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It was shown that the particle distribution detected by a uniformly accelerated observer in the inertial
vacuum (Unruh effect) deviates from the pure Planckian spectrum when considering the superposition of
fields with different masses. Here, we elaborate on the statistical origin of this phenomenon. In a suitable
regime, we provide an effective description of the emergent distribution in terms of the nonextensive
q-generalized statistics based on Tsallis entropy. This picture allows us to establish a nontrivial relation
between the q-entropic index and the characteristic mixing parameters sin θ and Δm. In particular, we infer
that q < 1, indicating the superadditive feature of Tsallis entropy in this framework. We discuss our result
in connection with the entangled condensate structure acquired by the quantum vacuum for mixed fields.
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I. INTRODUCTION

The phenomenon of quantum mixing, i.e., the super-
position of particle states with different masses, is among the
most challenging topics in particle physics. In the Standard
Model, it appears in the quark sector through Kobayashi-
Maskawa matrix [1], a three-family generalization of
Cabibbo mixing matrix between d and s quarks [2]. On
the other hand, convincing evidences of flavor mixing and
oscillations in the neutrino sector have been provided in
recent years by Super-Kamiokande [3] and SNO experi-
ments [4], confirming Pontecorvo’s pioneering idea [5] and
opening a window into physics beyond the Standard Model.
Recently, the relevance of mixing transformations has

prompted their study from a more fundamental field-
theoretical (QFT) perspective. QFTeffects on flavor mixing
have been analyzed both for Dirac fermions [6] and bosons
[7]. This has uncovered the shortcomings of the original
quantum mechanical approach by pointing out the ortho-
gonality between the vacuum for fields with definite flavor
and that for fields with definite mass, the former becoming
a condensate of particle-antiparticle pairs. The properties of
flavor vacuum have been further explored in [8], where it
has been shown that the Fock space for flavor fields cannot

be obtained by the direct product of the Fock spaces for
massive fields. Therefore, the nontrivial nature of mixing
appears as a genuine QFT feature boiling down to the
nonfactorizability of the flavor states in terms of those with
definite mass, including the vacuum state (flavor vacuum).
All of the above studies have been developed in

Minkowski spacetime. The QFT approach to mixing has
been extended to Rindler (uniformly accelerated) metric in
[9,10] and to curved background in [11]. In particular, in
[9,10], it has been found that the vacuum condensate
detected by the Rindler observer due to Unruh effect
[12] deviates from the Planckian density profile in the
presence of mixed fields, the departure being dependent on
the mass difference and the mixing angle. Such a result has
been originally interpreted as a breakdown of the thermality
of Unruh radiation for mixed fields. In passing, we mention
that unconventional behaviors of Unruh effect are not
entirely unusual in the literature; see, for instance, [13–16]
and possible implications for particle decays [17–19].
In its traditional form, the particle number spectrum of

Unruh condensate follows the rules of Boltzmann-Gibbs
statistics. However, in [20–23], it has been argued that
systems exhibiting long-range interactions and/or space-
time entanglement, either on quantum or classical grounds,
require a generalization of Boltzmann-Gibbs theory to the
so-called nonextensive Tsallis q thermostatistics. This
occurs through a suitable (nonadditive) redefinition of
the entropy, which still recovers Boltzmann-Gibbs formula
in the q ¼ 1 limit. The q-generalized statistical mechanics
proposed by Tsallis has provided encouraging results in
describing a broad class of complex systems, such as self-
gravitating stellar systems [24,25], black holes [22], the
cosmic background radiation [26,27], low-dimensional
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dissipative systems [23], solar neutrinos [28], polymer
chains [29], and modified cosmological models [30,31],
among others. Furthermore, it has paved the way for an
intensive study of alternative statistical models within the
framework of information theory [32].
Starting from the above premises, in this work, we

feature the entangled condensate structure of the vacuum
for mixed fields in the language of nonextensive Tsallis
statistics. We consider Unruh effect as a specific play-
ground. In this context, it is shown that the modified Unruh
distribution for mixed fields can be described by an
appropriately q−generalized distribution based on Tsallis
entropy. This allows us to establish an effective connection
between the nonextensive q-entropic index and the char-
acteristic mixing parameters sin θ and Δm in a suitable
approximation. We find that q < 1, which corresponds to a
superadditive Tsallis entropy. To make our analysis as
transparent as possible, we deal with a simplified model
involving only two scalar fields. The case of fermion
mixing will be shortly addressed at the end with similar
results.
The remainder of this paper is structured as follows: in

Sec. II, we analyze the canonical quantization of a massive
scalar field for the Rindler observer using the Bogoliubov
transformation method. This leads us to derive the Unruh
effect in a natural way. Section III contains the study of the
QFT formalism of flavor mixing in Rindler spacetime.
Exploiting these tools, in Sec. IV, we introduce the basics
of nonextensive Tsallis thermostatistics and investigate the
connection with field mixing at the level of Unruh vacuum
condensate. We discuss our result in relation with the
complex condensate structure acquired by the quantum
vacuum for mixed fields. Conclusions and outlook are
summarized in Sec. V. The work ends with an Appendix
devoted to review the theory of field mixing in Minkowski
background.
Throughout all the manuscript, we adopt the mostly

negative signature for the four-dimensional metric and
natural units =h ¼ c ¼ kB ¼ 1. Furthermore, we use the
notation,

x ¼ ft;xg; x ¼ fx1; x⃗g; x⃗ ¼ fx2; x3g;

for four-, three-, and two-vectors, respectively.

II. QFT IN RINDLER SPACETIME
AND UNRUH EFFECT

In this section, we briefly review the quantization of a
massive scalar field for a uniformly accelerated (Rindler)
observer. Without loss of generality, we assume the accel-
eration to be along the x1 axis. In this setting, it is useful to
introduce the new coordinates −∞ < η; ξ < ∞, such that
t ¼ ξ sinh η, x1 ¼ ξ cosh η, while leaving x⃗ unchanged.

In terms of these coordinates, Minkowski metric takes
the form,

ds2 ¼ ðdtÞ2 − ðdx1Þ2 −
X3
j¼2

ðdxjÞ2 →
Rindler coord:

ds2

¼ ξ2dη2 − dξ2 −
X3
j¼2

ðdxjÞ2; ð1Þ

which admits B ¼ ∂=∂η as a time-like Killing vector.
Henceforth, we refer to the coordinates ft; x1g and
fη; ξg as Minkowski and Rindler coordinates, respectively.
Accordingly, the metric (1) shall be named Rindler metric.
Let us now consider the world-line of fixed spatial

coordinates, i.e.,

ξðτÞ ¼ a−1 ¼ const; x⃗ðτÞ ¼ const; ð2Þ

where τ is the proper time measured along the line.
Substitution of Eq. (2) into the metric (1) yields
ηðτÞ ¼ aτ, i.e., the proper time τ for an observer moving
along the line (2) is the same as the Rindler time η, up to the
scale factor a.
In Minkowski coordinates, Eq. (2) becomes

