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At leading order, the S-matrices in QED and gravity are known to factorize, providing unambiguous
determinations of the parts divergent due to infrared contributions. The soft S-matrices defined in this
fashion are shown to be defined entirely in terms of two-dimensional models on the celestial sphere,
involving two real scalar fields, allowing us to express the soft S-matrices for real as well as virtual
divergences as two-dimensional correlation functions. We discuss what this means for finding holographic
representations of scattering amplitudes in QED and gravity and comment on simple double copy
structures that arise during the analysis.
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I. INTRODUCTION

Historically, the concerns with divergences in the
S-matrix for quantum field theories of interest revolved
around complications deep in the ultraviolet. However, it
has been known for a long time that S-matrices for theories
having massless particles exhibit singularities not just in the
UV, but also in the infrared domain, where interacting
particles approach arbitrarily low frequencies. Practically,
such divergences were known to cancel when final state
particles were properly summed over [1–5]. Accordingly, it
was believed for a long time that such divergences were
essentially spurious.1 However, more sophisticated treat-
ments due to Chung [7] and Kibble [8–11] followed, in
which IR divergences were eliminated by dressing asymp-
totic states.
In [12], a seminal paper due to Weinberg, it was shown

that not unlike QED, gravity amplitudes display very
simple analytic forms deep in the infrared—the cancella-
tion of the concomitant divergences proceeded by including
final state radiation.2

Fundamentally, divergences deep in the IR are pos-
sible because of the fact that both in QED and gravity,
the fundamental particle mediating interactions, namely
the photon and graviton respectively, is massless.
Consequently, they give rise to interactions which are long

ranged, a fact that manifests itself as IR divergences in the
S-matrix. From the quantum field theoretic perspective
however, most attention remained fixed on understanding
IR divergences as analytic phenomena, rather than as
something deeper about the structure of the theory.
Nearly simultaneously, it was shown by Penrose [14] and

by Newman and Penrose [15] that the asymptotic structure
of theories of QED and gravity is really quite rich, precisely
as a consequence of the fact that they evolve in a nontrivial
fashion on null infinity. The asymptotic behavior of gravity
was especially revealing as careful analyses [16,17] showed
that in the presence of gravity, the metrics of spacetimes
which are asymptotically flat are no longer invariant only
under the Poincaré group—the group is enhanced to an
infinite dimensional group now known as the Bondi-van de
Burg-Metzner-Sachs (BMS) group.
The natural question of whether or not these seemingly

disparate ways of thinking about how the long distance
effects of QED and gravity are related has received
attention in recent years (see [18] and references therein).
As it turns out, the soft graviton theorem due to Weinberg,
which tells us what happens to the S-matrix when soft
gravitons are radiated in a scattering process, turns out to be
equivalent to the statement that the S-matrix remain
invariant under the action of supertranslations belonging
to the BMS group.
What does the relationship between asymptotic sym-

metries like BMS symmetry and soft theorems tell us? For
one thing, it tells us that the analytic structure of the S-matrix
in the infrared—something that appears to be dependent on
the nature of interactions in the bulk—depends on data that is
present entirely on the boundary of four-dimensional space-
time, namely null infinity in the form on BMS charges. In
particular, it suggests the possibility of realizing the entire
S-matrix, at least in fundamentally massless theories like
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1Actually, this exact word was used by Schwinger in his
seminal paper on quantum electrodynamics in 1949 [6].

2This result was decisively established by DeWitt in [13].

