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We consider an analog of particle production in a quartic OðNÞ quantum oscillator with time-dependent
frequency, which is a toy model of particle production in the dynamical Casimir effect and de Sitter space.
We calculate exact quantum averages, Keldysh propagator, and particle number using two different
methods. First, we employ a kind of rotating wave approximation to estimate these quantities for small
deviations from stationarity. Second, we extend these results to arbitrarily large deviations using the
Schwinger-Keldysh diagrammatic technique. We show that in strongly nonstationary situations, including
resonant oscillations, loop corrections to the tree-level expressions effectively result in an additional degree
of freedom, N → N þ 3

2
, which modifies the average number and energy of created particles.
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I. INTRODUCTION

Particle production in nonstationary background fields is
an old and fruitful topic that covers many intriguing
phenomena. The first example of such a phenomenon—
the spontaneous creation of electron-positron pairs in
strong electric fields—was discovered in 1951 by J. S.
Schwinger [1]. Later it was also supplemented by famous
Hawking [2–4], Unruh [5–7], and dynamical Casimir
[8–11] effects. On one hand, all these effects have no
classical analogs and reflect the most fundamental features
of the quantum field theory. On the other hand, they may
hint at a more general theory [12–14]. A comprehensive
review of these celebrated effects is presented in the
textbooks [15–17].
A common approach to the particle creation1 in an

external background relies on the semiclassical (tree-level)
approximation that neglects interactions between quantum
fields [15]. Let us briefly review this approach. Consider a
free quantum field ϕ with the following mode decom-
position

ϕðt;xÞ¼
8<
:
P
n
½ainn finn ðt;xÞþH:c:�; as t→−∞;P

n
½aoutn foutn ðt;xÞþH:c:�; as t→þ∞;

ð1:1Þ

where functions finn , foutn solve the free equations of motion,
approximately diagonalize the free Hamiltonian in the
corresponding limits, and form a complete basis with
respect to the appropriate inner product (e.g., Klein-
Gordon inner product in the case of a free scalar field).
Usually functions finn and foutn are referred to as in- and out-
modes, respectively. In- and out- annihilation and creation
operators, ainn , ðainn Þ† and aoutn , ðaoutn Þ†, satisfy the standard
commutation relations. For simplicity, we also assume that
in the asymptotic past the field was in the pure vacuum state
jini defined with respect to the initial annihilation oper-
ators, ainn jini ¼ 0 for all n.
Let us calculate the number of created out-particles (foutn

modes). In the Heisenberg picture it is given by the
following expression

N free
n ¼ hinjðaoutn Þ†aoutn jini ðno sumÞ: ð1:2Þ

In a nonstationary situation in- and out- modes and creation
operators are related by a generalized Bogoliubov (or
canonical) transformation

foutn ¼
X
k

½α�nkfink − βnkðfink Þ��;

aoutn ¼
X
k

½αnkaink þ β�nkðaink Þ†�; ð1:3Þ

with nonzero Bogoliubov coefficients αnk and βnk. This
implies the following identity
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1We emphasize that in general free Hamiltonian may be
nondiagonalizable in the asymptotic future or past [18–21]. In
this case the notion of particle is meaningless, and the discussed
semiclassical method does not work. Instead, one needs to
calculate correlation functions whose meaning is always trans-
parent.
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N free
n ¼

X
k;l

hinj½α�nkðaink Þ† þ βnkaink �½αnlainl þ β�nlðainl Þ†�jini ¼
X
k

jβnkj2: ð1:4Þ

Thus on the tree level particle creation is only due to the amplification of vacuum fluctuations.
Now let us turn on interactions

N nðtÞ ¼ hinjU†ðt; t0Þðaoutn ðtÞÞ†aoutn ðtÞUðt; t0Þjini; ð1:5Þ

where Uðt; t0Þ denotes the evolution operator in the interaction picture. Note that we restored the initial and final moments
because in the interacting case limits t0 → −∞ and t → ∞ should be taken with caution [18–21]. Moreover, interactions
between the fields may generate nontrivial quantum averages

nklðtÞ ¼ hinjU†ðt; t0Þðaink Þ†ainl Uðt; t0Þjini ≠ 0; ð1:6Þ

κklðtÞ ¼ hinjU†ðt; t0Þaink ainl Uðt; t0Þjini ≠ 0: ð1:7Þ

Quantities nkl and κkl are usually referred to as level population and anomalous quantum average (or correlated pair
density), respectively.
Therefore, in the interacting theory identity (1.4) should be modified as follows:

N n ¼
X
k

jβnkj2 þ
X
k;l

ðαnkα�nl þ βnkβ
�
nlÞnkl þ

X
k;l

βnkαnlκkl þ
X
k;l

β�nlα
�
nkκ

�
lk: ð1:8Þ

Common wisdom states that for small coupling constants
quantum loop corrections to the averages (1.6) and (1.7) are
small and hence can be neglected. However, recently this
assumption has been shown to be wrong; even if the
coupling constant goes to zero, λ → 0, for large evolution
times, t → ∞, loop corrections to nkl and κkl grow secularly

and remain finite, nðnÞkl ∼ ðλtÞan and κðnÞkl ∼ ðλtÞbn , with some
constants an > 0 or bn > 0 for every n-loop contribution.
In particular, such a secular growth was observed in the
expanding Universe [19–28], the dynamical Casimir effect
[29,30], and nonstationary quantum mechanics [31], as
well as in strong electric [32–34], scalar [35–37], and
gravitational [38] fields. Moreover, in some cases the exact
resummed nkl explodes and significantly surpasses the tree-
level expression [21–25].
Thus we need to calculate quantum loop corrections to

the averages (1.6) and (1.7) to estimate the correct number
of created particles in a nonstationary interacting theory.
Unfortunately, this cannot be done perturbatively because
higher loop corrections to nkl and κkl are not suppressed
when λ is finite. The only known way to estimate these
quantities is to solve the system of Dyson-Schwinger
equations for the propagators and vertices. We emphasize
that this system should be deduced using the Schwinger-
Keldysh diagrammatic technique [39–44] due to the non-
stationarity of the theory.
In general, the system of the Dyson-Schwinger equations

is very complex and cannot be explicitly solved.
Fortunately, in some models, loop corrections to vertices,
retarded/advanced propagators and κkl are suppressed by
higher powers of λ, so in the limit λ → 0, t → ∞ the full