tðτÞ¼a−1sinhaτ; x1ðτÞ¼a−1coshaτ; x⃗ðτÞ¼const; ð3Þ

which is an hyperbola with asymptotes t ¼ �x1 in the
ðt; x1Þ plane. In special relativity, it is well known that the
hyperbolic motion generalizes the concept of Newtonian
uniformly accelerated motion, with jaj being the magnitude
of the proper acceleration [33]. In particular, for a > 0, the
observer moves along the branch of hyperbola in the right
wedge Rþ ¼ fxjx1 > jtjg, while for a < 0 the motion
occurs in the left wedge R− ¼ fxjx1 < −jtjg (see
Fig. 1). This reveals the peculiar features of the causal
structure of Rindler spacetime: since a uniformly accel-
erated observer in Rþ cannot receive (send) any signal from
(to) the future (past) wedge t > jx1j ðt < −jx1jÞ, the
asymptote t ¼ jx1j ðt ¼ −jx1jÞ appears to him as a future
(past) event horizon. Notice that the time ordering of the
two horizons is reversed in R−, since the Killing vector B is
past oriented in this wedge. Accordingly, a Rindler
observer in Rþ turns out to be causally separated from
R−, and vice versa.
Bearing in mind the causal structure of the metric (1), let

us deal with the quantization of a charged scalar field ϕðxÞ
of massm for the Rindler observer.1 In Rindler coordinates,
the Klein-Gordon equation reads

1Where there is no ambiguity, we shall denote by x both the
sets of Minkowski and Rindler coordinates.
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�
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which has the modes,

uðσÞκ ðxÞ¼θðσξÞ
2πΩ

1

ΓðiΩÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπΩÞp KiΩðμkξÞeiðk⃗·x⃗−σΩηÞ; ð5Þ

as solutions of frequency Ω > 0 with respect to the time
coordinate η. Following [34], here we have introduced the
shorthand notation κ ≡ ðΩ; k⃗Þ. The Heaviside step function
θðσξÞ restricts the support of uðσÞκ to only one of the two
Rindler wedges. Specifically, σ ¼ þ refers to the right
wedge Rþ, while σ ¼ − to the left wedge. The function
ΓðiΩÞ is the usual Euler’s gamma, while KiΩðμkξÞ denotes
the modified Bessel function of second kind. The reduced
Minkowski frequency is given by μk ¼ ðm2 þ jk⃗j2Þ1=2.
It is easy to verify that the Rindler modes (5) form a

complete and orthonormal set with respect to the Klein-
Gordon product in Rindler coordinates. This allows us to
take the following expansion for the scalar field [34]:

ϕðxÞ ¼
X
σ;Ω

Z
d2kfbðσÞκ uðσÞκ ðxÞ þ b̄ðσÞ†κ uðσÞ�κ ðxÞg; ð6Þ

where
P

σ;Ω stands for
P

σ¼�
R
∞
0 dΩ. The ladder operators

bðσÞκ ðb̄ðσÞκ Þ are assumed to be canonical. They act as
annihilators of Rindler particles (antiparticles) of frequency
Ω and transverse momentum k⃗ in the wedge Rσ. Rindler

vacuum j0Ri is defined by bðσÞκ j0Ri ¼ b̄ðσÞκ j0Ri ¼ 0, ∀ σ; κ.

On the other hand, bðσÞ†κ ðb̄ðσÞ†κ Þ creates a Rindler particle
(antiparticle) with the same quantum numbers as defined
above.
We now focus on the relation between the quantization

(6) and the Minkowski plane wave expansion,

ϕðxÞ ¼
Z

d3kfakUkðxÞ þ āk†U�
kðxÞg; ð7Þ

where UkðxÞ ¼ ½2ωkð2πÞ3�−1=2eiðk·x−ωktÞ are the plane
waves of frequency ωk ¼ ðm2 þ jkj2Þ1=2. Here, ak (āk)
denote the canonical annihilators of Minkowski particles
(antiparticles) with momentum k and frequency ωk,
such that akj0Mi ¼ ākj0Mi ¼ 0, ∀k, where j0Mi is the
Minkowski vacuum. As before, the rôle of creation
operators is played by the adjoint a†k ðā†kÞ. Since this
formalism holds for the set of inertial observers in
Minkowski spacetime, in what follows, we indifferently
refer to the expansion (7) as either Minkowski or inertial
field quantization.
To derive the Bogoliubov transformation between the

two field representations introduced above, we compare the
expansions (6) and (7) on a spacelike hypersurface Σwhich
lies in the Rindler manifold R�. By multiplying both sides

by the Rindler mode uðσÞκ , we obtain [34]

bðσÞκ ¼
Z

d3k0fak0 ðuðσÞκ ; Uk0 Þ þ ā†k0 ðuðσÞκ ; U�
k0 Þg: ð8Þ

The explicit expressions of the Bogoliubov coefficients

ðuðσÞκ ; Uk0 Þ and ðuðσÞκ ; U�
k0 Þ are rather awkward to exhibit.

They are given in [34]. However, Eq. (8) can be cast in a
more transparent form by introducing the following super-
position of ak operators:

dðσÞκ ¼
Z

dk1
1ffiffiffiffiffiffiffiffiffiffiffi
2πωk

p
�
ωk þ k1
ωk − k1

�
iσΩ=2

ak; ð9Þ

[similarly, the definition of d̄ðσÞκ is obtained by replacing ak
with āk]. In [34], it has been shown that these new
operators still obey the canonical commutator.
Furthermore, they share a common vacuum with the

FIG. 1. Causal structure of Rindler metric in 1þ 1 dimensions.
We are assuming that Rindler observer accelerates along the x1

axis, while the transverse dimensions x2, x3 are kept constant
during the motion. The arrow indicates the direction of motion.
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ak’s, since they are linear combinations of these annihi-
lators only. In other terms, the d operators provide an
alternative representation for the scalar field, which is
unitarily equivalent to the plane wave quantization from
the perspective of inertial observers.2 This has been dis-
cussed in more detail in [9].
In terms of the operators (9), Eq. (8) can be rewritten as

bðσÞκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NBEðΩÞ

p
dðσÞκ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBEðΩÞ

p
d̄ð−σÞ†κ̃ ; ð10Þ

where κ̃ ≡ ðΩ;−k⃗Þ, and

NBEðΩÞ ¼
1

e2πΩ − 1
ð11Þ

is the Bose-Einstein distribution function.
Next, by resorting to Eqs. (9) and (10), we can evaluate

the expected number spectrum of Rindler particles in the
Minkowski vacuum, obtaining

h0Mjbðσ
0Þ†

κ0 bðσÞκ j0Mi ¼ NBEðΩÞδσσ0δ3ðκ − κ0Þ; ð12Þ

[similarly for b̄ðσÞκ ]. Since the proper energy of quanta
detected by an observer moving with uniform acceleration
a is

E ¼ aΩ; ð13Þ

it is more appropriate to rewrite the distribution (11) in the
form,

NBEðΩÞ ¼
1

eE=TU − 1
; ð14Þ

where TU ¼ a=ð2πÞ is the Unruh temperature [12]. Thus,
we recover the well-known Unruh result that Minkowski
vacuum appears as a Bose-Einstein thermal distribution of
Rindler particles, with temperature TU being proportional
to the magnitude of the proper acceleration [12].
As discussed in [34], the inherent properties of the

condensate (12) can be explored in depth by expressing the
Minkowski vacuum j0Mi in terms of the Rindler one j0Ri.
In so doing, we infer that the inertial vacuum acquires the
structure of a coherent state of pairwise-correlated Rindler
particles. Specifically, an excitation in the positive wedge
Rþ is correlated to an excitation of opposite spatial
momentum in the negative region Rþ, and vice versa.

