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Of the contributions to the cosmological constant, zero-point energy contributions scale as δ4ð0Þ ∼ Λ4

where Λ is an ultraviolet cutoff used to regulate the calculations. I show that such contributions vanish
when calculated in perturbation theory. This demonstration uses a little-known modification to perturbation
theory found by Honerkamp and Meetz and by Gerstein, Jackiw, Lee, and Weinberg which comes into play
when using cutoffs and interactions with multiple derivatives, as found in chiral theories and gravity. In a
path integral treatment, the new interaction arises from the path integral measure and cancels the δ4ð0Þ
contributions. This reduces the sensitivity of the cosmological constant to the high energy cutoff, although
it does not resolve the cosmological constant problem. The feature removes one of the common motivations
for supersymmetry. It also calls into question some of the results of the asymptotic safety program.
Covariance and quadratic cutoff dependence are also briefly discussed.

DOI: 10.1103/PhysRevD.104.045005

I. CUTOFFS AND ZERO-POINT ENERGY

In regularizing quantum field theories, dimensional
regularization is the most common and useful choice,
partially because it preserves all the symmetries of the
theory. However, cutoffs also play a role in our thinking
about physics. Part of this is the legacy of the history of
cutoff regularization. But there is also some genuine
physics involved. We think of effective field theories as
being valid up to some energy scale, and a cutoff can
parametrize the limit of validity of the effective field theory.
In addition, running couplings depend on the energy scale
and cutoffs are sometimes used in their description. But if
we are to use cutoffs, our thinking should be aligned with
the underlying calculations. In this paper, I describe how
direct calculations of the cosmological constant using a
cutoff differ from our common description, and show the
need for a new interaction term when using cutoffs with
gravity.
In discussing the cosmological constant problem, we

note that Λcc corresponds to the vacuum energy density, for
which there are many contributions. One that is normally
mentioned is the zero-point energy. When calculated for a
scalar field, using canonical quantization one writes

E0 ¼
Z

d3p
ð2πÞ3

1

2
ωp ∼

1

16π2
Λ4; ð1Þ

where in the second form I have cut off the divergent
momentum integral at a scaleΛ. (Unfortunately, the standard
convention is to call both the vacuum energy and the cutoff
by the symbol Λ. I will always put the cc subscript on the
cosmological constant, i.e., Λcc.) Since the measured value
of the cosmological constant is Λcc ∼ ð10−3 eVÞ4 and we
might trust the zero-point energy calculation up to the Planck
mass, this leads to the common complaint about this being
the “worst prediction ever—failing by 120 orders of mag-
nitude.” One of the motivations for supersymmetry is to
cancel these effects by having equal numbers of boson and
fermion degrees of freedom.
This calculation is inadequate, as it is not covariant.

Indeed, if we calculate all the components of the energy
momentum tensor using canonical quantization, we find the
Λ4 contribution to the vacuum values is

Tμνj0 ¼ diag

�
1;
1

3
;
1

3
;
1

3

�
×

1

16π2
Λ4 ð2Þ

such that this divergent part of the vacuum value is
traceless, ημνTμνj0 ¼ 0. Since the contribution to the
cosmological constant can equally be identified with the
trace of the energy momentum tensor

Tμ
μ ¼ 4Λcc; ð3Þ

we could equally well conclude that this contribution to the
cosmological constant is zero. The canonical quantization
calculation of the zero-point energies and momenta is not
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compatible with Lorentz invariance of the vacuum. The
point is that covariance requires an effect proportional
to ημν.
The covariance problem can be resolved by using

quantum field theory (QFT) to calculate the contribution
to the cosmological constant. The cosmological constant
appears in the gravitational action as

Sgrav ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−Λcc þ

2

κ2
Rþ � � �

�

¼
Z

d4x

�
−Λcc

�
1þ 1

2
ημνhμν

�
þ � � �

�
; ð4Þ

where the expansion of gμν ¼ ημν þ hμν has been used and
κ2 ¼ 32πG. The coupling of hμν to matter has the form

Lint ¼ −
1

2
hμνTμν: ð5Þ

To first order in hμν the contribution to the cosmological
constant then can be identified via the tadpole loop diagram
that is illustrated in Fig. 1(a). Using a minimally coupled
scalar particle in the loop we find the effect

