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Bayesian parameter estimation of gravitational waves from compact binary coalescence (CBC) typically
requires the generation of millions of computationally expensive template waveforms. We propose a
technique to reduce the cost of waveform generation by exploiting the chirping behavior of CBC signal.
Our technique does not require waveforms at all frequencies in the frequency range used in the analysis,
and does not suffer from the fixed cost due to the upsampling of waveforms. Our technique speeds up the
parameter estimation of typical binary neutron star signal by a factor ofOð10Þ for the low-frequency cutoff
of 20 Hz, and Oð102Þ for 5 Hz. It does not require any offline preparations or accurate estimates of source
parameters provided by detection pipelines.
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I. INTRODUCTION

The discovery of gravitational waves from binary black
hole coalescence opened a new window to the Universe [1].
In 2017, gravitational waves from binary neutron star
coalescence were also detected [2]. The multimessenger
observations of this event enabled us to measure the Hubble
constant in a way independent from the cosmic ladder [3],
learn the origin of heavy elements [4–9] and the structure
of ultrarelativistic jet from the merger [10–14]. So far,
several tens of compact binary coalescence (CBC) events
have been detected [15,16] by the LIGO-Virgo collabora-
tion [17,18], enabling us to learn the population properties
of binary black holes [19,20].
In this era of gravitational-wave astronomy, an accurate

inference of the source properties from gravitational-wave
data is important. The LIGO-Virgo collaboration employs
Bayesian inference with stochastic sampling [21,22], which
generates thousands of random samples following the prob-
ability distribution of the source parameters conditioned on
data. It typically requires generation of millions of computa-
tionally expensive template waveforms. The waveform gen-
eration becomes very costly for light binaries, whose signals
have long durations and extend to high frequencies. For a
typical binary neutron star signal, the parameter estimation
can take a fewweeks, or even years, without any approximate
methods. To solve this issue, various techniques to speed up
the inference have been proposed [23–36].
One of the techniques widely used in the detection

and parameter estimation of CBC signal is multibanding
[29,37–39]. It exploits the chirping behavior of CBC signal,
whose frequency simply increases with time. In the time
domain, it means the sampling frequency can be lowered at
the early stage of inspiral, which significantly reduces the

number of time samples at which waveforms are evaluated.
This idea has been utilized to speed up matched filtering of
data in the detection of CBC signals [39].
On the other hand, the standard parameter estimation

is performed in the frequency domain. The Fourier trans-
form of a CBC waveform is an oscillating function of
frequency, and the frequency scale of the oscillations is
the inverse of time-to-merger. Since the time-to-merger
decreases as the frequency increases, we can use coarser
frequency resolutions at high frequencies for resolving that
oscillatory behavior. The previous study [29] has proposed
an efficient technique, which computes waveforms with
coarser frequency resolutions at high frequencies and
upsamples them to the original frequency resolution.
This technique was named MB-Interpolation, and it
significantly reduces the number of waveform evaluations
at high frequencies.
However, the overall speed-up gain of MB-Interpolation

is more modest than the reduction of the number of
waveform evaluations. For example, it reduces the number
of waveform evaluations by a factor of ∼60 for typical
BNS signal and the low-frequency cutoff of 20 Hz, but the
speed-up gain of parameter estimation with the TaylorF2
[40] waveform model is ∼3 (See Table 1 of [29]). It arises
because MB-Interpolation requires the upsampling of
waveforms and the computation of inner products of
upsampled waveforms and data. Their costs are propor-
tional to the original frequency samples, and are not
reduced by multibanding.
In this paper, we propose another technique, which

exploits the chirping behavior of CBC signal but does
not require the upsampling. If the length of data is T, the
inner products of waveforms and data require waveforms
at frequency points with the frequency interval of 1=T.
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On the other hand, if f1=2 is the frequency from which the
time-to-merger is T=2, the inner products in f > f1=2 can
be approximately computed with the latter half of data and
waveforms at frequency points with the frequency interval
of 2=T. Generalizing this idea, we divide the total fre-
quency range into multiple bands in a way that the time-to-
merger of each band is much smaller than that of the
previous band, and use coarser frequency resolutions in
high-frequency bands. It significantly reduces the number
of waveform evaluations at high frequencies, and does not
require upsampled waveforms.
This paper is organized as follows. First, we formulate

our technique and evaluate its speed-up gains in Sec. II.
Next, we investigate the accuracy of our technique in
Sec. III. Finally, we summarize the results and conclude
this paper in Sec. IV.

II. PARAMETER ESTIMATION WITH ADAPTIVE
FREQUENCY RESOLUTIONS

In this section, we formulate our technique and evaluate
its speed-up gains. First, we review the basics of Bayesian
parameter estimation of CBC signal in Sec. II A. Next,
we formulate our technique in Sec. II B–II F. Finally, we
evaluate the speed-up gains in Sec. II G.

A. Bayesian inference

In the Bayesian inference, the probability distribution of
model parameters conditioned on data is calculated via the
Bayes’ theorem,

pðθjdÞ ∝ πðθÞLðdjθÞ; ð1Þ

where d ¼ ðd0; d1;…; dN−1ÞT represents time-domain data
at N time samples, whose sampling rate is 1=Δt, and θ
represents the model parameters. pðθjdÞ, πðθÞ and LðdjθÞ
are referred to as posterior, prior and likelihood respec-
tively. The prior is determined based on our prior knowl-
edge or belief on θ.
In the standard parameter estimation of CBC signal, the

noise is modeled as stationary Gaussian random process. In
this model, the logarithm of likelihood for a single detector
is given by [21]

lnLðdjθÞ ¼ ðd; hðθÞÞ − 1

2
ðhðθÞ; hðθÞÞ þ const; ð2Þ

where hðθÞ is the CBC waveform for θ. The inner products
are given by

ðd; hÞ≡ 4

T
ℜ

� XbðN−1Þ=2c

k¼1

d̃�kh̃ðfkÞ
Sk

�
; ð3Þ

ðh; hÞ≡ 4

T

XbðN−1Þ=2c

k¼1

jh̃ðfkÞj2
Sk

; ð4Þ

where T is the duration of data T ≡ NΔt, fk is the
frequency of the kth bin fk ≡ k=T, bxc is the greatest
integer less than or equal to x, d̃k is the Fourier component
of data defined by

d̃k ≡ Δt
XN−1

m¼0

dme−2πikm=N; ð5Þ

Sk is the one-sided power spectral density (PSD) of the
detector’s noise, and h̃ðfÞ is the template waveform in the
frequency domain. The DC and Nyquist frequencies have
been excluded, and θ has been omitted for ease of notation.
Typically, the low and high frequency cutoffs, flow and
fhigh, have been determined before the analysis. Here we
assume