Since the two wedges are causally disconnected, this turns
out to be an EPR-like correlation between spacelike
separated quanta.
The spectrum (12) diverges for any fixed κ ¼ κ0. This is

due to the fact that the creation operators a†k, b
†
κ (and the

corresponding operators for antiparticles) do not produce
normalizable states when applied on the respective vacua. To
avoid conceptual difficulties, we shall otherwise encounter
later, we introduce the following set of functions [35]:

fnlðkÞ ¼ χnðkÞ exp−2πilk=ε; ð15Þ

χnðkÞ ¼
�
ε−1=2 for ðn − 1

2
Þε < k < ðnþ 1

2
Þε

0 otherwise
; ð16Þ

where ε is a positive constant of dimension of inverse length.
By exploiting the completeness and orthonormality of this
set [34], we define the Minkowski wave packet by

Unlk⃗ðxÞ ¼
Z

dk1fnlðk1ÞUkðxÞ; ð17Þ

where n and l run over all the integers.
On the other hand, to form the Rindler wave packet, we

restrict the subscript n of ffnlg to positive integers. Notice
that this does not affect the orthonormality nor the
completeness of the set (15), provided that the argument
k is now replaced by the Rindler frequency Ω and ε is
assumed to be dimensionless. We then define

unlk⃗ðxÞ ¼
Z

∞

0

dΩfnlðΩÞuðσÞκ ðxÞ: ð18Þ

Two comments are in order here: first, the wave packets
(17) and (18) satisfy a boxlike normalization and are
complete, due to the definition (15) of the smearing
function. Furthermore, in the above construction, we have
left the reduced momentum k⃗ untouched, as it does not
enter the Bose-Einstein distribution function (14) explicitly.
More properly, we should extend the wave packet formal-
ism to this quantum number as well, resulting in a new pair
of subscripts in place of each component of k⃗. However,
since this procedure would burden the notation without
providing any conceptual advantage, we continue to use the
symbol k⃗, taking care of this aspect.
We can now repeat the computation of the number

spectrum of Rindler particles in the Minkowski vacuum. By
choosing the parameter ε in the definition of fnlðk1Þ much
less than the reduced Minkowski frequency μk and the ε in
fnlðΩÞ much less than unity, we are led to [34]

h0Mjbðσ
0Þ†

n0l0k⃗0
bðσÞ
nlk⃗
j0Mi ¼ NBEðΩnÞδσσ0δnn0δll0δk⃗ k⃗0 ; ð19Þ

2At first glance, the physical meaning of d operators may
appear quite unclear. However, in [34], it has been shown that
they diagonalize the generator of Lorentz boosts along the x1
axis. Therefore, the field quantization in this representation
exploits the symmetry of Minkowski spacetime under boost
transformations, just as the plane wave and spherical-wave
quantizations rely on the symmetry under spacetime translations
and rotations, respectively.
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where Ωn ¼ nε. Of course, for fixed values of σ ¼ σ0,
n ¼ n0, l ¼ l0, m ¼ m0, and k⃗ ¼ k⃗0, this gives

N ðΩnÞ≡ h0MjbðσÞ†nlk⃗
bðσÞ
nlk⃗
j0Mi ¼ NBEðΩnÞ: ð20Þ

As expected, the use of properly normalizable wave packets
results into a regularization of the Unruh spectrum (12). In
the next section, we shall see how the distribution (20) is
modified when dealing with the superposition of fields with
different masses.

III. QFT OF FLAVOR MIXING IN RINDLER
SPACETIME

The QFT treatment of flavor mixing, originally devel-
oped for Dirac neutrinos in Minkowski background [6] and
later extended to mesons, such as theK0 − K̄0, B0 − B̄0 and
η − η0 systems [7,36], has revealed a series of nontrivial
features that are totally missed by quantum mechanics.
These aspects are reviewed in the Appendix, with particular
emphasis on the issue of the unitary inequivalence between
the Fock space for fields with definite flavor and the Fock
space for fields with definite mass. Following [9], here we
generalize the quantization of mixed fields to the Rindler
metric. We consider the mixing transformations in a
simplified two-flavor model with charged scalar fields.3

Denoting by χ ¼ A;B ði ¼ 1; 2Þ the flavor (mass) label,
these transformations read

ϕAðxÞ ¼ ϕ1ðxÞ cos θ þ ϕ2ðxÞ sin θ; ð21Þ

ϕBðxÞ ¼ −ϕ1ðxÞ sin θ þ ϕ2ðxÞ cos θ; ð22Þ

where θ is the mixing angle and ϕi ði ¼ 1; 2Þ are two free
charged scalar fields of masses mi, such that m2 ≠ m1. For
definiteness, we set m2 > m1. Let πi ¼ ∂tϕ

†
i be the con-

jugate momenta.
In the canonical quantization formalism, it is known that

½ϕiðxÞ; πjðx0Þ�t¼t0 ¼ ½ϕ†
i ðxÞ; π†jðx0Þ�t¼t0

¼ iδ3ðx − x0Þδij; i; j ¼ 1; 2; ð23Þ

with all other equal-time commutators vanishing. In the
Appendix, we discuss the algebraic structure of Eqs. (21)
and (22), showing that each of them appears as a rotation
combined with a Bogoliubov transformation when seen at
level of ladder operators. Notice that this peculiar structure,
which is absent in quantum mechanics, arises from the
necessity to take account of the antiparticle degrees of
freedom intrinsically built in QFT. As a result, the vacuum
state for flavor fields becomes a condensate of massive
particle-antiparticle pairs [see Eq. (A14)].
To find out how the phenomenon of mixing appears to

the Rindler observer, we retrace the same steps leading to
Eq. (6) and consider the following free fieldlike expansions
for mixed fields [9]:

ϕlðxÞ ¼
X
σ;Ω

Z
d2kfbðσÞκ;lðηÞuðσÞκ;j ðxÞ þ b̄ðσÞ†κ;l ðηÞuðσÞ�κ;j ðxÞg; ðl; jÞ ¼ fðA; 1Þ; ðB; 2Þg; ð24Þ

where we have used the shorthand notation bðσÞκ;lðηÞ≡ bðσÞκ;lðθ; ηÞ for the ladder operators [similarly for b̄ðσÞκ;lðηÞ]. By
comparison with Eq. (A8), it is clear that these operators provide the Rindler counterpart of Minkowski flavor annihilators
given in Eq. (A9). It is a matter of calculations to show that they obey the (equal-time) canonical commutators.
As remarked above, the mixing relations at level of ladder operators hide a Bogoliubov transformation between the flavor

and mass bases. At the same time, the field quantizations for Minkowski and Rindler observers are connected to each other
by the Bogoliubov transformation (10) responsible for the thermal Unruh effect. Overall, we expect that the Rindler
annihilators in the flavor representation are related to the corresponding Minkowski operators in the mass basis by a
combination of these two Bogoliubov transformations. To analyze such an interplay, we compare the expansions (24)
and (A8). By using Eqs. (21)–(22) and the transformation (A9), after some tedious but straightforward calculations, we
obtain [9]

bðσÞκ;A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NBEðΩÞ

p h
cos θdðσÞκ;1 þ sin θ

X
σ0;Ω0

�
dðσ

0Þ
ðΩ0;k⃗Þ;2A

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ þ d̄ðσ

0Þ†
ðΩ0;−k⃗Þ;2B

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

�i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBEðΩÞ

p h
cos θd̄ð−σÞ†κ̃;1 þ sin θ

X
σ0;Ω0

�
d̄ð−σ

0Þ†
ðΩ0;−k⃗Þ;2A

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ þ dð−σ

0Þ
ðΩ0;k⃗Þ;2B

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

�i
; ð25Þ

3Strictly speaking, for bosons we should refer to the mixing of quantum numbers such as the strangeness or isospin, rather than flavor.
However, in what follows, we improperly label such a quantum number as flavor and the corresponding fields as definite flavor fields.
On the other hand, the fields with definite mass will be referred to as mass fields.
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where we have omitted for simplicity the time dependence of bðσÞκ;A [a similar expression hold true for bðσÞκ;B as well]. We stress
that the d operators are an equivalent way of rewriting the standard Minkowski annihilators appearing in Eq. (7) [see
Eq. (9)]. From the above relation, we can clearly distinguish the action of the thermal Bogoliubov transformation [encoded
by the coefficients ð1þ NBEÞ1=2 and N1=2

BE ) from the action of the mixing Bogoliubov transformation, which appears

through the coefficients Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ and Bðσ;σ0Þ

ðΩ;Ω0Þ;k⃗]. The Bogoliubov coefficients related to mixing are given by [9]

Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ ¼

Z þ∞

−∞

dk1
4π

�
1

ωk;1
þ 1

ωk;2

��
ωk;1 þ k1
ωk;1 − k1

�
iσΩ=2

�
ωk;2 þ k1
ωk;2 − k1

�
−iσ0Ω0=2

eiðωk;1−ωk;2Þt; ð26Þ

Bðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ ¼

Z þ∞

−∞

dk1
4π

�
1

ωk;2
−

1

ωk;1

��
ωk;1 þ k1
ωk;1 − k1

�
iσΩ=2

�
ωk;2 þ k1
ωk;2 − k1

�
−iσ0Ω0=2

eiðωk;1þωk;2Þt: ð27Þ

Despite the nontrivial structure of Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ and Bðσ;σ0Þ

ðΩ;Ω0Þ;k⃗, interesting implications of Eq. (25) can still be derived for

t ¼ η ¼ 0 and in the reasonable approximation of small difference between the masses of the two fields, i.e.,
jΔm2j=m2

1 ¼ jm2
2 −m2

1j=m2
1 ≪ 1.4 Indeed, if we evaluate the number spectrum of mixed particles detected by the

Rindler observer in the inertial vacuum, we get to the leading order [9],

h0MjbðσÞ†κ;χ ð0ÞbðσÞκ0;χð0Þj0Mi ¼ NBEðΩÞδ3ðκ − κ0Þ − jΔm2j
8μ2k;1

sin2 θ
σðΩ0 þ ΩÞGðΩ;Ω0Þ
sinh ½π

2
σðΩ0 þ ΩÞ� δðk⃗ − k⃗0Þ þO

�jΔm2j
μ2k;1

�
2

; ð28Þ

for χ ¼ A;B, where

GðΩ;Ω0Þ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NBEðΩÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBEðΩ0Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBEðΩÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NBEðΩ0Þ

p
: ð29Þ

Thus, the standard Bose-Einstein distribution of Unruh vacuum condensate (12) turns out to be spoilt in the presence of
mixed fields. Notice that, for θ → 0, Eq. (28) recovers the usual result, as expected in the absence of mixing. Similar
considerations hold true for m1 → m2 and in the relativistic limit jk⃗j2 ≫ m2

1 þm2
2, since the parameter jΔm2j=μ2k;i becomes

increasingly small.
As argued at the end of Sec. II, in order to avoid unphysical divergencies in the spectrum, it is convenient to revisit the

above formalism by employing wave packets. With the aid of Eqs. (15)–(18), the density (20) of Rindler mixed particles
with quantum numbers Ωn; l; k⃗ then becomes

N θ;ΔmðΩnÞ≡ h0Mjb†nlk⃗ð0Þbnlk⃗ð0Þj0Mi ¼ NBEðΩnÞ −
jΔm2j
4μ2k;1

sin2θ
ΩnGðΩn;ΩnÞ
sinh ðπΩnÞ

þO
�jΔm2j

μ2k;1

�
2

; ð30Þ

where we have dropped the indices σ and χ from h0Mjb†nlk⃗ð0Þbnlk⃗ð0Þj0Mi, since the rhs of Eq (28) is in fact insensitive to

them. By resorting to the definition (29) of GðΩ;ΩÞ, we are finally led to

N θ;ΔmðΩnÞ ¼ NBEðΩnÞ −
jΔm2j
4μ2k;1

sin2θΩncsch2ðπΩnÞ þO
�jΔm2j

μ2k;1

�
2

; ð31Þ

where cschðxÞ ¼ 1= sinhðxÞ.
In [9], the modified distribution (28) [or, equivalently, (31)] has been interpreted as being due to a breakdown of the

thermality of Unruh radiation induced by field mixing. We further elaborate on the physical meaning of the result (31) in the
next section.

4Notice that the assumption jΔm2j=m2 ≪ 1 makes even more physical sense if considered for mixing of neutrino fields, the study of
which is reserved for future investigation.
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IV. FLAVOR MIXING AND q-GENERALIZED
TSALLIS STATISTICS

In the standard Boltzmann-Gibbs thermodynamics, it is
well known that entropy is an additive quantity, whichmeans
that, given two probabilistically independent systems A and
B with entropies SBGðAÞ and SBGðBÞ, respectively, the total
entropy is simply SBGðAþ BÞ ¼ SBGðAÞ þ SBGðBÞ. At the
statistical level, the Boltzmann-Gibbs entropy of a system in
an equilibrium macrostate can be expressed in terms of the
corresponding microscopic configurations as

SBG ¼ −
XW
i¼1

pi logpi; ð32Þ

for a set of W discrete microstates, where fpig is the set of
probability distribution with the condition

P
W
i¼1 pi ¼ 1. If

probabilities are all equal, this takes the well-known form
SBG ¼ logW. It is immediate to check that SBG satisfies the
additivity property as defined above.
Despite the wide range of applicability of the

Boltzmann-Gibbs theory, for complex systems exhibiting
long-range interactions and/or spacetime entanglement, it
has been argued that the standard Boltzmann-Gibbs theory
should be generalized to a nonextensive statistical mechan-
ics based on the nonadditive Tsallis entropy [20–23],

