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A deformation of pure Yang-Mills theory by a phantom field similar to the Faddeev-Popov ghost is
considered. In this theory an ersatz supersymmetry is identified which results in cancellation of quantum
corrections up to two-loop order. A quadruplet built from two complex fields in the adjoint—the Faddeev-
Popov ghost ca and the phantom Φa, all with the wrong statistics—balances four gauge fields aaμ. At this
level, the instanton measure and the β function are fully determined by quasiclassics. In a simple ϕ4 theory
with a phantom added I identify a strictly conserved ersatz supercurrent. In the latter theory unitarity of
amplitudes persists despite the presence of the phantom. In deformed Yang-Mills it is likely (although not
proven) to persist too in all amplitudes with only gluon external legs. It remains to be seen whether this
construction is just a device facilitating some loop calculations or if broader applications can be found.
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I. INTRODUCTION

In the recent publication [1] I established a certain
proximity between the β-function calculations in super-
symmetric and nonsupersymmetric versions of the Yang-
Mills theory. This was achieved by changing statistics for
certain fields, for instance, the “second” gluino and its
scalar N ¼ 1 superpartner in N ¼ 2 SYM were converted
into the so-called phantoms. It was a purely technical
computational device.
The present paper, although involving some of the ideas

of the previous one, pursues a different goal. The question
addressed is as follows: Can we minimally deform non-
supersymmetric Yang-Mills to bring it closer to exact
results inherent in supersymmetric Yang-Mills theory (at
least, in some aspects) without introducing spin-1

2
fermions?

As we will see below, the answer to this question is
positive. To explain how this happens let us start from pure
Yang-Mills theory and add one complex scalar field Φa in
the adjoint representation [for definiteness I will limit
myself to the SUðNÞ gauge group],

LYM adj ph ¼ −
1

4
Ga

μνGμνa þ jDμΦaj2 ð1Þ

where Dμ is the standard covariant derivative. Next, I
change the statistics of Φa so that in the path integral it will

produce a determinant in the numerator rather than in the
denominator, á la the ghost field routinely introduced in
Yang-Mills for the purpose of gauge fixing. Then in the free
field theory limit (g ¼ 0) we have

LYM adj ph ¼ −
1

4
ð∂μAa

ν − ∂νAa
μÞ2 þ ∂μΦa∂μΦa ð2Þ

and, after the standard gauge fixing, the Lagrangian above
takes the form

L ¼
�
−
1

2
ð∂μaaνÞ2 þ ð∂μc̄Þð∂μcÞ þ ð∂μΦ̄Þð∂μΦÞ

�
: ð3Þ

It is obvious that the Lagrangian (3) is supersymmetric in
this formulation: Four bosonic degrees of freedom aμ are
balanced by four fermionic, c; c̄;Φ; Φ̄. In particular, with
the Lagrangian (3) the vacuum energy density automati-
cally vanishes.
This does not take us too far, however, since free field

theories by themselves are not interesting. The question is
whether this ersatz supersymmetry can be preserved, at
least to some degree, when we switch on gauge interactions
i.e., consider g ≠ 0. Although I do not have the full answer,
I will show that in one and two loops supersymmetry of (3)
is maintained. Calculation of the instanton measure
becomes fully quasiclassical—quantum corrections cancel
in the first and second loops which allows one to derive an
analog of the Novikov–Shifman–Vainshtein–Zakharov
(NSVZ) N ¼ 1 β function. The presence of the phantom
field in the theory (1) most likely does not spoil unitarity of
pure Yang-Mills theory in amplitudes with the gluon
external legs.
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That this is indeed the case is demonstrated in a ϕ4

theory (see Sec. V) deformed by one additional phantom
field. In this model it is easy to write an exactly conserved
ersatz supercurrent.
Whether or not the suggested construction is just a

device for loop calculations, or more applications can be
found, remains to be seen.
In the past, somewhat similar spin-0 phantom fields

appeared in [2] in the context of stochastic quantization.

