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Crossing symmetry asserts that particles are indistinguishable from antiparticles traveling back in time.
In quantum field theory, this statement translates to the long-standing conjecture that probabilities for
observing the two scenarios in a scattering experiment are described by one and the same function. Why
could we expect it to be true? In this work we examine this question in a simplified setup and take steps
towards illuminating a possible physical interpretation of crossing symmetry. To be more concrete, we
consider planar scattering amplitudes involving any number of particles with arbitrary spins and masses to
all loop orders in perturbation theory. We show that by deformations of the external momenta one can
smoothly interpolate between pairs of crossing channels without encountering singularities or violating
mass-shell conditions and momentum conservation. The analytic continuation can be realized using two
types of moves. The first one makes use of an iε prescription for avoiding singularities near the physical
kinematics and allows us to adjust the momenta of the external particles relative to one another within their
light cones. The second, more violent, step involves a rotation of subsets of particle momenta via their
complexified light cones from the future to the past and vice versa. We show that any singularity along such
a deformation would have to correspond to two beams of particles scattering off each other. For planar
Feynman diagrams, these kinds of singularities are absent because of the particular flow of energies
through their propagators. We prescribe a five-step sequence of such moves that combined together proves
crossing symmetry for planar scattering amplitudes in perturbation theory, paving a way towards settling
this question for more general scattering processes in quantum field theories.
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I. INTRODUCTION

Classically, particles are indistinguishable from antipar-
ticles with the opposite energy and momentum [1]. In order
to convert this statement into an observable in quantum
field theory, we can phrase it as measuring the two
scenarios in a scattering experiment. At this level, crossing
symmetry states that on-shell scattering amplitudes for
processes involving the particle and the antiparticle are
boundary values of one and the same function, regardless of
the number and type of the remaining particles it interacts
with. It is a fundamentally Lorentzian notion thought to be
a reflection of the compatibility of quantum theory with
physical principles such as causality, locality, or unitarity.
How are we supposed to think about crossing symmetry?

Two scattering processes—one involving an incoming and
one with an outgoing state—cannot be directly compared
because they are defined in disjoint regions of the

momentum space; supported in the future and past light
cones respectively. Therefore, in order to talk about cross-
ing symmetry, one needs to promote the scattering ampli-
tude to a function of complexified kinematics. It is at this
stage that the Smatrix becomes a multivalued function with
a host of new singularities—historically referred to as the
anomalous thresholds—corresponding to possible saddle
points of the path integral for a given process. To show that
the two scattering amplitudes can be described with a single
analytic function, one needs to understand how to navigate
around such singularities in order to connect the future and
the past light cones together.
Since its introduction in 1954 by Gell-Mann,

Goldberger, and Thirring [2], establishing crossing sym-
metry as a consequence of the aforementioned principles
has remained an open problem. In the absence of a
convincing physical explanation, the throughline in the
literature has been the application of the apparatus of
complex analysis in multiple variables, using which one
could hope to at least settle the question in the simplest
cases. Among these attempts, the most fruitful approach
has been undertaken by Bros, Epstein, and Glaser [3–6],
who studied it in the framework of the axiomatic quantum
field theory in the Lehmann-Symanzik-Zimmerman (LSZ)
formalism.
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As with any LSZ-based approach, one is faced with an
immediate obstruction stemming from a rather prosaic but
highly-consequential fact that Fourier transforms from the
position to the momentum space—such as those at the heart
of the LSZ formalism—generically do not converge on
shell [7–11]. At this stage, one is forced to study off-shell
Green’s functions first and then inferring properties of
scattering amplitudes by extensive use of analytic com-
pletion theorems in the on-shell limit. (It is not clear if
crossing symmetry would be a physically meaningful
notion for Green’s functions, particularly in the theories
with gauge degrees of freedom, perturbative gravity, or
those with spontaneously broken symmetries.) The process
of analytic continuation is rather abstract and difficult to
interpret in terms of particle scattering. In fact, it not only
creates an obstruction to understanding the physical origin
of crossing symmetry, but also turns out to be technically
strenuous. As a consequence, proofs of this type have been
completed only in theories without massless particles in the
case of 2 → 2 [3,4] and 2 → 3 scattering [5,6]. For reviews,
see [12–15]. A more detailed explanation and some
clarifications are provided in Appendix.
The simplest qualitatively distinct cases where crossing

symmetry is not known to hold nonperturbatively include:
crossing between scattering amplitudes with different
numbers of incoming and outgoing states, for example
between 2 → 3 and 3 → 2 processes; scattering of more
than five particles, where constraints from the space-time
dimensionality first start to matter; as well as crossing for
any process involving massless particles. The lack of a clear
physical picture in the aforementioned proofs makes it
difficult to ascertain whether crossing symmetry extends to
these situations. (There certainly are cases where it does not
hold, including integrable theories in two dimensions [16]
or monopole scattering [17].)
At this stage we are faced with both conceptual and

technical problems. This suggests that a qualitatively new
strategy is needed, not only to understand crossing sym-
metry itself but also shed some new light on the Lorentzian
aspects of observables in quantum field theories. The
purpose of this work is to reexamine this problem in a
simplified setup. It will allow us to catch a glimpse of what
possible meaning could be attached to crossing symmetry,
by first identifying all the potential singularities of the S
matrix that could prevent it, and then explaining why they
do not exist.
We will be working in the framework of perturbation

theory, where one might reasonably hope to address the
aforementioned shortcomings. The main advantage of this
approach is that the positions of singularities can be
determined by a set of algebraic conditions called
Landau equations [18] and have a straightforward inter-
pretation as intermediate particles going on shell. (Sec. II
reviews aspects of Landau equations needed for this work.)
In addition, in perturbation theory, the overall divergences

and ways of dealing with them are reasonably well
understood with tools such as renormalization or regulari-
zation [19–21]. In contrast with the nonperturbative
approaches, where amplitudes at different multiplicities
had to be analyzed separately, Feynman rules are the same
for any number of external states which hints that once the
solution to crossing symmetry has been understood at four-
point, a similar underlying principle would carry over to
more complicated processes.
There have been several attempts at demonstrating

crossing symmetry in perturbation theory over the years
(see e.g., [22–24]). For instance, it is known that any
Feynman integral is crossing symmetric in a large enough
space-time dimension, provided its masses satisfy certain
bounds [24]. The additional simplification we will make in
this paper is to focus on planar Feynman diagrams.
Nevertheless, we will still consider any multiplicity,
masses, spins, and work to all loop orders. For example,
we could apply our techniques to the large-N limit of
quantum chromodynamics or other toy-model theories.
(Recall that planarity does not mean scattering takes place
in a plane, but rather that each Feynman diagram has a
planar embedding once all the external lines are extended to
infinity.) Although the final step in the proof of crossing
will require planarity, the majority of the results described
in this work apply to nonplanar diagrams.
Other than the intrinsic interest in crossing symmetry as

a possible property of quantum field theories, understand-
ing the singularity structure of scattering amplitudes is
important in various “bootstrap” approaches to the S-matrix
theory, which try to constrain the space of allowed
observables based on a set of underlying assumptions.
Since the 1960s, it has been customary to take crossing
symmetry as an assumption, or even replace it with much
stronger conditions on analyticity, which at various levels
state that scattering amplitudes are nonsingular away from
the physical regions. While there is nothing wrong with
making simplifying assumptions, in view of the author,
axioms without a clear physical meaning should not form a
basis for a physical theory.

A. Summary of the analytic continuation

We focus on planar scattering amplitudes preserving a
given cyclic ordering (ABCD) of n external states, where
each of A, B, C, and D denote nonempty sets of particles.
Let us label the incoming particles with AB and the
outgoing ones with CD. Provided that the connected part
of the scattering amplitude T AB→CD exists, we will show
that it can be analytically continued to the crossed process

T AB→CD ¼ T BC̄→DĀ; ð1Þ

where the bar denotes changing particles into antiparticles.
To be precise, the meaning of the equality sign above is that
there exists a complex analytic function whose boundary
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values in their respective physical regions are the two
scattering amplitudes. Description of the precise path of
the analytic continuation is the content of this paper. Note
that we will not consider crossing between channels in
which the incoming and outgoing sets are not consecutive,
unless they appear in the intermediate steps outlined below.
Likewise, the requirement of each set A, B, C, and D being
nonempty excludes the case of particle decay, which has to
be treated separately when it is kinematically allowed. The
challenge is to perform the analytic continuation in such a
way that the momentum conservation and the mass-shell
conditions are not violated along the path of deformation.
Let us remind the reader that crossing symmetry should

not be confused with permutation invariance (or cyclic
invariance for planar diagrams), which only means that
whenever two identical states are exchanged, their scatter-
ing amplitudes are relabelings of each other, up to spin
statistics, but are nevertheless defined in disjoint physical
regions. Likewise, the charge, parity, and time reversal
(CPT) invariance is a prerequisite for crossing symmetry,
but—being a kinematic not a dynamic statement—by no
means guarantees it.
By repeated use of (1) we can analytically continue

between processes involving a particle and an antiparticle
without affecting the remaining states. To see this, let us
start with a process IJ → KLn for some nonempty sets I, J,
K, and L. We can convert the particle n into an antiparticle
n̄ with the following steps

T IJ→KLn ¼ T JK̄ L̄→nĪ ¼ T L̄ n̄→Ī J̄ K ¼ T n̄IJ→KL: ð2Þ

Here each equality is a special case of (1): in the first step
B ¼ J, C ¼ KL; in the second one B ¼ L̄, C ¼ n; and
finally in the third B ¼ n̄, C ¼ Ī J̄. As a result, we obtained
the scattering amplitude for the crossed process n̄IJ → KL,
where only n̄ changed its nature and all the other states
remained untouched. It is the first class of scattering
processes in which crossing symmetry, under the definition
given above, can be directly demonstrated.
The analytic continuation behind (1) is illustrated on a

cartoon level in Fig. 1. Since we would like to understand it
at the level of particle momenta—as opposed to the
Mandelstam invariants—we first make a choice of a
Lorentz frame. We then prescribe a specific deformation
of the external momenta in such a way that the amplitude
navigates around any possible singularities. Recall that
singularities (or anomalous thresholds) can develop when a
subset of propagators goes on shell, and accordingly the
diagrams in Fig. 1 are meant to depict precisely the
configurations that can never go on shell for any real value
of the loop momenta.
The deformation proceeds in five steps, but there are

only two distinct moves; in the first one the momenta stay
in their original light cones (blue), and in the second one
they are rotated from the future to the past light cones and
vice versa (red).
Step I aligns the momenta within their light cones in such

a way that the sets B and C lie closer to its positive axis (at
the π

4
angle) than the sets A and D respectively. Along such

a deformation we might encounter singularities, but they
can be easily avoided using an appropriate iε deformation

