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In this paper, we investigate the deflection of a charged particle moving in the equatorial plane of Kerr-
Newman spacetime, focusing on weak field limit. To this end, we use the Jacobi geometry, which can be
described in three equivalent forms, namely the Randers-Finsler metric, the Zermelo navigation problem,
and the (n + 1)-dimensional stationary spacetime picture. Based on Randers data and Gauss-Bonnet
theorem, we utilize the osculating Riemannian manifold method and the generalized Jacobi metric method,
respectively, to study the deflection angle. In the (n + 1)-dimensional spacetime picture, the motion of
charged particle follows the null geodesic, and thus we use the standard geodesic method to calculate the
deflection angle. The three methods lead to the same second-order deflection angle, which is obtained for
the first time. The result shows that the black hole spin a affects the deflection of charged particles both
gravitationally and magnetically at the leading order [O([M]?/b?)]. When gQ/E < 2M, a will decrease (or
increase) the deflection of prograde (or retrograde) charged signal. If ¢Q/E > 2M, the opposite happens,
and the ray is divergently deflected by the lens. We also show that the effect of the magnetic charge of the

dyonic Kerr-Newman black hole on the deflection angle is independent of the particle’s charge.
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I. INTRODUCTION

The deflection of light caused by gravitational field is
a prediction of general relativity, and it was observed by
Eddington’s team in 1919 [1,2]. In addition to testing
theories of gravity, the deflection effect can also be used
to distinguish between a wormhole, a naked singularity,
and a black hole [3-6] and also to study the thermo-
dynamics of anti—de Sitter black holes [7]. Moreover,
based on the deflection of light, gravitational lensing has
become a powerful tool to measure the mass of galaxies
and clusters [8-10], and to search for dark matter and
dark energy [11-15]. The usual way to study the
gravitational deflection angle is to calculate the null/
timelike geodesic in four-spacetime, that is, the standard
geodesic method [16]. Recently, a widely popular
optical metric method (OMM) using the differential
geometrical formalism in three-space defined by the
optical metric, has been proposed by Gibbons and
Werner [17,18].

Optical geometry (also called optical reference geo-
metry or Fermat geometry) was first introduced by Weyl
in 1917 [19]. For an (n + 1)-dimensional static spacetime
with metric
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ds® = g,df® + gydx'dx/,  i,j=1,2,...n (1)

the optical metric reads

= -9 qxiqy. 2)
i

According to Fermat’s principle, the motion of light in this
(n + 1)-dimensional spacetime is governed by the geodesic
of an n-dimensional optical space. The main point of
the OMM in Ref. [17] was to link the geometric properties
of optical metrics with gravitational lensing, which is
achieved through the application of the Gauss-Bonnet
theorem. As a result, the weak gravitational deflection
angle of light can be obtained by integrating the Gaussian
curvature of the optical metric. This method shows that
gravitational lensing can be viewed as a global effect. In
addition, the topological effects of light ray was studied
using optical geometry and the Gauss-Bonnet theorem
[20,21]. The OMM pioneered by Gibbons and Werner has
evolved into an active direction of research. Works about
spacetimes with different symmetry, asymptoticity, and
signals of different types have been carried out. For
example, the deflection of light via optical metric and
Gauss-Bonnet theorem has been explored in different static
spacetimes such as the Ellis wormhole and the Janis-
Newman-Winicour wormhole spacetimes [22], the charged
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wormhole spacetime in Einstein-Maxwell dilaton theory
[23], as well as some asymptotically nonflat spacetimes
[24-26]. Other contributions include deflection of light in a
plasma medium [27], the influence of the Brane-Dicke
coupling parameter, dilaton field and nonlinear electrody-
namics on the lensing of light [28-30], and so on.
Furthermore, Ishihara et al. used the optical metric and
the Gauss-Bonnet theorem to study the finite distance
deflection of light in static gravitational fields, in both
the weak and strong deflection limits [31,32]. In this
case, the receiver and the source are assumed to be at a
finite distance from a gravitational lens. Another study on
the finite distance deflection of light can be found in the
work of Arakida [33]. Furthermore, the initial OMM was
also extended to stationary spacetimes because of their
relevance in astrophysics.