Sq ¼
1 −

P
W
i¼1 p

q
i

q − 1
¼

XW
i¼1

pi logq
1

pi
; ð33Þ

with

logqz≡ z1−q − 1

1 − q
; ðlog1z ¼ log zÞ: ð34Þ

Note that Sq recovers Boltzmann-Gibbs entropy SBG in
the q → 1 limit. Furthermore, by considering again two
probabilistically independent systems, such that pAþB

ij ¼
pA
i p

B
j ; ∀ ði; jÞ, the definition (33) leads to

SqðAþ BÞ ¼ SqðAÞ þ SqðBÞ þ ð1 − qÞSqðAÞSqðBÞ; ð35Þ

indicating that Sq is superadditive or subadditive, depend-
ing on whether q < 1 or q > 1. Thus, the dimensionless
index q ∈ Rþ quantifies the departure of Tsallis entropy
from Boltzmann-Gibbs one. For this reason, it is named
nonextensive Tsallis parameter. Paradigmatic examples of
systems obeying the generalized statistics (33) are the
strongly gravitating black holes [22], albeit in recent years,
Tsallis thermostatistics has found applications in a variety
of physical scenarios [24–28,30,31].
Now, within an approximation called factorization

approach, it has been shown that the Tsallis entropy (33)
can be used to derive the following generalized Bose-
Einstein distribution [37–41]:

NqðϵnÞ ¼
1

½1þ ðq − 1Þβϵn�1=ðq−1Þ − 1
; ð36Þ

where ϵn is the energy of the nth state of the system and
β ¼ 1=T. Clearly, for q → 1, Eq. (36) gives back the
conventional Bose-Einstein distribution. By definition,
the generalized distribution Nq must be non-negative.
This gives rise to the following constraints:

�
0 ≤ ϵn ≤ ½ð1 − qÞβ�−1 for q < 1;

ϵn ≥ 0 for q > 1:
ð37Þ

For the sake of clarity, it must be said that Eq. (36) can only
be regarded as an approximation [42]. Indeed, the exact
generalized distribution cannot be derived analytically for
arbitrary values of q. However, for systems with a relatively
large total number of particles (such as fields), the difference
between the exact and approximated expressions turns out to
be fairly negligible at very low temperatures (see [42] for
more detailed numerical estimations). Hence, since typical
values of Unruh temperatures are expected to be extremely
small (we recall that an acceleration a ≃ 1020m=s2 is barely
enough to reach a temperature of 1 K), we safely fall within
the regime of validity of Eq. (36), which can then be
considered as the starting point of our next computations.
In the previous section, we have emphasized that Unruh

spectrum for mixed fields loses its characteristic Planckian
profile, the deviation being proportional to the mixing
parameters [see Eq. (31)]. Given the complex entangled
structure induced by mixing in the vacuum state, the
question naturally arises as to whether such an effect can
be explained in mechanical statistical terms by resorting to
the nonextensive Tsallis framework. Of course, since the
correction in Eq. (31) slightly affects the Bose-Einstein
spectrum at both high and low energy regimes, it is
reasonable to expand the generalized distribution (36)
for tiny departures of q from unity. To the leading order,
we obtain

NqðϵnÞ ¼
1

eβϵn − 1
þ 1

8
ðβϵnÞ2csch2

�
βϵn
2

�
ðq − 1Þ

þOðq − 1Þ2: ð38Þ

To compare with the distribution function (31), we resort to
Eq. (13) and set ϵn ¼ aΩn, β ¼ 1=TU ¼ 2π=a, where the
Unruh temperature TU has been defined after Eq. (14). By
plugging into NqðϵnÞ, this becomes

NqðΩnÞ ¼ NBEðΩnÞ þ
π2

2
Ω2

ncsch2ðπΩnÞðq − 1Þ
þOðq − 1Þ2; ð39Þ

where the zeroth-order term NBE is the distribution func-
tion (14). Therefore, within Tsallis thermostatistics, the
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distribution which extremizes the entropy (33) according to
the maximum entropy principle can be expanded around
q ¼ 1 as above. At a conceptual level, we notice that
significant deviations from the Bose-Einstein spectrum still
arise at the lowest order, since the extra term depends on the
energy scale in a nontrivial way.
To show the correspondence between the modification

induced by flavor mixing and the q-generalized distribution
based on Tsallis entropy, let us now compare Eqs. (31) and
(39). A straightforward calculation gives (to the leading
order)

N θ;ΔmðΩnÞ ¼ NqðΩnÞ ⇒ q ¼ 1 −
jΔm2j

2π2μ2k;1Ωn
sin2 θ; ð40Þ

which implies q < 1, ∀Ωn. This means that we are in the
superadditive regime of Tsallis entropy, as it can be seen
from Eq. (35).
Thus, the thermostatistical properties of Unruh conden-

sate for mixed particles can be effectively described in
terms of the nonextensive Tsallis statistics, the entropic q
index satisfying the condition (40). As expected, the
deviation of q from unity depends on the mixing angle
and the mass difference in such a way that, for θ → 0 and/or
Δm → 0, the usual Boltzmann-Gibbs theory with q ¼ 1 is
recovered.
The above considerations provide us with an alternative

way of interpreting the modified distribution (31). Indeed,
in [9] mixing was seen as the origin of a breakdown of the
thermality of Unruh effect via the appearance of exotic
terms in the spectrum. On the other hand, the present result
shows that one can still maintain the standard thermal
picture, provided that the underlying statistics is assumed to
obey Tsallis’s prescription. In passing, we point out that a
similar analysis has been developed in [43] in the context of
deformations of Heisenberg uncertainty principle (gener-
alized uncertainty principle). Even in that case, it has been
argued that generalized uncertainty principle corrections to
Unruh effect for a gas of relativistic massive particles can
be mimicked by a Tsallis-like statistics with a modified
(q dependent) formula for Unruh temperature. Connections
between deformed uncertainty relations and generalized
entropies in the framework of Unruh effect have also been
discussed in [44].
A remarkable property to comment on is the running

behavior of q as a function of the energy scale Ωn.
Although not envisioned by Tsallis in his original
approach, this should not be entirely surprising for quantum
field theoretical or quantum gravity systems when renorm-
alization group is applied [30]. A similar scenario with a
varying nonextensive parameter has been recently dis-
cussed in [30] in the context of modified cosmological
models.
In this regard, one might spot a pathological behavior of

Eq. (40) in the limit of vanishing Rindler frequency Ωn.