FIG. 1. Cartoon depiction of the analytic continuation of a planar Feynman diagram between the crossing channels AB → CD and
BC̄ → DĀ. The pictures are meant to be embedded in a light cone with time directed upwards. For readability we do not draw
internal propagators after the first step and simply represent the planar diagram as a surface. The individual steps are described in the
main text.
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in the kinematic invariants, related to the Feynman iε
prescription and preservation of causality. We describe this
procedure in detail in Sec. III.
In step II we simultaneously rotate B and C through their

complexified light cones in such a way that signs of their
energies get exchanged, resulting in the sets of antiparticles
B̄ and C̄. We call the region of the kinematic space through
which such a continuation takes place a crossing domain.
Along this deformation we can look at the scattering
process from the real and the imaginary directions. Since
only a subset of the momenta are complexified, in the
imaginary directions it looks as if it corresponded to a
highly-energetic process—with all the energies large, while
all the transfer momenta and masses are vanishingly small
—even though in reality all the Mandelstam invariants stay
finite. We will show that an on-shell singularity for such a
process can only develop if it looks like two beams of
particles (with all the internal momenta aligned either in the
B–C or in the A–D directions) scattering off each other.
This is a completely general statement since up to this stage
we made no use of planarity. Therefore, proving crossing
symmetry amounts to explaining why such singularities
cannot appear.
In order to show analyticity in the crossing domains, we

make use of the peculiar nature of the energy flow in planar
diagrams, as explained in Sec. II F. To be more precise, we
will show that propagators along the sides of a generic
planar diagram must always have a nonzero energy
component in both the B–C and A–D directions at the
same time. This fact is powerful enough to prove that no
singularities can appear along the precise path of analytic
continuation between the future and past light cones
prescribed in Sec IV.
The remaining steps use essentially the same arguments

up to permutations of labels. Step III is analogous to step I
but adjusts A and B̄ to lie closer to the positive axis of the
light cone than the remaining sets of particles. In step IV we
once again rotate A and B̄ through the complex directions
such that they become Ā and B respectively. Finally, in step
V we continue to a process with generic momenta, avoiding
any singularities using the iε prescription just like in step I.
As a result, we end up with the scattering amplitude
“rotated” as in Fig. 1, which is now defined in the BC̄ →
DĀ physical region.

B. Four-point example

In order to illustrate the Lorentz-invariant content of this
procedure, let us exemplify it in the four-point case. Here
we have two independent Mandelstam invariants; the center
of mass energy s and the squared momentum transfer t. The
path of analytic continuation is schematically illustrated in
Fig. 2. Before we go through this path, let us emphasize that
in the case n ¼ 4 specifically, an analytic continuation for
planar Feynman diagrams can be performed more easily.
We nonetheless use the specific procedure outlined in Fig. 1

because it is the one that generalizes to arbitrary multi-
plicity n and also has an interpretation in terms of the
momentum vectors. The essential difficulty with prescrib-
ing analytic deformation directly at the level of the
Mandelstam invariants is that for n > 5 one would have
to deal with complications related to constraints coming
from the dimensionality of spacetime. Finally, since we are
ultimately interested in the nonplanar cases, we want to
avoid hard-wiring planarity as much as possible.
In this example the goal is to analytically continue

between physical regions (shaded) in the s-channel (bottom
right) and the t-channel (top left). We assume that the
scattering amplitude exists in the first place and hence can
be defined in some open set around the starting point of
step I. Adjusting the momenta within their light cones leads
to a blue path moving within the s-channel physical region.
Since it might potentially encounter some singularities
(black), we prescribe an iε rule for going around them in the
direction consistent with causality. (The unshaded regions
also contain a myriad of singularities not illustrated in the
figure, since they do not concern us.) The image of step II
in the kinematic invariants corresponds to keeping t fixed to
some t⋆ < 0 and continuing in the upper-half plane of s. It
ends up in the u-channel region (bottom left). We show that
for planar scattering amplitudes, this way of approaching
the u-channel is consistent with causality. The remaining
steps are identical up to relabeling s ↔ t.
The above procedure defines the “physical sheet” in the

space of Mandelstam invariants, along which analytic
continuation between different physical regions can be
made. Recall that such a notion would not be meaningful
unless crossing symmetry is proven.

FIG. 2. Analytic continuation in the ReðsÞ–ReðtÞ plane for
n ¼ 4. Dashed lines in steps II and IV denote continuation in the
upper-half s- and t-planes respectively.
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In contrast with the nonperturbative results [4], which
require continuations to asymptotically large jsj and jtj at
intermediate steps, the domain of analyticity described
above is substantially larger. Although due to the afore-
mentioned issues with the physical interpretation of the
nonperturbative results, it is difficult to pinpoint the origin
of this difference, we strongly suspect it should be
associated with the simplification of planarity rather than
that of perturbation theory.
Outline. In Sec. II we start by reviewing different

formulations of Landau equations, their meaning in the
worldline formalism, and what is known about their
solutions. In Sec. III we show analyticity in the neighbor-
hoods of the physical regions using small iε deformations
of the kinematic invariants and the integration variables. In
Sec. IV we demonstrate analyticity in the crossing domains
from the perspective of the loop momenta and the worldline
formalism. We finish with a brief discussion of the future
directions in Sec. V. In Appendix we provide some
clarifications regarding Fourier transforms of retarded
commutators.
Conventions. Incoming momenta are called pμ

i and the
outgoing ones −pμ

i , such that scattering amplitudes of n
particles are supported on the constraints of the momentum
conservation

P
n
i¼1 p

μ
i ¼ 0 and the mass-shell conditions

p2
i ¼ M2

i ≥ 0 in the mostly-minus signature. We work in
asymptotically-flat spacetime with dimension D. Although
the main physical interest lies in D ¼ 4, the arguments
work in any fixed D > 2.

II. REVIEW OF LANDAU EQUATIONS

We will consider a perturbative expansion of scattering
amplitudes in terms of Feynman diagrams. Feynman rules
of a local and CPT-invariant quantum field theory already
guarantee that each Feynman diagram has the expected
crossing property. Therefore, the crux of the problem lies in
showing that Feynman integrals cannot develop singu-
larities when analytically continued between crossing
channels.
At this stage, one should distinguish between two

separate types of issues; the overall divergences (such as
UV or IR divergences) and singularities (associated to
resonances). The former happen for every value of the
external kinematics, while the latter only at specific values
of Mandelstam invariants corresponding particles going on
shell. In order to meaningfully formulate the question of
crossing symmetry, we must assume that the amplitude
exists in the first place, i.e., it can be defined in some open
set of the physical region of interest. This can be done using
standard tools such as the Bogoliubov-Parasiuk-Hepp-
Zimmermann (BPHZ) renormalization, or dimensional or
analytic regularization (see e.g., [19–21] for reviews),
without affecting singularities. In the worst case scenario,
instead of Feynman integrals one can talk about Feynman
integrals in dimensional regularization, which are always

free of the overall divergences. From now on we assume
that the amplitude exists in one of the above senses.
Moreover, we only consider amplitudes defined at generic
kinematic points e.g., not evaluated directly on a colli-
near limit.
We will consider two complementary ways of looking at

Feynman integrals: in the loop-momentum space and in the
worldline formalism.

A. Loop momentum perspective

We start with a scalar Feynman integral with n external
legs, L loops, and E internal edges (propagators) in D-
dimensional Minkowski space, which can be written as

I ≔
Z

dDLlI

YE
e¼1

iℏ
q2e −m2

e þ iε
; ð3Þ

where the product runs over all the propagators. Here qμe
and me are the momenta and masses associated to the edge
e, and lμ

I denote the loop momenta. They satisfy momen-
tum conservation at every vertex v,

pμ
v þ

XE
e¼1

ηveq
μ
e ¼ 0; ð4Þ

with pμ
v denoting the total external momentum flowing into

this vertex, which we assume to be real. Here ηve equals to
þ1 (−1) if the edge e is incoming (outgoing) from this
vertex and 0 otherwise. We assign arbitrary orientations to
all loops and edges.
In order to analyze singularities of Feynman integrals it

is convenient to express the propagators as integrals over
Schwinger parameters αe as follows:

iℏ
q2e −m2

e þ iε
¼

Z
∞

0

dαee
i
ℏðq2e−m2

eþiεÞαe : ð5Þ

Note that from this perspective the Feynman iε is needed to
ensure convergence near infinity. Whenever iε appears,
such as in (3), the expression should be understood as a
limit where ε → 0þ. Applying this procedure E times one
finds

I ¼
Z

dEαedDLlIe
i
ℏðVþiε

P
E
e¼1

αeÞ; ð6Þ

where the integration domains will remain suppressed from
the notation from now. Here we defined

Vðαe;lIÞ ≔
XE
e¼1

ðq2e −m2
eÞαe: ð7Þ

This quantity will allow us to translate between different
ways of thinking about singularities of Feynman integrals.

CROSSING SYMMETRY IN THE PLANAR LIMIT PHYS. REV. D 104, 045003 (2021)

045003-5



1. Bulk saddle points

The most obvious singularities are associated to the
saddle points in the classical limit, ℏ → 0, inside the
integration domain. They are obtained by extremizing V.
Doing so with respect to the loop momenta lμ

I one finds

XE
e¼1

ηIeq
μ
eαe ¼ 0; ð8Þ

for each I ¼ 1; 2;…;L, as a result of the fact that each
internal momentum qμe is linear in the loop momenta lμ

I .
Here ηIe equals to þ1 (−1) if the orientations of the loop I
and the edge e match (mismatch) and 0 otherwise.
Extremizing with respect to the Schwinger parameters αe
yields

q2e −m2
e ¼ 0 ð9Þ

for each e ¼ 1; 2;…;E.
The equations, (4) together with (8) and (9), are known

as the leading Landau equations. They were introduced in
1959 independently by Bjorken [25], Landau [18], and
Nakanishi [26,27]. Because of their degree in the momenta,
we will from now on refer to (4) and (8) as the linear, and to
(9) as the quadratic Landau equations. The general strategy
will be to solve the linear part explicitly and then constrain
the solutions of the quadratic part.
Singularities associated with solutions of Landau equa-

tions are also called anomalous thresholds, unless the
dimension spanned by the internal momenta qμe is exactly
one, in which case they would be referred to as normal
thresholds. The physical interpretation of leading Landau
equations is that of every internal propagator going on shell
in the classical limit. In other words, the path integral for
the scattering process localizes on a specific configuration
in which the corresponding Feynman diagram describes a
physical interaction of long-lived particles in space-
time [28].
Solutions of Landau equations are generically complex

in the Mandelstam invariants and the Schwinger parame-
ters. Note that they are projective in the αe’s (for massless
theories they are also projective in the external kinematics),
which means that if a given set α�e is a solution, so is λα�e for
any λ ∈ Cnf0g. This means there are more equations than
the number of independent Schwinger parameters, resulting
in (at least) one constraint on the external kinematics.
Additionally, we can distinguish between real projective,
α�e ∈ RPE−1, and complex projective, α�e ∈ CPE−1, solu-
tions, out of which only the former contribute directly to the
singularities of Feynman integrals on the undeformed
integration contours. We will return to this distinction in
Sec. II C.