Sk ¼ þ∞; ðfk < flow or fk > fhighÞ ð6Þ

so that the components outside the frequency range are
automatically vanishing. The likelihood for multiple detec-
tors is the product of likelihood for each detector.
In the inference with stochastic sampling, the non-

constant part of log-likelihood, which is often referred to
as log-likelihood-ratio,

lnΛðdjθÞ≡ ðd; hðθÞÞ − 1

2
ðhðθÞ;hðθÞÞ; ð7Þ

is computed tens to hundreds of millions of times [21,34]. It
requires the evaluations of h̃ðfÞ at Korig frequency points,
where

Korig ≡ bfhighTc − ⌈flowT⌉þ 1 ∼ ðfhigh − flowÞT: ð8Þ

Our technique is an approximate method to compute log-
likelihood-ratio with fewer waveform evaluations.

B. Window functions

For dividing the total frequency range into multiple
frequency bands, we introduce the following overlapping
window functions,
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wðbÞðfÞ ¼

8>>>>>><
>>>>>>:

1
2

�
1þ cos

�
π f−fðbÞ

ΔfðbÞ

��
; ðfðbÞ − ΔfðbÞ < f < fðbÞÞ

1; ðfðbÞ ≤ f ≤ fðbþ1Þ − Δfðbþ1ÞÞ
1
2

�
1 − cos

�
π f−fðbþ1Þ

Δfðbþ1Þ

��
; ðfðbþ1Þ − Δfðbþ1Þ < f < fðbþ1ÞÞ

0; ðotherwiseÞ

ð9Þ

where

flow ¼ fð0Þ < fð1Þ < … < fðBÞ ¼ fhigh þ ΔfðBÞ;

fðbÞ < fðbþ1Þ − Δfðbþ1Þ; Δfð0Þ ¼ 0; ð10Þ

and B represents the number of frequency bands. ΔfðBÞ
needs to be positive to smooth the high-frequency end of
waveform. We explain its necessity and our choice ofΔfðBÞ
in Sec. II F. The window functions are constructed so that
their sum becomes unity,

XB−1
b¼0

wðbÞðfÞ ¼ 1. ðflow ≤ f ≤ fhighÞ ð11Þ

The reason for using smooth window functions rather
than rectangular window functions is explained in the
Appendix A.

C. How to compute ðd; hÞ
First, we introduce an approximate method to compute

ðd; hÞ. It can be rewritten as follows thanks to (11),

ðd; hÞ ¼
XB−1
b¼0

4

T
ℜ

" XbðNðbÞ−1Þ=2c

k¼1

wðbÞðfkÞ
d̃�kh̃ðfkÞ

Sk

#
; ð12Þ

where NðbÞ is an integer satisfying

�
NðbÞ − 1

2

�
≥ fðbþ1ÞT: ð13Þ

We use the minimum power of 2 satisfying this condition as
NðbÞ for efficient Fourier transforms, which specifically
speeds up the IFFT-FFT computations for ðh; hÞ introduced
in Sec. II D. IfNðbÞ > N, we pad zeros to data so that (12) is
satisfied,

d̃k
Sk

¼ 0.

�
k >

�
N − 1

2

�	
: ð14Þ

The inner product can be transformed into a sum over times
as follows,

4

T
ℜ

" XbðNðbÞ−1Þ=2c

k¼1

wðbÞðfkÞ
d̃�kh̃ðfkÞ

Sk

#
¼ 2ΔtðbÞ

XNðbÞ−1

m¼0

DðbÞ
m hðbÞm ;

ð15Þ

where ΔtðbÞ ≡ NΔt=NðbÞ, and

DðbÞ
m ≡ 2

T
ℜ

" XbðNðbÞ−1Þ=2c

k¼1

d̃k
Sk

e2πikm=NðbÞ

#
; ð16Þ

hðbÞm ≡ 2

T
ℜ

" XbðNðbÞ−1Þ=2c

k¼1

wðbÞðfkÞh̃ðfkÞe2πikm=NðbÞ

#
: ð17Þ

Since the frequency of the CBC waveform simply

increases with time, hðbÞm is almost vanishing for mΔtðbÞ≲
T − τðfðbÞ − ΔfðbÞÞ, where τðfÞ is the time to merger from
a frequency f. If the waveform contains multiple gravita-
tional-wave moments, τðfÞ is defined on the moment with
the maximum magnetic number, whose time to merger is

the longest. Figure 1 shows hðbÞm for 1.4 M⊙ − 1.4 M⊙ BNS

FIG. 1. The inverse Fourier transform of the waveform in
each frequency band. The waveforms are for nonspinning
1.4 M⊙ − 1.4 M⊙ BNS signal, whose coalescence time is at
T − 2 s. The total frequency range starting from 20 Hz is divided
into 7 frequency bands, and each band is constructed so that the
waveform in the bth band is vanishing except for in the last
28−b s. Each label presents the start and end frequencies of the
band, fðbÞ − ΔfðbÞ and fðbþ1Þ.
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with zero spins, which ends at T − 2 s. Each frequency
band is constructed so that τðfðbÞ − ΔfðbÞÞ < ð28−b − 2Þ s.
The figure shows that hðbÞm is almost vanishing at

mΔtðbÞ < T − 28−b s, which validates ignoring hðbÞm there.
It implies we can make the approximation that

hðbÞm ≃ 0; ðm ¼ 0; 1;…; NðbÞ −MðbÞ − 1Þ ð18Þ

where TðbÞ ≡MðbÞΔtðbÞ is long enough compared to
τðfðbÞ − ΔfðbÞÞ, and

TðB−1Þ < TðB−2Þ < … < Tð0Þ ≤ T: ð19Þ

This approximation leads to

XNðbÞ−1

m¼0

DðbÞ
m hðbÞm ≃

XNðbÞ−1

m¼NðbÞ−MðbÞ
DðbÞ

m hðbÞm : ð20Þ

Finally, the inner product can be transformed into a sum
over frequencies as follows,