ΔL ¼ −i
1

2
hμν ×

Z
d4p
ð2πÞ4

2pμpν − ημνðp2 −m2Þ
p2 −m2 þ iϵ

¼ −i
1

2
hμνημν

Z
d4p
ð2πÞ4

1
2
p2 − ðp2 −m2Þ
p2 −m2 þ iϵ

¼ i
1

2
hμνημν

1

2
δ4ð0Þ þOðm2Þ

∼ −
1

2
hμν × ημν

1

64π2
Λ4 ð6Þ

yielding the covariant definition of this contribution

Λcc ∼
1

64π2
Λ4: ð7Þ

However, in this paper I will show that even the above
QFT calculation is wrong—that, in fact, there are no
perturbative δ4ð0Þ ∼ Λ4 zero-point contributions to the
cosmological constant. The demonstration is an outgrowth

of a little-known feature about the use of perturbation
theory when using cutoffs in situations where the inter-
actions are proportional to the derivatives of fields. In the
context of chiral theories, Honerkamp and Meetz [1] and
Gerstein, Jackiw, Lee, and Weinberg (GJLW) [2] showed
that theories with derivative-based interactions have a new
ingredient in the Feynman rules that is relevant when using
cutoffs.1 In a covariant path integral treatment, that inter-
action is part of the path integral measure. This exactly
cancels the quartic Λ dependence in loops. A similar effect
appears in gravitational interactions of matter fields and in
pure gravity. In pure gravity, this was shown by Fradkin
and Vilkovisky [3].2 The new interaction is proportional to
iδ4ð0Þ log detð−gμνÞ, where δ4ð0Þ is δ4ðxÞ evaluated at
x ¼ 0, and is relevant in any regularization scheme where
the regularized value of δ4ð0Þ is nonzero.

II. SCALAR FIELDS–SIMPLIFIED METRIC

Here let us consider a massless scalar field, with the
action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
gμν∂μϕ∂νϕ: ð8Þ

The mass term will be discussed separately below.

A. Simplified metric

In this section, I will illustrate the physics involved using
a simplified metric,

gμνðxÞ ¼ ð1þ hðxÞÞημν; ð9Þ

This choice is motivated by the fact that one can directly
use the results of GJLW [2] without any need for new
derivations and that the results emerge simply. While we
can keep in mind that this follows from a generally
covariant action, the result can be treated in perturbation
theory using ordinary Minkowski space field theory. It is
just an ordinary field theory with a derivative coupling
between the scalar field and the background field hðxÞ.
Moreover, this metric is general enough that we can isolate
the cosmological constant contribution cleanly. So overall
we can see the essential physics in this example, without
any elaboration of the formalism. After we see the under-
lying physics in this pedagogic example, we can readily
understand the more general cases. By general covariance,
the results that are shown using this metric will also yield
the same result with a more general metric.

FIG. 1. (a), (b) The tadpole diagrams and (c) the bubble
diagram. The solid line is the scalar field, and the dashed line
is the metric field.

1The new effect vanishes in dimensional regularization, which
is one reason that it is little known today.

2I thank A. Tseytlin for bringing this reference to my attention
after the first version of the preprint was posted. I comment on the
slight difference between their result and mine in Sec. VI.
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With this choice of metric, we have the following
relations:

ffiffiffiffiffiffi
−g

p ¼ ð1þ hðxÞÞ2 ð10Þ

and

ffiffiffiffiffiffi
−g

p
R ¼ 3

2

∂μh∂μh

1þ h
− 3□h: ð11Þ

The important feature here is that we can recognize the
effects of these two terms through their derivative struc-
ture. Renormalization of the vacuum energy involves the
metric field h with no derivatives. Renormalization of
the Newton constant involves two derivatives of h. At the
order of curvature squared, there are in general two
invariants in the four-dimensional (4D) action and we
can recover only one invariant, R2, because this metric
satisfies RμνRμν − 1

3
R2 ¼ 0. However, since our primary

focus is on the cosmological constant, this metric is
general enough for our purposes.
The massless scalar field action involves

ffiffiffiffiffiffi
−g

p
L ¼ 1

2

ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕ ¼ 1

2
ð1þ hðxÞÞ∂λϕ∂λϕ: ð12Þ

The coupling of the field h to the scalar involves two
derivatives, and this is the feature that generates the
nonstandard features in the Feynman rules.
The action has no dimensional parameters. Using a

cutoff adds a mass dimension to the theory that was not
there originally. If we were investigating physical observ-
ables in this theory, it would be sufficient to use dimen-
sional regularization, which seems better suited for a
massless theory. However, let us see what happens with
the use of a cutoff.