PHYSICAL REVIEW D 104, 045006 (2021)

2470-0010=2021=104(4)=045006(9) 045006-1 Published by the American Physical Society

https://orcid.org/0000-0002-0870-1261
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.045006&domain=pdf&date_stamp=2021-08-13
https://doi.org/10.1103/PhysRevD.104.045006
https://doi.org/10.1103/PhysRevD.104.045006
https://doi.org/10.1103/PhysRevD.104.045006
https://doi.org/10.1103/PhysRevD.104.045006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


QED and gravity, in terms of purely boundary data—a
holographic representation, in other words.
Needless to say, such a framework is probably not easy to

find—not least due to the fact that gravity in particular is
extremely hard to work with. Accordingly, a more modest
approach would be to wonder if partial progress can be
made. The natural first step of course would be to deal
directly with the soft part of the S-matrix and ask if a truly
holographic dynamical framework which captures soft
theorems can be found, which makes absolutely no refer-
ence to anything in the bulk. We have attempted in this
article to provide an affirmative response to this question. To
do so, we leverage two ideas which are already in the
literature, which we will now discuss.
The first is a phenomenon known as factorization

[19–24] which is known to apply to a large class of massless
quantum field theories, including QED and gravity. While
we provide a brief review of this in the next section, we
simply state at this point that according to factorization
theorems, the soft divergences in QED and gravity can be
collected into universal expressionswhich form a part of any
scattering amplitude in these theories, and can be factored
out, so to speak. In carrying out this factorization, we obtain
an unambiguous definition of the soft S-matrix, and can then
ask whether these objects admit representations in terms of
dynamical fields defined on the boundary.
What we will see in this article is that this is indeed

possible in QED and gravity, in which the soft S-matrices
have especially simple forms. Specifically, we ask whether
it is possible to generalize the central results of [25]. In that
work, we saw that the soft S-matrix due to virtual soft
interactions in QED can be obtained as a correlation
function of vertex operators in a Coulomb gas, defined
naturally on the celestial sphere CP1. For the case of
gravity, the holographic theory generalized very naturally,
and was given in terms of a free scalar with a biharmonic
kinetic term, with the soft S-matrix due to virtual transitions
once again obtained as a correlation function of vertex
operators. One drawback of that approach however was that
it was difficult to include the effects of multiple real soft
emissions. In this work, we will show that it is relatively
straightforward to modify the formalism of [25] to include
multiple soft emissions as well.
Let us comment on the notation we will use before we

move on. We work throughout with theories having only
massless particles. Momenta pi are decomposed as

pi ¼ ωið1þ ziz̄i; zi þ z̄i;−iðzi − z̄iÞ; 1 − ziz̄iÞ; ð1:1Þ
where ωi is the particle energy and the zi and z̄i take values
on CP1. A more convenient system of coordinates which
we will employ throughout the paper is given by

pþ
i ¼ p0

i þ p3
i ; p−

i ¼ p0
i − p3

i ;

pz
i ¼ p1

i þ ip2
i ; pz̄

i ¼ p1
i − ip2

i ; ð1:2Þ

so that the momentum is expanded according to

pi ¼ ωið1; ziz̄i; zi; z̄iÞ: ð1:3Þ

This paper has been organized to be relatively self-
contained; in Sec. II we review the factorization theorems
in gauge theory and gravity, which make possible precise
definitions of soft S-matrices in the two theories. This is
followed by a proposal for the holographic description of
the soft S-matrices in QED and gravity in Sec. III. How this
proposal ties in with the broader program of finding
holographic representations of the entire theories is con-
sidered and discussed in Sec. IV after which the paper
concludes with a summary and future directions in Sec. V.

II. SOFT S-MATRICES FROM FACTORIZATION

Before trying to develop two dimension models that
encode the soft part of the S-matrices for QED and gravity,
it is helpful to have an unambiguous presentation of what it
really means to compute the soft S-matrix. We work at
leading order throughout henceforth.3

In the case of QED, in addition to infinities in the
ultraviolet there are two classes of divergences that one
encounters. The first (which is what we will consider in this
paper) is in the infrared sector—where one or more photons
is taken to be deep in the infrared; namely that it’s energy
approaches zero. The second class of divergences is due to
to collinear interactions, in which a number of photons
approach a given external matter leg.
To take a concrete example, one may think of an external

matter state like an electron. In high energy scattering the
electron is essentially massless. Accordingly the direction
of its momentum is simply a point on the celestial sphere.
When one or more external photon states, which may or
may not be massless has momentum almost parallel to that
of this electron, the S-matrix becomes singular. The state-
ment of factorization is simply that the S-matrix factorizes
into a product of collinear contributions, corresponding to
points separated on the celestial sphere each of which
consists of a number of collinear states and two soft
pieces, which arise out of virtual and real soft emissions.
Importantly, the soft and collinear interactions decouple
and provide independent sources of divergences. Indeed,
we have for a QED S-matrix element [19–23]