2. Boundary saddle points

In the analysis so far we have ignored the saddle points
confined to the boundaries of integration, which also
contribute to the classical limit. We can have boundary
saddles corresponding to αe → 0 (or αe → ∞) for a subset
of Schwinger parameters, as well as lμ

I → �∞ for a subset
of loop momenta. Naturally, we could also encounter
mixed types of singularities where multiple of the above
criteria are satisfied at the same time.
The first type of singularities are determined by the

subleading Landau equations, which are identical to the
leading ones, but for a simpler diagram with a subset of
edges e (or its complement) contracted. In our analysis we
will consider all possible diagrams anyway, so without loss
of generality we can focus on the leading Landau equations
with αe > 0 from now on. (It should also be pointed out
that edge contractions preserve planarity.) In the literature,
a Feynman diagram with a subset of propagators on shell is
called a reduced or on-shell diagram.
The boundary saddle points corresponding to infinite

loop momenta are called second-type Landau singularities
[29–31]. As will become clear in the next subsection, they
do not need to concern us either.

B. Worldline perspective

In the representation (6), the argument of the exponent is
quadratic in the loop momenta lμ

I . We can therefore simply
integrate them out. This gives us

I ¼ c
Z

dEαe
UD=2 e

i
ℏðVþiε

P
E
e¼1

αeÞ; ð10Þ

where c is a constant that does not matter for the question of
singularities. Here we used the same symbol for the
exponent as in (7), because on the Gaussian saddle point
they are given in terms of the same function,

VðαeÞ ¼
XE
e¼1

ðq2e −m2
eÞαejð4;8Þ: ð11Þ

It is now a function of the Schwinger parameters and
Mandelstam invariants only. We will give an explicit
solution to the linear Landau equations [(4) and (8)] shortly.
Additionally, the factor U can be expressed in terms of a
sum over all possible spanning trees T,

U ≔
X
spanning
treesT

Y
e0∉T

αe0 ; ð12Þ

where each term is weighted with the Schwinger param-
eters of the L edges needed to be removed from the original
diagram to give the tree T. It is a homogeneous polynomial
with degree L in the αe’s. On the undistorted integration
contour we have U > 0.
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The representation (10) has a natural interpretation
descending from the worldline formalism, where V denotes
the action after localization of the worldline fields and U is
the determinant of the reduced Laplacian. For this reason
we will refer to V as the action from now on. In fact, this
picture clarifies the meaning of the integration domain of
(10) as that over the equivalence classes of Riemannian
metrics on the Feynman graph, which eventually becomes
important in accounting for nested divergences of Feynman
integrals, though we do not consider them here. Similarly,
in this language the Eqs. (4) and (8) are the Gauss
constraint and the continuity law for the worldline fields
respectively. The projective redundancy αe ∼ λαe descends
from the reparameterization invariance of the worldlines.
There exist special kinematic configurations in which

one cannot perform the Gaussian integral in (6) to obtain
(10). They appear precisely when a finite solution of the
linear Landau equations [(4) and (8)] does not exist, or
equivalently U ¼ 0 [see also the explicit solution (34) later
on]. These are the aforementioned Landau singularities of
the second type. They only exist when the external
momenta are collinear, since the system of equations
[(4) and (8)] can degenerate only if there is a linear
constraint on the external data pμ

i beyond the momentum
conservation. The reason why we do not need to consider
such singularities is not only that they appear at special
kinematic configurations, but also that they happen only
after deformation of the contour e.g., when computing
singularities of discontinuities, but not the amplitude
itself [32].
At this stage let us point out that the interpretation of

Landau equations as (stratified) saddle points of the world-
line action is not standard in the literature, but we believe it
gives the most intuition for what Landau equations mean
physically [33]. Rigorous formulation can be achieved with
stratified Morse theory.

1. Spins and numerators

We are now equipped to comment on the meaning of
Landau equations for theories with spin. In either of the
representations (3), (6), and (10), spin effects can at most
multiply the integrand by a polynomial in the integration
variables (see e.g., [20] for details). They can therefore
remove or change the nature of on-shell singularities, but
never introduce new ones. In other words, Landau equa-
tions give necessary but not sufficient conditions for the
development of singularities. They depend on the topology
of the diagram and kinematics, but not on the specificities
of the interaction vertices. In general it is difficult to
determine a priori if a given numerator cancels a singu-
larity, which can happen in highly nontrivial ways, for
example in theories with dual conformal invariance. [Under
certain restrictions on the numerators, one can argue that
Landau equations are not only necessary but also sufficient
conditions for singularities [34].] In particular, although

Landau equations do not explicitly depend on D, the
presence of singularities does. Nevertheless, in our appli-
cations we aim to show that even the necessary conditions
cannot be satisfied along a path of analytic continuation and
hence the discussion applies to any spin.

2. Causality

At the level of the representation (10), the individual iε
factors lost their original meaning and instead the correct
causality conditions are imposed by requiring that the
integrand of (10) decays sufficiently fast at infinities.
Instead of introducing the iε “by hand”, in the following
we will instead deform the external kinematics (with
momentum conservation and on-shell conditions satisfied)
as well as the Schwinger parameters such that

ImV > 0; ð13Þ

and approach the physical regions with ImV → 0þ. To be
more precise, this prescription selects the correct homology
class of integration contours giving rise to physical ampli-
tudes. Since we have to deform the external kinematics for
the purposes of the analytic continuation in any case, in this
way we can avoid the introduction of an additional variable
and the associated tedious discussion of the order of limits.

3. Expressions for the action

The action V has multiple different representations that
come useful in various applications [24,35–39]. Already
from (7) it is clear that V has to be linear in Mandelstam
invariants and masses. Particularly useful for us will be the
form

VðαeÞ ¼
X

subsetsS

p2
SF S −

XE
e¼1

m2
eαe; ð14Þ

where the first sum runs over all the 2n−1 − 1 proper subsets
S of n labels without double counting the complements
S̄ ≔ f1; 2;…; ngnS with

pμ
S ≔

X
i∈S

pμ
i : ð15Þ

The function F S is defined through

F S ≔
1

U

X
spanning

2-forestsFS

Y
e∉FS

αe; ð16Þ

where a spanning 2-forest FS ≔ TS⊔TS̄ is a disjoint union
of trees TS (TS̄) connected to all the external momenta from
the set S (S̄) and none from S̄ (S) such that every vertex
belongs to either tree. This can be achieved by cutting
through exactly Lþ 1 edges such that the sets S and S̄ are
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separated, and hence every F S is a homogeneous function
with degree one in the αe’s. In the literature U is called the
first Symanzik polynomial and V is the ratio of the second
to the first Symanzik polynomials.
The advantage of the form (14) is that it drastically

simplifies for planar diagrams. This is because such diagrams
depend only on nðn − 3Þ=2 Mandelstam invariants of the
formp2

S where S are sets of consecutive labels with respect to
a given planar ordering (here the n masses p2

i ¼ M2
i are not

counted). When the number of external particles is
n ≤ Dþ 1, all the Mandelstam invariants can be independ-
ently deformed. At higher multiplicity, n > Dþ 1, this
cannot be done in a simple manner because of the additional
Gram matrix constraints on the kinematics. The approach in
the later sections will be to deform the four-momenta pμ

i
directly, which circumvents this issue.

4. Singularities

In this language the leading Landau equations are simply
the saddle-point conditions

∂V
∂αe ¼ q2e −m2

ejð4;8Þ ¼ 0; ð17Þ

for every e ¼ 1; 2;…;E. They retain their previous mean-
ing of propagators going on shell, essentially because the
saddle points in the loop-momentum directions were
Gaussian. Since V is homogeneous with degree one, on
the saddle point we also have

V ¼
XE
e¼1

αe
∂V
∂αe ¼ 0; ð18Þ

which itself is a necessary, but not a sufficient, condition for
a singularity. For example, whenever V ¼ 0 but not all
derivatives of V vanish, one can deform the integration
contour to avoid such a situation, which happens e.g., on
the threshold cuts. As we will see in Sec. III A, this cannot
be done on the saddle points.
Singularities arise because on the support of (18) there is

a projective family of integrands no longer suppressed
in the ε → 0þ limit. To be specific, under the rescaling
αe ↦ λαe we have

U ↦ λLU; V ↦ λV; dEαe ↦
dEαe
GLð1Þ

dλ
λ1−E

; ð19Þ

because of their homogeneity properties. The symbol GL
(1) in the denominator indicates a quotient by the overall
scale λ, which is typically fixed by imposing

P
E
e¼1 αe ¼ 1

or αe0 ¼ 1 for a single edge e0. Therefore, on the projective
solution of the Landau equations α�e ∼ λα�e, the λ-dependent
part of the integrand is proportional to

Z
∞

0

dλ
λ1−γ

e
iλ
ℏðV�þiε

P
E
e¼1

α�eÞ ∝
ΓðγÞ

ðV� þ iε
P

E
e¼1 α

�
eÞγ

: ð20Þ

Here γ ¼ E − LD=2 is the superficial degree of divergence.
Even in dimensional regularization, the integral diverges
when γ ≥ 0 since V� ¼ 0 on the saddle point. Since for our
purposes we are interested in proving that even the
necessary conditions for singularities cannot be satisfied,
we will not distinguish between different signs of γ in the
following.
For completeness let us mention that on real kinematics

and away from Landau singularities, integrating out the
overall scale leads to the textbook representation of
Feynman integrals

I ¼ c0ΓðγÞ
Z

dEαe
GLð1Þ

1

UD=2ðV þ iε
P

E
e¼1 αeÞγ

; ð21Þ

where c0 is a constant. From this perspective, Landau
equations give necessary conditions for pinch singularities,
which in the simplest case corresponds to two zeros of V
trapping the integration contour. We will not be using this
point of view.

C.What is known about solutions of Landau equations?