B. Canonical quantization

The key new ingredient here is the fact that when the
interactions contain derivatives, the canonical momentum
is changed,

ΠðxÞ ¼ ∂L
∂ _ϕ ¼ ð1þ hðxÞÞ _ϕ: ð13Þ

When forming the interaction Hamiltonian and going to the
interaction picture, this induces a new interaction. As for
the new interaction, here is a brief review of the GJLW
results using their notation, after which we will revert to the
special case for the gravitational interaction. The authors
start with a Lagrangian for multiple fields πaðxÞ,

L ¼ 1

2
GabðπÞ∂μπ

a∂μπb ð14Þ

with

GabðπÞ ¼ δab þ ḠabðπÞ: ð15Þ

The canonical momentum is

ΠaðxÞ ¼ ðδab þ ḠabðπÞÞ∂0π
bðxÞ: ð16Þ

Forming the Hamiltonian yields

H ¼ H0 þHI;H0 ¼
1

2
ΠaΠa þ ∂iπ

a∂iπ
a;

HI ¼ −LI −
1

2
∂0π

aḠ2
ab∂0π

b; ð17Þ

with the standard interaction Lagrangian

LI ¼
1

2
ḠabðπÞ∂μπ

a∂μπb: ð18Þ

Now in going to the interaction picture we identify

πa → ϕa;Πa → ∂0ϕ
a; ð19Þ

where ϕa is the interaction picture field. The resulting
perturbative Hamiltonian is

HI ¼ −
1

2
Ḡab∂μϕ

a∂μϕb þ 1

2
∂0ϕ

a

�
Ḡ2

1þ Ḡ

�
ab
∂0ϕ

b: ð20Þ

The first term yields the usual perturbative expansion. The
second term is new. If we specialize the special metric that
we are studying, the equivalent form is

HI ¼ −
1

2
h∂μϕ∂μϕþ 1

2
∂0ϕ

�
h2

1þ h

�
∂0ϕ: ð21Þ

The new term starts at second order in h.
In addition, the propagator functions pick up a modifi-

cation when multiple derivatives are included. If we define

ΔðqÞ ¼
Z

d4xeiqxh0jTϕðxÞϕð0Þj0i;

ΔμðqÞ ¼
Z

d4xeiqxh0jT∂μϕðxÞϕð0Þj0i;

ΔμνðqÞ ¼
Z

d4xeiqxh0jT∂μϕðxÞ∂νϕð0Þj0i; ð22Þ

then the first two have the usual form, but the third has a
modification due to the time ordering

ΔðqÞ ¼ i
q2 þ iϵ

;ΔμðqÞ ¼
iqμ

q2 þ iϵ
;

ΔμνðqÞ ¼
iqμqν
q2 þ iϵ

− iημ0ην0: ð23Þ

The nonstandard term in the propagator follows from the
commutation rules for the interaction picture field ϕ. While
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various steps are not Lorentz covariant, the final results
will be.
Let us calculate the loop contribution to the cosmological

constant. The tadpole diagram with one external factor of h,
Fig. 1(a), is now

−iM ¼ i
Z

d4p
ð2πÞ4

�
p2

p2 þ iϵ
− 1

�
: ð24Þ

The first term is the usual Feynman rule. The second comes
from the extra piece in the propagator of Eq. (23). One sees
that they cancel.
Let us confirm this result by looking at diagrams with

two factors of h. The treatment here is more subtle because
it involves the new nonstandard interaction of Eq. (21). The
bubble diagram, Fig. 1(c), contributes

ΣBðqÞ ¼
1

2

Z
d4p
ð2πÞ4

�ðp · ðp − qÞÞ2
p2ðp − qÞ2 − 2

p0p0

p2
þ 1

�
ð25Þ

with the first term being the standard interaction and the
others coming from the propagator modification. There is
also a tadpole diagram with two factors of h, Fig. 1(b),
coming from the nonstandard interaction which contributes

ΣT ¼
Z

d4p
ð2πÞ4

�
p0p0

p2
− 1

�
: ð26Þ

These sum to

ΣðqÞ ¼ 1

2

Z
d4p
ð2πÞ4

�ðp · ðp − qÞÞ2
p2ðp − qÞ2 − 1

�
: ð27Þ

As expected the noncovariant terms cancel. It is easy to
verify that the quartic cutoff dependence in this expression
vanishes. In addition, we have

Σðq ¼ 0Þ ¼ 0; ð28Þ

which implies that the interaction without derivatives
vanishes. This is consistent with the vanishing of the single
h tadpole diagram which we found above in Eq. (24).