system is reduced to a single equation on the level
population nkl. In such models Dyson-Schwinger equations
reproduce an equation of kinetic type with additional terms
which describe creation and annihilation of particles by
external sources. The solution to this—relatively simple—
equation implies the exact nkl and allows one to estimate
N n. The notable examples of such “kinetic” systems are
heavy fields in de Sitter space [21–26] and scalar quantum
electrodynamics [33,34].
Of course, there is also a set of models where kinetic

approximation is not applicable and loop corrections to the
vertices are not suppressed. It includes such important
systems as light fields in de Sitter space [25,27,28] and the
dynamical Casimir effect [29,30]. To the best of our
knowledge, there is no systematic approach to the particle
creation in such models. The only case where quantities nkl
and κkl were analytically estimated is the large N limit of
the OðNÞ light scalar field with quartic self-interaction and
the Bunch-Davies initial state in de Sitter space [45–48].
In this paper we develop a systematic approach to the

calculation of nkl and κkl in “nonkinetic” systems. This
approach is based on the idea that rapidly oscillating parts
of the effective Hamiltonian are negligible in the limit
λ → 0, t → ∞. This approximation resembles the rotating
wave approximation from the quantum optics [49–51]. The
other key approximation is the large N limit that allows us
to single out a particular set of diagrams.
We illustrate our approach on a simple nonstationary

large N system—a quantum anharmonic oscillator with a
quartic OðNÞ interaction term and time-dependent fre-
quency. On the one hand, a tree-level version of this model
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is a famous toy model of the dynamical Casimir effect
[51–54] and squeezed states generation [55–57] (also see
[58–61] for examples of similar toy models). Therefore, it
is important to. check how nonlinearities affect the pre-
dictions made for the tree-level model. On the other hand,
the properties of this simple model are similar to those of
higher-dimensional nonstationary quantum field theories
with a “nonkinetic” behavior of loop corrections [25,27–
30]. Due to this reason, we believe that our method of loop
summation will help one understand nonstationary phe-
nomena in these complex theories.
We emphasize that in this model the expectation value of

the evolved free Hamiltonian at the future infinity,2

H̄ ≡ hinjU†ðt; t0ÞHfreeUðt; t0Þjini, is expressed through
the N ¼PN

n¼1 N n

H̄ðtÞ ¼ 1

2
ωþN þ ωþN ; as t → þ∞ and λ → 0;

ð1:9Þ

whereωþ is the frequency of the oscillator in the asymptotic
future and N n is defined by (1.8). This confirms the
interpretation of N as the total number of created out-
particles in an interacting theory. Thedetails on thederivation
of this expression are presented in the Appendix A.
This paper is organized as follows. In Sec. II we

introduce the model and discuss the field quantization
on a nonstationary background. In Sec. III we derive a
simple effective Hamiltonian of the model and calculate
exact nkl and κkl for small deviations from stationarity. In
Sec. IV we generalize these calculations to arbitrarily large
deviations from stationarity using the Schwinger-Keldysh
diagrammatic technique. Finally, we discuss the results and
conclude in Sec. V. We also explain the physical meaning
of N in Appendix A and discuss a finite N version of our
model in Appendix B.

II. FIELD QUANTIZATION

Consider N copies of a quantum oscillator with time-
dependent frequency coupled through an OðNÞ quartic
interaction term

L ¼ 1

2
_ϕi
_ϕi −

ω2ðtÞ
2

ϕiϕi −
λ

4N
ðϕiϕiÞ2; ð2:1Þ

where we assume the summation over the repeated indices
and introduce the ‘t Hooft coupling λ ¼ gN. We will
consider asymptotically static situations, i.e., ωðtÞ → ω�
as t → �∞, and assume that the self-interaction term is
turned on adiabatically after the time t0.

Although this problem is purely quantum mechanical,
we will treat it as a (0þ 1)-dimensional quantum field
theory. Similarly to higher-dimensional theories, we intro-
duce the mode decomposition for the free scalar field

ϕiðtÞ ¼ aifðtÞ þ a†i f
�ðtÞ; ð2:2Þ

where a†i , ai are the creation and annihilation operators
with the standard commutation relation, ½ai; a†j � ¼ δij, and
the mode function fðtÞ solves the classical free equation of
motion

f̈ðtÞ þ ω2ðtÞfðtÞ ¼ 0: ð2:3Þ

In the asymptotic past and future, oscillation frequency is
approximately constant, so the solution of the equation (2.3)
is given by the sum of two oscillating exponents.3

fðtÞ ¼
8<
:

1ffiffiffiffiffiffi
2ω−

p e−iω−t; as t → −∞;

αffiffiffiffiffiffiffi
2ωþ

p e−iωþt þ βffiffiffiffiffiffiffi
2ωþ

p eiωþt; as t → þ∞;
ð2:4Þ

where complex numbers α and β satisfy the relation jαj2 −
jβj2 ¼ 1 as a consequence of the canonical commutation
relation ½ϕi; πi� ¼ ½ϕi; _ϕi� ¼ i. Note that these coefficients
coincide with the Bogoliubov coefficients from the trans-
formation (1.3) if we choose foutðtÞ ¼ 1ffiffiffiffiffiffiffi

2ωþ
p e−iωþt as

t → þ∞. Also note that modes (2.4) diagonalize the free
Hamiltonian at the asymptotic past

Hfree¼
1

2
_ϕi
_ϕiþ

ω2ðtÞ
2

ϕiϕi≈ω−

�
a†i aiþ

N
2

�
; as t→−∞:

ð2:5Þ

For simplicity in the remainder of this paper we assume that
the initial state of the field coincides with the ground state
of this Hamiltonian at past infinity, jini ¼ j0i, aij0i ¼ 0
for all i.
Coefficients α and β can be unambiguously restored

from the function ωðtÞ, although for arbitrary functions this
task can be very difficult. Nevertheless, it significantly
simplifies if the variations of the frequency are small, i.e.,
ωðtÞ ¼ ωþ δωðtÞ with ω ¼ const and δωðtÞ ≪ ω. On the
one hand, in the nonresonant case β can be approximated as
follows:

jβj2 ≈ jβj2
jαj2 ≈

����
Z

∞

−∞
δωðtÞe−2iωtdt

����2 ≪ 1; ð2:6Þ
2The full Hamiltonian, H̄full ¼ H̄ þ H̄int, also contains the

interaction term H̄intðtÞ≡ λ
4N hinjðϕiðtÞϕiðtÞÞ2jini. However, in

the limit λ → 0, which we discuss in this paper, the contribution
of the interaction term is negligible.