To help the reader maneuver through the literature, in
this subsection we pause briefly to review what is known
about solutions of Landau equations. Alas, this interlude
will not be long, reflecting the fact this topic has been
understood rather poorly. There have been multiple text-
books written on this subject e.g., from the perspective of
combinatorics [36], complex analysis [22,40], algebraic
geometry and topology [41–43], and axiomatic quantum
field theory [44].
Let us briefly come back to the distinction between

solutions of Landau equations with real positive and
complex Schwinger parameters. The first type of solutions,
also known as positive-α or þα-Landau surfaces, has a
special meaning, because it corresponds to the singularities
on the undistorted integration contour. They have an
interpretation as classical particles propagating in space-
time where—at least in the massive cases—the Schwinger
parameters are proportional to the proper time of the
corresponding particle [28]. In contrast with complex
solutions, the real ones have been extensively studied
and are reasonably well understood, particularly due to
the work of Chandler, Iagolnitzer, and Stapp e.g., from the
perspective of macroscopic causality and microanalyticity
[45–50], cuts and discontinuities [51–54], or Steinmann
relations [55–58]. Complex solutions are equally important
when large (not infinitesimal) contour deformations are
needed, for example in order to determine singularities of
discontinuities, but no general criteria exist to straightfor-
wardly tell if they actually contribute (see e.g., [59,60] for
partial progress).
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How special are the real solutions? One answer to this
question can be obtained by considering the Landau singu-
larity in a single Mandelstam invariant, say s ¼ s�ðme; α�eÞ,
as a function of the internal masses me and the Schwinger
parameters α�e with the remaining Mandelstam invariants
fixed. Varying (14) with respect to all possible m2

e gives

Imðα�e=α�e0 Þ ¼ Im

� ∂s�
∂m2

e
=
∂s�
∂m2

e0

�
ð22Þ

for any pair e and e0. The right-hand side is nothing but the
condition for the envelope of a family of Landau curves as the
variables m2

e vary in the s-plane. We conclude that ratios of
Schwinger parameters are only real on such envelopes, or at
the boundary of variation (in the massless limit me ¼ 0)
[61,62]. Complex solutions therefore appear generically
even for real kinematics, as one can verify already in the
simplest examples [63–65].
Explicit solutions of Landau equations are limited to

diagrams with small numbers of loops and legs, with at
least partial results up to n ≤ 5 (see e.g., [66–68]). In order
to make progress for general diagrams, one can employ a
strategy called majorization, which shows that when all the
masses are equal, an arbitrary Feynman diagram cannot
have worse singularities than a finite set of diagrams in
certain region near the origin of the real kinematic space
(including the so-called “Euclidean” region), allowing us to
prove results such as dispersion relations [69,70]. These
techniques have been recently streamlined and extended to
nonequal masses at arbitrary multiplicity [24] in the context
of crossing symmetry.
Large simplifications come with massless and planar

diagrams, which acquired interest in the context of N ¼ 4
super Yang-Mills theory, where Landau equations can be
formulated in the momentum twistor space (see e.g., [71–
75]). In such cases one can show that at fixed n, Landau
singularities for an arbitrary-loop Feynman diagram can be
no worse than that of a single ziggurat diagram [76]. For
Feynman integrals enjoying dual conformal invariance—
where the number of kinematic variables drops drastically—
the explicit solution has been found for n ¼ 6 [76].
Rigorous study of Landau singularities has been pio-

neered by Pham [42,55] and collaborators, in particular
with the applications of the ambient isotopy theorem [77–
79]. They are often formulated in terms of a potential
function on the cotangent bundle of Minkowski space.

Landau equations turn out to hide rich geometric structure,
whose study has been undertaken, e.g., from the perspec-
tive of the theory of hyperfunctions and holonomic systems
[80–82], monodromy groups [83,84], motives and Morse
theory [85,86], and combinatorics of hypersphere arrange-
ments [87,88]. For reviews see [41–43,89,90] and espe-
cially [91–93]. Recent literature includes [34,94–98].
Compatibility of Landau equations with renormalization

and analytic regularization has been discussed in [97,99–
102]. The dimension of Landau varieties was studied in
[101]. Their formulation in nonlocal theories was given in
[103] (see also [104]), and in the flat-space limit of anti-de
Sitter scattering in [105,106]. For a recent discussion of
observable signatures of anomalous thresholds at particle
colliders see [107], where we also refer the reader for a
more complete list of references on the applications of
Landau equations to the Standard Model physics.

D. Simple example

Let us illustrate the formulae from the previous sub-
sections on the simple example of a box diagram with
n ¼ 4, E ¼ 4, and L ¼ 1 (see Fig. 3). All the internal edges
and external legs are given auxiliary orientations indicated
on the figure. There are four possible spanning trees T, one
for each edge that can be clipped. According to the
definition (12), this gives

U ¼ α1 þ α2 þ α3 þ α4: ð23Þ

Momentum conservation (4) at each vertex yields

pμ
i − qμi þ qμi−1 ¼ 0 ð24Þ

for i ¼ 1, 2, 3, 4 with the cyclic identification qμ0 ≔ qμ4. The
continuity law (8) around the loop reads

X4
e¼1

qμeαe ¼ 0: ð25Þ

Together, the above constraints form the linear Landau
equations, which can be solved explicitly to give

FIG. 3. Planar box diagram and its spanning trees T. The red arrows indicate the direction of energy flow.
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qμ1 ¼
−pμ

2α2 − pμ
23α3 þ pμ

1α4
α1 þ α2 þ α3 þ α4

;

qμ2 ¼
pμ
2α1 − pμ

3α3 þ pμ
12α4

α1 þ α2 þ α3 þ α4
; ð26Þ

qμ3 ¼
pμ
23α1 þ pμ

3α2 þ pμ
123α4

α1 þ α2 þ α3 þ α4
;

qμ4 ¼
−pμ

1α1 − pμ
12α2 − pμ

123α3
α1 þ α2 þ α3 þ α4

: ð27Þ

Let us focus on the energy component μ ¼ 0, so that the
external energies p0

i have a definite sign. In the case of
12 → 34 scattering we have p0

1; p
0
2 > 0 and p0

3; p
0
4 < 0.

Together with the fact that all αe > 0, the above solution
gives

q02 > 0; q04 < 0; ð28Þ

while the remaining energies q01 and q03 do not have a
definite sign. In other words, if the propagators associated
to the two side edges in the diagram were ever put on shell,
the energy flowing through them is forced to propagate in
the causal direction. This is in fact a general feature of
planar diagrams and will be quite central to proving
crossing symmetry, even though at this stage it might
not be obvious why.
Let us compute the action on the support of the above

solution

VðαeÞ ¼
X4
e¼1

ðq2e −m2
eÞαejð26;27Þ

¼ sα2α4 þ tα1α3 þ
P

4
i¼1 M

2
i αiαi−1

α1 þ α2 þ α3 þ α4
−
X4
e¼1

m2
eαe

ð29Þ

with the Mandelstam invariants s ≔ ðp1 þ p2Þ2,
t ≔ ðp2 þ p3Þ2, and α0 ≔ α4. It is straightforward to verify
that the definition (14) together with (16) gives the same
answer. The resulting system of Landau equations can be
easily solved [108]. Since the form of the solution itself is
not hugely illuminating, let us quote it in the case where all
the internal and external masses are separately equal i.e.,
me ¼ m and Mi ¼ M (with m ≠ M=2). It reads

½α�1∶α�2∶α�3∶α�4�¼½2M2−4m2∶4m2−t∶2M2−4m2∶4m2−t�
ð30Þ

together with

stþ 4m2u − 4M4 ¼ 0; ð31Þ

where u ≔ ðp1 þ p3Þ2 ¼ 4M2 − s − t. The solution can be
α-positive only when m > M=

ffiffiffi
2

p
and t > 4m2 or alter-

natively when m < M=
ffiffiffi
2

p
and t < 4m2. In either case, the

solution does not intersect the physical region in the s- or
t-channels, for which st < 0 and u < 0, but it can pass
through the u-channel region with u > 0 and s, t < 0
when m < M=2.
One can similarly solve for the subleading Landau

singularities, which we state here for completeness. For
example, when α1 ¼ 0 we have the triangle Landau
anomalous threshold,

½α�2∶α�3∶α�4� ¼ ½m2∶M2 − 2m2∶m2�;
sm2 þM2ðM2 − 4m2Þ ¼ 0; ð32Þ

which is α-positive for m < M=
ffiffiffi
2

p
and does not intersect

the s-channel region, but it does the other two when
m < M=2. Similarly, when α1 ¼ α3 ¼ 0 we find two
discrete solutions

½α�2∶α�4� ¼ ½1∶� 1�; s − ðm�mÞ2 ¼ 0: ð33Þ

Only the þ solution is α-positive and it corresponds to the
normal threshold. There are analogous subleading Landau
singularities for the other reduced diagrams obtained by
cycling through αi → αiþ1 and s ↔ t. The only second-
type singularity for this diagram corresponds to collinear
kinematics (given by vanishing of any 3 × 3 minor of the
Gram matrix pi · pj), yielding stu ¼ 0, which demarcates
boundaries of the physical regions.

E. Solution of the linear Landau equations

Let us return to arbitrary Feynman diagrams. The linear
Landau equations (4) and (8) can be solved explicitly and
give

qμe ¼ 1

U

X
spanning
treesT

pμ
T;e

Y
e0∉T

αe0 ; ð34Þ

where pμ
T;e denotes the total external momentum flowing

through the edge e along the spanning tree T in the
orientation of the edge. (In particular, if T does not include
e, we have pμ

T;e ¼ 0.) In order to confirm this, let us first
check that the momentum conservation (4) at every vertex v
is satisfied,

pμ
v þ

XE
e¼1

ηveq
μ
e ¼ 1

U

X
T

�
pμ
v þ

XE
e¼1

ηvep
μ
T;e

�Y
e0∉T

αe0 ¼ 0:

ð35Þ

In the first equality we used the definition of U from (12).
For every spanning tree T the term in the parentheses
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vanishes because the total momentum outgoing from v
equals to pμ

v. In order to confirm the continuity law (8), let
us notice that

qμeαe ¼
1

U

X
T¼T1⊔T2⊔e

pμ
T;e

Y
e0∉T1;T2

αe0 ; ð36Þ

where the sum runs over only those spanning trees T that
are disjoint unions of two trees T1, T2, and the edge e itself.
Therefore the sum (8) can be labeled by 2-forests, which
gives

XE
e¼1

ηIeq
μ
eαe ¼

1

U

X
T1⊔T2

�XE
e¼1

ηIep
μ
T1;T2;e

� Y
e0∉T1;T2

αe0 ¼ 0;

ð37Þ

where pμ
T1;T2;e

denotes the total momentum flowing from
one tree to the other. The sum over all edges along the loop
I in the parentheses vanishes because there is no net
momentum flowing between T1 and T2 within such a
loop. This concludes the proof of (34). Note that, as
expected, the result is linear in the external kinematics
and at this stage all the Lorentz components are indepen-
dent of each other. Using spanning trees from Fig. 3 one
can verify that (26) and (27) are the solutions prescribed
by (34).
In particular, linearity in the external kinematics implies

that we can treat (34) as a superposition of multiple smaller
problems, where the external momenta only enter at a
single source and a single sink vertex at a time. This
observation will turn out to simplify the discussion in the
later sections. Of course, the contributions from smaller
problems get all mixed together once the quadratic Landau
equations are imposed.
The above solution is essentially a theorem in the

combinatorics of electrical networks (see e.g., [109]).
Their relevance in this problem should not come as a
surprise because both Feynman diagrams and electrical
networks can be thought of as a theory of free scalar fields on
a graph coupled to external sources. In the language of
circuits, component-by-component qμe and αe are the current
and resistance of the edge e, while the linear Landau
equations (4) and (8) are the same as the Kirchhoff’s current
and voltage laws respectively [25,110]. This analogy cannot
be taken too far, however, because themomentumvectorswe
use are contractedwith theMinkowskimetric, so for example
the quadratic Landau equations would not have a clear
electric-circuit interpretation.