Mð1Þ
n ¼

Y
ni

Cni ×Asoft
n;s¼1jvir ×Asoft

n;s¼1jreal ×Hn;s¼1: ð2:1Þ

Here, each Cni encodes collinear interactions of a given
sector, where the ni is used to indicate the number of
external states in that sector. The function Asoft

n;s¼1jvir is the

3By leading order, we are referring to the most divergent terms
arising out of the soft expansion.
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soft S-matrix due to virtual soft photon transitions, and is
given by

ln ðAsoft
n;s¼1jvirÞ ¼ −

1

8π2ϵ

X
i≠j

eiej ln jzi − zjj2; ð2:2Þ

where the ei are charges of the external states and the zi are
punctures on the celestial sphere coming from the mo-
menta of the external states. The function Asoft

n;s¼1jreal is the
contribution to the S-matrix arising out of the emission of
real soft photons. It depends on the number of soft photons
emitted. Given the soft factor for the emission of a positive
helicity photon

Sð1Þ
0 ðzÞ ¼ i

π

X
i

ei
z − zi

; ð2:3Þ

the object Asoft
n;s¼1jreal for one soft positive helicity photon

emission along the direction given by z with energy ω is
given by

Asoft
n;s¼1jreal ¼

1

ω
Sð1Þ0 ðzÞ: ð2:4Þ

When N such soft photons are radiated, Asoft
n;s¼1jreal is

composed of N soft factors. When negative helicity
photons are involved, the complex conjugated version of

Sð1Þ
0 ðzÞ encodes such an emission.
Finally, the function Hn;s¼1 is the so-called hard

S-matrix, which has no infrared or collinear divergences.
It is believed that it can be defined in an intrinsic fashion
(see for example [26,27]).
The case of gravity is surprisingly much simpler at

leading order. A key fact about factorization of gravity
amplitudes at leading order is that there are no collinear
divergences in gravity. This statement was known to be true
already by Weinberg [12] and DeWitt [13], has now been
established in more modern settings as well [24]. The
theorem of factorization then boils down to a very simple
statement about matrix elements Mð2Þ

n in a gravitational
theory,

Mð2Þ
n ¼ Asoft

n;s¼2jvir ×Asoft
n;s¼2jreal ×Hn;s¼2: ð2:5Þ

This time, the object Asoft
n;s¼2jvir is defined according to

lnðAsoft
n;s¼2jvirÞ¼−

κ2

8π2ϵ

X
i<j

ωiωjjzi−zjj2 ln jzi−zjj2; ð2:6Þ

where κ2 ¼ 8πG. The ωi have been used to denote the
energies of the external states.
The soft factor in gravity takes a form that is very similar

to that in QED. Indeed, for a positive helicity graviton we
have

Sð2Þ
0 ðzÞ ¼ i

π

X
i

ωiκ
z̄ − z̄i
z − zi

: ð2:7Þ

Accordingly, the soft S-matrix in gravity due to one real
emission of a soft positive helicity graviton is given by

Asoft
n;s¼2jreal ¼

1

ω
Sð2Þ
0 ðzÞ ð2:8Þ

with an analogous expression for a negative helicity
emission. Multiple soft emissions supply a corresponding
number of such factors. The hard S-matrix in gravity has of
course been denoted by Hn;s¼2, which is found by simply
computing the S-matrix element in the absence of any soft
corrections.
In this article, we will be mainly interested in the soft

contributions we have just discussed. As the reader will
observe, since we are dealing with massless external states,
the soft S-matrices are defined entirely in terms of
coordinates on the celestial sphere, which label directions
of the external states. We can then ask if there is some more
fundamental way to derive these expressions directly from
theories defined on the celestial sphere. Put differently, are
there two dimensional quantum field theories which natu-
rally compute both corrections to the S-matrices in QED
and gravity due to real and virtual soft interactions? As we
will see, there exist two dimensional models which do
precisely this.