II. BACKGROUND FIELD

To separate the external field from the quantum gauge
fields propagating in loops we can always write

Aa
μ ≡ ðAa

μÞext þ aaμ: ð4Þ

Substituting (4) in the gluon part of the Lagrangian (1) and
keeping only the terms quadratic in aaμ we obtain

L¼ 1

g2

�
−
1

4
ðGa

μνGμνaÞext−
1

2
ðDext

μ aaνÞ2

þ1

2
ðDext

μ aaνÞðDext
ν aaμÞþ1

2
aaμðGb

μνÞextfabcacν
�
þ���

ð5Þ

The action of Dext
μ on aμ is defined as

Dext
μ aaνðxÞ≡ ∂μaaν − iðAb

μÞextðTbÞacacν
≡ ∂μaaν þ fabcðAb

μÞextacν: ð6Þ

Next, we impose the gauge condition

Dext
μ aa μ ¼ 0; ð7Þ

rather than the standard ∂μAa
μ ¼ 0. The Faddeev-Popov

ghost determinant can be written in terms of the ghost fields
c̄; c as follows:

Lghost ¼ ðDext
μ c̄ÞðDμ extcÞ: ð8Þ

The ghost fields above are scalar complex fields in the
adjoint representation of the gauge group and “wrong”
statistics. Note that in this formalism the derivatives acting
on c and c̄ enter symmetrically.
After adding the gauge fixing term

ΔLgauge ¼ −
1

2g2
ðDext

μ aa μÞ2; ð9Þ

and integrating by parts the quantum part of the
Lagrangians (5) and (8) takes the form

Lquant ¼
1

g2

�
−
1

2
ðDext

μ aaνÞ2 þ aaμðGb
μνÞextfabcac ν

þ ðDext
μ c̄ÞðDμextcÞ þ ðDext

μ Φ̄ÞðDμextΦÞ
�
: ð10Þ

The Becchi–Rouet–Stora–Tyutin (BRST) symmetry guar-
anties that it is equivalent to (1). An SU(2) symmetry with
regard to cΦ rotations is obvious in the second line.
The phantom field Φ acts exactly as the second ghost.

We immediately see that at one loop the first term in (10) is
completely canceled by two terms in the second line. It is
only the spin interaction of the gluon fields (the second
term in the first line) that survives; see Fig. 1.

III. INSTANTON BACKGROUND

As well known from the pioneering ’t Hooft paper [3]
[see his discussion after Eq. (4.6)], all three operators
appearing in (10) have coinciding eigenvalues with the only
exception—the zero modes which are present for the vector
fields (due to their magnetic interactions) but are absent for
the scalar fieldsΦ and c. Therefore, the appropriate product
of three determinants (gauge, ghost, and the phantom fields
Φ) reduces to unity,

�
Det0

�
−
1

2
ðDext

μ Þ2 þ ðGb
μνÞextεabc

�
a

�
−1

×Det½−ðDext
μ Þ2c� × Det½−ðDext

μ Þ2Φ� ¼ 1; ð11Þ

provided the number of degrees of freedom matches—
which it does, see Eq. (3). The prime in the first determinant
means that the zero modes are removed. There are no zero
modes in the other two determinants.
The instanton measure in SUðNÞ Yang-Mills theory is

FIG. 1. The sum of three loops vanishes provided that we
ignore the gluon spin interaction [i.e., the second term in (10)].
The gray area denotes the background field in which aμ, c, and Φ
propagate.
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dμinst ¼ const ×
Z

d4x0dρ
ρ5

ðMuvρÞ4N
�
8π2

g2

�
2N

exp

�
−
8π2

g2
þ Δgl þ Δgh

�
; ð12Þ

where the exponent 8π2=g2 is the action of the classical
solution, other preexponential factors are due to zero
modes, while Δgl þ Δgh describes one-loop bona fide
quantum correction due to gluons and ghosts in the
instanton background,