F. Energy flow in planar diagrams

Let us turn our focus to planar Feynman diagrams. We
consider situations in which the external particles are
partitioned into two nonempty consecutive sets of incoming

and outgoing particles, as illustrated in Fig. 4. Given any
planar embedding, let us look at the edges e lying on the
sides of the diagram i.e., the leftmost edges connecting the
leftmost incoming and outgoing particles and likewise for
the right side. In Fig. 4 these are indicated with the red
arrows. We choose orientations of each such e to be
consistent with the red arrows.
Consider the energy q0e of any such edge e along the

sides. According to (34), it is given by a weighted sum over
the total energies p0

T;e flowing through e along a spanning
tree T. For every such tree we must have p0

T;e > 0. This is
because one cannot draw a spanning tree passing through e
with the opposite energy flow without violating planarity.
We conclude that q0e > 0 for any positive values of
Schwinger parameters. In other words, if there was a
solution of Landau equations, it can only happen when
the energies of side edges are strictly positive. Note that for
generic edges in the bulk of the diagram no such statement
can be made; the energy could be positive, negative, or zero
depending on the specific values of Schwinger parameters,
cf. (26) and (27).
The exceptions to the above statement are diagrams

involving tadpoles, as illustrated on the right panel of
Fig. 4. Here the edges e0 belonging to the tadpole are not
determined in terms of the external kinematics and hence
must have qμe0 ¼ 0.
A physical intuition for the above result comes from the

interpretation of V as the worldline action, which can be
thought of as minimizing the total (Lorentzian) length of
the diagram in the classical limit. Therefore a solution with
energy flowing back and forth along the sides would not be
optimal.
We will return to the problem of energy flow in Sec. IV,

where it will be used to constrain the solutions of quadratic
Landau equations and hence play a crucial role in the proof
of crossing symmetry.

III. ANALYTICITY NEAR THE PHYSICAL
REGIONS

As the first step in the analytic continuation we need to
discuss analyticity in the infinitesimal neighborhoods of the

FIG. 4. Left: Diagram illustrating the flow of energy along the
sides of the diagram (red), with an example spanning tree (blue)
passing through one of the edges e guaranteeing the causal
energy flow. Right: Energies of tadpole edges e0 are not con-
strained since the net momentum flow into a tadpole is zero.
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physical regions. Physical regions are disjoint domains of
the real on-shell kinematic space labeled by the signs of
energies of the external momenta, with examples illustrated
in Fig. 2 for n ¼ 4. Showing analyticity near such regions
will allow us to continue the scattering amplitude freely
between different generic kinematic configurations within
their light cones, as indicated in the step I of Fig. 1. The
endpoint of such a deformation will be determined later.
Microanalyticity of this type has the origin in macro-
causality of the Smatrix [16,111,112], and it approximately
matches the levels of analyticity proven nonperturba-
tively [3,5].
To demonstrate such analytic properties we will deform

both the external kinematics and the Schwinger parameters
at the same time. It will be instructive to distinguish
between neighborhoods of singular and nonsingular kin-
ematic points, because they differ in which of the two
deformations has the dominant effect. Planarity is not
assumed in this section.

A. Neighborhoods of nonsingular points

We start with the neighborhoods of nonsingular points
i.e., those for which Landau equations do not have
solutions. However, above production thresholds it can
still happen that V ¼ 0 somewhere along the integration
contour. Such a singularity can be resolved in many ways
by a deformation of the contour, resulting in different
values for the integral. The iε prescription reminds us
which contour deformation should be taken to compute
Feynman integrals associated with causal scattering
processes.
Contour deformation can be implemented by giving

small phases to the Schwinger parameters, amounting to a
change of variables αe ↦ α̌e. There exists a canonical
prescription for such a deformation

α̌e ≔ αeeiεðq
2
e−m2

eÞ; ð38Þ

where, as before, qμe ¼ qμeðαe0 ; piÞ are the solutions of the
linear Landau equations and hence functions of the
Schwinger parameters and the external kinematics as given
in (34). Here ε is a small parameter. The endpoints of
integration are preserved and the Jacobian for this trans-
formation is nonsingular. As a result, the deformed action
V̌ ¼ Vðα̌e; piÞ becomes

V̌ ¼
XE
e¼1

ðq̌2e −m2
eÞα̌e; ð39Þ

where q̌μe ¼ qμeðα̌e0 ; piÞ are evaluated on the rotated α̌e0
instead of αe0 . Since to leading orders the Schwinger
parameters have the expansion

α̌e ¼ αe þ iεðq2e −m2
eÞαe þOðε2Þ; ð40Þ

the deformed action V̌ can be Taylor expanded to give

V̌ ¼ V þ iε
XE
e¼1

ðq2e −m2
eÞαe

∂V
∂αe þOðε2Þ

¼ V þ iε
XE
e¼1

ðq2e −m2
eÞ2αe þOðε2Þ: ð41Þ

When the kinematics is real, the coefficient of iε is always
non-negative. Moreover, it is zero if and only if the
quadratic Landau equations q2e ¼ m2

e are satisfied for
all e, which does not happen by assumption. We conclude
that for sufficiently small ε the above contour deformation
implements the correct iε prescription. In fact, this is the
principle underlying modern numerical approaches to the
evaluation of Feynman integrals (see e.g., [113,114])
though its simplicity is often obscured by unfortunate
choices of the GL(1) gauge fixing.
To complete the arguments we need to show that there

exists a complex neighborhood of the kinematic point
where the above iε prescription still works. This is clearly
the case if we deform the external kinematics pμ

i ↦ p̂μ
i

with some complex displacement according to

p̂μ
i ≔ pμ

i þ ε2Δpμ
i ; ð42Þ

such that it still preserves momentum conservation and the
mass-shell conditions. This shift is chosen to be subleading
to the contour deformation. The internal momenta react to
this change according to (34) and hence can be written as

q̂μe ¼ qμe þ ε2Δqμe; ð43Þ

prior to the contour deformation. After contour deforma-
tions this change affects V̌ only at the subleading order
Oðε2Þ. It implies that for sufficiently small ε there exists a
complex neighborhood of any nonsingular point where the
amplitude is analytic. Note that we do not attempt to
optimize for the size of the analyticity region, since in our
applications it suffices that an infinitesimal neighborhood
exists. Concrete bounds on the remainder coefficients were
given in [111].
The result of this procedure is schematically illustrated in

Fig. 5, where the iε deformation moves branch cuts by a
small amount and the amplitude is analytic in a neighbor-
hood of nonsingular points parametrically smaller than the
branch cut deformation. (Recall that positions of branch
cuts are physically meaningless: they only reflect the fact
that we cannot represent the kinematic space for com-
plexified scattering amplitudes, which are in general multi-
valued functions, on a piece of paper.) Out of different ways
of resolving the V ¼ 0 ambiguity, the causal iε prescription
is the one that guarantees we end up with the scattering
amplitude on the correct sheet.
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B. Neighborhoods of singular points

The above discussion guarantees that there are no
singularities in the neighborhood of the connected compo-
nents of the physical regions (cf. gray areas in Fig. 2),
however it still does not explain how to continue around
singularities (cf. black curves crossed by the path I in
Fig. 2). Singular points turn out to have neighborhoods of
analyticity, but only when approached from a specific side
and hence require a more careful treatment.
Solutions of Landau equations with αe > 0 generically

lie on codimension-one curves in the physical regions (see
e.g., [44]). Although there might exist points on intersec-
tions of multiple such singularities (once all the subleading
Landau curves are included too), they are of higher
codimension and hence can be always avoided when the
spacetime dimension is D > 2. (At such special points,
scattering amplitudes cannot, in principle, be represented as
boundary values of a single analytic function (see [111]) for
an explicit example and [16] for a connection to no particle
production in two-dimensional theories.)
Therefore, without loss of generality it will be sufficient

to study what happens when we cross a single codimen-
sion-one curve. In the Schwinger parameter space it is
determined by the solution at some specific point α�e, or
rather the equivalence class of such points up to α�e ∼ λα�e.
Let us denote the internal momenta qμe evaluated at this
point with ðq�eÞμ ¼ qμeðα�e0 ; p�

i Þ, where ðpμ
i Þ� is the singular

kinematics. By definition, they solve Landau equations and
hence satisfy

ðq�eÞ2 ¼ m2
e ð44Þ

for all e simultaneously, which also means that
V� ¼ Vðα�e; p�

i Þ ¼ 0. As explained in the previous sub-
section, we cannot perform any contour deformations to
escape this singularity because α̌�e ¼ α�e and as a conse-
quence V̌� ¼ Vðα̌�e; p�

i Þ ¼ 0 identically.
We can however deform the external kinematics accord-

ing to (42). The response of the Schwinger parameters to
simultaneous contour and kinematic deformation is

ˆ̌α�e ¼ α�eeiεððq̂
�
eÞ2−m2

eÞ ¼ α�e þOðε3Þ; ð45Þ

where we used (43) and (44). Therefore the action ˆ̌V
� ¼

Vðα̌�e; p̂�
i Þ expanded around such a point gives to leading

orders

ˆ̌V
� ¼

XE
e¼1

ðð ˆ̌q�eÞ2 −m2
eÞ ˆ̌α�e

¼ 2ε2
XE
e¼1

Δq�e · q�eα�e þOðε3Þ; ð46Þ

where all the contributions from contour deformations are
subleading and only the kinematic ones matter at the
leading order ε2. Since all the integration variables are
localized, the leading factor is purely a function of the
external kinematics, which vanishes on the Landau curve.
In fact, it can be thought of as an implicit parameterization
for such a singularity. It is now clear that the neighborhood
of this curve that is free of singularities and consistent with
the iε prescription has to be given by

Im

�XE
e¼1

Δq�e · q�eα�e
�

> 0; ð47Þ

for sufficiently small ε.
For example, in terms of the Mandelstam variables for

n ¼ 4 the deformation implies a shift ŝ ¼ s� þ ε2Δsþ
Oðε4Þ and t̂ ¼ t� þ ε2ΔtþOðε4Þ, where ðs�; t�Þ denotes
the singular point. Using (14), around this singularity for
planar anomalous and normal thresholds we have

ˆ̌V
� ¼ ε2ðΔsF �

12 þ ΔtF �
23Þ þOðε3Þ; ð48Þ

which is always causal in the directions containing
ImΔs > 0 and ImΔt > 0 with sufficiently small ε, since
F S are always positive according to (16).
We refer interested readers to the literature on positive-α

Landau singularities, where the microanalyticity of this
type has been studied in greater technical detail in a
somewhat similar language [44–49,55].