C. Field redefinition

This result can be understood without even calculating it
explicitly. We can see from the action, Eq. (12), that if the
metric field h was a constant, the prefactor would be
absorbed into the normalization of the field ϕ. In the wave
function renormalization process one absorbs an overall
factor into the normalization of the field

1

2
Z∂μϕ∂μϕ →

1

2
∂μϕ

r∂μϕr: ð29Þ

Even if we did not do this explicitly, the quantization
process would take care of the normalization when one

defines normalized states. To the extent that 1þ h is a
constant, that should happen in a consistent quantization.
To the extent that 1þ h is not a constant, the theory should
depend on the derivatives of hðxÞ.
One can see this explicitly through a field redefinition—

specifically a local wave function renormalization. For a
general hðxÞ the interaction prefactor can be removed by a
field redefinition

ϕ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p χ: ð30Þ

This transforms the original Lagrangian into

L ¼ 1

2

�
∂μχ∂μχ − χ∂μχ

∂μh

1þ h
þ 1

4
χ2

∂μh∂μh

ð1þ hÞ2
�
: ð31Þ

In this form, we can see that all of the interactions of the
metric field h involve its derivatives ∂μh. Since we are only
studying loops of the scalar particle, there is no chance of
removing this derivative factor. Thus loops will not gen-
erate the vacuum energy term which involves only powers
of h without derivatives.
This form of the action also involves a derivative

interaction, which in this case is linear in the derivative
of χ. This is similar to scalar QED which also has a linear
derivative interaction. Investigations of canonical quantiza-
tion of scalar QED show that the nonstandard vertex which
follows from the derivative interaction gets canceled by the
nonstandard term in the propagator, Eq. (23) (e.g., see [4]).
We can proceed without concern in this case. Equivalently
we could use integration by parts to remove the ∂μχ
interaction, which yields

L ¼ 1

2

�
∂μχ∂μχ −

1

6
χ2ð−gÞ1=4R

�
; ð32Þ

where we have identified the scalar curvature for this
particular metric, Eq. (11). In this form it is clear that
the cosmological constant term will not be generated by
loops of the scalar field.
Akhmedov [5] has also argued that the Λ4 contributions

to the zero-point energy should be absent, based on
relativistic invariance. This reasoning is much like the
comments around Eqs. (2) and (3). While we have seen that
the conclusion is correct, relativistic invariance is not
enough to obtain it, as shown in Eq. (6). We need the
extra field theoretic interventions described above, and
developed further below, in order to reach this conclusion.

D. Covariant quantization

Canonical quantization is awkward for this problem, as it
leads to noncovariant interactions and propagators.
However, there exists a covariant version also, in which
one uses only the usual covariant propagators. It, however,
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involves a new interaction term that accounts for the effects
of both the nonstandard propagators and the nonstandard
interaction discussed above. In the notation of GJLW, this
has the form

ΔL ¼ −
1

2
iδ4ð0ÞTr log ½1þ ḠðϕÞ�: ð33Þ

Here δ4ð0Þ is to be identified with

δ4ð0Þ ¼
Z

d4p
ð2πÞ4 ¼ i

1

32π2
Λ4 ð34Þ

when using cutoff regularization. This factor vanishes in
dimensional regularization as it is a scaleless integral. For
our simplified metric, one has

ΔL ¼ −
1

2
iδ4ð0Þ log ½1þ hðxÞ�: ð35Þ

The GJLW derivation is direct in accounting for
the nonstandard features starting from the Hamiltonian
formalism. However, it is somewhat convoluted. For
the present case, it is easier to mimic the technique of
Honerkamp and Meetz [1] (see also DeWitt [6], Boulware
[7], and Salam and Strathdee [8]). This follows from the
observation of Sec. II C that in the representation of
Eqs. (31) and (32) there is no need for any alternate rules.
Using the path integral in Lagrangian form, one can then
transform back from the field variables χ to ϕ. In the path
integral, this comes with a Jacobian factor

Z
½dχ� ¼

Z
½dϕ�J: ð36Þ

Here we start with the transformation

Dðx; x0Þ ¼ δχðxÞ
δϕðx0Þ ¼ δ4ðx − x0Þ ∂χ∂ϕ ðxÞ: ð37Þ

Because there are no derivatives involved, the Jacobian
factor is local in the coordinate representation

J ¼ Det½Dðx; xÞ�; ð38Þ

where Det implies the functional determinant. Exponentia-
tion of this factor is then accomplished via

J ¼ DetD ¼ eTr logD: ð39Þ

Evaluating this we find

logDðx; x0Þ ¼ δ4ðx − x0Þ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hðxÞ

p
; ð40Þ

such that

J ¼ DetD ¼ eδ
4ð0Þ

R
d4x log½ð1þhÞ1=2�: ð41Þ

The δ4ð0Þ factor arises from the locality in x of Eq. (38).
This yields the new interaction in the Lagrangian.
Use of this interaction then accounts for the removal of

the Λ4 factors that were previously accomplished by the
nonstandard Hamiltonian interactions. One can see this
most simply in the linear term in h, which amounts to

1

2
iδ4ð0Þ ¼ −

1

64π2
Λ4 ð42Þ

canceling the quartic contribution to the cosmological
constant.