Δgl þ Δgh ¼ −
1

3
N logðMuvρÞ: ð13Þ

The zero modes emerge due to the spin term [i.e., the
second term in (10)].
Let us add now the contribution of the fourth term

corresponding to our newly added phantom field.
Integrating out Φ we obtain

Detð−Dext
μ DμextÞ → exp fTr log ð−Dext

μ DμextÞg: ð14Þ

Because of the phantom nature of Φ its contribution is
presented by Det rather than Det−1. The answer is of course
known from the studies of a regular adjoint scalar field, we
have just to change the overall sign. The result reduces
to eΔΦ ,

ΔΦ ¼ 1

3
N logðMuvρÞ ¼ −ðΔgl þ ΔghÞ: ð15Þ

Thus, ΔΦ cancels Δgl þ Δgh in Eq. (10); see Eq. (11). The
instanton measure is fully determined by the gluon
zero modes.
In fact, there is no need to calculate Δs at all. As I have

already mentioned, at one loop there is a supersymmetry
which connects the aμ contribution on one hand with that of
c and Φ combined, on the other hand. Indeed, let us
introduce a four-component phantom column

Xa
ρ ¼

0
BBBBB@

Re Φa

Im Φa

Re ca

Im ca

1
CCCCCA
: ð16Þ

Then the phantom quadruplet Xa
ρ and four components of

the vector fields aaμ form a “supermultiplet” (in Euclidean
formalism). Of course we mix here two symmetries—
Euclidean Lorentz rotations and O(4) symmetry of Xρ

rotations, but this has no impact on our final result. The
second line in (10) is replaced by

ðDext
μ c̄ÞðDμextcÞ þ ðDext

μ Φ̄ÞðDμextΦÞ → 1

2
ðDext

μ XÞΓðDμextXÞ
ð17Þ

where Γ is an appropriately chosen 4 × 4 matrix ðΓ2 ¼ 1Þ
of the type diagfσ2; σ2g. The fact that

Det0½ðDext
μ Þ2a�−1ðDext

μ Þ2X ¼ 1

is obvious. Below I will argue that this cancellation extends
to two loops. Then we can immediately determine the two-
loop beta function from a purely classical calculation in a
purely bosonic theory. Indeed, the instanton measure is

ðMuvÞ4N
�
1

g2

�
2N

exp

�
−
8π2

g2

�
¼ RGI ð18Þ

where the bare coupling constant in the exponent and in the
preexponent has to conspire with Muv to ensure that the
left-hand side is renormalization group invariant (RGI).

IV. THE β FUNCTION

As a result we arrive at

d
d logMuv

�
4N logMuv − 2N log g2 −

8π2

g2

�
¼ 0: ð19Þ

If we define the β function as

βðαÞ ¼ d
d logMuv

α ¼ −β1
α2

2π
− β2

α3

4π2
þ � � � ; ð20Þ

then we have

β1 ¼ 4N; β2 ¼ 8N2: ð21Þ

The above formula coincides with the standard perturbative
calculation, provided we change the sign of the scalar
adjoint loops to the one appropriate for the scalar phan-
toms; see e.g., [4] or Eq. (A1) in the Appendix of [1]. The
structure of Eqs. (18) and (19) is the same as in the NSVZ
derivation [5]. The presented derivation, being classical, is
remarkably simpler than the standard perturbative two-loop
calculation.
Now I will argue that the second loop does not modify

Eq. (18). We add two graphs in the instanton background
field; see Fig. 2. They cancel each other because of aX
supersymmetry. It is probable that it can be extended to
higher orders.
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V. HOW SUCH THEORIES CAN EXIST AND BE
MEANINGFUL

Here I would like to discuss more generic “special
supersymmetry” theories. The simplest example I can think
of is a scalar theory of the following pairs of complex
fields: φ; φ̄ (regular fields) and Φ; Φ̄ (phantom fields). The
Lagrangian is