2ΔtðbÞ
XNðbÞ−1

m¼NðbÞ−MðbÞ
DðbÞ

m hðbÞm

≃
4

TðbÞ ℜ

" XKðbÞ
e

k¼KðbÞ
s

wðbÞ
�
fðbÞk

�
D̃ðbÞ�

k h̃
�
fðbÞk

�#
; ð21Þ

where KðbÞ
s ¼ ⌈ðfðbÞ − ΔfðbÞÞTðbÞ⌉, KðbÞ

e ¼ bfðbþ1ÞTðbÞc,
fðbÞk ¼ k=TðbÞ and

D̃ðbÞ
k ¼ ΔtðbÞ

XNðbÞ−1

m¼NðbÞ−MðbÞ
Dme−2πikm=MðbÞ

: ð22Þ

Here, we have made the following approximation,

ΔtðbÞ
XNðbÞ−1

m¼NðbÞ−MðbÞ
hðbÞm e−2πikm=MðbÞ ≃ wðbÞ

�
fðbÞk

�
h̃
�
fðbÞk

�
:

ð23Þ

Finally, the inner product is reduced to

ðd; hÞ ≃
XB−1
b¼0

4

TðbÞℜ

" XKðbÞ
e

k¼KðbÞ
s

wðbÞ
�
fðbÞk

�
D̃ðbÞ�

k h̃
�
fðbÞk

�#
: ð24Þ

D̃ðbÞ
k can be computed from (16) and (22), and stored

before the sampling. The frequency interval of the bth band
is 1=TðbÞ, which is larger than the original frequency

interval of 1=T for b ≥ 1. It means (24) requires fewer
waveform evaluations for b ≥ 1. The number of waveform
evaluations is

KMB ¼
XB−1
b¼0

ðKðbÞ
e − KðbÞ

s þ 1Þ; ð25Þ

and its cost is reduced by a factor of Korig=KMB. Since the
computation of (24) does not require the upsampling of

h̃ðfðbÞk Þ, the computation of ðd; hÞ is sped up by the same
factor.

D. How to compute ðh; hÞ
Next, we introduce approximate methods to compute

ðh; hÞ. It can be rewritten as follows thanks to (11),

ðh; hÞ ¼
XB−1
b¼0

4

T

XbðNðbÞ−1Þ=2c

k¼1

wðbÞðfkÞ
jh̃ðfkÞj2

Sk
: ð26Þ

As shown in the following, it can be approximately

computed with waveforms at fðbÞk ðb ¼ 0; 1;…; B − 1;

k ¼ KðbÞ
s ; KðbÞ

s þ 1;…; KðbÞ
e Þ, which have been computed

for ðd; hÞ.
The waveform of CBC signal can be expressed as the

linear combination of the −2 spin-weighted spherical
harmonics −2Ylmðθ;ϕÞ [41]. The dominant moments are
the quadrupole moments ðl; mÞ ¼ ð2;�2Þ, and moments
with jmj ≥ 3 are referred to as higher-order moments.
Figure 2 shows jh̃ðfÞj2 for waveform models containing

FIG. 2. jh̃ðfÞj2 for waveform models containing only dominant
quadrupole moments (blue) and containing higher-order mo-
ments (orange). They are for nonspinning 7 M⊙ − 1.4 M⊙
binary, whose inclination angle between the line of sight and
the orbital angular momentum is π=2. The waveform models are
IMRPhenomD [42] for the quadrupole case and IMRPhenomHM [43]
for the higher-order case.
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only dominant quadrupole moments and containing higher-
order moments. In the former case, jh̃ðfÞj2 is a smooth
function as the phase is canceled out. In the latter case, the
cross terms between different moments give rise to an
oscillatory behavior. To compute ðh; hÞ efficiently and
accurately in each case, we propose two methods: Linear
interpolation and IFFT-FFT. The former method is more
efficient but may not be accurate for waveform models
containing higher-order moments. The latter method is
accurate for such waveform models but more costly.

1. Linear interpolation

In this method, jh̃ðfÞj2 is approximated by the linear

interpolation of jh̃ðfðbÞk Þj2,

jh̃ðfÞj2 ≃ TðbÞðfðbÞkþ1 − fÞjh̃ðfðbÞk Þj2

þ TðbÞðf − fðbÞk Þjh̃ðfðbÞkþ1Þj2; ð27Þ

for fðbÞk ≤ f < fðbÞkþ1 when the inner product in the bth band

is computed. The approximate forms in fðbÞ
KðbÞ

s
≤ f < fðbÞ

KðbÞ
s þ1

and fðbÞ
KðbÞ

e −1
≤ f < fðbÞ

KðbÞ
e

are extrapolated to f < fðbÞ
KðbÞ

s
and

f ≥ fðbÞ
KðbÞ

e
respectively.

Substituting the linear interpolation into (26), we obtain

ðh; hÞ ¼
XB−1
b¼0

XKðbÞ
e

k¼KðbÞ
s

cðbÞk




h̃�fðbÞk

�


2: ð28Þ

The coefficients are given by

cðbÞk ¼ 4TðbÞ

T

X
f̄ðbÞk ≤fl<f̄

ðbÞ
kþ1

�
fðbÞkþ1 − fl

�wðbÞðflÞ
SðflÞ

þ 4TðbÞ

T

X
f̄ðbÞk−1≤fl<f̄

ðbÞ
k

�
fl − fðbÞk−1

�wðbÞðflÞ
SðflÞ

; ð29Þ

where

f̄ðbÞ
KðbÞ

s −1
¼ f̄ðbÞ

KðbÞ
s
¼0; f̄ðbÞ

KðbÞ
e
¼ f̄ðbÞ

KðbÞ
e þ1

¼∞;

f̄ðbÞk ¼fðbÞk :ðk¼KðbÞ
s þ1;KðbÞ

s þ2;…;KðbÞ
e −1Þ: ð30Þ

The computation of (28) only requires OðKMBÞ floating-
point operations, and its cost is negligible compared to that
of the waveform evaluations. The interpolation may not be
accurate if the waveform model takes into account higher-
order moments due to the oscillatory behavior of jh̃ðfÞj2.