3These are the so-called in-modes that were mentioned in the
introduction. However, in what follows we will suppress the
index “in” for brevity: fðtÞ ¼ finðtÞ.
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where we have used an approximate expression for the
reflection coefficient [62]. We emphasize that reflected
waves are almost negligible for such variations of fre-
quency; this behavior illustrates the well-known adiabatic
theorem [31,63]. On the other hand, in the resonant case,
e.g., ωðtÞ ¼ ω½1þ 2γ cosð2ωtÞ�, γ ≪ 1, both coefficients
exponentially grow with time [53,55]

α ¼ cosh ðωγtRÞ; β ¼ −i sinh ðωγtRÞ; ð2:7Þ

where tR is the duration of the resonant oscillations. These
coefficients straightforwardly follow from the equa-
tion (2.3) after the substitution of the ansatz fðtÞ ¼

1ffiffiffiffi
2ω

p ½αðtÞe−iωt þ βðtÞeiωt� and averaging over the fast

oscillations.
In what follows we will use expressions (2.6) and (2.7) to

estimate the number of created “particles” (or, more
accurately, excitations) in the infinite future. In other
words, we will consider times where ω, α, and β are
approximately constant.

III. EFFECTIVE HAMILTONIAN

Now let us employ the mode function (2.4) to calculate
the free

Hfree ¼ ðjαj2 þ jβj2Þωþ

�
a†i ai þ

N
2

�
þ αβωþaiai þ α�β�ωþa

†
i a

†
i ; ð3:1Þ

and interacting Hamiltonians

Hint ≈
λ

16Nω2þ
ðjαj4 þ 4jαj2jβj2 þ jβj4Þða†i a†i ajaj þ 2a†i a

†
jaiajÞ

þ 3λαβ

4Nω2þ
ðjαj2 þ jβj2Þa†i aiajaj þ

3λα2β2

8Nω2þ
aiaiajaj þ H:c:þ δHfree; ð3:2Þ

δHfree ≈
3λðN þ 2Þ
8Nω2þ

αβðjαj2 þ jβj2Þaiai þ
λðN þ 2Þ
8Nω2þ

ðjαj4 þ 4jαj2jβj2 þ jβj4Þ
�
a†i ai þ

N
2

�
þ H:c:; ð3:3Þ

in the interaction picture at the future infinity (t → þ∞). Here we neglect oscillating terms that give suppressed
contributions to the correlation functions in the limit in question. In other words, we keep only the terms that give the
leading contribution to the operator

R
t
t0
Hintðt0Þdt0 in the limit λ → 0, t → ∞, λt ¼ const.4 Essentially, this approximation

coincides with the rotating wave approximation from the quantum optics [49–51].
Note that the quadratic part of the interaction Hamiltonian, equation (3.3), can be absorbed into the free Hamiltonian,

resulting in the renormalization of ωþ, α, and β

ωþ → ωþ þ λðN þ 2Þ
4Nω2þ

ðjαj2 þ jβj2Þ; α → αþ λðN þ 2Þ
8Nω3þ

jβj2α; β → β þ λðN þ 2Þ
8Nω3þ

jαj2β: ð3:4Þ

Such a renormalization corresponds to the summation of “daisy” diagrams (compare with Sec. IVand Sec. 4.5 of [31]). We
emphasize that in general frequency cannot be shifted independently from α and β due to the strong backreaction caused by
the low dimensionality of the problem. Also note that this renormalization assumes a relatively small coupling constant, i.e.,
λ ≪ ω3þ=jβj2. Since we work in the limit λ → 0, t → ∞, λt ¼ const, this condition is ensured by large evolution
times, t ≫ jβj2=ωþ.
Discarding quadratic and constant terms, neglecting oscillating contributions and expanding (3.2) to the second order in

β, we derive an approximate Hamiltonian

Hint ≈
λ

8Nω2þ
a†i a

†
i ajaj þ

λ

4Nω2þ
a†i a

†
jaiaj þ

3λβ

4Nω2þ
a†i aiajaj þ

3λβ�

4Nω2þ
a†i a

†
i a

†
jaj

þ 3λjβj2
4Nω2þ

a†i a
†
i ajaj þ

3λjβj2
2Nω2þ

a†i a
†
jaiaj þ

3λβ2

8Nω2þ
aiaiajaj þ

3λðβ�Þ2
8Nω2þ

a†i a
†
i a

†
ja

†
j þOðjβj3Þ: ð3:5Þ

4This constant has dimensionality of length−2, i.e., λt ∼ ω2þ as t → ∞.
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Keeping in mind the normal-ordered form of this Hamiltonian, we straightforwardly exponentiate it and obtain the evolved
quantum state

jΨðtÞi ¼ T e
−i
R

t

t0
Hintðt0Þdt0 jini ≈ e−itHint jini

¼ jini þ 18
β�jβj2
N

�
exp

�
−iλt
4ω2þ

�
− 1

�
2

a†i a
†
i jini

þ 3

4

ðβ�Þ2
N

�
exp

�
−iλt
2ω2þ

�
− 1

�
a†i a

†
i a

†
ja

†
j jini þOðjβj4Þ þO

�
1

N2

�
: ð3:6Þ

The leading contribution to this expression is ensured by the powers of the first term in the approximate Hamiltonian (3.5).
The contribution of the second term is suppressed by the powers of 1=N, and contribution of other terms is suppressed by
the powers of β.
Substituting this expression into Eqs. (1.6) and (1.7), we obtain the leading loop corrections to the level population and

anomalous quantum average

nijðtÞ ¼ hΨðtÞja†i ajjΨðtÞi ¼
δij
N

· 72jβj4 sin2
�

λt
4ω2þ

�
þOðjβj6Þ þO

�
1

N2

�
; ð3:7Þ

κijðtÞ ¼ hΨðtÞjaiajjΨðtÞi ¼
δij
N

· 36β�jβj2
�
exp

�
−iλt
4ω2þ

�
− 1

�
2

þOðjβj4Þ þO
�

1

N2

�
: ð3:8Þ

Thus the total number of the created particles is given by the following expression