IV. ANALYTICITY IN THE CROSSING DOMAINS

In this section we consider analytic continuation between
the future and past light cones. They will be connected
through specific regions of the complexified kinematic
space we call crossing domains. Wewill first identify all the
potential singularities that could contribute along such a
deformation and then show their existence leads to a
contradiction with the energy flow in planar Feynman
diagrams. This result will allow us to complete the
deformation indicated in Fig. 1.

FIG. 5. Schematic diagram illustrating the domain of analytic-
ity near a physical region (for example, in the center of mass
energy variable s) for a planar process. Black dots and red curves
denote branch points and cuts respectively. Physical region is a
subset of the real axis. After using the iε prescription, branch cuts
have been deformed by an infinitesimal amount. The domain of
analyticity is denoted by the shaded region and includes complex
neighborhoods of nonsingular points, as well as those of the
singular ones, but only from a specific direction prescribed by
(48). This analysis does not constrain singularities in the
unshaded regions.
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Before considering crossing domains generally, let us
focus on the simplest case n ¼ 4, which already illustrates
all the essential features of the derivation while avoiding
unnecessary proliferation of variables. We will be working
in the light cone coordinates pμ ¼ ðpþ; p−; p⃗Þ with the
Lorentz norm p2 ¼ pþp− − p⃗2. Planarity is not assumed
until the very end.

A. Four-point example

Let us first work with an arbitrary n ¼ 4 Feynman
diagram. In order to define the starting point of the step
I, we commit to the Lorentz frame in which the external
momentum vectors are written as

pμ
1 ¼ ðpþ

1 ; p
−
1 ; p⃗1Þ; pμ

2 ¼ ðpþ
2 ; p

−
2 ; p⃗2Þ; ð49Þ

pμ
3 ¼ ð−pþ

2 ;−p−
2 ; p⃗3Þ; pμ

4 ¼ ð−pþ
1 ;−p−

1 ; p⃗4Þ; ð50Þ

where the components orthogonal to the light cone satisfy
momentum conservation

P
4
i¼1 p⃗i ¼ 0 and we require p⃗2 ≠

−p⃗3 so that the kinematics is not collinear. The mass-shell
conditions read M2

i ¼ pþ
i p

−
i − p⃗2

i . In this frame, the light
cone components of the particles 2 and 3 are diametrically
opposed, and likewise for 1 and 4. We choose the energies
to satisfy

p�
1 > 0; p�

2 > 0; ð51Þ

which corresponds to 12 → 34 scattering. In particular, for
massless particles we require that they are both nonzero.
Such a frame always exists and even leaves a possibility for
a further boost (e.g., to pþ

1 ¼ p−
1 ) that we will not use. As

before, we require that such kinematics are nonsingular; it
defines the beginning of step I.
In order to describe the endpoint of step I and the

beginning of step II, we will simply require that the
momenta of particles 2 and 3 lie closer to the positive
axis of the light cone than the remaining vectors. In other
words,

pþ
1

p−
1

<
pþ
2

p−
2

: ð52Þ

We can clearly make small wiggles around such kinematic
points that preserve the constraint, so the whole discussion
can be repeated in an open set of the path we will describe,
which is necessary for analytic continuation. Note that all
the Mandelstam invariants remain finite. Of course, it might
be that the original kinematics already satisfies (52). If this
is not the case, the scattering amplitude can be analytically
continued via path I in the neighborhood of the physical
region, as described in Sec. III. Note that this step
requires D > 2.

1. Rotation in the complexified light cones

The kinematic deformation performed in step II is simply
a rotation to the other side of the light cone for particles 2
and 3. Denoting the deformed variables with hats, we take

p̂μ
2 ¼

�
zpþ

2 ;
1

z
p−
2 ; p⃗2

�
; p̂μ

3 ¼
�
−zpþ

2 ;−
1

z
p−
2 ; p⃗3

�

ð53Þ

with the remaining components untouched. This deforma-
tion preserves momentum conservation and mass-shell
conditions. We will use the simplest possible deformation
between z ¼ 1 and z ¼ −1 along a path in the upper-half
plane, Imz > 0, outside of the unit semicircle, jzj2 ≥ 1, as
illustrated in Fig. 6. In terms of the Mandelstam invariants
this translates to

Imŝ ¼ Imðp1 þ p̂2Þ2

¼ Imz

�
pþ
2 p

−
1 −

1

jzj2 p
þ
1 p

−
2

�
> 0; ð54Þ

where we used the condition (52) for the inequality, and
similarly

Imt̂ ¼ Imðp̂2 þ p̂3Þ2 ¼ 0; ð55Þ

since t̂ ¼ t remains undeformed. Because all the masses are
real, the scattering process in the imaginary directions
looks like a highly-energetic process with vanishing
squared momentum transfer and masses, even though in
reality all the energies involved are finite [115].

2. Absence of singularities

In order to see how this deformation acts on the internal
momenta q̂μe ¼ qμeðαe0 ; p̂iÞ, let us first use the linear Landau
equations. It will not be necessary to deform Schwinger
parameters. Only the components μ ¼ � are affected. Due
to linearity, we can separately consider the effect of the
momenta of the particles 1 and 4 from that of the particles 2
and 3. Therefore, the internal momenta on the solutions to
linear Landau equations can be written as

q̂�e ¼ p�
1 fe;14 þ z�1p�

2 fe;23: ð56Þ

FIG. 6. Region of analyticity in the z-plane (shaded). Analytic
continuation between z ¼ 1 and z ¼ −1 in the upper-half plane
corresponds to flipping the signs of energies of selected particles.
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Here we have stripped the kinematic dependence from the
factors fe;ij. They can be expressed in terms of sums over
spanning trees T, as given in (34)

fe;ij ≔
1

U

X
T

ηTe;ij
Y
e0∉T

αe0 ; ð57Þ

where ηTe;ij equals to þ1 (−1) if the unique path from i to j
along the spanning tree T passes through e with the same
(opposing) orientation and 0 otherwise.
Using this solution, the imaginary parts of the quadratic

Landau equations read

Imðq̂2e −m2
eÞ ¼ Imz

�
pþ
2 p

−
1 −

1

jzj2 1p
þ
1 p

−
2

�
fe;14fe;23 ¼ 0:

ð58Þ

The fact that they are proportional to Imŝ should not be
surprising because it is the only mass scale in the problem.
In order to prove analyticity in the region indicated in
Fig. 6, we need to show that (58) cannot have solutions for
all e simultaneously. Let us first understand how such a
solution would have to look like if it existed.
The constraints (58) require that in the imaginary

directions each propagator looks like a massless particle

placed on shell. It can be achieved when either fe;14 ¼ 0, or
fe;23 ¼ 0, or when both are true at the same time. They
respectively correspond to the solutions for which

q̂�e ∝ p�
2 or q̂�e ∝ p�

1 or q̂�e ¼ 0; ð59Þ

that is, each internal momentum q̂�e in the light cone
directions has to be aligned with either of the external
momenta or vanish. Moreover, by momentum conservation
the edges belonging to each category have to be connected to
each other and to the respective external legs. In the last case,
q̂�e ¼ 0, the real on-shell condition reads −q⃗2e −m2

e ¼ 0,
which can only ever be attained whenme ¼ 0. Therefore if a
singularity was to develop, it would have to look like two
beams of particles, aligned in the 2–3 and 1–4 directions,
scattering off each other and possibly exchanging massless
states (see the left panel of Fig. 7).
As a consequence, analyticity in the crossing domains is

contingent upon proving that singularities of the type
explained above are absent. Note that thus far we have
not made any assumptions on planarity. It is only used in
the following final step.
Given what we have learned in Sec. II F, the singularity

from the left panel of Fig. 7 can never happen for planar
Feynman diagrams. Let us pick any planar embedding of
the diagram. The discussion of Sec. II F still applies to fe;14
and fe;23 because the diagram remains planar, but now we
have two problems sourced by one incoming and one
outgoing momentum. In the above manipulations, fe;14 is
proportional to the energy flowing through this diagram as
if it was sourced only by the momenta of particles 1 and 4.
Therefore, along the side edges the components of q̂�e
proportional to p�

1 have to flow in a definite direction
according to the blue arrows on Fig. 8. Likewise, fe;23
measures the energy flowing through the diagram as if it
was sourced only by the momenta of the particles 2 and 3.
For the side edges the components of q̂�e along the p�

2

direction must have a definite sign according to the red
arrows in Fig. 8.
This leads us to conclude that such edges e cannot be

simultaneously aligned with the outgoing particles and on
shell i.e.,

FIG. 7. Left: Singularity associated to a potential solution of
Landau equations of the type (59) corresponding to two beams of
particles aligned with p�

1 (blue) and p�
2 (red) scattering off each

other. Right: One-vertex reducible diagram, for which the
imaginary parts of Landau equations are trivially satisfied, but
still cannot be singular.

FIG. 8. Flow of the momenta in the directions of p�
1 (blue) and p�

2 (red). The edges on the sides of the diagram always have to have
nonzero components in both directions, thus preventing formation of singularities in the crossing domain.
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Imðq̂2e −m2
eÞ ≠ 0; ð60Þ

because fe;14fe;23 has a definite sign along the integration
contour with positive values of Schwinger parameters. This
proves analyticity in the region indicated in Fig. 6 for planar
diagrams.
The only exception to the above arguments are one-

vertex reducible diagrams, such that removal of a single
vertex disconnects the external particles 1 and 4 from 2
and 3. These are precisely the cases corresponding to the
tadpoles from Fig. 4, where Landau equations on the one
side of the diagram decouple from those on the other,
allowing for a possible solution of the type illustrated on the
right panel of Fig. 7. They are special cases in which the
two beams of particles interact solely at a single point.
However, such diagrams only depend on the squared
momentum transfer t and are s-independent. Since along
the path of deformation t remained fixed, it means that if
there were no singularities at the starting point of the
deformation, there are no singularities in the crossing
domain either.