2. IFFT-FFT

The approximation used in this method is similar to that
used for computing ðd; hÞ. First, the inner product can be
transformed into a sum over times as follows,

4

T

XbðNðbÞ−1Þ=2c

k¼1

wðbÞðfkÞ
jh̃ðfkÞj2

Sk
¼ 2ΔtðbÞ

XNðbÞ−1

m¼0

IðbÞm HðbÞ
m ;

ð31Þ

where

IðbÞm ≡ 2

T
ℜ

" XbðNðbÞ−1Þ=2c

k¼1

1

Sk
e2πikm=NðbÞ

#
; ð32Þ

HðbÞ
m ≡ 2

T
ℜ

" XbðNðbÞ−1Þ=2c

k¼1

wðbÞðfkÞjh̃ðfkÞj2e2πikm=NðbÞ

#
: ð33Þ

HðbÞ
m is the convolution of the windowed waveform,

HðbÞ
m ¼ ΔtðbÞ

XNðbÞ−1

m0¼0

ĥðbÞ
modðmþm0;NðbÞÞĥ

ðbÞ
m0 ; ð34Þ

where modða; bÞ is the remainder of a by b, and

ĥðbÞm ≡ 2

T
×ℜ

" XbðNðbÞ−1Þ=2c

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðbÞðfkÞ

q
h̃ðfkÞe2πikm=NðbÞ

#
: ð35Þ

The same argument in Sec. II C leads to,

ĥðbÞm ≃ 0. ðm ¼ 0; 1;…; NðbÞ −MðbÞ − 1Þ ð36Þ

If 2MðbÞ − 1 < NðbÞ, it means HðbÞ
m is vanishing for

MðbÞ ≤ m ≤ NðbÞ −MðbÞ. Thus, we can make the following
approximation,

XNðbÞ−1

m¼0

IðbÞm HðbÞ
m ≃

XN̂ðbÞ−1

m¼0

IðbÞc;mH
ðbÞ
c;m; ð37Þ

where N̂ðbÞ ≡min ½2MðbÞ; NðbÞ�, and IðbÞc;m and HðbÞ
c;m are the

cropped sequences with the sizes of N̂ðbÞ,

IðbÞc;m ≡
8<
:

IðbÞm ; ðm ≤ bN̂ðbÞ=2cÞ
IðbÞ
mþNðbÞ−N̂ðbÞ ; ðm ≥ bN̂ðbÞ=2c þ 1Þ

ð38Þ

HðbÞ
c;m ≡

8<
:

HðbÞ
m ; ðm ≤ bN̂ðbÞ=2cÞ

HðbÞ
mþNðbÞ−N̂ðbÞ : ðm ≥ bN̂ðbÞ=2c þ 1Þ

ð39Þ
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HðbÞ
c;m can be expressed as the convolution of the cropped

waveform,

HðbÞ
c;m ¼ ΔtðbÞ

XN̂ðbÞ−1

m0¼0

ĥðbÞ
c;modðmþm0;N̂ðbÞÞĥ

ðbÞ
c;m0 ; ð40Þ

where

ĥðbÞc;m ≡ ĥðbÞ
mþNðbÞ−N̂ðbÞ : ðm ¼ 0; 1;…; N̂ðbÞ − 1Þ ð41Þ

Using the properties of the Fourier transformation, we
obtain

2ΔtðbÞ
XN̂ðbÞ−1

m¼0

IðbÞc;mH
ðbÞ
c;m ¼ 4

T̂ðbÞ
XbðN̂ðbÞ−1Þ=2c

k¼1

ĨðbÞc;k jh̃ðbÞc;k j2; ð42Þ

where T̂ðbÞ ≡ N̂ðbÞΔtðbÞ and

ĨðbÞc;k ¼ ΔtðbÞ
XN̂ðbÞ−1

m¼0

IðbÞc;me−2πikm=N̂ðbÞ
; ð43Þ

h̃ðbÞc;k ¼ ΔtðbÞ
XN̂ðbÞ−1

m¼0

hðbÞc;me−2πikm=N̂ðbÞ
: ð44Þ

Substituting (31), (37) and (42) into (26) leads to

ðh; hÞ ≃
XB−1
b¼0

4

T̂ðbÞ
XbðN̂ðbÞ−1Þ=2c

k¼1

ĨðbÞc;k jh̃ðbÞc;k j2: ð45Þ

ĨðbÞc;k can be computed from (32), (38) and (43), and stored

before the sampling. h̃ðbÞc;k can be approximately computed

as follows. First, the last MðbÞ components of ĥðbÞc;m are
computed as the inverse Fourier transform of the windowed
waveform,

ĥðbÞc;m ≃
2

TðbÞℜ

" XbðMðbÞ−1Þ=2c

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðbÞðfðbÞk Þ

q
h̃ðfðbÞk Þe2πikm=MðbÞ

#
;

ðm ¼ N̂ðbÞ −MðbÞ; N̂ðbÞ −MðbÞ þ 1;…; N̂ðbÞ − 1Þ
ð46Þ

and the first N̂ðbÞ −MðbÞ components of ĥðbÞc;m are set to be

zeros. Then, h̃ðbÞc;k can be computed as the Fourier transform

of ĥðbÞc;m. Thus, the computation of h̃ðbÞc;k requires an inverse
fast Fourier transform (IFFT) and a fast Fourier transform
(FFT), and this method is more costly than the linear
interpolation method. This IFFT-FFT operation requires
OðN̂ðbÞ log2N̂ðbÞÞ floating-point operations for each band.

Since N̂ðbÞ ≤ 2MðbÞ ∼ 4fðbþ1ÞTðbÞ, 2fðbþ1Þ ≪ 1=Δt for
small b, and TðbÞ ≪ T for large b, we have N̂ðbÞ ≪ N.
Thus, unless we have a lot of redundant bands with similar
values of TðbÞ, the IFFT-FFToperations do not cause a fixed
cost of OðNÞ.