III. THE HOLOGRAPHIC MODELS FOR THE
SOFT S-MATRICES

We start by considering the following two dimensional
theory of scalar fields on CP1

Sð1Þ ¼
Z

d2z½gab∂iφ
a∂iφb�: ð3:1Þ

Since the theory is defined in two dimensions, the partial
derivatives ∂i run over a two-dimensional coordinate
system on the celestial sphere given in terms of the pair
ðz; z̄Þ. The indices a and b take the values f1; 2g. Without
any loss of generality, the metric gab is taken to be
symmetric.
For the right choice of the metric, a convenient operator

product expansion can be engineered between the scalar
fields. We make the particular choice

gab ¼
�−a 1

1 0

�
: ð3:2Þ

Obviously, this is different from a normal theory of two
scalar fields, in which the fields may be rotated by an Oð2Þ
rotation while keeping the theory invariant. Our choice of
gab explicitly breaks this symmetry.
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Given this information, the operator product expansion
between two scalar fields can be inferred by inspection of
the correlation function

hφaðzÞφbðz0Þi ¼ ðg−1Þab 1
π
ln jz − z0j2: ð3:3Þ

More explicit is the expansion in terms of the component
fields,

hφ1ðzÞφ1ðz0Þi ¼ 0 hφ1ðzÞφ2ðz0Þi ¼ 1

π
ln jz − z0j2

hφ2ðzÞφ2ðz0Þi ¼ a
π
ln jz − z0j2: ð3:4Þ

Before moving on to specific considerations of correlation
functions of such fields, it is useful to determine and
characterize the nature of the global symmetries enjoyed by
this model. Like the ordinary Coulomb gas, this two-
dimensional model exhibits a shift symmetry [28], accord-
ing to the replacements

φa → φa þ ca; ð3:5Þ

where the vector ca is just composed of two constants,
which are independent. As it turns out, for the purpose of
this work we will not have occasion to exploit this full
symmetry, but will rather only be interested in the shift
symmetry corresponding to the second field

φ2 → φ2 þ c; ð3:6Þ

where we have chosen to drop the index on the constant.
Since this is a global symmetry, we are given our choice of
holomorphic and antiholomorphic currents that give rise to
the conserved charge corresponding to the global trans-
formation given above. Indeed, we have the following two
currents

jð1Þðz̄Þ ¼ ∂̄φ1ðz; z̄Þ
j̄ð1ÞðzÞ ¼ ∂φ1ðz; z̄Þ: ð3:7Þ

Reproducing the soft S-matrix due to virtual corrections
is now a matter of noting that the vertex operators Vð1ÞðziÞ
defined according to

Vð1Þðzi; z̄iÞ ¼ exp ðieiφ2ðzi; z̄iÞÞ ð3:8Þ

can be used to show that

hVð1Þðz1; z̄1Þ…Vð1Þðzn; z̄nÞi

¼ exp

�
−
a
π

X
i<j

eiej ln jzijj2
�
; ð3:9Þ

where zij ¼ zi − zj. In accordance with this, it is clear that a
convenient choice of a will give the right soft factor.
Indeed, we can define an a to suit us both in dimensional
regularization (in 4þ 2ϵ dimensions) as well as in infrared
regularization. For the former, the right choice of a is
given by

aDR ¼ 1

8πϵ
ð3:10Þ

while for the latter we need to choose

aIR ¼ −
1

8π
ln

�
ΛUV

λIR

�
; ð3:11Þ

where ΛUV is some RG scale with λIR is a choice of IR
cutoff. Although these are divergent, since IR finite
observables are defined (think for example of the ratio
function in N ¼ 4 super Yang-Mills theory) as ratios of S-
matrices, the divergent nature of the constant a poses no
problem to defining IR safe quantities.
In [25] a similar model was proposed to handle only the

