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Louvain-la-Neuve B-1348, Belgium

(Received 12 January 2021; accepted 19 July 2021; published 26 August 2021)

We study a special two-dimensional dilaton gravity with Lagrangian L ¼ 1
2

ffiffiffiffiffiffi−gp ðϕRþ λ2sech2ϕÞwhere
λ is a parameter of dimension mass. This theory describes two-dimensional spacetimes that are
asymptotically flat. Very interestingly, it has an exact solution for the metric, ds2 ¼ −ðcþ tanh λxÞdt2þ
dx2=ðcþ tanh λxÞ, parametrized by c. For c ∈ ð−1; 1Þ, the solution presents an event horizon but no
singularity. Because of the kink profile for the metric components appearing in the solution, we refer to the
spacetime described by the metric as a gravitational domain wall with the wall simply being the event
horizon and separating two asymptotically Minkowskian spacetimes. The global causal structure for such
an object is studied via coordinate extension and the thermodynamical quantities are computed. Only when
c ∈ ð−1; 0� are the entropy and energy non-negative.

DOI: 10.1103/PhysRevD.104.044064

I. INTRODUCTION

Two-dimensional (2D) gravity theories are interesting
because they allow one to isolate some important features
of the higher-dimensional gravity while being very simple.
They are therefore viewed as a theoretical laboratory for
quantum gravity. In recent years, motivated by the
Sachdev-Ye-Kitaev model [1–3] (see also Refs. [4–6]),
Jackiw-Teitelboim (JT) gravity [7–9] has received a resur-
gence of interest, see, e.g., Refs. [10–16]. JT gravity
belongs to the family of two-dimensional dilaton gravities
that can be parametrized by the following general action1

S ¼ 1

2

Z
d2x

ffiffiffiffiffiffi
−g

p ½ϕR −UðϕÞgαβð∂αϕÞ∂βϕþWðϕÞ�; ð1Þ

where gαβ is the 2D spacetime metric. JT gravity corre-
sponds to UðϕÞ ¼ 0, WðϕÞ ¼ 2Λϕ. In this case, ϕ is an
auxiliary field and can be eliminated by its algebraic
equation of motion, giving R ¼ −2Λ. Depending on
the sign of Λ, JT gravity thus describes a 2D de Sitter

or anti–de Sitter space. For convenience, one usually
takes jΛj ¼ 1 so that Λ ¼ �1.2 Equation (1) also contains
other interesting models as its special cases. For instance,
the Callan-Giddings-Harvery-Strominger model [23] cor-
responds to UðϕÞ ¼ − 1

ϕ, WðϕÞ ¼ −4λ2ϕ and the spheri-
cally reduced gravity [24–27] is given by

UðϕÞ ¼ −
ðD − 3Þ
ðD − 2Þϕ ; ð2aÞ

WðϕÞ ¼ −λ2ðD − 2ÞðD − 3ÞϕðD−4Þ
ðD−2Þ; ð2bÞ

whereD > 2 is an integer representing the dimension of the
spacetime before the spherical reduction. In both cases λ is
a parameter of dimension one in mass.
Actually, with a Weyl transformation, the factor UðϕÞ in

Eq. (1) can always be set to zero and hence 2D dilaton
gravity can be generally described by [28]3

S ¼ 1

2

Z
d2x

ffiffiffiffiffiffi
−g

p ½ϕRþWðϕÞ�: ð3Þ

Varying the action with respect to ϕ, one has

R ¼ −
dWðϕÞ
dϕ

: ð4Þ
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1In general, the ϕ in the first term in the square brackets can be
a general function ZðϕÞ. But for physical reasons, Z0ðϕÞ is
nonzero everywhere and we can introduce a new field to put
the action into the form of Eq. (1). Moreover, here we only
consider torsionless gravity. For reviews of dilaton gravity, see
Refs. [17–20], and for recent studies, see Refs. [21,22].

2Since Λ is a dimensionful parameter, one shall restore it in
physical quantities via the dimensional analysis.