Actually, it must be stressed that modes with frequency
below a certain threshold lie outside the domain of validity
of the approximation (38), and thus of our analysis. Indeed,
forΩn → 0, the q index strongly deviates from unity, which
a posteriori would invalidate the series expansion (39). In
order to keep our formalism self-consistent, the condition
jq − 1j ≪ 1 must be satisfied, which in turn implies the
cutoff Ωn ≫ jΔm2j sin2 θ=ð2π2μ2k;1Þ. This means that the
more accurate the approximation of the small mass differ-
ence between the mixed fields, the higher the number of
Ωn-frequency modes that fit with the q-generalized Bose-
Einstein distribution (36). In the limit jΔm2j=μ2k;1 ≪ 1, the
entire spectrum of Rindler modes is approximately
spanned. For instance, for sample values characteristic of

FIG. 2. Pictorial interpretation of Unruh spectrum for mixed
fields. Different (online) dot colors correspond to different
particle-antiparticle flavors. Unruh effect originates from quan-
tum vacuum fluctuations close to Rindler horizon. In the absence
of mixing, vacuum contains a single type of particle-antiparticle
pairs (either blue-blue or red-red). Conversely, for mixed fields,
hybrid types of pairs (red-blue and blue-red) do appear as well.
This spoils the characteristic particle spectrum, which can be
approximately identified with the q-generalized Bose-Einstein
condensate based on Tsallis entropy.
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relativistic maximally mixed (i.e., θ ¼ π=4) particles with
squared mass difference 10−3 eV2 and typical energy
1 GeV,5 the lower bound on Ωn takes the value

ΩðminÞ
n ¼ jΔm2jsin2 θ=ð2π2μ2k;1Þ≃10−23. On the other side,

the departure from extensive thermodynamics becomes
increasingly negligible for large Ωn, restoring the
Boltzmann-Gibbs theory in the limit Ωn → ∞. This is
consistent with the fact that, the higher the energy of the
state, the lower the average number of particles that can be
stored, with both the standard and q-generalized distribu-
tions approaching zero as Ωn increases. As a consequence,
the difference between the two spectra is expected to shrink
as Ωn → ∞.
Now, the relation (40) states that q < 1 within our

analysis. To see whether the constraint (37) is fulfilled,
let us employ Eqs. (13) and (40). A direct substitution in the
upper condition yields

0≤ aΩn ≤
πμ2k;1

jΔm2jsin2θaΩn ⇒ 0≤ 1≤
πμ2k;1

jΔm2jsin2θ ; ð41Þ

which is indeed satisfied in the approximation
jΔm2j=μ2k;1 ≪ 1.
The connection between the perturbed spectrum (31) and

the q-generalized Bose-Einstein distribution (38) can be
explained in terms of the entangled structure acquired by the
Minkowski vacuum for mixed fields. As discussed in the
Appendix, the vacuum for definite flavor fields becomes a
condensate of entangled particle-antiparticle pairs having
both equal and different masses [6,7]. Consequently, while
the standard Unruh effect arises from one-type fluctuations
popping out near the Rindler horizon (one element of which
crossing the horizon, the other escaping in the form of Unruh
radiation), for mixed fields, it can be generated by different

types of entangled pairs (see Fig. 2). This further degree of
freedom results into an increase of the total entropy of the
system, which in turn alters the characteristic number
spectrum of particles. As shown above, such an effect can
be described by modeling the new vacuum distribution
according to Tsallis q thermodynamics rather than the
Boltzmann one, the departure being proportional to the
mixing parameters and the energy scale [see Eq. (40)].
From Eq. (35), we indeed notice that having q < 1 amounts
to saying that the entropy function associated to the vacuum
condensate of ϕA quanta (e.g., the blue-blue pairs) and ϕB
quanta (the red-red pairs) is higher than the sum of the
entropies associated to the condensates of the two fields
separately, due to the presence of hybrid (blue-red and red-
blue) particle-antiparticle pairs. We stress that this is a
peculiar field theoretical effect boiling down to the non-
factorizability of Fock space for flavor fields, including the
vacuum state [8] (see also the Appendix).
From the above considerations, we infer that the corre-

lations induced by mixing do spoil the macroscopic
properties of Unruh thermal condensate by affecting the
statistical behavior of its microscopic configurations. This
gives rise to an entangled condensate structure of both
equal and hybrid particle-antiparticle pairs that obey the
nonadditive Tsallis entropy law in a suitable limit.
Remarkably, we notice that nonextensive statistics based
on Tsallis entropies have been largely used in the study of
entanglement [46], such as the relative entropy and the
Peres criterion.
The above result is quite general, since it is not confined

to bosons solely. In [10], the Unruh effect has been
investigated in the case of mixing of (Dirac) fermions,
and in particular of neutrinos, showing that the vacuum
condensate of Rindler particles should be modified as [see
Eq. (23) of [10] ]

N θ;ΔmðΩnÞ ¼ NFDðΩnÞ þ sin2 θO
�jΔm2j

μ2k;1

�
¼ 1

e2πΩn þ 1
þ sin2 θO

�jΔm2j
μ2k;1

�
; ð42Þ

where the zeroth-order term is now given by the Fermi-Dirac distribution function, while the higher-order corrections
OðjΔm2j=μ2k;1Þ depend on the convolution integral of the condensation density of mass vacuum in such a way that the Pauli
principle is still satisfied. In particular, we have [10]

O
�jΔm2j

μ2k;1

�
¼ eπΩn

2 cosh ðπΩnÞ
NF;FðΩnÞ −

e−πΩn

2 cosh ðπΩnÞ
NG;GðΩnÞ; ð43Þ

NF;FðΩnÞ ¼
X
r¼1;2

Z
F�
rðk1;ΩnÞFrðk1;ΩnÞjVkj2; NG;GðΩnÞ ¼

X
r¼1;2

Z
G�

rðk1;ΩnÞGrðk1;ΩnÞjVkj2: ð44Þ

5These are typical values for atmospheric neutrinos [45].
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Here, Fr and Gr are proper combinations of Dirac modes of spin r in Minkowski and Rindler quantizations [10] and

VkðtÞ ¼
�
ωk;1 þm1

2ωk;1

�1
2

�
ωk;2 þm2

2ωk;2

�1
2

� jkj
ωk;2 þm2

−
jkj

ωk;1 þm1

�
eiðωk;2þωk;1Þt; ð45Þ

is the analogue of the Bogoliubov coefficient λk12ðtÞ in
Eq. (A11) for fermion mixing [6] [we have assumed for
simplicity k ¼ ðk1; 0; 0Þ�. Once more, it is easy to check
that Eq. (46) reproduces the standard result for θ → 0 and/
or m1 → m2, consistently with the absence of mixing in
both cases. The same holds in the quantum mechanical
limit of large momenta with respect to the mass difference,
since the condensation density jVkj2 → 0.
At the same time, the q-modified Fermi-Dirac distribu-

tion in Tsallis thermostatistics can be approximately written
as [39]

NqðϵnÞ ¼
1

½1þ ðq − 1Þβϵn�1=ðq−1Þ þ 1
: ð46Þ

Therefore, by expanding for small deviations of q from
unity and following the same reasoning as earlier, we arrive
at a relation akin to Eq. (40) for fermions. Clearly, such an
extension deserves careful attention, since neutrinos are the
most abundant and emblematic example of mixed particles.