virtual divergences, and currents entirely analogous to
those in (3.7) were used to show that the conservation
law corresponding to them was simply the statement of
charge conservation, arising out of the associated real soft
theorem. However, that model suffered from an ambiguity
in that two such insertions did not produce the double soft
theorem. The advantage of the model proposed here is that
we can circumvent this problem.
Consider again the insertion of a single holomorphic

current jð1ÞðzÞ into the correlation function in (3.9).
Employing the operator product expansions derived earlier,
we have

hjð1ÞðzÞVð1Þðz1Þ…Vð1ÞðznÞi

¼
�
i
π

X
i

ei
z − zi

�
exp

�
−
a
π

X
i<j

eiej ln jzijj2
�
; ð3:12Þ

which is obviously the leading-order soft theorem corre-
sponding to the emission of a single soft photon. Noting of
course that

Sð1Þ
0 ðzÞ ¼ i

π

X
i

ei
z − zi

; ð3:13Þ

the double-soft emission theorem is then obtained by
simply inserting two soft currents to give

hjð1Þðz0Þjð1ÞðzÞVð1Þðz1Þ…Vð1ÞðznÞi

¼ Sð1Þ
0 ðz0ÞSð1Þ

0 ðzÞ exp
�
−
a
π

X
i<j

eiej ln jzijj2
�
: ð3:14Þ
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Naturally, this is easy to generalize to any number of soft
insertions. Inserting N soft currents leads to the soft
theorem corresponding to the emission of N soft photons.
We can review how charge conservation fits into this

formalism. Indeed, notice that each of the scalar fields in
the correlator (3.9) can be shifted by a constant c according
to the global symmetry of the model. Insisting on the
invariance of the correlator under this transformation
requires that the phase

δ1 ¼ i
X
i

ei ð3:15Þ

vanishes. This is just charge conservation. Alternatively,
this can be derived by applying the global residue theorem
to the holomorphic soft current, which gives us precisely
the preceding statement. Parenthetically, we observe that
the exact same calculation goes through for the antiholo-
morphic current. The holomorphic and antiholomorphic
currents simply correspond to emissions of soft photons of
positive and negative helicity, respectively.
Wepoint out at this stage thatwehave—using thismodel—

resolved the soft part of the S-matrix in QED completely
from the hard part, so long as the factorization theorem at
leading order is assumed. Importantly, this model provides
a complete realization of the soft part of the QED S-matrix
in terms of a two-dimensional theory, which is precisely
what one wants in a holographic description. While this is
interesting, holography is most relevant in the context of
gravity. We turn now to generalizing the model we have just
described to the case of the soft S-matrix in gravity.
Informed by the calculations performed in [25], let us

consider the following model on the celestial sphere

Sð2Þ ¼
Z

d2z½gab∂i∂jχ
a∂i∂jχb�: ð3:16Þ

As pointed out in [25], this is a theory of two-dimensional
disclinations. Although it looks like it’s a theory of two
different flavors of disclinations, due to the basic arguments
of the preceding discussion, disclinations of only one
variety are ultimately involved. Noting once again that
the Green’s function of the biharmonic operator ∇2 is just
1
π jzj2 ln jzj2, we have the following operator product
expansions (OPEs)

hχ1ðzÞχ1ðz0Þi ¼ 0

hχ1ðzÞχ2ðz0Þi ¼ 1

π
jz − z0j2 ln jz − z0j2

hχ2ðzÞχ2ðz0Þi ¼ a
π
jz − z0j2 ln jz − z0j2: ð3:17Þ

The global symmetries of this theory are inferred by
noting that the action in (3.16) is either invariant or changes
by a total derivative under the transformation