3Note that when UðϕÞ is singular the two theories before and
after the transformation are not necessarily equivalent [19].
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In this paper, we consider a special model with

WðϕÞ ¼ λ2sech2ϕ; ð5Þ

where λ is a parameter of dimension mass. As done for
JT gravity, we will also set λ ¼ 1 and one should be able
to restore it in physical quantities. As we shall see shortly,
this theory describes asymptotically flat spacetimes. We
will show that it permits a very interesting solution with a
free parameter in which there is an event horizon but no sin-
gularity. The structure is similar to the domain wall of a
scalar field theory. Therefore we refer to this new gravi-
tational object as a gravitational domain wall (or gravita-
tional kink) with the “wall” representing the event horizon.
We will then study its causal structure and thermodynam-
ical properties. We shall see that for a particular choice of
the free parameter in the solution, the gravitational domain
wall can have a nonzero temperature while its energy and
entropy are vanishing. Unlike JT gravity, which is related to
the near-horizon region of extremal black holes in higher-
dimensional spacetime through spherical reduction, it is not
clear how the potential (5) arises from a higher-dimensional
theory. Nonetheless, given the interesting properties men-
tioned above and its potential role in building holography
for asymtotically flat two-dimensional spacetimes, it still
deserves to be investigated.
The remainder of this article is organized as follows. In

the next section we study the 2D dilaton gravity with the
potential (5) and show that it has an exact solution in which
the zero-zero metric component takes the kink profile
when using the Schwarzschild-like ansatz. We then study
the global causal structure for the obtained solution via
coordinate extension. In Sec. III, the thermodynamical
properties for the gravitational domain wall are investi-
gated. We conclude in Sec. IV.

II. GRAVITATIONAL DOMAIN WALL IN
TWO-DIMENSIONAL DILATON GRAVITY

A. Equations of motion and solutions

A general classical solution in the theory given by Eq. (3)
can be put in the form [29,30]

ds2 ¼ −AðxÞdt2 þ 1

AðxÞ dx
2: ð6Þ

Note that whether or not one shall interpret t as time and x
as space depends on the sign of AðxÞ. If AðxÞ > 0 then
Eq. (6) describes a static spacetime region while if
AðxÞ < 0 it describes a time-dependent spatially homo-
geneous region. Following Ref. [30], one can obtain one of
the dynamic equations by first considering the metric

ds2 ¼ −AðxÞdt2 þ 1

GðxÞ dx
2; ð7Þ

and then substituting GðxÞ ¼ AðxÞ into the equation of
motion for GðxÞ. From Eq. (7), one has the Ricci scalar

R ¼ −
A0G0

2A
−
GA00

A
þ GA02

2A2
; ð8Þ

where a prime denotes the derivative with respect to x.
Substituting Eq. (8) into the action (3), one obtains

S ¼ 1

2

Z
dtdx

�
−ϕ

d
dx

� ffiffiffiffi
G
A

r
dA
dx

�
þ

ffiffiffiffi
A
G

r
WðϕÞ

�
; ð9Þ

from which the algebraic equation of motion forGðxÞ reads

ϕ0A0ffiffiffiffiffiffiffi
AG

p −
ffiffiffiffi
A

p

G3=2WðϕÞ ¼ 0: ð10Þ

Now substituting G ¼ A into the above equation, one
finally arrives at

ϕ0A0 −WðϕÞ ¼ 0: ð11Þ

To obtain the other equation of motion, we let G ¼ A in the
action (9) and get

S ¼ 1

2

Z
dtdxð−ϕA00 þWðϕÞÞ: ð12Þ

Varying the action with respect to A, we have

ϕ00 ¼ 0: ð13Þ

From Eq. (13), one has ϕ ¼ axþ b where a, b are
constants. If a ¼ 0, then from Eq. (11) we haveWðϕÞ ¼ 0.
For the model we consider [cf. Eq. (5)], WðϕÞ vanishes
only at infinity, ϕ ¼ �∞. And in this case, R ¼ −dWðϕÞ=
dϕjϕ¼�∞ ≡ 0. Therefore, this solution describes the trivial
Minkowski spacetime, AðxÞ ¼ constant ≠ 0.
If a ≠ 0, then one can always let