N ¼
XN
i¼1

½jβj2δii þ ðjαj2 þ jβj2Þnii þ αβκii þ α�β�ðκiiÞ��

¼ Njβj2 þ 36jβj4
�
3þ cos

�
λt
2ω2þ

�
− 4 cos

�
λt
4ω2þ

��
þOðjβj5Þ þO

�
1

N

�

≈ Njβj2 þ 108jβj4 þOðjβj5Þ þO
�
1

N

�
: ð3:9Þ

In the last line we replaced the oscillating contributions with their average values. Note that the correction to the tree-level
particle number is always positive.
We emphasize that the calculations in this section are valid only for small deviations from stationarity, jβj ≪ 1, where

nondiagonal terms of the effective Hamiltonian are negligible. Unfortunately, this approximation does not cover the
physically interesting resonant case (2.7). Hence, we need to consider nondiagonal terms of the Hamiltonian and generalize
identities (3.7), (3.8), and (3.9) to arbitrary β.

IV. SCHWINGER-KELDYSH DIAGRAMMATIC TECHNIQUE

The Schwinger-Keldysh technique is a powerful tool to calculate correlation functions and quantum averages in
nonstationary situations [39–44]. This technique can be concisely described by the following path integral [64–66]

hÔi ¼
Z

DφðxÞDπðxÞW½φðxÞ; πðxÞ�
Z
i:c:

Dϕclðt; xÞDϕqðt; xÞOeiSK ½ϕcl;ϕq�; ð4:1Þ

which calculates the expectation value of the operator Ô and explicitly contains the information about the initial state of the
theory. Here φðxÞ and πðxÞ denote the field and its conjugate momentum at the initial moment t0;W½φðxÞ; πðxÞ� denotes the
Wigner function related to the initial value of the density matrix operator; i.c., in the second integral means the initial
conditions for the ϕcl field, ϕclðt0; xÞ ¼ φðxÞ, _ϕclðt0; xÞ ¼ πðxÞ; and SK denotes the Keldysh action after the Keldysh
rotation. For the theory (2.1) this action has the following form (there are no spatial directions in this case)
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SK ¼ −
Z

∞

t0

dt

�
ϕi;qð∂2

t þ ω2ðtÞÞϕi;cl þ
λ

N
ϕi;clϕi;clϕj;clϕj;q þ

λ

4N
ϕi;clϕi;qϕj;qϕj;q

�
: ð4:2Þ

Expanding the integrand of (4.1) as a series in λ and assuming that the initial state is Gaussian, we straightforwardly obtain
the Schwinger-Keldysh diagrammatic technique (Fig. 1) with the following tree-level propagators

iGK
0;ijðt1; t2Þ ¼ hϕi;clðt1Þϕj;clðt2Þi0 ¼

1

2
hinjfϕiðt1Þ;ϕjðt2Þgjini;

iGR
0;ijðt1; t2Þ ¼ hϕi;clðt1Þϕj;qðt2Þi0 ¼ θðt1 − t2Þhinj½ϕiðt1Þ;ϕjðt2Þ�jini;

iGA
0;ijðt1; t2Þ ¼ hϕi;qðt1Þϕj;clðt2Þi0 ¼ θðt2 − t1Þhinj½ϕjðt2Þ;ϕiðt1Þ�jini; ð4:3Þ

where h� � �i0 denotes the expectation value in the free theory and ϕi is the standard free quantized field (2.2). For simplicity,
in the last identities we assumed that the initial state is pure.
These propagators have a simple physical meaning. On the one hand, retarded and advanced propagators describe the

propagation of some localized perturbations (e.g., particles). Hence, at the tree level they do not depend on the state of the
system. On the other hand, the Keldysh propagator explicitly contains the information about the state of the system

iGK
0;ijðt1; t2Þ ¼ fðt1Þf�ðt2Þ

�
1

2
δij þ n0;ij

�
þ fðt1Þfðt2Þκ0;ij þ H:c:; ð4:4Þ

where n0;ij ¼ hinjðaini Þ†ainj jini and κ0;ij ¼ hinjaini ainj jini
are initial level population and anomalous quantum aver-
age. If the initial state coincides with the ground state of the
free Hamiltonian at the past infinity, jini ¼ j0i, at the tree
level these quantum averages remain zero during the
evolution of the system. However, at large evolution times
they also receive substantial loop corrections. These cor-
rections straightforwardly follow from the exact resummed
Keldysh propagator because in the limit t ¼ t1þt2

2
≫ t1 − t2

it has the form (4.4) with exact quantum averages nijðtÞ and
κijðtÞ defined in (1.6) and (1.7).
Thus we need to resum leading loop corrections to the

Keldysh propagator to calculate the exact quantum aver-
ages. We single out the leading loop contributions by
considering the limit of small coupling constants, λ → 0,
t → ∞, λt ¼ const, and small time separations, t1 − t2 ≪ t.
Note that in this limit loop corrections to the retarded and
advanced propagators are suppressed by the powers of λ.

We also assume the large N limit and keep the leading
terms in the 1=N expansion.
There are two types of the Oð1Þ diagrams in the OðNÞ

model [67–69]. The first one—the so-called “daisy” dia-
grams (Fig. 2)—describe the leading corrections to the
propagators. However, in these diagrams loop corrections

FIG. 1. Propagators and vertices in the Schwinger-Keldysh diagrammatic technique. The solid lines correspond to ϕcl, the dashed lines
correspond to ϕq.

FIG. 2. Leading order, Oð1Þ, loop corrections to the Keldysh
propagator. There are also conjugate diagrams for the Keldysh
propagator and similar diagrams for the retarded and advanced
propagators. Each internal line receives similar corrections.