χaðz; z̄Þ → χaðz; z̄Þ þ ca1 þ ca2zþ ca3 z̄þ ca4zz̄: ð3:18Þ

Since the constants cai are arbitrary, the global symmetry is
an eight-parameter group.
In complete analogy to the results of the earlier dis-

cussion, we note the following vertex operator

Vð2Þðzi; z̄iÞ ¼ exp ðiωiκiχ
2ðzi; z̄iÞÞ; ð3:19Þ

where ωi is to be identified with the energy of an
external state while κi is some constant, that a priori is
label dependent, although (as we expect) it will be
shown to be universal in accordance with the equivalence
principle. In a nod to this fact, we will need the following
currents

jð2Þðz; z̄Þ ¼ ∂2χ1ðz; z̄Þ
j̄ð2Þðz; z̄Þ ¼ ∂̄2χ1ðz; z̄Þ: ð3:20Þ

Moving now to showing that we can find the soft
S-matrix for gravity in this model, we simply compute
the following correlator, which immediately gives the
desired result

hVð2Þðz1; z̄1Þ…Vð2Þðzn; z̄nÞi

¼ exp

�
−
a
π

X
i<j

ωiωjκiκjjz2ijj ln jzijj2
�
; ð3:21Þ

in precise agreement with the virtual soft factor in gravity
[12]. Before moving on to the soft theorem we see that the
global symmetry of this model introduces the following
phase into the correlator

δ2 ¼ i
X
i

ωiκi þ i
X
i

ωiκizi þ i
X
i

ωiκiz̄i

þ i
X
i

ωiκiziz̄i: ð3:22Þ

That this must vanish is simply the statement thatX
i

κip
μ
i ¼ 0; ð3:23Þ

which in combination with momentum conservation
tells us that the constants κi must all equal some constant
κ. This is just the celestial analog of Weinberg’s argument
in [29].
So far what we have done is not altogether different from

what we showed in [25]. Once again, the difference is in the
real sector. First, we observe the following:

hjð2Þðz; z̄ÞVð2Þðzi; z̄iÞi ¼
iωiκ

π

z̄ − z̄i
z − zi

Vð2Þðzi; z̄iÞ: ð3:24Þ
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This tells us that a single insertion of the soft current
reproduces the soft theorem due to a single soft graviton
emission of positive helicity

hjð2Þðz; z̄ÞVð2Þðz1; z̄1Þ…Vð2Þðzn; z̄nÞi

¼ Sð2Þ
0 ðzÞ exp

�
−
a
π

X
i<j

ωiωjκiκjjz2ijj ln jzijj2
�
: ð3:25Þ

Obviously, the same calculation goes through for the
current j̄ð2Þðz; z̄Þ, which corresponds to the emission of a
negative helicity graviton. There are once again no non-
trivial OPEs between the currents themselves, and inserting
N such currents gives the soft theorem for N soft graviton
emissions.
It is clear from this discussion that what we have is a

genuine holographic theory for the soft S-matrix in gravity.
Importantly, the results in this section have been derived by
making no reference to fields in the bulk and are defined
intrinsically on null infinity.

IV. TOWARDS A HOLOGRAPHIC MODEL
OF QED AND GRAVITY IN FLAT SPACE

One reason for the interest in expressing scattering
amplitudes intrinsically on the celestial sphere is hoping
that doing it might supply a path towards further under-
standing instances of flat space holography. Given the
results of the previous section, it is natural to wonder how
the two-dimensional representations of the soft S-matrices
in QED and gravity affect our ability to construct holo-
graphic versions of the full theories. As it turns out, the
cases of QED and gravity differ somewhat, so we discuss
them in turn.
If we look at the QED case, the first thing to observe is

that the soft factors in QED are energy independent, in that
they do not depend on the energies of the external states
involved in the scattering process. Why is this helpful in
developing a holographic dual that can compute scattering
amplitudes in QED? To understand this, we turn our
attention to one proposal for constructing amplitudes that
at least on the surface appear to have holographic origins,
given amplitudes computed in a standard fashion from
say QED.
Suppose we have a scattering amplitude, which encodes

maybe a number of collinear sectors, in QED which we
denote byMð1Þ

n . In computing such amplitudes, momentum
conservation is ensured by constructing asymptotic states
that are in a momentum eigenbasis. Due to this fact, at least
when we are working with massless amplitudes, the
scattering amplitude will depend on the energies ωi of
the external states along with the coordinates ðzi; z̄iÞ, which
represent punctures on the celestial sphere. One way to
construct, by hand, a holographic representation of such
amplitudes is to find a basis which exhibits the right
behavior under conformal transformations, which is what