E. How to determine the frequency bands ff ðbÞgBb= 0
We assume fTðbÞgB−1b¼0 are specified by the user. Then, the

frequency bands ffðbÞgBb¼0 should be determined so that the
windowed waveform in the bth band is vanishing at
t < T − TðbÞ, where the start time of data is t ¼ 0.
The asymptotic behavior of the windowed waveform is

studied in Appendix A. If we choose the following value
as ΔfðbÞ,

ΔfðbÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ0ðfðbÞÞ

q ; ð47Þ

the windowed waveforms behave as follows,

hðbÞm ∝

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ0ðfðbÞÞ

q
tc − τðfðbÞÞ −mΔtðbÞ

1
CA

3

; ð48Þ

ĥðbÞm ∝

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ0ðfðbÞÞ

q
tc − τðfðbÞÞ −mΔtðbÞ

1
CA

2

; ð49Þ

where tc is the time at which the coalescence part of signal
arrives at the detector, according to (A16) and (A20). Thus,
fðbÞ should satisfy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ0ðfðbÞÞ

q
tc − τðfðbÞÞ − T þ TðbÞ ≪ 1: ð50Þ

For this condition to be satisfied, fðbÞ is determined by the
following equation,

τðfðbÞÞ þ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ0ðfðbÞÞ

q
¼ TðbÞ þ tc;min − T; ð51Þ

where L is a user-specified constant satisfying L ≫ 1, and
tc;min is the minimum of tc. L refers to the duration of the
tail part of the windowed waveform taken in the segment

TðbÞ per
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ0ðfðbÞÞ

q
. Larger L increases the accuracy of the

approximation, as the power of neglected part of waveform
becomes less. As shown in Sec. III, L ¼ 5 is large enough
for signals with signal-to-noise ratios of ∼25. Given fðbÞ

satisfying (51), ΔfðbÞ is determined by (47).
tc;min is determined by the prior range of t⨁, which is the

time at which the coalescence part of signal arrives at the
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geocenter, and the light-traveling time from the geocenter
to the detector. We use the following conservative estimate,

tc;min ¼ t⨁;min −
R⨁

c
; ð52Þ

where t⨁;min is the minimum of t⨁ in the prior range, R⨁
is the radius of the Earth, and c is the light speed. In the
standard parameter estimation performed by the LIGO-
Virgo collaboration, t⨁;min ¼ T − 2.1 s [21], and hence
tc;min − T ¼ −2.12 s. We use that standard prior range of
t⨁;min and that value of tc;min throughout this paper unless
specified otherwise.
For τðfÞ, we use the following leading-order expression

in the post-Newtonian (PN) expansion [44],

τ0PNðfÞ ¼
5

256

GM
c3

�
πGMf

c3

	
−8
3

; ð53Þ

if the waveform contains only dominant quadrupole
moments. G is the gravitational constant, and M is so-
called chirp mass defined by

M ¼ ðm1m2Þ35
ðm1 þm2Þ15

; ð54Þ

where m1 and m2 are the masses of colliding objects. We
compute τðfÞ with the minimum of chirp mass in the prior
range, which gives the most conservative estimates. If the
waveform model takes into account higher-order moments,
we use

τðfÞ ¼ τ0PN

�
2

mmax
f

	
; ð55Þ

where mmax is the maximum of the magnetic numbers of
moments for conservative estimates.

F. Choice of Δf ðBÞ

ΔfðBÞ needs to be positive to smooth the high-frequency
end of waveform. Figure 3 shows the absolute value of

hðB−1Þm for ΔfðBÞ ¼ 0 Hz and ΔfðBÞ ¼ 50 Hz, in compari-
son with the analytical prediction given by the right-hand

side of (A16). For ΔfðBÞ ¼ 0 Hz, hðB−1Þm has a long tail,
which does not decay following the analytical prediction,
due to the abrupt cutoff at the high-frequency end. It
significantly degrades the accuracy of our approximation.

For ΔfðBÞ ¼ 50 Hz, hðB−1Þm quickly decays following the
analytical prediction.
Assuming that the smoothed waveform decays with the

timescale of 1=ΔfðBÞ, we use the following value,

ΔfðBÞ ¼ 100

T − tc;max
; ð56Þ

where tc;max is the maximum of tc, so that hðbÞm rapidly
decays in the last T − tc;max of data. Following the same
argument for deriving (52), we use the following
conservative value of tc;max,

tc;max ¼ t⨁;max þ
R⨁

c
; ð57Þ

where t⨁;max is the maximum of t⨁ in the prior range. In
the standard parameter estimation performed by the LIGO-
Virgo collaboration, t⨁;max ¼ T − 1.9 s [21], which leads
to ΔfðBÞ ≃ 53 Hz. We use that standard value throughout
this paper unless specified otherwise.

G. Speed-up gains

Finally, we evaluate the speed-up gains of our technique.
We implemented our technique based on the likelihood
class of BILBY [22,45], and measured the speed-up gains
in evaluations of log-likelihood-ratio. Since the run time of
parameter estimation is approximately the product of the
evaluation time of log-likelihood-ratio and the number of
their evaluations, it approximates the overall speed-up gain
in parameter estimation.
Table I shows Korig=KMB and speed-up gains for non-

spinning 1.4 M⊙–1.4 M⊙ BNS. The table lists their values
for various values of flow, and T is chosen as the minimum
power of 2 larger than the time-to-merger of dominant
quadrupole moments from flow. It effectively sets higher
low-frequency cutoffs on higher-order moments. The high-
frequency cutoff is 2048 Hz. The total frequency range is

FIG. 3. The inverse Fourier transforms of the waveforms in the
(B − 1)th frequency band for ΔfðBÞ ¼ 0 Hz and ΔfðBÞ ¼ 50 Hz.
The waveforms are for nonspinning 1.4 M⊙ − 1.4 M⊙ BNS
signal, whose coalescence time is at T − 2 s. The high-frequency
cutoff is fðBÞ − ΔfðBÞ ¼ 2048 Hz. The red dashed-dotted line
represents the time at which the frequency of the waveform is
fðB−1Þ, where fðB−1Þ ¼ 125.7 Hz for this plot. The green line
represents the analytical prediction given by the right-hand side
of (A16).
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divided into frequency bands determined by (51) with
fTðbÞgB−1b¼0¼fT;T=2;T=4;…;4 sg and L ¼ 5. IMRPhenomD

[42] and IMRPhenomHM [43] are chosen as representative
waveform models. IMRPhenomHM includes the effects of
higher-order multiple moments, and mmax ¼ 4 is used to
compute τðfÞwhen the frequency bands are calculated. For
the computation of ðh; hÞ, the linear-interpolation method
and the IFFT-FFT method were used for IMRPhenomD and
IMRPhenomHM respectively.
The speed-up gains are roughly equal to Korig=KMB,

which means our method does not suffer from the fixed cost
present in MB-Interpolation [29]. The speed-up gains are
smaller for IMRPhenomHM, as higher-order multiple moments
have longer time-to-merger from a given frequency, and (51)
gives more severe constraints. For flow ¼ 20 Hz, which is
used in most of the analyses by the LIGO-Virgo collabo-
ration [15,16], the speed-up gains are Oð10Þ in both cases.
For flow ¼ 5 Hz, which can be used for the third-generation
detectors with improved sensitivities at low frequencies
[46,47], the speed-up gains are Oð102Þ.