3. Compatibility with the physical regions

In order to complete the discussion, we need to show
compatibility with Sec. III i.e., that the physical regions are
approached from the correct direction at z ¼ 1 and z ¼ −1.
(Strictly speaking, this is not required near z ¼ −1, but turns
out to be true in planar cases anyway.) This is rather
cumbersome to see from the loop momentum picture, so
we turn back to analyzing the actionV. To this endwe use the
representation (14), which for planar diagrams atn ¼ 4 reads

V ¼ sF 12 þ tF 23 þ
X4
i¼1

M2
iF i −

X4
e¼1

m2
eαe: ð61Þ

Under the deformation (53) only theMandelstam invariant s
acquires an imaginary part and hence we have

ImV̂ ¼ ImŝF 12 > 0; ð62Þ

wherewe used the fact that Imŝ > 0 in the region indicated in
Fig. 6 according to (54) and likewise F 12 > 0 from its
definition in (16). Therefore approaching z ¼ 1 and z ¼ −1
from the upper-half z-plane defines the correct causal
prescription. Note that (62) by itself guarantees analyticity
in the shaded region in Fig. 6, however it does not give the
same physical intuition that the analysis in terms of Lorentz
vectors gave us. Evenmore so, it is straightforward to see that
planar diagrams are always analytic when Ims > 0 and/or
Imt > 0. Finally, note that the u-channel physical region is
approached from the correct iε direction, which in general is
not the case for nonplanar diagrams.
Once the step II of the analytic continuation has been

completed, the remaining ones can be performed using the

same methods with permuted labels. Reading Fig. 1 back-
wards, steps V and IV are the same as I and II up to the
relabeling ð1234Þ → ð23̄41̄Þ and s ↔ t. Step III exchanges
the positions of 1 and 3̄ in the neighborhood of the u-
channel physical region using the iε prescriptions described
in Sec. III. Composition of the five steps gives the path
of analytic continuation showing crossing symmetry for
n ¼ 4 planar scattering amplitudes in perturbation theory.

B. Definition of crossing domains

The generalization to arbitrary multiplicity n is rather
straightforward. For any Feynman diagram we group the
incoming particles into nonempty sets A and B, and
similarly the outgoing ones into nonempty sets C and D.
Denoting with pμ

S the total momentum of the particles in the
set S, we pick a Lorentz frame where

pμ
A ¼ ðpþ

A ; p
−
A; p⃗AÞ; pμ

B ¼ ðpþ
B ; p

−
B; p⃗BÞ; ð63Þ

pμ
C ¼ ð−pþ

B ;−p−
B; p⃗CÞ; pμ

D ¼ ð−pþ
A ;−p−

A; p⃗DÞ; ð64Þ

with p⃗B ≠ −p⃗C. In particular, the light cone components
satisfy

p�
A ≔

X
a∈A

p�
a ¼ −

X
d∈D

p�
d > 0 ð65Þ

and

p�
B ≔

X
b∈B

p�
b ¼ −

X
c∈C

p�
c > 0 ð66Þ

with all p�
a ; p�

b > 0 and p�
c ; p�

d < 0. From now on the
indices a; b;… will always refer to the particles in the sets
A;B;… specifically. The above kinematics defines the
starting point of step I and we assume that the scattering
amplitude exists in an open set including such a point.
In order to state the endpoint of step I, let us introduce the

ratio

θS ≔
pþ
S

p−
S

ð67Þ

for any set of particles S. It is essentially the exponential of
the rapidity of pμ

S, measuring how close such a momentum
is to the positive axis of the light cone. We are going to
introduce a reference line passing through the origin of the
light cone, as in Fig. 9, and require that the individual
momenta lie on either side of it according to

θd; θa < θb; θc. ð68Þ

We do not require that the individual momenta are ordered
within each set. The reference line itself will not play any
role below. Continuation from an arbitrary configuration of
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the momenta in the light cone and the one organized
according to (68) can be achieved using the iε deformation
explained in Sec. III. Since (68) is an open condition, there
exists an open set around the path of deformation we will
describe.
We will continue the particles from the set B from the

future to the past light cone, and likewise those from C from
the past to the future light cone. To this end we deform all
the momenta belonging to the two sets with a complex
parameter z according to

p̂μ
b ¼

�
zpþ

b ;
1

z
p−
b ; p⃗b

�
; p̂μ

c ¼
�
−zpþ

c ;−
1

z
p−
c ; p⃗c

�

ð69Þ

for every b ∈ B and c ∈ C. The deformation preserves
momentum conservation, on-shell conditions, and stays
within the same frame we chose above. The analytic
continuation between z ¼ 1 and z ¼ −1 will take place
through the crossing domain, with Imz > 0 and jzj2 ≥ 1, as
illustrated in Fig. 6.

C. Worldline perspective

Let us first understand analyticity in the crossing domains
from the perspective of the worldline action. We consider a
planar processwith the cyclic ordering (ABCD) such that the
incoming and outgoing particles are consecutive. As the first

step, we need to discuss which of the planar Mandelstam
invariantsp2

S are deformed andwhich are not. (Asmentioned
before, for n > Dþ 1 they are not independent of each
other.) In order to avoid double-counting, we can take S to
always contain the first particle from the set B. A given S
consists of the particles whose momenta are not deformed
under (69) and those that are, respectively

SDA ≔ S ∩ ðD ∪ AÞ; SBC ≔ S ∩ ðB ∪ CÞ; ð70Þ

such that S ¼ SDA ∪ SBC. The imaginary parts of p̂2
S can

therefore be written as

Imp̂2
S ¼ Imz

�
pþ
SBC

p−
SDA

−
1

jzj2 p
þ
SDA

p−
SBC

�
: ð71Þ

Therefore, only the Mandelstam invariants with SBC ∉
f∅;B ∪ Cg and SDA ∉ f∅;D ∪ Ag are deformed.
Moreover, because of planarity, if any particle from the
set D is included, so must be all those from the set A, and
likewise if any particle from the set C is included, so must be
all those from the set B. We only consider such S from
now on.
This leaves us with four possibilities, depending on

whether S has nonzero overlap with C and with D, as
summarized in Fig. 10. In the first case

S ∩ C ¼ ∅; S ∩ D ¼ ∅∶

Imp̂2
S ¼ Imz

X
a∈S∩A
b∈S∩B

p−
ap−

b

�
θb −

1

jzj2 θa
�

> 0; ð72Þ

where the constraints (68) guarantee that each term in the
sum is positive when jzj2 ≥ 1, which together with Imz > 0
guarantees positivity of the whole expression. Similarly, the
second case is

S ∩ C¼∅; S ∩ D ≠ ∅∶

Imp̂2
S ¼ −Imz

X
d∈DnðS∩DÞ

b∈S∩B

p−
bp

−
d

�
θb −

1

jzj2 θd
�
> 0: ð73Þ

FIG. 10. Deformed Mandelstam invariants fall into four classes illustrated above. In each case the set S is the one lying below the red
line and always contains at least one label from A and B each.

FIG. 9. Configuration of external momentum vectors pμ
i in the

light cone at the end of step I, with a reference line r separating
the four sets of particles.
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In the first equality we used momentum conservation to write p�
SDA

¼ −p�
DnðS∩DÞ. Positivity of each term in the parentheses

follows from (68). The sum is also positive after recalling that p−
bp

−
d < 0. Using exactly the same steps we have

S ∩ C ≠ ∅; S ∩ D ¼ ∅∶ Imp̂2
S ¼ −Imz

X
a∈S∩A

c∈CnðS∩CÞ

p−
ap−

c

�
θc −

1

jzj2 θa
�

> 0; ð74Þ

using the fact that p�
SBC

¼ −p�
CnðS∩CÞ and p−

c p−
d < 0 together with (68). Finally, in the fourth case we apply momentum

conservation twice to find

S ∩ C ≠ ∅; S ∩ D ≠ ∅∶ Imp̂2
S ¼ Imz

X
d∈DnðS∩DÞ
c∈CnðS∩CÞ

p−
c p−

d

�
θc −

1

jzj2 θd
�

> 0: ð75Þ

Therefore all the Mandelstam invariants are deformed in
such a way that their imaginary parts remain positive in the
shaded region from3 Fig. 6. For instance, when n ¼ 5 and
A ¼ 1, B ¼ 2, C ¼ 34, D ¼ 5, the Mandelstam invariants
p̂2
12 and p̂2

123 are deformed in the upper-half planes, while
p2
23, p

2
512, and p2

234 remain constant.
It is now a matter of plugging this result into the

worldline action V from (14) to obtain

ImV̂ ¼
X
S

Imp̂2
SF S > 0; ð76Þ

since all the F S are positive according to the definition (16)
with positive Schwinger parameters and the sum runs over
only the deformed planar Mandelstam invariants. This fact
at the same time proves analyticity in the region Imz > 0

and jzj2 ≥ 1, as well as that the physical regions are
approached from the causal direction as Imz → 0þ.
We are left with the edge case that all the factors F S

appearing in (76) vanish identically. In such situations the
amplitude would be entirely independent of the deforma-
tion parameter z and hence analytic due to the initial
assumption that it exists at z ¼ 1. This completes the proof
of crossing symmetry for planar scattering amplitudes in
perturbation theory between the channels with consecutive
sets of incoming and outgoing particles.

D. Loop momentum perspective

Note that in the above proof it was not even necessary to
write down the individual Landau equations. In order to
gain some physical intuition behind this result, let us
identify how the potential singularities in the crossing
domains have to look like in terms of the momentum
vectors and explain why they do not appear for planar
diagrams.
We begin with an arbitrary Feynman diagram without

restrictions on planarity. Making use of the superposition
property of the linear Landau equations in the external
kinematics we can write

q̂�e ¼ −
1

p�
A

X
a∈A
d∈D

p�
a p�

d fe;ad −
z�1

p�
B

X
b∈B
c∈C

p�
b p

�
c fe;bc; ð77Þ

where fe;ad measures the flow of the light cone momenta as
if the diagram was only probed by a unit momentum
flowing from the incoming vertex a and the outgoing one d,
and similarly for fe;bc. The explicit expression was given in
(57). These factors only depend on the topology of the
diagram, while all the kinematic information has been
explicitly factored out as coefficients in (77).
With this decomposition we can compute the imaginary

parts of the on-shell conditions, which read

Imðq̂2e −m2
eÞ ¼ Imz

X
a∈A
d∈D

X
b∈B
c∈C

p−
ap−

bp
−
c p−

d

p−
Ap

−
B

×

�
θbθc
θB

−
1

jzj2
θaθd
θA

�
fe;adfe;bc: ð78Þ

In order to make the arguments as simple as possible we
will require that each term in the parentheses is individually
positive when jzj2 ≥ 1, that is

θaθd
θA

<
θbθc
θB

; ð79Þ

for all choices of a, b, c, and d. If A and/or D consist of a
single particle, and at the same time B and/or C consist of a
single particle, these inequalities simply reduce to (68). In
other cases, they further restrict the kinematic point defin-
ing the start of step II. (To obtain such a point we can
simply boost z → yz for a sufficiently large constant y,
under which θbθc=θB → y2θbθc=θB.) As we have seen in
the previous subsection, this additional requirement is not
necessary for the proof of crossing symmetry in planar
cases, but it will greatly simplify the analysis of the flow of
energies in the diagram.
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If there was a singularity, it would require that
fe;adfe;bc ¼ 0 for all the edges e and all choices of a, b,
c, and d simultaneously. For a fixed e, this can only be true
if all fe;ad ¼ 0, or all fe;bc ¼ 0, with a possibility that both
are true at the same time. Since the light cone momenta take
the form (77), such a singularity would have to correspond
to two beams of particles, one purely aligned in the
directions of B–C and one in the directions of A–D,
possibly exchanging massless states between them, as
illustrated on the left panel of Fig. 11. Therefore, analyticity
in the crossing domains hinges upon proving that such
singularities do not appear, in either planar or nonplanar
diagrams.
We now specialize to planar Feynman diagrams specifi-

cally. Because of the arguments given in Sec. II F, such a
singularity can never happen since the edges on the sides of
the diagram have to have nonzero components in both
directions. (By previous arguments, exceptions such as the
one-vertex reducible diagrams are not singular in the
crossing domains.) Precisely for such edges e, the factors
fe;ad for all a and d must have the same sign and likewise
the factors fe;bc for all b and c must have the same sign.
This implies

Imðq̂2e −m2
eÞ ≠ 0; ð80Þ

which guarantees analyticity in the crossing domains (see
the right panel of Fig. 11).