ϕ ¼ x ð14Þ

after a transformation ðt; x; AÞ → ðt=ã; ãxþ b̃; ã2AÞ
(ã ≠ 0), which leaves the metric (6) invariant. In this case,
Eq. (11) reduces to

dAðxÞ
dx

¼ sech2x; ð15Þ

from which one obtains AðxÞ ¼ ðtanh xÞ þ c with c being a
constant. Substituting AðxÞ ¼ ðtanhxÞþ c and AðxÞ ¼GðxÞ
into Eq. (8), one confirms that R ¼ 2ðsech2xÞ tanh x ¼
−W0ðxÞ, which vanishes at jxj → ∞. Thus the above
solutions parametrized by c describe asymptotically flat
spacetimes. The metric reads

WEN-YUAN AI PHYS. REV. D 104, 044064 (2021)

044064-2



ds2 ¼ −ðcþ tanh xÞdt2 þ 1

cþ tanh x
dx2: ð16Þ

If c > 1 or c < −1, then there is no solution for AðxÞ ¼ 0
and thus there is no horizon for the spacetime considered.
For c ∈ ð−1; 1Þ, the horizon is located at a finite distance

xh ¼ −artanhc; ð17Þ

while for c ¼ −1 or c ¼ 1, the horizon is located at þ∞
or −∞, respectively. Below we shall consider the case
c ∈ ð−1; 1Þ.
The coordinate singularity at x ¼ xh is an event horizon.

The region x > xh corresponds to the static region out-
side of the horizon while x < xh the region inside of the
horizon which is, however, time dependent. Note that one
shall interpret x as the time for x < xh. The metric has no
essential singularity so that it describes a novel gravita-
tional structure where there is an event horizon but no
geometrical singularity. Because of the kink solution,
cþ tanh x in Eq. (16), we refer to this object as gravita-
tional domain wall—the wall is simply the event horizon.
The null geodesics for x > xh are given by

t ¼ cx − logðc cosh xþ sinh xÞ
−1þ c2

þ s;

for outgoing light beams; ð18aÞ

t ¼ −
cx − logðc cosh xþ sinh xÞ

−1þ c2
þ s;

for ingoing light beams; ð18bÞ
where s is a constant. We plot the null geodesics outside of
the horizon for c ¼ 0 in Fig. 1. For the general case, the null
geodesics look similar but with the horizon horizontally
shifted from x ¼ 0.

B. Coordinate extension

To see that the wall is indeed an event horizon, we now
do the coordinate extension starting from x > xh. We first
introduce the tortoise coordinate for our spacetime

x� ¼
cx − logðc cosh xþ sinh xÞ

−1þ c2
; ð19Þ

so that the metric can be written as

ds2 ¼ −ðcþ tanh xÞðdt2 − dx2�Þ: ð20Þ

Note that x� ∈ ð−∞;∞Þ. Further, we introduce the retarded
and advanced coordinates fu; vg as

u ¼ t − x�; v ¼ tþ x�; −∞ < u; v < ∞:

ð21Þ

Based on them we introduce

U ¼ −e−u=2; V ¼ ev=2: ð22Þ

For now, U ∈ ð−∞; 0Þ, V ∈ ð0;∞Þ. In terms of the
coordinates fU;Vg, the metric can be written as

ds2 ¼ −
4e−cx

ð1 − c2Þ2 cosh x dVdU: ð23Þ

Now we can extend the range for U, V to R. One can also
write the above metric in a form

ds2 ¼ 4e−cx

ð1 − c2Þ2 cosh x ð−dT
2 þ dX2Þ ð24Þ

using the coordinates T ¼ 1
2
ðV þUÞ, X ¼ 1

2
ðV −UÞ.