III. VALIDATION

In the previous section, we have formulated our tech-
nique, and shown that it significantly speeds up the
parameter estimation. In this section, we investigate the
accuracy of our technique.

A. Likelihood errors for GW190814

First, we investigate the errors of log-likelihood-ratio
lnΛ from our approximation for GW190814 [48], gravi-
tational-wave signal detected by the LIGO-Virgo collabo-
ration. We computed lnΛ with and without our
approximation on the posterior samples from the parameter
estimation of this signal, and took their differences Δ ln Λ
as the errors of our approximation. This signal has a
relatively large signal-to-noise ratio (SNR) of ∼25, and
it is appropriate for our study as systematic errors become
prominent for a large SNR. This signal contains higher-
order multipole moments at high confidence, which enables
us to study the accuracy of our technique in their presence.
The data, PSD, and posterior samples were obtained from
the Gravitational Wave Open Science Center [49].

We computed the errors for two different waveform
models, IMRPhenomD and IMRPhenomPv3HM [50,51].
For each waveform model, we used the posterior samples
from the analysis using the same waveform model. The
results are shown in Fig. 4. We used 16 s of data around the
time of detection. Following [48], we analyzed the fre-
quency range of 20–1024 Hz for LIGO-Hanford and Virgo,
and 30–1024 Hz for LIGO-Livingston. The total frequency
range is divided into 3 bands determined by (51) with
fTðbÞg2b¼0 ¼ f16 s; 8 s; 4 sg, and L ¼ 5 or L ¼ 50. For
computing τðfÞ, we used the reference chirp mass of
6.4 M⊙, which is the median of the inferred detector-
frame chirp mass, and mmax ¼ 4 for IMRPhenomPv3HM.
We ignored the calibration errors of detectors as their
effects are expected to be negligible for the SNR of this
signal [52].
For IMRPhenomD, we used the linear-interpolation method

to compute ðh; hÞ. The median error is 4 × 10−3 for L ¼ 5

and 2 × 10−4 for L ¼ 50, which shows increasing L
improves the accuracy. The number of waveform evalua-
tions is reduced by a factor of 3.6 for L ¼ 5 and 3.2 for
L ¼ 50. For IMRPhenomPv3HM, we primarily used the
IFFT-FFT method to compute ðh; hÞ. The median error is
2 × 10−4 for L ¼ 5 and 5 × 10−5 for L ¼ 50, which again
shows increasing L improves the accuracy. The number
of waveform evaluations is reduced by a factor of 3.3 for
L ¼ 5 and 2.8 for L ¼ 50. For IMRPhenomPv3HM, the
figure also shows the errors from the linear-interpolation
method and L ¼ 5. These errors are larger than those with
the IFFT-FFT method, but they are still well below unity. In
any case, the systematic errors due to our approximation are
well below unity and the statistical errors.

B. Consistency of parameter estimation

To investigate the consistency of our technique, we
performed parameter estimation of hundreds of simulated
CBC signals using our technique. For each signal, we
constructed the credible interval of each parameter centered
on its median, and computed the credible level at which
its true value is found. For the inference to be consistent,
the credible levels should be uniformly distributed from
0 to 1 [53,54].

TABLE I. Korig=KMB and speed-up gains in evaluations of log-likelihood-ratio for nonspinning 1.4 M⊙–1.4 M⊙
BNS. The table lists their values for various values of low-frequency cutoffs flow and durations T, and the
IMRPhenomD and IMRPhenomHM waveform models. The high-frequency cutoff is 2048 Hz. The speed-up gains were
measured on 8-core Intel Core i9 with the clock rate of 2.4 GHz.

IMRPhenomD IMRPhenomHM

flowðHzÞ TðsÞ Korig Korig=KMB Speed up Korig=KMB Speed up

20 256 5.2 × 105 4.5 × 10 5.1 × 10 2.7 × 10 2.1 × 10

10 1024 2.1 × 106 1.2 × 102 1.5 × 102 5.7 × 10 4.6 × 10

5 8192 1.7 × 107 4.4 × 102 4.9 × 102 1.6 × 102 1.2 × 102
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We considered the network of the two LIGO detectors
and the Virgo detector, and signals were injected into
Gaussian noise colored by their design sensitivities. We
simulated 256 nonspinning BNS signals, whose chirp
masses and mass ratios q≡m2=m1 are distributed uni-
formly within

1.15 M⊙ ≤ M ≤ 1.25 M⊙; 0.2 ≤ q ≤ 1: ð58Þ

The luminosity distance DL ranges from 10 Mpc to
100 Mpc, and its distribution is proportional to D2

L. The

locations of the sources and the directions of the orbital
angular momenta are isotropically distributed. The wave-
form model of simulated signals is IMRPhenomD, and the
same waveform model was used for parameter estimation.
The median network SNR of simulated signals is 24.3.
For parameter estimation, we used BILBYas an interface

between likelihood and sampler, and DYNESTY [55] as
sampler. The prior is the same as the distribution of
simulated signals. The coalescence phase was analytically
marginalized over and the luminosity distance was mar-
ginalized over with the look-up table method [56,57].
The total frequency range is 20–2048 Hz, and it is divided
into 7 bands determined by (51) with fTðbÞg6b¼0 ¼ f256 s;
128 s;…; 4 sg, L ¼ 5 and the reference chirp mass of
1.15 M⊙. The number of waveform evaluations is reduced
by a factor of 44.
Figure 5 shows the cumulative distribution of credible

levels for each parameter. If credible levels are uniformly
distributed, they should be diagonal lines for an infinite
number of samples. The gray regions represent the 1 − σ,
2 − σ, and 3 − σ confidence intervals of statistical errors
due to a finite number of samples, and the distributions are
inside the 3 − σ interval for most of the range. The figure
also presents the p-values of Kolmogorov-Smirnov tests
between the credible levels and a uniform distribution in
the legend. The moderate p-values indicate that the
credible levels are consistent with uniformly distributed
random numbers.