DMITRII A. TRUNIN PHYS. REV. D 104, 045001 (2021)

045001-6



are local and can be easily resummed with the following Dyson-Schwinger equations (the equation for the advanced
propagator is similar to the equation for the retarded propagator)

G̃R
ijðt1; t2Þ ¼ GR

0;ijðt1; t2Þ −
iλ
N

Z
∞

t0

dtGR
0;ikðt1; tÞG̃K

kkðt; tÞG̃R
kjðt; t2Þ;

G̃K
ijðt1; t2Þ ¼ GK

0;ijðt1; t2Þ −
iλ
N

Z
∞

t0

dt½GR
0;ikðt1; tÞG̃K

kkðt; tÞG̃K
kjðt; t2Þ þ GK

0;ikðt1; tÞG̃K
kkðt; tÞG̃A

kjðt; t2Þ�: ð4:5Þ

Applying the operator ∂2
t1 þ ω2ðt1Þ to these equations, plugging G̃Kðt; tÞ≡ G̃kkðt; tÞ=N, and using the properties of the tree-

level propagators, we straightforwardly obtain the following equations on the resummed propagators

½∂2
t1 þω2ðt1Þ�G̃R

ijðt1;t2Þ¼−iδðt1− t2Þ−λG̃Kðt1;t1ÞG̃R
ijðt1;t2Þ; ½∂2

t1 þω2ðt1Þ�G̃K
ijðt1;t2Þ¼0−λG̃Kðt1;t1ÞG̃K

ijðt1;t2Þ; ð4:6Þ

which imply a simple renormalization of the tree-level frequency

ω2ðtÞ → ω2ðtÞ þ λG̃Kðt; tÞ ≈ ω2þ þ λ

2ωþ
ðjαj2 þ jβj2Þ þOðλ2Þ þO

�
1

N

�
; as t → þ∞: ð4:7Þ

This result evidently reproduces the formula (3.4) in the leading order in 1=N and λ. We remind that the renormalization of
the frequency also implies the renormalization of the coefficients α and β.
Practically this means that we can discard “daisy” diagrams if we consider the renormalized theory. This also means that

we need to calculate the subleading, Oð1=NÞ, correction to the Keldysh propagator to estimate the leading loop
contributions to nij, κij, and number of the created particles.
The other type of Oð1Þ diagrams are “bubble” diagrams that describe the corrections to the vertices (Fig. 3). These

diagrams are resummed with a similar Dyson-Schwinger equation

B̃ðt1; t2Þ ¼ 2GR
0;klðt1; t2ÞGK

0;klðt1; t2Þ −
2iλ
N

Z
∞

t0

dt3GR
0;klðt1; t3ÞGK

0;klðt1; t3ÞB̃ðt3; t2Þ; ð4:8Þ

where B̃ðt1; t2Þ denotes the infinite chain of bubbles with truncated external legs. In Fig. 3, this chain is denoted by the
shaded loop. Note that equation (4.8) contains combinatorial factors which can be calculated by the method discussed
in [31].
Equation (4.8) is conveniently solved with the following ansatz inspired by the structure of the Keldysh and retarded

propagators

B̃ðt1; t2Þ ¼ Aðf�ðt1ÞÞ2f2ðt2Þ þ Bf2ðt1Þðf�ðt2ÞÞ2 þ Cf2ðt1Þf2ðt2Þ þDðf�ðt1ÞÞ2ðf�ðt2ÞÞ2

¼
�

f2ðt1Þ
ðf�ðt1ÞÞ2

�†�Aðt1; t2Þ Dðt1; t2Þ
Cðt1; t2Þ Bðt1; t2Þ

��
f2ðt2Þ

ðf�ðt2ÞÞ2
�
; ð4:9Þ

FIG. 3. Leading order, Oð1Þ, loop corrections to the vertices. Note that we included a “zero-bubble” diagram (a bare vertex) into the
definition of the bubble chain, although in the Dyson-Schwinger equation (4.8) we assumed that the decomposition starts from a single
bubble. This is done to simplify Fig. 4.
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where A, B, C, and D are some functions to be determined. In the second line we treated the mode functions as coordinates
of a two vector to represent ansatz in a simple form. We consider the limit t1 − t2 ≪ t ¼ t1þt2

2
and λ → 0, t → ∞, λt ¼ const

to single out the leading loop contributions.
Substituting this ansatz into (4.8), keeping only non-oscillating terms in the integrand, discarding two vectors, and

differentiating the identity over t1, we obtain the following differential equation

d
dt1

�
A D

C B

�
¼ δðt1 − t2Þ

ð2ωþÞ2
�
1 0

0 −1

�
−

iλ
ð2ωþÞ2

�
1þ 6jβj2 þ 6jβj4 6α2β2

−6ðα�Þ2ðβ�Þ2 −1 − 6jβj2 − 6jβj4
��

A D

C B

�
: ð4:10Þ

The solution to this equation is given by the matrix exponential

�
A D

C B

�
¼ θðt12Þ

ð2ωþÞ2
exp

�
−

iλt12
ð2ωþÞ2

�
1þ 6jβj2 þ 6jβj4 6α2β2

−6ðα�Þ2ðβ�Þ2 −1 − 6jβj2 − 6jβj4
���

1 0

0 −1

�

¼ θðt12Þ
ð2ωþÞ2

 
cos λRt12

4ω2
þ
− i 1þ6jβj2þ6jβj4

R sin λRt12
4ω2

þ
i 6α

2β2

R sin λRt12
4ω2

þ

i 6ðα
�Þ2ðβ�Þ2
R sin λRt12

4ω2
þ

− cos λRt12
4ω2

þ
− i 1þ6jβj2þ6jβj4

R sin λRt12
4ω2

þ

!
; ð4:11Þ

where we introduce the short notation for the time difference, t12 ≡ t1 − t2, and positive eigenvalue of the generating matrix

R≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12jβj2 þ 12jβj4

q
: ð4:12Þ

Note that for small deviations from stationarity, jβj ≪ 1, the generating matrix is approximately diagonal. This is because in
this limit the leading contributions to the “bubble” diagrams are associated with the diagonal part of the effective
Hamiltonian (3.2).
Finally, let us estimate the subleading, Oð1=NÞ, contribution to the Keldysh propagator. Substituting the resummed

“bubble” diagrams into the two-loop corrections to the Keldysh propagator (Fig. 4) and performing some tedious but
straightforward calculations, we obtain the exact resummed Keldysh propagator

iGK
ijðt1; t2Þ ¼ fðt1Þf�ðt2Þ

�
1

2
δij þ nij

�
þ fðt1Þfðt2Þκij þ H:c:; ð4:13Þ

with the following quantum averages

nij ¼
δij
N

· 72
jαj4jβj4
R2

sin2
�

λt
4ω2þ

R

�
þO

�
1

N

�
; ð4:14Þ

(a) (b)