V. CONCLUSIONS AND OUTLOOK

The Unruh effect predicts that a uniformly accelerated
observer measures a Planck emission distribution in
Minkowski vacuum. However, for quantum fields exhibit-
ing entanglement correlations induced by mixing, this
result turns out to be nontrivially spoilt [9,10]. Here, we
have discussed this phenomenon from a statistical point of
view. Working in the approximation of small mass differ-
ence between the mixed fields, we have shown that the
modified vacuum distribution can be modeled by the q-
generalized Bose-Einstein distribution based on the non-
additive Tsallis entropy. In this effective description, the
deviation from Planckianity is found to be quantified by the
mixing angle θ and the mass difference Δm. Furthermore,
the q-entropic index exhibits a running behavior, which is
reasonably expected for QFT systems as discussed in [30].
The outcome that q < 1 indicates that we are in the
superadditive regime of Tsallis statistics, consistently with
the appearance of both equal and hybrid particle-antipar-
ticle pairs in the vacuum.
As explained in Sec. III, the above effect arises from the

interplay between two Bogoliubov transformations put on
the same footing, the one responsible for the unitary
inequivalence between the flavor and mass representations,
the other underlying the inequivalence between the Rindler
and Minkowski quantizations. In this regard, one may

observe that the latter inequivalence is related to an ever-
lasting uniform acceleration. However, in physical situa-
tions where the acceleration is not eternal, this does not
entail any particular problem, and indeed noninertial effects
on the excitation rate of a Unruh-de Witt detector are still
nontrivial for a finite period of acceleration (see, for
instance, the discussion in [47]). On the other hand, the
inequivalence related with field mixing is more genuine, in
the sense that the Fock spaces for flavor and mass fields
cannot be physical at the same time (see the Appendix).
This poses the so-called “choice problem,” i.e., the problem
of selecting the true representation for mixed fields, either
mass or flavor6 (more rigorously, one has to select the
correct Fock space representation for asymptotic mixed
fields). From this perspective, the flavor/mass controversy
has been largely investigated in [6,7,48–50], showing that
while the mass representation is consistent with the energy
conservation in the interaction vertices, on the other hand, it
produces a violation of lepton charge, which is in contrast
with what expected at tree level in the StandardModel. This
has been confirmed by a series of recent works within the
framework of the weak decay of accelerated protons
[17–19], where it has been shown that the only represen-
tation consistent with the general covariance of QFT, the
phenomenon of neutrino oscillations and the related CP
violation effects is the flavor representation.
Apart from more formal aspects, we remark that the

above picture allows us to extend the peculiar thermal
features of Unruh effect to mixed fields. Indeed, in [9,10],
flavor mixing was seen as responsible for the emergence of
nonthermal contributions in the Unruh spectrum. Here, we
have proved that the origin of these extra terms can be
explained in terms of a departure of the vacuum distribution
from Boltzmann-Gibbs statistics. In turn, this phenomenon
is attributable to the complex structure acquired by the
vacuum state for mixed fields, which becomes a condensate
of entangled particle-antiparticle pairs of different species.
In other words, we can still identify a temperature for the
vacuum distribution, provided that we work in the frame-
work of Tsallis’s thermostatistics. Nevertheless, following
[51], we point out that the new physical temperature would
be different from Unruh temperature by a factor depending
on the nonextensivity q-parameter and the modified

6In a broader sense, we remark that the choice problem is
peculiar to QFT and finds application in a variety of contexts
other than flavor mixing, being related to the well-known Haag’s
theorem.
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entropy Sq, in such a way that the usual result is still
recovered for q → 1. In this regard, we mention that a
similar q-dependent expression for Unruh temperature in
Tsallis’s theory has been obtained in [43] in the context of
the generalized uncertainty principle. Possible connections
between the two results need further consideration and will
be addressed elsewhere.
In passing, we highlight that a nonthermal behavior of

Unruh effect has been recently exhibited in [13], even for
the case of a single (i.e., unmixed) massive field. In that
case, it has been found that, contrary to what happens with a
linear dispersion relation characteristic of massless fields,
the thermality of Unruh condensate would be lost for more
general dispersion relations, including a mass term, unless
one defines a varying apparent Unruh temperature depend-
ing on both the acceleration and the degree of departure
from linearity. Therefore, it would be interesting to inves-
tigate whether such a result interfaces with our reformu-
lation of Unruh effect in Tsallis’s language. For this
purpose, however, a formalism based on the relativistic
Doppler shift method is required [13], since the Bogoliubov
transformation approach is insensitive to the mass of the
field when computing Unruh vacuum distribution [34].
Beyond the above issues, several other aspects remain to

be analyzed. To avoid unnecessary technicalities, we have
focused on a simplified model involving only two scalar
fields, noticing that similar considerations can be extended
to fermions quite straightforwardly. Furthermore, our
perturbative analysis relies on the leading-order approxi-
mation of small difference between the masses of mixed
fields. The question thus arises as to how the connection
(40) between the nonextensive q-index and the mixing
parameters would appear for arbitrary mass differences, as
well as in the case of three flavor generations. Another
extension is to apply the above formalism to the best-
known Hawking radiation, which has been largely studied
within the framework of nonextensive corrected-entropies
in recent years [52].
From a more phenomenological perspective, it would be

challenging to test possible experimental implications of
our result. As well-known, direct evidences of Unruh effect
have not yet been obtained, the obvious reason being the
fact that the Unruh temperature is extremely small even for
huge accelerations. However, there have been many pro-
posals in the literature to bypass hindrances arising from
technical limitations by focusing on analogues of Unruh
effect, even at the classical level. For instance, feasible tests
are being analyzed by simulating vacuum fluctuations of
Minkowski spacetime through gravity waves on the surface
of water subject to white noise [53]. Attempts to detect
indirect traces of Unruh radiation have also been carried out
in graphene [54] and metamaterials [55], where the effects
of Rindler-like horizons are mimicked by means of photons
waveguides. Thus, such analog models provide the only

test bench for probing the Unruh effect and any possible
deviation from the standard behavior to date.
Finally, one more direction to explore is whether Tsallis

statistics and mixed particles are intertwined on a more
fundamental level that goes beyond the specific framework
of Unruh effect. In this vein, we emphasize the recent
proposal to solve the long-standing problem of abundance
of primordial 7Li, which is affected by the neutrino
interactions and primordial magnetic field, by investigating
the impact of big bang nucleosynthesis predictions of
adopting a Tsallis distribution for the nucleon energies
[56]. Work along the above research lines is presently under
active consideration.
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APPENDIX: QFT OF FLAVOR MIXING IN
MINKOWSKI SPACETIME

We review the QFT formalism of flavor mixing for the
simplest case of two scalar fields in Minkowski background
[7]. To avoid unnecessary technicalities, we develop
calculations for the case of neutral fields, but the ensuing
results can be straightforwardly extended to charged fields
as well.
Let us introduce the algebraic generator of mixing,

GθðtÞ ¼ exp

	
−iθ

Z
d3xðπ1ðxÞϕ2ðxÞ − π2ðxÞϕ1ðxÞÞ



;

ðA1Þ

where the notation has already been set up in Sec. III. In
terms of this operator, the mixing transformations in
Eqs. (21) and (22) can be cast as

ϕlðxÞ ¼ G−1
θ ðtÞϕjðxÞGθðtÞ; ðA2Þ

where ðl; jÞ ¼ fðA; 1Þ; ðB; 2Þg. One can prove that GθðtÞ
belongs to SUð2Þ group, the algebra of which is closed by
the operators [7],

