show how to restore it for color- and
Lorentz-covariant linear gauges. In the maximal Abelian
gauge, it is also possible to construct a BRST-invariant
action free of infinitesimal Gribov copies as discussed in
[62]. We leave this out of the present work since our main
focus was to explore the role of the gauge parameter α in
linear covariant gauges. We have proved that the presence
of the Chern-Simons term as well as the BRST-invariant
Gribov-Zwanziger modification to the YMCS do not affect
the longitudinal parity-preserving component of the gauge-
field propagator as in standard Yang-Mills theory. This is a
profound consequence of BRST invariance within a linear
gauge condition.
Next to that, we have explored whether the elimination

of the Gribov copies, as in pure Yang-Mills theories,
could generate further infrared instabilities such as the
formation of condensates. As shown by an explicit one-
loop calculation, BRST-invariant condensates hAh;a

μ Ah;a
μ i

and hφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ i are generated and are proportional
to the Gribov parameter, which is characteristic of the
elimination of Gribov copies. This gives rise to the refined
Gribov-Zwanziger modification to the YMCS. The tree-
level gauge-field propagator was computed and, once
again, thanks to the BRST-invariance of the formulation,
the longitudinal component of the parity-preserving gauge-
field propagator is the same as its tree-level value in
standard Yang-Mills theories and, moreover, exact to all
orders in perturbation theory.
As for new perspectives to the present line of research, it is

essential to establish the renormalization properties of the
present model. Since the BRST-invariant RGZmodification
to the YMCS in linear covariant gauges involves the non-
polynomial field Ah

μ, this is a subtle issue. However, in the
same lines as in [35], it can be investigated by means of the
algebraic renormalization framework [63]. Another inter-
esting avenue to be investigated is the coupling of matter
fields and how their dynamics can impact the pole structure
of the nonperturbative propagators presented herein, see,
e.g., [40] and, also, how the nonperturbative effects of the
restriction to the Gribov region can affect the propagators of
matter fields. Those issues are left for future work.

ACKNOWLEDGMENTS

A. D. P. acknowledges CNPq under the grant PQ-2
(309781/2019-1), FAPERJ under the Jovem Cientista do
Nosso Estado program (E26/202.800/2019), and NWO
under the VENI Grant (VI.Veni.192.109) for financial
support. I. F. J. acknowledges CAPES for the financial
support under the project Grant No. 88887.357904/2019-00.

APPENDIX: CONSTRUCTION OF Ah

In this Appendix, we collect properties of the gauge
invariant Ah

μ field. We begin with the definition of the
functional fA½u� written as
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fA½u�≡ Tr
Z

ddxAu
μAu

μ ¼ Tr
Z

ddx

�
u†Aμuþ i

g
u†∂μu

��
u†Aμuþ i

g
u†∂μu

�
: ðA1Þ

For a given gauge field configuration Aμ, fA½u� is a functional over its gauge orbit. A minimum fA½h� is attained when

δfA½u�ju¼h ¼ 0;

δ2fA½u�ju¼h > 0; ðA2Þ

and it is an absolute minimum if

fA½h� ≤ fA½u�; ∀ u ∈ U; ðA3Þ

where U is the set of local gauge transformations. With the absolute minimum fA½h� at our disposal, it is possible to define a
gauge invariant quantity by

A2
min ¼ min

fug
Tr

Z
d4xAu

μAu
μ ¼ fA½h�: ðA4Þ

Searching for absolute minimum is an extremely challenging task. However, one can collect at least the relative minimum
by demanding conditions (A2). This can be achieved by an expansion on the coupling g. We define

v ¼ heigω ≡ heigω
ATA

; ðA5Þ

with TA the SUðNÞ generators and ωA a small parameter. Due to this assumption, we retain terms up to ω2, which is enough
for our purposes. By definition,