(d) (e)

(c)

(f) (g) (h)

FIG. 4. Subleading order, Oð1=NÞ, loop corrections to the Keldysh propagator with combinatorial factors. The shaded loops
correspond to the resummed “bubble” diagrams from Fig. 3. The bold solid line in (h) denotes the sum of (a)–(g) corrections. Note that
each of the listed diagrams has a conjugate counterpart.
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κij ¼
δij
N

· 36
α�β�jαj2jβj2ðjαj2 þ jβj2Þ

R2

�
1þ 6jβj2 þ 6jβj4

R2
cos

�
λt
2ω2þ

R

�
−

i
R
sin

�
λt
2ω2þ

�

−
2

R2
cos

�
λt
4ω2þ

R

�
þ 2i

R
sin

�
λt
4ω2þ

R

�
þ 1 − 6jβj2 − 6jβj4

R2

�
þO

�
1

N

�
: ð4:15Þ

We emphasize that both quantities are finite even at very large evolution times, although each term of the series in λ grows
secularly and goes to infinity as t → ∞. Besides that, both quantities are suppressed by 1=N in comparison with the tree-
level contribution to (4.13).
At small β identities (4.14) and (4.15) evidently reproduce the expressions (3.7) and (3.8) obtained in the previous

section. They also extend these results to large β. At first glance, for large β leading contributions to nij and κij dominate;
e.g., in the resonant case (2.7) they are exponentially amplified

nij ¼
δij
N

·
3

4
e4γωþtR sin2

�
λt

ffiffiffi
3

p

8ω2þ
e2γωþtR

�
þOðe2γωþtRÞ þO

�
1

N

�
;

κij ¼
δij
N

·
3i
4
e4γωþtR sin2

�
λt

ffiffiffi
3

p

8ω2þ
e2γωþtR

�
þOðe2γωþtRÞ þO

�
1

N

�
; ð4:16Þ

and surpass the tree-level expression if the resonant oscillations continue for a long enough time, tR ≫ logN
4γωþ

. Nevertheless,

the leading contributions (4.16) cancel each other in the resummed Keldysh propagator with explicitly expanded modes

iGK
ijðt1; t2Þ ¼

�
1

2
þ 1

N
288jαj4jβj4

R4
sin4

�
λt
8ω2þ

R

��
ðjαj2 þ jβj2Þδij

e−iωþðt1−t2Þ

2ωþ

þ
�
1þ 1

N
36jαj2jβj2

R3

�
1

R
þ 1þ 8jαj2jβj2

R
cos

�
λt
2ω2þ

R

�
− iðjαj2 þ jβj2Þ sin

�
λt
2ω2þ

R

�

− 2
ðjαj2 þ jβj2Þ2

R
cos

�
λt
4ω2þ

R

�
þ 2iðjαj2 þ jβj2Þ sin

�
λt
4ω2þ

R

���
αβ�δij

e−iωþðt1þt2Þ

2ωþ

þ H:c:þO
�
1

N

�
; ð4:17Þ

and resummed number of the created particles

N ¼ Njβj2 þ 36
jαj4jβj4ðjαj2 þ jβj2Þ

R4

�
3þ cos

�
λt
2ω2þ

R
�
− 4 cos

�
λt
4ω2þ

R
��

þO
�
1

N

�
: ð4:18Þ

This cancellation resembles the cancellation of the leading two-loop corrections to the Keldysh propagator of light scalar
fields in de Sitter space [25,27].

Note that level density and anomalous quantum average
in the model (2.1) cannot be measured directly; instead,
these averages should be extracted from explicitly observ-
able quantities, such as the average number (or energy) of
the created particles. These quantities, in turn, are built
from the derivatives of the resummed Keldysh propagator
that is naturally defined through the in-modes (2.4). At the
past infinity in-mode looks like a single plane wave, but at
the future infinity it contains both positive- and negative-
frequency solutions. Expressions (4.14), (4.15) do not have
this difference. At the same time, observables are

conveniently calculated if we expand in-modes in the
Keldysh propagator and rearrange parts proportional to
single exponents at the future infinity. This allows one to
discard rapidly oscillating terms that are negligible at large
evolution times. As was shown in (4.17), after such a rear-
rangement growing with jβj (proportional to jβja, a > 0)
contributions to nij and κij cancel each other. Therefore, the
apparent exponential amplification (4.16) is nonphysical.
Thus, in strongly nonstationary case, jβj ≫ 1, the result

of the loop corrections is proportional to the same power of
β as the tree-level contribution, but suppressed by 1=N:
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N ðtÞ ¼ Njβj2 þ 1

2
jβj2
�
3þ cos

�
λt
ω2þ

jβj2
ffiffiffi
3

p �
− 4 cos

�
λt
2ω2þ

jβj2
ffiffiffi
3

p ��
þOðjβj0Þ þO

�
1

N

�

≈ Njβj2 þ 3

2
jβj2 þOðjβj0Þ þO

�
1

N

�
: ð4:19Þ

For the last identity we neglected oscillating expressions.
We emphasize that in the resonant case (2.7) both tree-

level and loop-level contributions to the Keldysh propa-
gator and number of created particles indefinitely grow
with the duration of oscillations tR. The primary source of
this growth is the mixing of positive- and negative-
frequency modes, which is characterized by the
Bogoliubov coefficient β (we note that in the resonant
case α ∼ β ∼ eωγtR). This growth is related to the variations
of frequency and was presented already at the tree-level.
Additionally, interactions between the modes generate
finite, but nonzero nij and κij. As was previously discussed,
the leading physically meaningful contribution to these
quantities is proportional to jβj0. Substituting this contri-
bution into (1.4) and (1.8), we see that both N free and N
exponentially grow with tR. Loop corrections modify the
prefactor of exponential growth, but do not alter the
qualitative behavior of N . We also note that tR should
not be confused with the evolution time t, which is much
larger than tR.
Roughly speaking, loop corrections act as Oð1Þ addi-

tional degrees of freedom, N → N þ 3
2
, during the meas-

urement of particle number well after the end of resonant
oscillations. Of course, the average contribution of these
“phantom” degrees of freedom is also accompanied by
harmonic oscillations of a comparable amplitude.
Nevertheless, the frequency of these oscillations rapidly
grow with β (exponentially in the resonant case), so they
will be difficult to detect in feasible experiments.