SþðtÞ ¼ −i
Z

d3xπ1ðxÞϕ2ðxÞ;

S−ðtÞ ¼ −i
Z

d3xπ2ðxÞϕ1ðxÞ; ðA3Þ
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S3 ¼ −
i
2

Z
d3xðπ1ðxÞϕ1ðxÞ − π2ðxÞϕ2ðxÞÞ;

S0 ¼ −
i
2

Z
d3xðπ1ðxÞϕ1ðxÞ þ π2ðxÞϕ2ðxÞÞ: ðA4Þ

Within the framework of QFT mixing, the generator
(A1) plays a pivotal role, as it provides the dynamical map
between the Fock space HA;B for the fields with definite
flavor and the Fock space H1;2 for the fields with definite
mass.7 Indeed, let us consider the generic matrix element of
H1;2 ¼ H1 ⊗ H2, i.e., 1;2hajϕiðxÞjbi1;2 ði ¼ 1; 2Þ, where
jai1;2 and jbi1;2 are arbitrary states in H1;2. By inverting
Eq. (A2) with respect to ϕj, we get

1;2hajGθðtÞϕlðxÞG−1
θ ðtÞjbi1;2 ¼ 1;2hajϕjðxÞjbi1;2; ðA5Þ

which in fact shows that G−1
θ ðtÞjbi1;2 is a vector in HA;B.

Therefore, we can write

G−1
θ ðtÞ∶H1;2 ↦ HA;B: ðA6Þ

In particular, for the vacuum state j0Mi1;2 ≡ j0i1;2 ¼
j0i1 ⊗ j0i2, this gives

j0ðθ; tÞiA;B ¼ G−1
θ ðtÞj0i1;2: ðA7Þ

The above relation allows us to define the time-dependent
flavor vacuum j0ðθ; tÞiA;B in terms of the corresponding
mass vacuum j0i1;2.
A comment is in order here. For quantum mechanical

systems (i.e., systems with finite number of degrees of
freedom), GθðtÞ is a unitary operator that preserves the
canonical commutation relations. This is ensured by
Stone-von Neuman theorem [57,58], which states that
any two irreducible representations of the canonical com-
mutators are unitarily equivalent in quantum mechanics.
Accordingly, mass and flavor representations give rise to
physically equivalent descriptions of mixing. On the other
hand, in QFT, the transformation (A1) is found to be
nonunitary in the infinite volume limit, which means that
the vacua j0i1;2 and j0ðtÞiA;B become mutually orthogonal
and the related Fock spaces unitarily inequivalent. This is
quite different from the conventional perturbation theory,
where the vacuum of the interacting theory is expected to
be essentially the same as that of the free theory (up to a
phase factor) [59]. Clearly, such an inequivalence and its
implications disappear for θ ¼ 0 and/or m2 ¼ m1, consis-
tently with the fact that there is no mixing in both cases.
To find out how the mapping (A7) affects the structure of

the flavor vacuum, we now focus on the derivation of
ladder operators in the flavor basis. By using the standard
plane wave quantization (7) for both ϕ1 and ϕ2, Eq. (A2)
leads to the following expansions for the flavor fields:

ϕlðxÞ ¼
Z

d3kfak;lðθ; tÞUk;jðxÞ þ ā†k;lðθ; tÞU�
k;jðxÞg; ðl; jÞ ¼ fðA; 1Þ; ðB; 2Þg; ðA8Þ

where

ak;lðθ; tÞ≡G−1
θ ðtÞak;jGθðtÞ ðA9Þ

is the annihilator of a quantumwith definite flavor l (for simplicity, we refer to this operator as flavor annihilator and use the
handier notation ak;lðθ; tÞ≡ ak;lðtÞ). From the above relation, we obtain

ak;AðtÞ ¼ cos θak;1 þ sin θðρk�12 ðtÞak;2 þ λk12ðtÞā†−k;2Þ; ðA10Þ

[similarly, for ak;Bðθ; tÞ]. Therefore, the flavor annihilator is related to the corresponding ladder operators in the mass basis
via of a Bogoliubov transformation (the terms in the brackets) nested into a rotation. The Bogoliubov coefficients are
defined as

ρk12ðtÞ ¼ jρk12jeiðωk;2−ωk;1Þt; λk12ðtÞ ¼ jλk12jeiðωk;1þωk;2Þt; ðA11Þ

where

jρk12j≡ 1

2

� ffiffiffiffiffiffiffiffiffi
ωk;1

ωk;2

r
þ

ffiffiffiffiffiffiffiffiffi
ωk;2

ωk;1

r �
; jλk12j≡ 1

2

� ffiffiffiffiffiffiffiffiffi
ωk;1

ωk;2

r
−

ffiffiffiffiffiffiffiffiffi
ωk;2

ωk;1

r �
: ðA12Þ

7For brevity, henceforth HA;B and H1;2 are simply referred to as “flavor” and “mass” Fock space, respectively.
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It is easy to verify that

jρk12j2 − jλk12j2 ¼ 1; ðA13Þ

which ensures that the flavor operator (A9) and its con-
jugate are still canonical (at equal times).
The mapping (A7) induces a physically nontrivial

structure in the flavor vacuum, which becomes an
entangled SUð2Þ coherent state made up by particle-
antiparticle pairs both of the same and different masses
[6]. In turn, this inequivalence affects the well-known
oscillation formula to include the antiparticle degrees of
freedom [60]. The condensation density of flavor vacuum is
given by

A;B
h0ðtÞja†k0;iak;jj0ðtÞiA;B ¼ sin2θjλk12j2δijδ3ðk − k0Þ:

ðA14Þ

Clearly, by exploiting the symmetric structure of Eq. (A9),
one can reverse the above reasoning and analyze the
properties of mass vacuum, which appears as a condensate
of particle-antiparticle pairs having both equal and different
flavors. In line with our previous considerations on the
disappearance of the inequivalence for vanishing mixing,

the condensation density (A14) goes to zero for θ ¼ 0
(since ak;A → ak;1 and ak;B → ak;2) and/orm2 ¼ m1 (since
the Bogoliubov coefficients reduce to ρk12ðtÞ ¼ 1 and
λk12ðtÞ ¼ 0, which in turn implies that ak;A and ak;B are
simple superpositions of ak;1 and ak;2). Notice that the

same behavior occurs for jkj2 ≫ m1
2þm2

2

2
, thus allowing to

recover the standard quantum mechanical description of
mixing in the relativistic approximation.
The complex structure of the flavor vacuum j0ðtÞiA;B has

been recently studied in [8], where it has been established
that the Fock space for flavor fields cannot be obtained by
the direct product of the spaces for massive fields. This
strengthen the result that entanglement properties for mixed
fields already emerge at the level of vacuum state. As a
remark, the observation that flavor mixing can be asso-
ciated with (single-particle) entanglement traces back to
[61] and has inspired a series of studies on violations of
Bell, Leggett-Garg, and Mermin-Svetchlichny inequalities,
nonlocality, gravity-acceleration degradation effects, and
other similar phenomena [62–66]. The entanglement con-
tent of the flavor vacuum has been explicitly quantified in
[67] in the limit of small mass difference and/or mix-
ing angle.
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