E. Quadratic cutoff dependence and masses

This demonstration should not be taken to mean that
cutoffs cannot lead to the renormalization of the cosmo-
logical constant. When the particle’s mass is not zero, there
will be a quadratic cutoff dependence in the renormaliza-
tion

δΛcc ∼m2Λ2: ð43Þ

This can be seen simply in our calculation of the tadpole
diagram. The Lagrangian with a mass term is

ffiffiffiffiffiffi
−g

p
L ¼ 1

2

ffiffiffiffiffiffi
−g

p ½gμν∂μϕ∂νϕ −m2ϕ2�

¼ 1

2
½ð1þ hðxÞÞ∂λϕ∂λϕ −m2ð1þ hðxÞÞ2ϕ2�: ð44Þ

The tadpole diagram now becomes

−iM ¼ i
Z

d4p
ð2πÞ4

�
p2 − 2m2

p2 −m2 þ iϵ
− 1

�

¼ i
Z

d4p
ð2πÞ4

�
−m2

p2 −m2 þ iϵ

�
: ð45Þ

The last integral is quadratically divergent.
The renormalization of a cosmological constant can also

be seen using the field transformed version of the action.
Including a mass term has the effect that the rescaling of
fields from ϕ → χ now leaves behind a nonderivative
interaction. After the rescaling of the field, we find

ffiffiffiffiffiffi
−g

p
L ¼ 1

2
∂μχ∂μχ −

1

2
χ∂μχ

∂μh

1þ h

þ 1

8
χ2

∂μh∂μh

ð1þ hÞ2 −
1

2
m2ð1þ hÞϕ2: ð46Þ

In the loop diagrams there will now be a residual nonde-
rivative interaction proportional to m2Λ2.
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III. SCALARS—GENERAL METRIC

The analysis of the previous section contains the ingre-
dients for the treatment of a general metric. For any metric,
we can always divide the metric into an overall conformal
factor and a unimodular metric

gμνðxÞ ¼ Ω2ðxÞḡμν ð47Þ
with

det ḡμν ¼ −1: ð48Þ
In this division, we have

− det gμν ¼ Ω8: ð49Þ
The scalar field Lagrangian is now

S ¼
Z

d4xΩ2
1

2
ḡμν∂μϕ∂νϕ ¼ −

Z
d4xΩ2

1

2
ϕD2ϕ; ð50Þ

with

D2 ¼ ∂μḡμν∂ν þ
2

Ω
ð∂μΩÞḡμν∂ν: ð51Þ

The goal of our study, the cosmological constant term, is
given uniquely by the conformal factor

Z
d4x

ffiffiffiffiffiffi
−g

p
Λcc ¼

Z
d4xΩ4Λcc: ð52Þ

The correspondence with the specialized metric is

1þ hðxÞ → Ω2: ð53Þ

The new interaction becomes

ΔL ¼ −
1

2
iδ4ð0Þ log ½1þ hðxÞ�

→ −iδ4ð0Þ log ½ΩÞ�

¼ −i
1

8
δ4ð0Þ log ½− det gμν�: ð54Þ

Here det refers only to the determinant over the Lorentz
indices, as in g ¼ det gμν.
We can verify that this factor removes the contribution to

the cosmological constant through a path integral treat-
ment. The path integral with the Jacobian included isZ

½dϕ�Detð−gÞ18ei
R

d4x
ffiffiffiffi−gp

L ¼
Z

½dϕ�ðDetΩÞe−i
R

d4xΩ2ϕD2ϕ:

ð55Þ
WithinD2 there are only derivative interactions ofΩ so that
these terms cannot lead to a change in the cosmological
constant. Doing the path integral we obtain

ðDetΩÞ 1

ðDetΩ2D2Þ12 ¼
1

ðDetD2Þ12 : ð56Þ

Here we see how the path integral accomplishes the local
wave function renormalization—the overall factors of Ω
cancel. There is no modification of the cosmological
constant term.