IV. CONCLUSION

In this paper, we have presented a technique to speed
up the parameter estimation of gravitational waves from
compact binary coalescence (CBC), which exploits the
chirping behavior of CBC signal. It does not require
the upsampling of waveforms, which is required by the

FIG. 5. The cumulative distribution of credible levels for each
source parameter, obtained from 256 simulated CBC signals. The
gray regions represent the 1 − σ, 2 − σ and 3 − σ confidence
intervals of statistical errors due to a finite number of samples.
Each label shows the p-value of the Kolmogorov-Smirnov test
between the credible levels and a uniform distribution.

FIG. 4. The errors of log-likelihood-ratio, lnΛ, from our approximation for GW190814. The left figure shows the errors for the
IMRPhenomD waveform model, and the right figure shows those for IMRPhenomHM. In each figure, the errors for L ¼ 5 and L ¼ 50 are
shown in blue and orange respectively. For the computation of ðh; hÞ, the linear-interpolation method and the IFFT-FFT method are used
for IMRPhenomD and IMRPhenomHM respectively by default. For IMRPhenomHM, the errors from the linear-interpolation method and L ¼ 5
are also shown in green. For visibility, the data points are downsampled to 2000.
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MB-Interpolation technique, another implementation of
this idea proposed by [29]. Thus, our technique does not
suffer from the fixed cost due to it, and the speed-up gains
are larger. In Sec. II G, we have found that our technique
speeds up the parameter estimation of 1.4 M⊙–1.4 M⊙
binary neutron star (BNS) signal by a factor of Oð10Þ for
the low-frequency cutoff of 20 Hz, which is the standard
low-frequency cutoff used by the LIGO-Virgo analyses.
The speed-up gain is increased to Oð102Þ for the low-
frequency cutoff of 5 Hz, which can be used for the third-
generation detectors. We have investigated the errors of
log-likelihood-ratio from our approximation and the con-
sistency of the inference using our technique in Sec. III.
The results indicate our technique is accurate enough to be
used for signals, which have relatively large signal-to-noise
ratios (SNRs) of ∼25. The errors of log-likelihood-ratio
imply our technique is applicable to signals with higher
SNRs. Investigating the limitation on the accuracy of our
technique is the future work.
We note that there are various other techniques proposed

to reduce the cost of waveform evaluations in parameter
estimation. The reduced order quadrature (ROQ) technique
[23–25] approximates waveforms by the linear combina-
tions of basis vectors, and significantly reduces the number
of frequency samples where waveforms are evaluated. The
speed-up gain for BNS signal with the low-frequency
cutoff of 20 Hz is Oð102Þ [23,24], and it is increased to
Oð104Þ if basis vectors are constructed in narrow parameter
space [25]. The heterodyned likelihood [32,33] and relative
binning [30] methods assume waveforms sampled over
in parameter estimation are very similar to the template
waveform triggering the detection. The speed-up gain of
relative binning isOð104Þ for GW170817 [30], BNS signal
detected by the LIGO-Virgo collaboration. Compared to
those speed-up gains, the speed-up gain of our technique is
more modest. On the other hand, ROQ requires offline
basis construction, which needs to be done for each
waveform model we are interested in. The heterodyned
likelihood and relative binning methods require a reference
waveform, which is very similar to the true waveform.
Since our technique does not require any offline prepara-
tions or reference waveforms, it is more easy-to-use than
the other techniques. We also note that our technique can be
used to reduce the file size of ROQ basis vectors and speed
up the precomputations of ROQ, which is explained in
Appendix B.
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APPENDIX A: CHOICE OF WINDOW FUNCTION

Our technique is based on the approximation that the
windowed waveform in the bth band is vanishing at t≲
T − τðfðbÞ − ΔfðbÞÞ. We investigate the asymptotic behav-
ior of the windowed waveform at t < T − τðfðbÞ − ΔfðbÞÞ
for various window functions.

1. Stationary phase approximation

Each moment of a CBC waveform can be modeled as
follows,

hðtÞ ¼ AðtÞ cosΦðtÞ; ðA1Þ

where ΦðtÞ is defined so that Φ0 > 0, Φ00 > 0. In the
inspiral regime, the amplitude changes more slowly than
the phase, 



A0

A





 ≪ Φ0; Φ00 ≪ ðΦ0Þ2: ðA2Þ

In this regime, we can apply the stationary phase approxi-
mation to calculate the Fourier transform of hðtÞ [58],

h̃ðfÞ ¼
Z

∞

−∞
hðtÞe−2πiftdt ðA3Þ

≃
�
BðfÞe−iΨðfÞ; ðf > 0Þ
BðfÞeiΨðfÞ; ðf < 0Þ ðA4Þ

where

BðfÞ ¼
ffiffiffiffiffiffiffiffiffiffi
t0ðfÞp
2

AðtðfÞÞ; ðA5Þ
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ΨðfÞ ¼ −ΦðtðfÞÞ þ 2πftðfÞ − π

4
; ðA6Þ

and tðfÞ is the time at which Φ0ðtÞ ¼ 2πf.

2. Rectangular window

First, we consider the waveform windowed by a rec-
tangular window,

hðbÞðtÞ ¼ 2ℜ

�Z
fðbþ1Þ

fðbÞ
dfBðfÞe2πift−iΨðfÞ

�
: ðA7Þ

For t < tðfðbÞÞ, most of the contributions to the integral
come from around f ¼ fðbÞ. Thus, we expand the integrand
around f ¼ fðbÞ,

BðfÞ ≃ BðfðbÞÞ; ðA8Þ

ΨðfÞ ≃ΨðfðbÞÞ þ 2πtðfðbÞÞðf − fðbÞÞ
þ πt0ðfðbÞÞðf − fðbÞÞ2; ðA9Þ

and approximately evaluate the integral as follows,

hðbÞðtÞ ≃ 2ℜ

�
BðfðbÞÞe2πifðbÞt−iΨðfðbÞÞ

×
Z

∞

fðbÞ
dfe−2πiðf−fðbÞÞðtðfðbÞÞ−tÞ−iπt0ðfðbÞÞðf−fðbÞÞ2

�

≃ AðtðfðbÞÞÞℜ
�
e2πif

ðbÞt−iΨðfðbÞÞ

×

0
B@−

i
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
tðfðbÞÞ − t

þ 1

4π2

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
tðfðbÞÞ − t

1
CA

3
1
CA
3
75;

ðA10Þ

where we have used

Z
∞

0

e−ipx−iqx
2

dx ¼ −
i
p
þ 2q
p3

þO
�
1

p5

	
; ðA11Þ

for p > 0 and q > 0. (A10) means hðbÞðtÞ has a long tail
inversely proportional to tðfðbÞÞ − t, which degrades the
accuracy of our technique.