V. DISCUSSION AND CONCLUSION

In this paper we calculated exact quantum averages in a
simple example of nonstationary large N model; namely, a
quantum anharmonic oscillator with a quartic OðNÞ inter-
action term and time-dependent frequency. We performed
this calculation using two different methods. First, we
deduced an effective Hamiltonian of the model using a kind
of rotating wave approximation. For small deviations from
the stationarity this Hamiltonian is approximately diagonal,
so the quantum averages straightforwardly follow from the
decomposition of the evolution operator. Second, we
reproduced these results and extended them to arbitrarily
large deviations from the stationarity using the Schwinger–
Keldysh diagrammatic technique.
In both cases we resummed the leading loop contribu-

tions to the exact nij and κij. We demonstrated that for large
evolution times these quantities oscillate near nonzero

average values. In the case of resonantly oscillating
frequency average values exponentially grow and surpass
the tree-level expressions even in the large N limit.
However, these exponentially growing contributions cancel
each other in the exact Keldysh propagator (4.17) and
particle number (4.18). Thus, in strongly nonstationary
situations loop contributions to GK

ij and N are proportional
to the same power of β as GK

0;ij. Roughly speaking, these
contributions result in Oð1Þ additional degrees of freedom
and increase the rate at which the system absorbs energy
from the external world. In weakly nonstationary situations
loop contributions are additionally suppressed by the
powers of β.
We emphasize that the system considered in this paper is

explicitly nonstationary; not only its initial state is out-of-
equilibrium, but the effective mass of the field varies with
time. In other words, we considered an open system that
can exchange energy with the external world. On the one
hand, this evident nonstationarity distinguishes our model
from the previous work on nonequilibrium large N models
[70–75], which was mainly devoted to closed systems. On
the other hand, the Hamiltonian of our toy model is similar
to the Hamiltonians of interacting quantum fields in non-
stationary spacetimes (e.g., expanding universe, collapsing
star, or moving mirror). Due to this reason, we believe that
our analysis provides useful insights into the physics of
these complex systems.
The analysis of this paper can be extended in several

possible directions. First, it is promising to generalize our
results to finite N nonstationary systems, e.g., explicitly
calculate N in the N ¼ 1 version of the model (2.1). For
small deviations from the stationarity, i.e., β ≪ 1, this
extension is obvious because the analysis of Sec. III does
not essentially require a 1=N expansion. An example of
such calculation is presented in Appendix B. At the same
time, the diagrammatic calculations of Sec. IV heavily rely
on the 1=N expansion that singles out a particular set of
diagrams (Fig. 3 for the vertices and Fig. 4 for the Keldysh
propagator) and decouples the system of Dyson-Schwinger
equations. In the finite N case the solution to this system is
unknown. So, the extension of the effective Hamiltonian
analysis to large β is unclear.
Note that in the large N limit, particle decays (a†aaa and

a†a†a†a terms of the effective Hamiltonian) are suppressed
in favor of scattering (a†a†aa term) and creation of virtual
particles (aaaa and a†a†a†a† terms). At the same time, in
the finite N models all these processes equally contribute to
the resummed Keldysh propagator. However, we believe
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that this simplification is not very important because
“bubble” diagrams, which describe scattering and creation
of virtual particles, are multiplied by large combinatorial
factors.5 For instance, in the N ¼ 1 version of the model
(2.1), a chain of 2m “bubbles” is multiplied by 36m. In
comparison, a chain of m “sunset” diagrams, which has the
same order in λ, is multiplied by 18m. Due to this reason we
expect that at large orders of perturbation theory bubbles
become parametrically larger than other diagrams even in
the finite N case. So we believe that qualitative behavior of
the Keldysh propagator and created particle number
coincide in the large N and finite N models. The analysis
of Appendix B supports this reasoning for small β.
Second, it is interesting to extend our analysis to non-

vacuum initial states, including finite-temperature thermal
states and mixed states with nontrivial initial n0;ij and κ0;ij.
This extension should be performed carefully because in
zero-dimensional quantum systems a naive version of the
Wick theorem does not work [31]. However, it is still
applicable after some modifications [44].
Finally, the approach of Sec. III can be applied to higher-

dimensional systems, such as light scalar fields in de Sitter
space [25,27,28,45–47] and the dynamical Casimir effect
[29,30]. We expect that for small deviations from statio-
narity these models also allow one to exponentiate the
effective Hamiltonian and obtain analogs of identities (3.7)
and (3.8). However, diagrammatic calculations in these
models face severe difficulties even in the large N limit.
Indeed, in higher-dimensional models mode functions
carry additional momentum indices, so the generating
matrix of “bubble” diagrams (4.10) turns into a tensor
with 2þ 4D indices, where D is spatial dimensionality.
Thus, “bubble” summation requires an exponentiation of

nondiagonal tensor. We believe that in some particular
cases this tensor can be simplified, so the exponentiation is
feasible. Nevertheless, in general, such a simplification is
not guaranteed.
Besides that, we believe that the results of this paper,

especially identities (4.17) and (4.18), have experimental
implications. As we have previously mentioned, in the
resonant case loop corrections result in additional “phan-
tom” degrees of freedom, N → N þ 3

2
, which modify the

average number, N ¼ Njβj2 → ðN þ 3
2
Þjβj2, and average

energy, E ¼ ωþN , of the created particles. Although in the
large N limit this contribution is suppressed, in the finite N
case it is distinguishable. Due to this reason, we expect that
it can be measured in practice. Finally, we remind that
this result was obtained in the limit of large N, small

coupling constant, λ ≪ jβj2ω3
þ

1þ6jβj2þ6jβj4, and large evolution

time, ω2þ=λ ≪ t ≪ ω5þ=λ2.
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APPENDIX A: EXPECTATION VALUE OF THE
FULL HAMILTONIAN AT THE FUTURE

INFINITY

In this section we use the decomposition of the exact
Keldysh propagator

iGK
nkðt1; t2Þ ≈

��
1

2
δnk þ nnkðtÞ

�
finn ðt1Þðfink ðt2ÞÞ� þ κnkðtÞfinn ðt1Þfink ðt2Þ þ H:c:

�
; ðA1Þ

where t ¼ t1þt2
2

and nnkðtÞ, κnkðtÞ are given by identities (1.6), (1.7), to estimate the expectation value of the evolved free
Hamiltonian, H̄ ¼ hinjU†ðt; t0ÞHfreeUðt; t0Þjini, in the limit t → þ∞. For simplicity we consider the quantum mechanical
theory (2.1), whose Hamiltonian is represented as follows:

H̄ðxÞ ¼ 1

2
∂t1∂t2

XN
n¼1

iGK
nnðt1; t2Þ

���
t1¼t2¼t

þ ω2ðtÞ
2

XN
n¼1

iGK
nnðt; tÞ

¼ 1

2

XN
n;k¼1

��
1

2
δnk þ nnk

�
_finðtÞð _finðtÞÞ� þ κnk _f

inðtÞ _finðtÞ þ H:c:

�

þ ω2ðtÞ
2

XN
n;k¼1

��
1

2
δnk þ nnk

�
finðtÞðfinðtÞÞ� þ κnkfinðtÞfinðtÞ þ H:c:

�
: ðA2Þ

Substituting the future asymptotic of the in-modes (2.4) into this expression, we obtain the following Hamiltonian:

5These factors can be calculated similarly to [31].
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H̄ðxÞ ¼
X
n;k

ωþ

��
1

2
δnk þ nnk

�
ðjαj2 þ jβj2Þ þ αβκnk þ α�β�κ�nl

�

¼ 1

2
ωþN þ ωþN ; ðA3Þ

where N ¼PN
n¼1 N n, N n is defined by (1.8), and we use the property of the Bogoliubov coefficients, jαj2 − jβj2 ¼ 1.

Note that the term 1
2
ωþN corresponds to the energy of the zero-point fluctuations.

Finally, recall that the full Hamiltonian also contains the quartic interaction term

H̄full ¼ H̄ þ H̄int; H̄intðtÞ≡ λ

4N
hinjϕiðtÞϕiðtÞϕjðtÞϕjðtÞjini: ðA4Þ

In the limit t → þ∞ this term is also proportional to N

H̄int ¼
λ

4N
iGK

ii ðt; tÞiGK
jjðt; tÞ þO

�
1

N

�
≈

λN
16ω2þ

ðjαj4 þ 4jαj2jβj2 þ jβj4Þ þOð1Þ: ðA5Þ

Furthermore, for large β it is proportional to jβj4 and seemingly exceeds the contribution of N to the full Hamiltonian.

However, we remind that we work in the limit λ → 0, t → ∞, λt ¼ const. Hence, at large evolution times, t ≫ 1þ6jβj2þ6jβj4
jβj2ωþ

,

the contribution ofHint is suppressed by a small coupling constant, λ ≪ jβj2ω3
þ

1þ6jβj2þ6jβj4, and can be neglected. Note that at large
β this time scale coincides with the one established for the renormalization relations (3.4). At the same time, for small β this
condition is more restrictive than requirement for (3.4).
Thus, in the limit in question identity (A3) provides an approximate expression for the full Hamiltonian at the future

infinity. This confirms that under the mentioned assumptions N can be interpreted as the total number of created out-
particles (i.e., excitations over the vacuum) in the full interacting theory. We also believe that the reasoning in this section
can be extended to higher-dimensional quantum field theories with nondegenerate spectrum.

APPENDIX B: SINGLE OSCILLATOR IN THE LIMIT OF WEAK NONSTATIONARITY

In this section we repeat the method of Sec. III for an N ¼ 1 version of the model (2.1)

L ¼ 1

2
_ϕ2 −

ω2ðtÞ
2

ϕ2 −
λ

4
ϕ4; ðB1Þ

where ωðtÞ → ω� as t → �∞. Substituting the quantized field (note that free modes coincide with those of the large N
model) into the Hamiltonian and taking the limit λ → 0, t → ∞, λt ¼ const, we obtain the following expressions for the
interacting Hamiltonian,

Hint ≈
3λðjαj4 þ 4jαj2jβj2 þ jβj4Þ

16ω2þ
ða†Þ2a2 þ 3λαβðjαj2 þ jβj2Þ

4ω2þ
a†a3 þ 3λα2β2

8ω2þ
a4 þ H:c:

≈
3λ

16ω2þ
ða†Þ2a2 þ 3λβ

4ω2þ
a†a3 þ 9λjβj2

8ω2þ
ða†Þ2a2 þ 3λβ2

8ω2þ
a4 þOðjβj3Þ þ H:c:; ðB2Þ

and renormalized parameters of the free theory,

ωþ → ωþ þ 3λ

4ω2þ
ðjαj2 þ jβj2Þ; α → αþ 3λ

8ω3þ
jβj2α; β → β þ 3λ

8ω3þ
jαj2β: ðB3Þ

Exponentiating the Hamiltonian (B2) and keeping only the leading powers of β, we obtain an approximate expression for
the evolved quantum state
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jΨðtÞi ≈ jini þ 2β�jβj2
�
1

5
exp

�
−9iλt
2ω2þ

�
−
6

5
exp

�
−3iλt
4ω2þ

�
þ 1

�
ða†Þ2jini

þ ðβ�Þ2
12

�
exp

�
−9iλt
2ω2þ

�
− 1

�
ða†Þ4jini þOðjβj4Þ: ðB4Þ

This expression straightforwardly implies the exact level population, anomalous quantum average

nðtÞ ¼ hΨðtÞja†ajΨðtÞi ≈ 8

3
jβj4sin2

�
9λt
4ω2þ

�
þOðjβj6Þ; ðB5Þ

κðtÞ ¼ hΨðtÞjaajΨðtÞi ≈ 4β�jβj2
�
1

5
exp

�
−9iλt
2ω2þ

�
−
6

5
exp

�
−3iλt
4ω2þ

�
þ 1

�
þOðjβj4Þ; ðB6Þ

and exact number of the created particles

N ¼ jβj2 þ ðjαj2 þ jβj2Þnþ αβκ þ α�β�κ�

¼ jβj2 þ jβj4
�
28

3
þ 4

15
cos

�
9λt
2ω2þ

�
−
48

5
cos

�
3λt
4ω2þ

��
þOðjβj5Þ: ðB7Þ

We emphasize that the correction to the tree-level particle number is always positive. This result is very similar to the
identity (3.9) from the large N version of the model, although the average values of the corrections and forms of the
oscillating curves in these models are different.
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