However, in stationary spacetime where optical geom-
etry is defined by a Randers-type Finsler metric [34],
we encounter the difficulty of an intrinsically Finslerian
description of the Gauss-Bonnet theorem. To solve
this problem, Werner [35] constructed an osculating
Riemannian manifold of the Randers-Finsler manifold
using Nazim’s method [36], which can be used to study
the propagation of light. Werner’s method has been used
to different stationary fields, for instance, rotating worm-
hole and rotating regular black holes [37,38], as well as
asymptotically nonflat stationary fields such as rotating
cosmic string and rotating global monopoles [39-41]. The
other technique that uses the Gauss-Bonnet theorem to
calculate the deflection of light in a stationary spacetime
is the so-called generalized OMM, established by Ono,
Ishihara, and Asada [42-44]. By Fermat’s principle, one
can assume that the light ray moves in a Riemannian space
and is affected by a one form. As a result, the motion of
light no longer follows the geodesic in the Riemannian
space, so the influence of the geodesic curvature on the
deflection angle needs to be considered. The generalized
OMM was popular in recent studies [45-48].

In general, through optical geometry and Gauss-Bonnet
theorem, the weak gravitational deflection problem of light
can be solved elegantly. From both a theoretical and an
experimental point of view (in addition to photons) people
are also interested in the deflection and lensing of massive
particles. A natural consideration is to extend this geo-
metric method to the particle case. To this end, we need to
use the Jacobi metric formalism. Based on Maupertuis’s
principle, the trajectories of a given mechanical system of
constant total energy, are geodesic within the Jacobi
metric. The Jacobi metric is one of the main tools of
geometric dynamics and has been used to study various
mechanical problems under the framework of Newton’s
theory [49-51]. Gibbons first established the Jacobi metric
for a neutral massive particle moving in a static spacetime
[52]. Chanda, Gibbons, Guha, Maraner, and Werner sub-
sequently extended this work to stationary spacetime [53].

As mentioned before, null geodesics in an (n+ 1)-
dimensional spacetime correspond to geodesics in the
corresponding n-dimensional optical space. Similarly,
timelike rays in an (n + 1)-dimensional spacetime corre-
spond to geodesics in n-dimensional Jacobi space. The
same principle holds in the presence of electromagnetic
fields [54,55]. Using the Jacobi metric and the Gauss-
Bonnet theorem, the deflection of massive particles in both
static and stationary spacetimes was studied [56-60].
Among other things, Werner’s method and the generalized
OMM have been extended in these studies. In addition, the
Gauss-Bonnet theorem was used to calculate the deflection
angle of massive particles by establishing the correspon-
dence between light rays in a medium and particle rays in
spacetime [27,61-64].

In [60] we considered the deflection of charged particles
in a charged static spacetime using the Gauss-Bonnet
theorem. In this paper we will further extend the study
of charged particle deflection to stationary spacetime. The
Jacobi geometry of a charged particle in charged stationary
spacetime is also defined by a Randers-Finsler metric.
Therefore, we can use the osculating Riemannian mani-
fold method (ORMM) and the generalized Jacobi metric
method (GIMM) to calculate the deflection angle of a
charged particle. Mathematically, Randers data and Zermelo
data are equivalent. The solution of the Zermelo navigation
problem on the Riemannian manifold is a Randers metric.
Conversely, any Randers metric corresponds to a Zermelo
navigation problem [65]. Therefore we will also state the
Zermelo data equivalent to the Randers metric. There is also a
third equivalent expression saying that the geodesic flow in
an n-dimensional Randers space can be regarded as the null
geodesic flow in the corresponding (n + 1)-dimensional
stationary spacetime [65]. From this viewpoint, one can
treat charged particles as photons in the (n 4 1)-dimensional
stationary spacetime, and then calculate its deflection angle
via the null geodesic. The most typical charged and rotating
solution is the Kerr-Newman (KN) black hole [66,67],
characterized by its mass, spin angular momentum and
charge. In literature, the lensing of KN spacetime has been
widely discussed regarding equatorial light rays [68—70], any
arbitrarily incident direction light rays [71], and equatorial
neutral massive particles [72-76]. What is worth mentioning
here is Jusufi’s work on the deflection of charged particles in
KN spacetime [64]; Jusufi used a Riemannian optical metric
and the Gauss-Bonnet theorem. However, Jusufi did not
study the unique effect of black hole rotation on charged
particles. In this work we investigate this interesting question
by calculating the deflection angle of a charged particle in the
equatorial plane of a KN black hole, using Werner’s ORMM,
the GIMM, and the standard geodesic method, respectively.

This paper is organized as follows. In Sec. II, we shall
first review the Jacobi-Randers metric for charged particles
in general stationary spacetime. Then, we will discuss its
other two equivalent descriptions, namely the Zermelo
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navigation problem and the (n + 1)-dimensional stationary
spacetime picture. Finally, we introduce the Gauss-Bonnet
theorem and apply it to the lensing geometry to obtain a
general formula for calculating the deflection angle. In
Sec. III we will derive for the KN spacetime, the Jacobi
geometry described by the Randers metric, the Zermelo
navigation problem, and the (n + 1)-dimensional stationary
spacetime data, respectively. In Sec. IV, we calculate the
weak deflection angle of charged particles via the geodesic
method, Werner’s ORMM, and the GIMM, respectively.
Finally, we end our paper with a short conclusion in Sec. V.
Throughout this paper, we use the natural unit G = ¢ =
1/(4ze) = 1 and the spacetime signature (4, —, —, —).