3. Smooth window

Next, we consider the smooth window given by (9),

hðbÞðtÞ ¼ 2ℜ

�Z
fðbþ1Þ

fðbÞ−ΔfðbÞ
dfwðbÞðfÞBðfÞe2πift−iΨðfÞ

�
:

ðA12Þ

Using the approximations, (A8) and (A9), we can approx-
imately evaluate the integral from fðbÞ − ΔfðbÞ to fðbÞ,

Z
fðbÞ

fðbÞ−ΔfðbÞ
dfwðbÞðfÞBðfÞe2πift−iΨðfÞ

≃ AðtðfðbÞÞÞe2πifðbÞt−iΨðfðbÞÞ

×

2
64 i
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
tðfðbÞÞ − t

−
1

8π2

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
tðfðbÞÞ − t

1
CA

3

þ i
32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
ðΔfðbÞÞ2ðtðfðbÞÞ − tÞ3

×
�
1þ e2πiΔf

ðbÞðtðfðbÞÞ−tÞ−πit0ðfðbÞÞðΔfðbÞÞ2
�375; ðA13Þ

where we have used

Z
0

−1
ð1þ cosðπxÞÞe−ipx−iqx2

¼ 2i
p
−
4q − iπ2ð1þ eiðp−qÞÞ

p3
þO

�
1

p4

	
: ðA14Þ

The integral from fðbÞ to fðbþ1Þ is the same as (A10), and
the windowed waveform is given by

hðbÞðtÞ ≃ AðtðfðbÞÞÞ

×ℜ

2
64 i
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
ðΔfðbÞÞ2ðtðfðbÞÞ − tÞ3 e

2πifðbÞt−iΨðfðbÞÞ

×
�
1þ e2πiΔf

ðbÞðtðfðbÞÞ−tÞ−πit0ðfðbÞÞðΔfðbÞÞ2
�375: ðA15Þ

Its amplitude is quickly attenuated in proportion to
ðtðfðbÞÞ − tÞ−3,

jhðbÞðtÞj ≤ AðtðfðbÞÞÞ
8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
ðΔfðbÞÞ2ðtðfðbÞÞ − tÞ3 ; ðA16Þ

and this smooth window is more appropriate than the
rectangular window to be used for our technique.

4. Square-root of smooth window

Finally, we consider the square-root of the smooth
window,
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hðbÞðtÞ ¼ 2ℜ

�Z
fðbþ1Þ

fðbÞ−ΔfðbÞ
df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðbÞðfÞ

q
BðfÞe2πift−iΨðfÞ

�
;

ðA17Þ

which is used in the IFFT-FFT method for the computation
of ðh;hÞ. The integral from fðbÞ − ΔfðbÞ to fðbÞ can be
approximately evaluated as follows,

Z
fðbÞ

fðbÞ−ΔfðbÞ
df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðbÞðfÞ

q
BðfÞe2πift−iΨðfÞ

≃ AðtðfðbÞÞÞe2πifðbÞt−iΨðfðbÞÞ

×

2
64 i
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
tðfðbÞÞ − t

−
1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
ΔfðbÞðtðfðbÞÞ − tÞ2

× e2πiΔf
ðbÞðtðfðbÞÞ−tÞ−πit0ðfðbÞÞðΔfðbÞÞ2

3
75; ðA18Þ

where the following formula has been used,

Z
0

−1
cos

�
π

2
x

	
e−ipx−iqx

2

dx ¼ i
p
−
πeiðp−qÞ

2p2
þO

�
1

p3

	
:

ðA19Þ

Thus, the windowed waveform is approximately given by

hðbÞðtÞ ≃ −
AðtðfðbÞÞÞ

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðfðbÞÞ

q
ΔfðbÞðtðfðbÞÞ − tÞ2

× cosð2πfðbÞt −ΨðfðbÞÞ þ 2πΔfðbÞðtðfðbÞÞ − tÞ
− πt0ðfðbÞÞðΔfðbÞÞ2Þ; ðA20Þ

and it is quickly attenuated in proportion to ðtðfðbÞÞ − tÞ−2.

APPENDIX B: APPLICATION TO ROQ

Our technique can be used to reduce the file size of ROQ
basis vectors and speed up the precomputations of ROQ.
ROQ approximates template waveforms by the linear
combinations of reduced basis vectors fBjgNL

j¼1 [23–25],

h̃ðfkÞ ≃
XNL

j¼1

BjðfkÞh̃ðFj; tc ¼ 0Þe−2πifktc ; ðB1Þ

where fFjgNL
j¼1 is the subset of frequency samples deter-

mined by the empirical interpolation algorithm (See the
algorithm 2 of [59]). Substituting it into the original form of
ðd; hÞ, (3), we obtain

ðd; hÞ ≃ℜ

�XNL

j¼1

ωjðtcÞh̃ðFj; tc ¼ 0Þ
�
; ðB2Þ

ωjðtcÞ≡ 4

T

XbðN−1Þ=2c

k¼1

d̃�kBjðfkÞ
Sk

e−2πifktc : ðB3Þ

fωjðtcÞgNL
j¼1 are referred to as ROQ weights, and need to be

precomputed before sampling. On the other hand, sub-
stituting (B1) into our approximate form of ðd; hÞ, (24), we
obtain

ðd;hÞ ≃ℜ

�XNL

j¼1

ωMB
j ðtcÞh̃ðFj; tc ¼ 0Þ

�
; ðB4Þ

ωMB
j ðtcÞ

≡XB−1
b¼0

4

TðbÞ ×ℜ

� XKðbÞ
e

k¼KðbÞ
s

wðbÞðfðbÞk ÞD̃ðbÞ�
k BjðfðbÞk Þe−2πifðbÞk tc

�
:

ðB5Þ

The computation of (B5) requires basis vectors only at
KMB frequency samples while (B3) requires them at all the
Korig frequency samples. This means we do not need to store
basis vectors at all the frequency samples under our
approximation, and their file size can be reduced by a factor
of Korig=KMB. Since the size of basis vectors for BNS
waveforms can be Oð10Þ GB or even larger, this is practi-
cally useful. Comparing (B3) and (B5), we also find that our
technique reduces the floating-point operations required to
calculate ROQ weights by a factor of Korig=KMB.
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