From the coordinate transformations, one has the
relation

X2 − T2 ¼ e−cxðc cosh xþ sinh xÞ: ð25Þ

We show the extended spacetime in Fig. 2. Region I
corresponds to x > xh where the extension starts while
region II represents x < xh in our original spacetime. Since
in the coordinate system fT; Xg the null geodesics are
always at �45° to the vertical, it is clear that no signal can
escape from region II to region I. Hence, x ¼ xh is indeed
an event horizon. The spacetime (16) thus can be viewed as

x

t

FIG. 1. The null geodesics outside of the gravitational domain
wall for c ¼ 0.
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a black hole without singularity.4 Our spacetime is certainly
different from Rindler spacetime because the Ricci scalar is
not trivially vanishing everywhere. In Fig. 3, we plot the
Ricci scalar as a function of x for c ¼ 0. The Ricci scalar
vanishes at jxj ¼ �∞ and the horizon.

III. THERMODYNAMICAL PROPERTIES OF THE
GRAVITATIONAL DOMAIN WALL

In this section, we will study the thermodynamical
properties of the gravitational domain wall through the
Euclidean method [30–32]. The Euclidean action is

Ib ¼ −
1

2

Z
d2x

ffiffiffi
g

p ½ϕRþWðϕÞ�; ð26Þ

where xμ ¼ fτ; xg and all the quantities are Euclidean. The
equations of motion remain to be the same as those in
Minkowski space [Eqs. (11) and (13)]. The only difference
is that in Euclidean space we now have x ≥ xh. [This can be
seen if we perform aWick rotation on the coordinate T with
T → −iT and we find from Eq. (25) that x ≥ xh.] From
now on we label x − xh as r. Thus we have ϕ ¼ rþ xh,
AðrÞ ¼ cþ tanhðxh þ rÞ. Near the horizon,

AðrÞ ¼ ðsech2xhÞrþOðr2Þ: ð27Þ

Defining y ¼ ffiffiffi
r

p
, we have the metric

ds2 ¼ 4

sech2xh

�
dy2 þ ðsech4xhÞy2

4
dτ2

�
: ð28Þ

Only if τ has a period β ¼ 4π=sech2xh, then the conical
singularity at y ¼ 0 disappears. Therefore, we find

TH ¼ 1

β
¼ sech2xh

4π
¼ sech2ð−artanh cÞ

4π
: ð29Þ

The locally measured temperature is T loc ¼ TH=
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ tanh x
p Þ.
To derive the energy and the entropy, we use Z ¼

expð−βFÞ where Z is the Euclidean partition function
and F≡ E − TS is the free energy (here E and S denote
the energy and the entropy, respectively). Using the
semiclassical approximation for the partition function,
Z ≈ expð−IÞ where I is the total action for the classical
background, one therefore arrives at

I ¼ βE − S: ð30Þ

In the action I, the bulk action Ib should be supplemented
by the Gibbons-Hawking-York boundary term [31,33]
which reads5

IGHY ¼ −
Z
r¼r∞

dτ
ffiffiffi
h

p
ϕðK þ CÞ; ð31Þ

where h ¼ Aðr∞Þ ¼ cþ 1 is the induced metric at the
boundary and K is the extrinsic curvature of the boundary.

FIG. 2. The spacetime extended from the x > xh region in
Eq. (16). The hyperbolic curves are given by constant x with
x > xh outside of the horizon and x < xh inside of the horizon.
We identify regions I and II as, respectively, the regions x > xh
and x < xh in our original spacetime (16).

4 2 0 2 4

0.5

0.0

0.5

x

R

FIG. 3. The Ricci scalar for the gravitational domain wall as a
function of x for c ¼ 0. Note that only for x > 0, x can be
interpreted as the spatial coordinate.

4It seems that one can instead identify the region x < 0 as the
“white hole” region (region IV in Fig. 2) in the extended
spacetime. We choose the other identification as it may shed
new insights on black holes and Hawking radiation. 5For the asymptotically anti–de Sitter spaces, C ¼ −1.
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Here C is a term that depends only on the induced metric h
on the boundary but is independent of the metric g. In the
case of asymptotically flat metrics, it is natural to choose C
so that the total action for the flat-space metric η vanishes.
Then