IV. FERMIONS

There is a related discussion for fermions. First, we can
examine the situation with the simplified metric. The
massless action involves

ffiffiffiffiffiffi
−g

p
L ¼ ð1þ hÞ32ψ̄

�
iγμ

�
∂μ −

1

8ð1þ hÞ σμνð∂
νhÞ

��
ψ ;

ð57Þ
where the second term is the spin connection term in this
metric. The spin connection term in the Lagrangian
involves the derivative of the metric, so that we will not
display this piece when discussing the cosmological con-
stant. The propagator rules that we need are

iSðqÞ ¼
Z

d4xeiqxh0jTjψðxÞ ¯ψð0Þj0i;

iSμðqÞ ¼
Z

d4xeiqxh0jT∂μψðxÞ ¯ψð0Þj0i; ð58Þ

with the representation

iSðqÞ ¼ i
=qþ iϵ

;

iSμðqÞ ¼
qμ

=qþ iϵ
− γ0δμ0: ð59Þ

The unconventional extra term follows from the commu-
tation rules for fermions.
From the Lagrangian and the propagators we can

calculate the loop correction to the cosmological constant
by looking at the linear term in hðxÞ via the tadpole diagram
of Fig. 1(a). One obtains

δL ¼ 3

2
ih

Z
d4q
ð2πÞ4

�
=q

=qþ iϵ
− 1

�
: ð60Þ

As before this gives a null result for the Λ4 contribution to
the cosmological constant. (Adding a mass will lead to
quadratic cutoff dependence.)
When we go to a generic metric, we can again use the

decomposition of Eq. (47). The Lagrangian is now

ffiffiffiffiffiffi
−g

p
L ¼ Ω3ψ̄

�
iēμaγa∂μ þ

1

4
σbcAbc

μ

�
ψ ; ð61Þ

where ēμa is the vierbein for the unimodular metric and
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Abc
μ ¼ Ābc

μ þ 1

Ω
ðebμeaλ − eaμebλÞ∂λΩ ð62Þ

is the spin connection, with Ābc
μ being the spin connection

formed using the unimodular metric with no factors of Ω.
Again the spin connection contains derivatives of the metric
and can be neglected for our purposes. The conformal
factor without derivatives can be removed from the action
by the local wave function renormalization

ηðxÞ ¼ Ω3
4ψ ; ð63Þ

which allows us to use conventional Feynman rules and
agree with the nonrenormalization of the cosmological
constant. By our previous work this leads to the appropriate
measure

dψdψ̄ det ½Ω�32 ¼ dψdψ̄ ½− det gμν�38: ð64Þ

Exponentiating this leads to the novel interaction term

ΔL ¼ −i
3

8
δð0Þ logð−gÞ: ð65Þ

V. PHOTONS

With photons the vanishing of the contribution to the
cosmological constant is most easily seen by going directly
to the general metric. In this case,

ffiffiffiffiffiffi
−g

p
L ¼ Ω4Ω−4ḡμαḡνβFμνFαβ ð66Þ

so that the conformal factor totally disappears from the
action. In the gauge fixing term

ffiffiffiffiffiffi
−g

p
Lg:f: ¼

ffiffiffiffiffiffi
−g

p 1

2ξ
ðgμνDμAνÞ2; ð67Þ

the overall factor of Ω also vanishes. The connection only
contains derivatives of the metric. These will generate only
powers of the curvatures, which are formed using deriv-
atives of the metric. Given that the 4D action of photons
coupled to gravity does not contain any overall factors ofΩ,
there can be no shift in the cosmological constant from
photon loops in any 4D regularization scheme.

VI. GRAVITONS

This analysis can be extended to gravitons themselves by
use of the background field method. In this case we use the
metric

gμν ¼ Ω2ḡμν þ κhμν ¼ g̃μν þ κhμν; ð68Þ

where hμν is the quantum field, κ2 ¼ 32πG, and again ḡμν is
unimodular. If we work in the harmonic gauge, the Einstein
Lagrangian becomes

ffiffiffiffiffiffi
−g

p 2

κ2
R ¼ 2

κ2
Ω4R̃þΩ−2

�
2R̃μνhμνhνα − R̃μνhμαhαα

þ 1

2
hμν;αhμν;α −

1

4
hμμ;αhν;αν

�
ð69Þ

up to quadratic order in hμν. Here the displayed indices are
now raised and lowered with the unimodular metric while
the covariant derivatives are defined using the full back-
ground metric g̃μν.
At this stage, the quantum part of the metric hμν is an

ordinary quantum field. The various aspects of our treat-
ment of the matter fields can readily be repeated. In the
canonical treatment, there is the propagator modification

Δμν
αβγδðqÞ ¼

Z
d4xeiqxh0jT∂μhαβðxÞ∂νhγδð0Þj0i; ð70Þ

which in harmonic gauge becomes

ΔμνðqÞαβγδ ¼ Pαβγδ

�
iqμqν

q2 þ iϵ
− iημ0ην0

�
; ð71Þ

where

Pαβγδ ¼
1

2
½ηαγηβδ þ ηαδηβγ − ηαβηγδ�: ð72Þ

Using the simplified metric one can see that the renorm-
alization of the cosmological constant vanishes in the same
way as with matter fields. In the covariant method the new
interaction is