we expect for a holographic theory. It turns out that such a
basis is furnished by the so-called Mellin basis, which
converts momentum eigenstates into boost eigenstates via
the transform4

fMð1Þ
n ¼

Z Yn
i¼1

ωiΛi
i eiuiωidωi ×Mð1Þ

n ; ð4:1Þ

where the integration is carried out over the energies of the
external states. This transform naturally yields a scattering
amplitude that is intrinsically defined on R × CP1, namely
on future null infinity, where the retarded coordinate is
labeled by u.
This is where the fact that the soft part of the QED S-

matrix being independent of the energies of the external
states becomes relevant. Indeed, by virtue of this fact the
soft factorization continues to hold even at the level of the
celestial amplitudes obtained from the Mellin transform.
This tells us that insofar as there exists a holographic
description of the collinear and hard sectors of QED (which
is by no means certain), the full holographic theory
decomposes very nicely—into a soft part which is
described by an Oð2Þ-broken Coulomb gas model, and a
putative holographic model that encodes the collinear and
hard parts.
Things become more interesting (and less simple) when

we want to discuss the prospect of constructing a holo-
graphic model of gravity in flat space. First, we point out
that due to the absence of collinear interactions at leading
order in factorization, an amplitude in gravity is broken up
into a hard part and soft corrections—and we know that the
latter is fully described by anOð2Þ-broken model of crystal
disclinations. This being said, let us see why the inclusion
of soft modes in gravity is a considerable complicating
factor. Consider an n-point function for graviton scattering,

which we denote by Mð2Þ
n . In the absence of soft inter-

actions, the corresponding amplitude on null infinity is
obtained by the modified Mellin transform

fMð2Þ
n ¼

Z Yn
i¼1

ωiΛi
i eiuiωidωi ×Mð2Þ

n : ð4:2Þ

What happens now if we want to include soft interactions?
In the QED case, since the vertex operators had no ωi
dependence, the inclusion of soft modes simply devolved
upon multiplying the Mellin amplitude by the soft
S-matrix. In the case of gravity however, precisely due
to the fact that the vertex operators have ωi dependence, the
scattering amplitude in momentum space must be dressed

4The transform we have decided to discuss is known as the
modified Mellin transform, due to Banerjee [30–32]. It is a
refinement of the ordinary Mellin transform due to Pasterski et al.
[33,34], which does not converge for scattering amplitudes that
are not UV complete.
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by these factors before carrying out the Mellin transform.
The result is as follows:

fMð2Þ
n ¼

Z Yn
i¼1

ωiΛi
i eiωiðuiþχðzi;z̄iÞÞdωi ×Mð2Þ

n : ð4:3Þ

Two facts can be inferred from the preceding expression.
Most obviously, factorization is clearly lost when we move
to the Mellin basis in the case of gravity. This in itself is not
a problem—it just tells us that in coming up with a
holographic theory of gravity, even at tree level and
leading-order factorization, it will likely be important to
see how the soft and hard parts interact, since it is clear that
they do not decouple in the celestial basis.
Amusingly, the inclusion of the soft mode has another

effect—it shifts the location of the retarded coordinate ui of
the ith external state according to

ui → ui þ χðzi; z̄iÞ: ð4:4Þ
Classically, what this tells us is that the inclusion of soft
modes has the effect of super translating the retarded
coordinate by a biharmonic function on the celestial sphere.
Of course, one could have seen this even at the level of the
ordinary Mellin transform, which is obtained by simply
setting all the ui to vanish, but the nature of the shift is most
clearly expressed in the modified Mellin basis.
In closing, the holographic dual description of the soft

S-matrix in QED is valuable in that factorization at leading
order is preserved by the Mellin transform, meaning that
finding a holographic form of the full theory boils down to
constructing such a dual for the collinear and hard sectors
separately. As we have come to expect however, gravity is
not as easy to work with as the two-dimensional model of
soft divergences in gravity will probably mix with the hard
part upon going to a celestial basis.5

V. DISCUSSION

In this article we have constructed two-dimensional
models that capture the entire soft dynamics—due to real
as well as virtual soft radiation—in QED and gravity. In
particular, we have observed that we can construct models
that are explicitly two dimensional, in that they are defined
on the celestial sphere CP1, which then yield the soft parts
of the S-matrices in QED and gravity directly as correlation
functions of currents and vertex operators defined in terms
of the fundamental fields of the theories.