IGHY ¼ −
Z
r¼r∞

dτ
ffiffiffi
h

p
ϕ½K�; ð32Þ

where [K] is the difference of the extrinsic curvature of
the boundary in the metric g and the metric η. For the
flat-space metric, K ¼ 1=r∞ while, for the gravitational
domain wall, K ¼ A0ðr∞Þ=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr∞Þ

p Þ. We thus obtain
IGHY ¼ βð ffiffiffiffiffiffiffiffiffiffiffi

1þ c
p Þ. Substituting the solution AðrÞ into the

bulk action one obtains6

Ib ¼−
β

2

Z
x∞

xh

dxð−xA00ðxÞþ sech2xÞ ¼−βð1þ cÞ− 2πxh:

ð33Þ

Substituting the obtained I ¼ IGHY þ Ib into Eq. (30) and
comparing both sides, one obtains

E ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
− ð1þ cÞ; S ¼ 2πxh ¼ 2π artanhð−cÞ:

ð34Þ

To have a non-negative entropy, we require c ∈ ð−1; 0�. In
this physical parameter region, the energy is also non-
negative. Note that when c ¼ 0, we have E ¼ S ¼ 0 but we
still have a horizon with a nonvanishing temperature.
Before ending this section, we make some comments

below. The Hawking temperature has a general expression
[20,34]

TH ¼ 1

2π
jω0ðϕÞjϕ¼ϕh

; ð35Þ

where

ωðϕÞ ¼ −
1

2

Z
ϕ
dyWðyÞ ð36Þ

and ϕh is the value for the dilation field at the horizon.
SubstitutingWðyÞ ¼ sech2y into the above expressions, we

obtain the same result as in Eq. (29). One could also
introduce a more general model with the potential
WðϕÞ ¼ sec h2ðϕ − ϕ0Þ. Then the horizon would be
located at x ¼ ϕ ¼ ϕ0 − artanhc.

IV. OUTLOOK AND DISCUSSIONS

In this paper, we propose a new 2D dilaton gravity whose
action is given by Eq. (3) with WðϕÞ ¼ λ2 sec h2ϕ. This
theory contains the 2D Minkowski space as its trivial
solution. We report the discovery of a new gravitational
structure in which there is an event horizon but no
singularity. It is observed as a nontrivial solution in the
theory we consider which reads

ds2 ¼ −ðcþ tanh λxÞdt2 þ 1

cþ tanh λx
dx2; ð37Þ

where c is a parameter. To have a physical horizon,
c ∈ ð−1; 0�. This metric has a coordinate singularity at
x ¼ xh ≡ artanhð−cÞ, which can be identified as an event
horizon but contains no essential singularity. Because of the
kink profile in the metric, one may therefore refer to such
an object as gravitational domain wall with the wall staying
at xh. We have studied the causal structure of the gravi-
tational domain wall via coordinate extension and it is
confirmed that no signal can escape from the left side of the
wall to the right side. Therefore the left side of the wall can
be viewed as the interior of a black hole and the right side as
the exterior. We have also computed the thermodynamical
quantities for the gravitational domain wall. It remains to be
investigated whether or not this novel gravitational struc-
ture can shed some insights on Hawking radiation and the
information paradox.
Some issues remain to be addressed. In particular,

demonstrating that the theory considered here could arise
from a higher-dimensional theory would largely improve
the physical relevance of the gravitational domain wall. The
case c ¼ 0 is of particular interest because it gives a horizon
possessing a nonvanishing temperature but vanishing
entropy and energy. It appears to be a bit strange and
remains to be understood physically. Further, considering
the simplicity of the model, it would be beneficial to
consider the coupling to matter fields. As shown in
Ref. [35], one can integrate out the metric and dilaton
fields and obtain a nonlocal effective theory for the matter
fields that can be reinterpreted in terms of the exchange of
virtual black hole geometries. In view of our model having
nonsingular black hole solutions, the properties of the
virtual black hole states could be particularly simple. It
would be also interesting to work out the spectrum of the
quasinormal modes. We leave these issues for future work.

6Note that there could be ambiguities in identifying E and S
through Eq. (30) since β could have been substituted for its value
in the intermediate steps. To get rid of such ambiguities, one
should follow the procedure where WðϕÞ, which determines the
temperature, is taken as a general function. See, e.g., Ref. [30].
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