II. JACOBI METRIC OF CHARGED PARTICLES
IN STATIONARY SPACETIME AND THE
GAUSS-BONNET THEOREM

In this section, we first review the Jacobi metric for a
charged massive particle in a stationary spacetime accord-
ing to Chanda [55]. Then, learning from Gibbons et al. [65]
we discuss the equivalent description of the Jacobi metric in
Zermelo navigation problem and the (n + 1)-dimensional
stationary spacetime picture. Finally, we will introduce the
Gauss-Bonnet theorem for curved surfaces and apply it to
lensing geometry.

A. Jacobi-Randers metric

Let us begin by writing the line element of a stationary
spacetime

ds® = g, (x)di* + 2g,(x)dtdx’ + g;;(x)dx'dx/, (3)

and the Lagrangian of a charged particle of mass m, charge
g, and energy E can be written as

L= —m\/gaﬁfc“fcﬂ + gA x"“, (4)

where dot means the derivative with respect to t and A, is
the electromagnetic gauge potential. The momentum con-
jugate to ¢ and x' are respectively

oL m(g,t + gux'
_ _ (Gut + 9y )+q

o -
9 1/gaﬁx‘xﬁ

oL m(g;;x + g,it)
T vl
gaﬂx“xﬂ

From Egs. (5) and (6), one can obtain

Pt

+ qA;. (6)

A X A - :
piid = my [T i — (E o+ gA) P+ A
Gap X~ X Iu
(7)
where
91191
Yij = —9ij + = (8)
u
In addition, Eq. (5) leads to the identity
2 yik' % 2
m=g,( 1+ Ry = (E+qA,)*. )
GapX®x

Combining Egs. (7) and (9), the Jacobi metric do = p;dx’
can be written as [55]

F(x,dx) = do(x, dx)
= p;dx'

= \/a;dx'dx! + pidx’, (10)

where

E A 2 _ 2
a;; = (E+gq ;) m grtyij, (11)
I

B = gA; — (E + qA,) %1 (12)

1t
Equations (10)—(12) form a Randers type Finsler metric,
where @;; is a Riemannian metric and f; is a one form,
satisfying the positivity and convexity [77]

1Bl = \/aij/}iﬁj <1 (13)

The Jacobi metric of charged particles given by Egs. (10)-
(12) can be reduced in the neutral particle case by setting
q =0, to [53],

E? —m? 0\ o
dSJ = 7’” gtl <_gl] + —gt g”) d.xld.x] - E&d.xl.
it it it

(14)

Letting ¢ = m = 0 and E = 1, (14) further reduces to the
optical metric,

dt = <—@ + gLf”) didxl = %igyi. (15)
9u It G

In addition, when g,; = 0, Egs. (10)—(12), Eq. (14) and (15)
correspond to the Jacobi metrics of charged particles, of
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neutral particles, and the optical metric in a static space-
time, respectively.

In the following two subsections, before proceeding to
further study the deflection of a charged particle, we will
respectively give the other two equivalent forms of the
Randers form of the Jacobi metric Egs. (10)—(12) in order
to better understand the different methods used in Sec. IV.

B. Zermelo navigation problem

In 1931, Zermelo considered a time-optimal control
problem; how to solve the shortest time path of particles
moving in Euclidean space and affected by a vector field
[78]. For a Riemannian metric h;; and a time indepen-
dent vector field W/ (wind), Shen showed that a natural
solution of Zermelo navigation problem is the Randers
metric [79]. In general, one can obtain the Randers data
(a;;. ;) from Zermelo data (h;;, W) by the following
transformation [65]

ijs

A + W W,
ay == (16)
W.
=t 17
pi=—= (17)
where

Conversely, for Randers data («;;, #;), there is correspond-
ing Zermelo data [65]

hij = /1(“5; _ﬂiﬁj)7 (19)
i P
W= T (20)
where
A= 1—aijﬂiﬂj, ﬂi:aijﬂj' (21)

In short, Randers data (o;;, f;) and Zermelo data (h;;, W')
are equivalent.