LφΦ ¼ ∂μφ̄∂μφþ ðφ̄φÞ2 þ ∂μΦ̄∂μΦþ 2ðφ̄φÞðΦ̄ΦÞ: ð22Þ

The corresponding equations of motion take the form

∂2φ ¼ 2φ2φ̄þ 2φðΦ̄ΦÞ;
∂2Φ ¼ 2ðφ̄φÞΦ: ð23Þ

Then one can readily derive a conserved supercurrent,

J μ¼ðφ∂μ
↔
ΦþH:c:Þ;

∂μJ μ¼φð∂2ΦÞ−ð∂2φÞΦ¼2φ2φ̄Φ−2φ2φ̄ΦþH:c:¼0:

ð24Þ

Of course, the anticommutator fQJ μg is unrelated to the
Hamiltonian; rather it is expressed through a combination
of the U(1) bosonic currents,

fQJ μg ¼ −i
X
ϕ¼φ;Φ

ϕ∂μ
↔

ϕ̄ : ð25Þ

The theory (22) is not empty. Let us consider, for example,
the simplest tadpole graphs depicted in Fig. 3. Although the
phantom loop in Fig. 3(b) cancels a part of the φ loop in
Fig. 3(a) this cancellation is not complete, with the result
4 − 2 ¼ 2 in appropriate units. The first number comes
from the diagram Fig. 3(a), the second from Fig. 3(b). A
similar tadpole for the Z factor of the Φ field is represented
by one graph which yields 2 in the same units.
By the same token the negative Φ contribution to the

two-by-two scattering graph in Fig. 4 cancels just a small
part of the positive φ loop. The theory remains unitary.

VI. CONCLUSIONS

If we add a complex scalar field Φa in the adjoint
representation in pure Yang-Mills theory and then reverse
its statistics then, in fact, we introduce a certain supersym-
metry in the theory thus obtained. The Faddeev-Popov
ghost field combined withΦa creates a quadruplet acting as
a superpartner for the vector field aμ. The BRST symmetry
is enhanced in this model.
Limiting the physical sector to amplitudes in which Φa

propagate only in loops we get a theory which is probably
unitary, with a simpler structure of the gluon interactions.
For the time being the unitarity statement must be viewed as
a conjecture. One can give an argument in its favor,
however. Each gluon loop in Feynman graphs is accom-
panied by the same one with either the Faddeev-Popov
ghosts or phantoms. If we disregard phantoms the remain-
ing theory is just Yang-Mills theory which is certainly
unitary. Nonunitary contributions are due to the phantom
loops. Phantom interactions with gluons are of the charge
type, just as those of the Faddeev-Popov ghosts. Let us
generically refer to such interaction as gC while the
magnetic interaction as gM.
As is seen from our previous analysis of the simplest

graphs the contributions of the charge vertices are numeri-
cally suppressed compared to the vertices of the magnetic
type roughly by the factor

g2C
g2M

∼
1

d

where d is the number of space-time dimensions. The
added phantoms cancel those gluon loop contributions
which have exclusively charge vertices. The contributions
due to magnetic vertices (their minimum number is two)

(a) (b)

FIG. 3. Tadpole contributions to the Z factor of the φ field.

FIG. 4. Two-by-two scattering amplitude at one loop.

FIG. 2. Two diagrams in the instanton background contributing
at two-loop order. They cancel each other due to the phantom
nature of the X field.
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remain intact. If this suppression persists in arbitrary graphs
(still an open question) and if d ¼ 4 can be viewed as a
large number, the theory with extra phantom field Φa will
come out unitary.
The instanton measure is determined at the (quasi)

classical level and is similar to the NSVZ result (at least,
up to two loops). Whether or not this construction can be
extended to higher loops remains to be seen. If the answer
is yes, then the exact result for Λ4 in this theory would be

Λ4 ¼ M4
uvðg2Þ−2 exp

�
−
Sinst
N

�
ð26Þ

and the exact NSVZ β function

βðαÞ ¼ −4N
α2

2π

1

1 − Nα
π

ð27Þ

will follow.
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