ΔL ¼ i
1

8
δð0Þ logð−g̃Þ: ð73Þ

The ghost Lagrangian involves a fermionic vector field,
ημ. The action has no overall factors ofΩ and therefore only
contains derivative interactions

ffiffiffiffiffiffi
−g

p
Lgh ¼

ffiffiffiffiffiffi
−g

p
η�μðηλμ;λ − Rμνη

νÞ → η�μðηλμ;λ − R̃μνη
νÞ;
ð74Þ

where in the last expression the indices are raised and
lowered with the unimodular metric. Much as the photon
case, loops of the ghosts can only generate renormalization
of curvatures that contain derivatives of the metric, and not
the cosmological term.
Fradkin and Vilkovisky [3] have also shown, using

different methods, that the δ4ð0Þ self-energy effects are
canceled by a measure interaction in pure gravity. Their
result is slightly different, containing g00 in addition to the
determinant g. This can be traced back to the fact that they
continue to use a noncovariant propagator similar to
Eq. (71). However, it is clear that their measure interaction
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is designed to have the same net effect, and would be
covariant if they used covariant propagators.

VII. POWER-LAW CUTOFFS AND GENERAL
COVARIANCE

Momentum space cutoffs do not respect diffeomorphism
invariance. Given the possibility of rescaling coordinates
and momenta, it becomes ill-defined in which coordinate
system the cutoff should be applied. Under the rescaling,
the value of the cutoff will change.
There is an example which can be extracted from the

work above which illustrates this. The transformed inter-
action used above in Sec. II C can be put in the form of
Eq. (32). Note the ð−gÞ1=4 instead of

ffiffiffiffiffiffi−gp
.

At one loop, the tadpole diagram will yield a quadratic
cutoff for the scalar curvature, of the form

∼Λ2ð−gÞ1=4R ð75Þ
from the tadpole diagram. Here the relevant integral leading
to a factor of Λ2 is

Z
d4k
ð2πÞ4

1

k2
¼ i

16π2
Λ2: ð76Þ

This interaction would not be covariant because of the
ð−gÞ1=4 factor.3 This tells us that with this choice of field
variable (itself being rescaled), one should build in a
corresponding rescaling of Λ. The rescaling of Λ that
works is to replace the quadratic dependence by

Λ2 → Λ2ð−gÞ1=4: ð77Þ
This can also be seen in the renormalization of the
cosmological constant that occurs with a mass. We derived
above the form of Eq. (46)

ffiffiffiffiffiffi
−g

p
L ¼ 1

2
∂μχ∂μχ −

1

2
χ∂μχ

∂μh

1þ h

þ 1

8
χ2

∂μh∂μh

ð1þ hÞ2 −
1

2
m2ð1þ hÞϕ2: ð78Þ

This was used to argue that a nonderivative residual effect
was possible. However, if you actually do the calculation,
you get a noncovariant cutoff dependence. This is readily
seen, as the mass term comes with the factor ð1þ hÞ, so
that after calculating the tadpole loop one gets an effect
proportional to

∼m2ð1þ hÞΛ2 ∼m2Λ2ð−gÞ1=4: ð79Þ

Again a rescaling of Λ would be needed to restore
covariance.

At second order in the curvature, we get the expected
covariant form

logΛ2 ffiffiffiffiffiffi
−g

p
R2 ¼ logΛ2½ð−gÞ1=4R�2 ð80Þ

from the bubble diagram. This is the physical term that we
would also get in dimensional regularization.4 (Recall that
one cannot distinguish R2 from RμνRμν using this metric
because it is conformally flat and theWeyl tensor vanishes.)
The point is not just that one can restore covariance by

this simple trick—that feature is a function of these field
variables. The larger issue is that cutoffs can be suspect in
general relativity because of the lack of general covariance.
These calculations provide a simple example of this
difficulty.
It is also correct that the new interaction required,

ΔL ¼ −i
1

8
iδ4ð0Þ logð−gÞ; ð81Þ

is not generally covariant. However, this is designed to
cancel off a related Λ4 dependence, and it disappears from
the final results.