Av
μ ¼ v†Aμv

i
g
v†∂μv

¼ e−igωh†Aμheigω þ i
g
e−igωh†ð∂μhÞeigω þ i

g
e−igω∂μeigω

¼ e−igωAh
μeigω þ i

g
e−igω∂μeigω; ðA6Þ

where we the definition of Ah
μ was used and h†h ¼ 1. Expanding Eq. (A6) up to quadratic order in ω, we obtain

Av
μ ¼

�
1− igω−

g2

2
ω2 þOðω3Þ

�
Ah
μ

�
1þ igω−

g2

2
ω2 þOðω3Þ

�
þ i
g

�
1− igω−

g2

2
ω2

�
∂μ

�
1þ igω−

g2

2
ω2

�
þOðω3Þ

¼ Ah
μ þ igAh

μω−
g2

2
Ah
μω

2 − igωAh
μ þ g2ωAh

μω−
g2

2
ω2Ah

μ þ
i
g

�
ig∂μω−

g2

2
ð∂μωÞω−

g2

2
ω∂μωþ g2ω∂μω

�

þOðω3Þ: ðA7Þ

After a few simple manipulations, Eq. (A7) becomes

Av
μ ¼ Ah

μ − ∂μωþ ig
2
½ω; ∂μω� þ ig½Ah

μ;ω� þ
g2

2
½½ω; Ah

μ�;ω� þOðω3Þ: ðA8Þ

Now, we explicitly compute fA½v�,

fA½v� ¼ Tr
Z

d4xAv
μAv

μ ¼ Tr
Z

d4x

�
Ah
μ − ∂μωþ ig

2
½ω; ∂μω� þ ig½Ah

μ;ω� þ
g2

2
½½ω; Ah

μ�;ω� þOðω3Þ
�

×

�
Ah
μ − ∂μωþ ig

2
½ω; ∂μω� þ ig½Ah

μ;ω� þ
g2

2
½½ω; Ah

μ�;ω� þOðω3Þ
�

ðA9Þ
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which implies

fA½v� ¼ fA½h� þ 2Tr
Z

d4xωð∂μAh
μÞ − Tr

Z
d4xω∂μDμðAhÞωþOðω3Þ: ðA10Þ

Condition (A2) is automatically satisfied for

∂μAh
μ ¼ 0

−∂μDμðAhÞ > 0: ðA11Þ

Using the transversality condition ∂μAh
μ ¼ 0, one can solve h ¼ hðAÞ as a power series in Aμ. As a result, one writes

Ah
μ ¼ Ah

μðAÞ. Starting from the definition of Ah
μ, Eq. (16) and considering that

h ¼ eigϕ
ATA ≡ eigϕ ¼ 1þ igϕ −

g2

2
ϕ2 þOðϕ3Þ; ðA12Þ

leads to

Ah
μ ¼ Aμ þ ig½Aμ;ϕ� −

g2

2
Aμϕ

2 þ g2ϕAμϕ −
g2

2
ϕ2Aμ − ∂μϕþ ig

2
½ϕ; ∂μϕ� þOðϕ3Þ: ðA13Þ

Imposing the transversality of Ah
μ on (A13), allows for a solution of ϕ in terms of Aμ,

ϕ ¼ 1

∂2
∂Aþ ig

2

1

∂2

�
∂A; 1∂2

∂A
�
þ ig

1

∂2

�
Aα;

∂α

∂2
∂A

�
þOðA3Þ: ðA14Þ

Substituting Eq. (A14) in (A13), one gets an explicit expression for Ah
μ as a power series of Aμ,

Ah
μ ¼ Aμ − ∂μ

1

∂2
∂Aþ ig

�
Aμ;

1

∂2
∂A

�
− ig

1

∂2
∂μ

�
Aα; ∂α

1

∂2
∂A

�
þ ig

2

1

∂2
∂μ

�
1

∂2
∂A; ∂A

�

þ ig
2

�
1

∂2
∂A; ∂μ

1

∂2
∂A

�
þOðA3Þ: ðA15Þ

This highly nonlocal structure is gauge-invariant order by order in g.
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