V. OUTLOOK

There are two natural avenues for future work. The first
is optimizing for the size of the domains of analyticity. For
example, in Sec. III it was sufficient for our purposes to
show that there exists an infinitesimal neighborhood of the
physical regions where scattering amplitudes are analytic,
but we made no efforts to put bounds on the size of such
neighborhoods. Similarly, in Sec. IV we showed that
arranging the momenta in the light cone according to

Fig. 9 was sufficient for analyticity in the crossing domains,
though it is not unlikely that some of these conditions can
be relaxed.
The second question pertains to generalizations to non-

planar scattering amplitudes. Since we already identified
how potential singularities in the crossing domains would
have to look like for any diagram, planar or not (see the left
panel of Fig. 11), one would have to prove that they cannot
appear—at least in subregions of the crossing domains—
without relying on the arguments of energy flows specific
to planar diagrams [116]. We are aware of large classes of
nonplanar diagrams analytic in the crossing domains and
no explicit counterexamples.
Let us finish by pointing out that the arguments we used

in this work are much stronger than really necessary to
prove analytic properties. Our derivation worked because
certain propagators could not be put on shell for any
positive value of Schwinger parameters. By contrast, the
necessary condition does allow for every individual propa-
gator to be on-shell, just not all of them being on shell
simultaneously. This leaves large room for improvement.
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APPENDIX: CLARIFICATIONS ABOUT FOURIER
TRANSFORMS OF RETARDED COMMUTATORS

In this Appendix we clarify a misconception about the
analyticity of scattering amplitudes perpetuated in the
recent literature on effective field theories. The purpose
of this discussion is to explain the difficulties in giving
crossing symmetry a concrete physical interpretation at the
nonperturbative level—even in the limited cases where it
was proven—which in fact is the main motivation for
reconsidering this problem in perturbation theory.
For simplicity we consider a four-particle scattering

process in a scalar quantum field theory without massless
particles. Following standard steps (see e.g., [117]) the LSZ
procedure allows us to write

G12→34 − G13̄→2̄4

¼
Z

dDxeiðp2−p3Þ·xh−p4j½j†3ðxÞ; j2ð−xÞ�jp1i; ðA1Þ

where jaðxÞ ¼ ð□x −M2
aÞφaðxÞ defines a current associ-

ated to the complex scalar field φa and we ignore the
overall normalization. Note that the combination pμ

2 − pμ
3 is

FIG. 11. Left: If a singularity in the crossing domain were to
develop, it would have to correspond to two beams of particles
aligned in the directions of the external particles. Right: Edges on
the sides of a planar diagram have definite components of the
light cone momenta in both B–C and A–D directions that forbid
such singularities.
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not the momentum transfer [in our conventions
t ¼ ðp2 þ p3Þ2]. Whenever the integral can be defined,
the left-hand side is a difference between two (amputated)
off-shell Green’s functions in the two crossing channels.
Recall that in order to compute a scattering amplitude, one
needs to take the on-shell limit, p2

i → M2
i , near the

respective physical regions for both processes.
To establish crossing symmetry, one needs to prove that:

(i) the right-hand side of (A1) converges and is equal to
zero in some region R4 of the momentum space so that
G12→34 ¼ G13̄→2̄4 there, (ii) an analytic continuation from
R4 to the complex neighborhoods of the physical regions
from the causal direction can be performed, and finally
(iii) the two physical regions can be connected by a
common domain of analyticity without leaving the on-
shell kinematic space. The analogous question can be
formulated for arbitrary multiplicity n.
The region Rn can be determined by a careful exami-

nation of the conditions for polynomial boundedness of the
integrand in (A1) and is called the primitive region of
analyticity (for each proper subset of particles S, it requires
that either Impμ

S is timelike or Impμ
S ¼ 0 and p2

S < m2 for
any production threshold m2) [7–11]. Its derivation hinges
on the assumptions of microcausality, locality, unitarity,
and the mass gap. It has no support on shell. At this stage of
the computation, all the information about physics has been
used and the remaining steps have to be performed using
theorems in the analytic extension of Rn, which show that
any function—having physical origin or not—analytic in
Rn is also analytic in the extended region. Step (ii) can be
performed for any multiplicity n, but with Green’s func-
tions represented as a boundary value of a single analytic
function only in the cases involving exactly two incoming
or outgoing particles [3,5]. Step (iii) proves to be much
more complicated and has been only carried out for n ¼ 4,
5 in massive theories for the crossing processes involving
exactly two incoming particles [4,6]. Moreover, since the
physical arguments employed in the step (i) only imply
properties of off-shell Green’s functions, and the later steps
use complicated complex analysis theorems, it is difficult to
associate concrete physical meaning to the results of such
proofs.
What is the region of analyticity for general massive

four-point scattering amplitudes? As mentioned above, in
this case analyticity in the infinitesimal neighborhoods of
the physical regions holds. The connection between them is
given through the so-called asymptotic crossing domains.
The first one corresponds to the upper-half plane, Ims > 0,
of the center of mass energy s with sufficiently large jsj at
any fixed squared momentum transfer t ¼ t⋆ < 0. This
high-energy small-angle limit can be used to connect the s-
channel physical domain to the u-channel from the
unphysical side, i.e., corresponding to the −iε prescription.
The remaining connection to the t-channel physical region
can be achieved by an analogous asymptotic crossing

domain with s ↔ t. The resulting region of analyticity is
a subset of the one proven in this paper, though of course it
holds nonperturbatively and does not require planarity but
assumes the mass gap.
While the assumption of exchanged states being massive

is quite central to the derivation (it guarantees that Rn is
nonempty), we believe that the aforementioned proofs can
be extended to also include massless external states, in the
light of the more recent understanding of the infrared issues
and the LSZ procedure for massless asymptotic states (see
e.g., [118–120]). Certain improvements on the domain of
analyticity can be achieved if one assumes bounds on the
masses involved in the process e.g., that the external masses
are sufficiently light compared to the internal ones, as well
as sufficiently close to each other, in which case Rn can
have on-shell support and the analysis simplifies (see [121–
123] for the n ¼ 4 case).
Following [124], it has been recently suggested that

complications associated with the analytic extension proofs
can be avoided by taking a large-energy limit directly for
the integral (A1). If such a claim was indeed true, it would
give a rather compelling physical explanation for crossing
symmetry—even in the absence of more rigorous proofs—
and hence deserves scrutiny.
Let us follow this chain of logic. We consider light cone

momenta for massive particles in the same notation as in
(50). (This problem is typically stated in the Breit coor-
dinate system, which introduces spurious square-root
branching that we want to avoid in order to make the
issue more transparent.) We take

pμ
1 ¼ ðpþ

1 ; p
−
1 ; p⃗1Þ; pμ

2 ¼
�
zpþ

2 ;
1

z
p−
2 ; p⃗2

�
; ðA2Þ

pμ
3 ¼

�
−zpþ

2 ;−
1

z
p−
2 ; p⃗3

�
; pμ

4 ¼ ð−pþ
1 ;−p−

1 ; p⃗4Þ;

ðA3Þ

where p�
1 > 0 and p�

2 > 0. In terms of the Mandelstam
invariants we have

s ¼ ðpþ
1 þ zpþ

2 Þ
�
p−
1 þ 1

z
p−
2

�
− ðp⃗1 þ p⃗2Þ2

¼ zpþ
2 p

−
1 þOðz0Þ ðA4Þ

and

t ¼ −ðp⃗2 þ p⃗3Þ2: ðA5Þ

Therefore, in order to explore the high-energy region,
where we expect to prove analyticity, we need to take
Imz > 0 and large jzjwith all the remaining variables fixed.
In this limit, the exponential in the integrand of (A1) equals
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eiðp2−p3Þ·x ¼ eiðzp
þ
2
x−þ1

zp
−
2
xþ−ðp⃗2−p⃗3Þ·x⃗Þ ≈ eizp

þ
2
x− ; ðA6Þ

where xμ ¼ ðxþ; x−; x⃗Þ. Using the fact that G12→34 can be
written in the same way as (A1), except including the step
function θðx0Þ ¼ θðxþþx−

2
Þ in the integrand, we find

lim
z→∞

G12→34≈
Z

dDxeizp
þ
2
x−

× lim
z→∞

h−p4jθðx0Þ½j†3ðxÞ;j2ð−xÞ�jp1i: ðA7Þ

Under the assumption of microcausality, the commutator
vanishes at spacelike separations and the integrand has
support only in the future light cone of xμ. (Inside the
integral the retarded commutator θðx0Þ½j†3ðxÞ; j2ð−xÞ� can
be also expressed as the time-ordered product of the two
currents [117].) At this stage, one might conclude that the
integral converges, and hence defines an analytic function,
when the exponential is suppressed at infinity i.e., when
Reðizpþ

2 x
−Þ < 0 for large positive x−. This is indeed the

case when we consider z in the upper-half plane, Imz > 0.
It would then appear that we have shown analyticity in
Ims > 0 for sufficiently large jsj.
This conclusion is at odds with the statement we made

before, that the Green’s functions defined via the LSZ
procedure do not in general converge on shell. What went

wrong? The first mistake was that we ignored the con-
ditions on polynomial boundedness of the rest of the
integrand of (A7) (for example, no constraints on t or
the masses were required). Correct analysis of this problem
puts stringent conditions on the external kinematics,
resulting in the primitive region R4 described above. In
particular, one can show that the Fourier transform never
converges for positive p2

i ¼ M2
i unless the spectrum of the

theory is truncated.
Even ignoring the first issue, the second mistake was to

not be careful about the direction from which the high-
energy limit has to be taken. For the exponential (A6) to be
suppressed when xμ is in the future light cone, we really
need

Imðpμ
2 − pμ

3Þ ¼ 2Imz

�
pþ
2 ;−

1

jzj2 p
−
2 ; 0⃗

�
ðA8Þ

to be future timelike or null. Since p−
2 > 0, the component

along the negative axis of the light cone is always negative,
which means the above arguments only work when
approaching the light cone from the outside (likewise,
taking p−

2 < 0 would violate the on-shell conditions).
Therefore, one cannot use any conclusions derived from
such manipulations to directly infer properties of scattering
amplitudes.
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