VIII. DISCUSSION

Quantum field theory in a gravitational background
provides a technique for discussing the renormalization
of the terms in the effective gravitational action from loops
of matter fields. I have shown that a careful treatment of
free fields coupled to gravity shows that there are no
δ4ð0Þ ∼ Λ4 contributions to the cosmological constant
when using a cutoff regularization. To implement this in
a covariant fashion requires a new interaction proportional
to

iδ4ð0Þ logð−gÞ: ð82Þ

This vanishes in dimensional regularization, but is impor-
tant in any cutoff scheme where the regularized value of

δ4ð0Þ ¼
Z

d4k
ð2πÞ4 ð83Þ

is nonzero. The effect of the interaction is to cancel off the
naive Λ4 contribution to the cosmological constant.
Technically, this effect comes about because a constant

background field, 1þ h or Ω, can be absorbed into the
wave function renormalization of the fields, or equivalently
the normalization of the states. Nonconstant background
fields then manifest themselves through derivative inter-
actions. In our examples, this was implemented by a local

3This term would vanish in dimensional regularization.

4The bubble diagram also leads to a R log□R interaction, and
logð−gÞ from the rescaling of Λ becomes part of the covariant
version of log□.
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field renormalization, with residual derivative interactions.
The path integral with the new interaction naturally exhibits
this feature.
This observation will not influence the calculation of

physical observables, as they are expressed in terms of the
physical renormalized values of the cosmological constant
and the Newton constant, and are independent of the
regularization scheme.
However, it can influence our thinking. We often use the

cutoff as a way to represent the limit of our understanding
of the effective field theory. For gravity by itself, we might
hope that this could be used up to near the Planck scale. A
Λ4 contribution to the vacuum energy would then be
enormous. Removing this is often invoked as a motivation
for supersymmetry. Having equal numbers of bosonic and
fermionic degrees of freedom would lead to a cancellation
of theΛ4 contributions. The motivation for this cancellation
disappears if the zero-point energies do not generate
δ4ð0Þ ∼ Λ4 effects.
The vanishing of the δ4ð0Þ contributions does not mean

that the cosmological constant is not shifted by radiative
corrections. There are several other contributions.5 Using a
cutoff, there are still zero-point effects of orderm2Λ2 which
individually do not vanish. There can even be Λ4 effects by
combining two Λ2 effects. For example,6 in λϕ4 theory
there can be a vacuum energy contribution at two loop
order with each of the loops generating a result proportional
to Λ2. This then poses a different problem for the model
builder who wishes to avoid net Λ4 ∼M4

P effects, as it
would require the λϕ4 interaction of the Standard Model to
be generated dynamically at a lower scale.
Cutoffs are often used as proxies for energies in running

couplings. For example, in the present practice of asymp-
totic safety [13–17], one uses a cutoff to separate the high
and low energy regions of the Euclidean momentum space.
In contrast to common use, the cutoff is used in the infrared
to remove low energy quantum effects. By varying that
cutoff, running couplings are defined. In the version of the
theory where the action is truncated to the cosmological
constant and the Einstein term, the one-loop running of the
cosmological constant is given by7

Λ
∂
∂ΛΛcc ¼ −

1

4π2
Λ4: ð84Þ

Because this is an infrared cutoff, the experimental value is
obtained when the cutoff is removed ðΛ → 0Þ such that the
solution is

Λcc ¼ Λccjexpt −
1

16π2
Λ4 ð85Þ

with the UV fixed point for Λcc=Λ4 being infinitely anti–de
Sitter space. This running comes from the tadpole diagram
of Fig. 1(a). Here I have changed the notation from
describing the cutoff scale by the symbol k common in
the Asymptotic Safety community to the notation used in
the present paper, and to be precise this beta function
reflects the cutoff function use in Ref. [16]. There is also
related Λ4 running due to matter fields [18]. While I have
shown [17] that this is not really a running coupling in the
usual sense,8 the work of the present paper suggests that the
Λ4 dependence is not correct. There can in principle be
such dependence by combining two Λ2 effects at higher
loop order, but it is clear that the original calculations done
without the measure interaction need to be reconsidered.
Moreover, the larger asymptotic safety program has yet
more than two derivatives in the kinetic energy and
interaction terms, so that a further modification of the
Feynman rules may be needed for higher order truncations.
In general, cutoffs are problematic for general relativity

because they do not respect the coordinate invariance of the
theory. However, when using any regularization scheme for
which the scaleless integral δ4ð0Þ does not vanish, there
needs to be a new interaction in the path integral measure
which has the effect of canceling these singular terms.

ACKNOWLEDGMENTS

I thank Lorenzo Sorbo, Barry Holstein, Arkady Tseytlin,
Daniel Harlow, and Roberto Percacci for helpful com-
ments. This work has been partially supported by the U.S.
National Science Foundation under Grant No. NSF-
PHY18-20675.

5Besides those discussed in this paper, one should include the
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8Briefly this is because the infrared quantum physics needs to
be adding in when calculating physical observables, which would
remove the Λ dependence, and the one-loop Λ dependence does
not relate to any physical kinematic variable.
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