Specifically, the theories are those of two scalar fields—
free scalar fields in the case of QED and scalar fields with a
biharmonic kinetic term in the case of gravity. Unlike the
conventional theory of two real scalars, the theories we deal
with were not invariant under global Oð2Þ transformations
of the vector of scalars. Rather, the Oð2Þ symmetry was
explicitly broken by a metric gab, which ensured that only
one of the fields had a nontrivial OPE with itself. This made
it possible to readily resolve the real and virtual parts of the
soft S-matrix.
One aspect of the present analysis that requires some

discussion is that of the double copy structure that has
emerged. The double copy more generally is a phenomenon
in which scattering amplitudes in a gravitational theory can
be constructed by squaring corresponding amplitudes in
some gauge theory. There is some evidence to suggest that
the double copy is fundamentally a string-theoretic phe-
nomenon [38–43], although more work needs to be done to
establish whether or not this is indeed the case.6 At any rate,
we saw in [25] that soft S-matrices in QED and gravity
enjoyed a double copy which was quite independent of any
underlying string-theoretic framework. Indeed, all that had
to be done was to carry out the following replacements of
the operators ∂∂̄ in the kinetic term

∂∂̄ → ð∂∂̄Þ2: ð5:1Þ
In the present work something entirely similar has hap-
pened. Indeed, the replacement given above has now
been refined; one has to only carry out the following
replacements

∂ → ∂2

∂̄ → ∂̄2; ð5:2Þ
to move from the description of the QED soft S-matrix to
the one in gravity. It is quite gratifying to see that not only is
there such a simple squaring operation that takes us from
one theory to the other, but also that it holds for the full soft
S-matrix, not just for the virtual part as in [25].
One natural avenue of future research is to generalize the

formalism presented here for QED to the more general
problem of understanding the soft S-matrix in gauge
theories. In [47,48], the authors have considered an action
of the form

Sgauge ¼
1

2π

Z
d2z½∂iϕ

a∂iϕa�; ð5:3Þ

where the scalars ϕa belong to a multiplet of the Lie algebra
of the non-Abelian gauge theory. By defining vertex
operators as

5We mention parenthetically the papers [35–37], in which
progress was made in developing truly two-dimensional models
(in that they are world-sheet theories) that attempt to describe the
tree level dynamics of gauge theory and gravity. One possible
direction of further study to realize holographic characterizations
of these theories may be to place the models for soft dynamics
suggested in this article consistently in the context such world-
sheet models.

6The double copy seems also to be best expressed in
momentum space. Progress was made in extending it to celestial
amplitudes in [44–46].
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VðrÞ
gaugeðz; z̄Þ ¼ exp ðikTa

rϕ
aðz; z̄ÞÞ; ð5:4Þ

where k is some coupling constant and Ta denote the
generators of the representation labeled by r, the authors
showed that the conformal correlation function of the
vertex operators supplied the color correlated part of the
dipole contribution to the soft anomalous dimension. Once
again, only virtual interactions were considered—exten-
sions of the result to real corrections and nondipole
corrections [49–55] remain open problems.
Finally, in [56], the Kac-Moody algebra that gave rise to

soft theorems in gauge theory and the corresponding
generalization to gravity were related to three-dimensional

Chern-Simons models (the Chern-Simons model has shown
up in other, unrelated studies of soft theorems as well in
[57,58]). It would be intriguing to see whether or not the
models we have studied here and in [25] can be extracted as
boundary theories of the models considered in [56].
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