C. (n +1)-dimensional stationary
spacetime picture

Gibbons et al. proposed another equivalent viewpoint,
namely that the geodesic flow in an n-dimensional Randers
space can be regarded as the null geodesic flow inan (n + 1)-
dimensional stationary spacetime. Given an n-dimensional
Randers space (a;;, f;), this (n + 1)-dimensional stationary
spacetime can be constructed as [65]

d§? = gydx'dx! = V2[(dt — pdx')? — a;dx'dx’],  (22)

where V is a conformation factor. Since null geodesics are
conformally invariant, the choice of V is very arbitrary.
Considering the Jacobi-Randers metric given by Eqgs. (10)—
(12) it is more convenient to choose

i
V:= . (23)
(E + th>2 - ngtt

One can verify that for the optical metric of spacetime

(22) we have
dt = \/aijdxidxj + ﬁidxi, (24)

which is the same as the Jacobi metric F(x, dx) given in
Eq. (10). Since the time ¢ in above equation is not the
physical time, following the idea of Ref. [61], one can
define a new Jacobi metric based on F(x, dx) as follows:

F(x, dx)

F(x,dx) =

= % (\ [a;dx'dx —|—ﬁ,~dxi)
= \/a;dx'dx) + Bdx', (25)
J

where

@ _ (1 =+ qTAt)z - (%)Zgzt

Aj; = Yiis 26
! E? i / ( )
~ B qA; qA:\ Gii

=rt T (g ) T 27
pi=p == () (7)

In terms of the new Randers data (dl-j,[},-), the (n + 1)-
dimensional stationary spacetime metric (22) can be
rewritten as

d§2 = g,-l/-dx"dxj = Vz[(dt —ﬁidxi)z - dijdxidxj], (28)
where

it

e .
(1 + %)2 - (%)zgtt

(29)

In this paper, we will take the viewpoints of Ref. [61] to
directly correspond the geodesic motion of charged par-
ticles in the n-dimensional Jacobi-Randers space to the null
geodesic motion in the (n 4 1)-dimensional stationary
spacetime described by Eq. (28).

D. Gauss-Bonnet theorem and deflection
angle formulas

We assume that the trajectory of the particle lies in
a two-dimensional space called lensing geometry. In this
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Cro

R

FIG. 1. A region D, C(M,g;) with boundary
BD,U =nUC,. S, R and L denote the source, the receiver,
and the lens, respectively. 0 is the deflection angle.

subsection the Gauss-Bonnet theorem will be applied to the
lensing geometry and the formulas for calculating the
deflection angle using curvature are obtained.

Let D be a subset of a compact, oriented surface with
Gaussian curvature K and Euler characteristic number
(D), and its boundary 0D be a piecewise smooth curve
with geodesic curvature k. The Gauss-Bonnet theorem
states [80]

/[)de+7ngd1+;¢i:2ﬂx(D), (30)

where dS is the area element, d!/ is the line element of the
boundary, and ¢; is the jump angle in the ith vertex of 9D in
the positive sense.

This can be applied to the lensing geometry (M, gF;)
with coordinates (r, ¢), which contains D, (see Fig. 1): A
nonsingular and asymptotically Euclidean region. The
boundary of the region 0D, =nU C, , where 5 is the
particle ray from the source S to the receiver R, and C, is a
curve defined by r = ry = constant. We can see that
x(D,,) = 0 because D, is a nonsingular region.

The Gaussian curvature of (M, glL]) can be calculated by
the following equation [35]

P a(@r%)_a(@rgj)’ 1)

/det g* P or

where detg” denotes the determinant of metric g;. For
the geodesic curvature part, when ry; — oo, we have
k(C,,)dl — d$, and therefore [. k(Cy)dl= [& ag,
with 6 the asymptotic deflection angle. For the jump angles
in § and R, denoted as ¢y and @y respectively, we see that
@r + @5 — 7 as ry — oo. Putting them together according
to Eq. (30), we have

R P,
// de—/ K(n)dl+/Rd¢+(pR—|—(p5
D S S

0

00 R T+0
= // KdS - / Kk(n)dl + / dp+ =
Dy s 0

=2r. (32)

From this we can solve the deflection angle as

5:—//)deS+ARK(n)dl. (33)

In particular, when the particle ray # is a geodesic,
k(1) = 0, the deflection angle simplifies to

5= —/A Kds. (34)

III. KERR-NEWMAN-JACOBI GEOMETRY
FOR CHARGED PARTICLES IN
THREE FORMS

In this section, the Jacobi metric in three equivalent
descriptions introduced in Sec. II will be specifically
applied to KN spacetime to prepare for the computation
of the deflection angle using the different methods in the
next section.

The line element of KN spacetime in Boyer-Lindquist
coordinates reads [66,67]

2Mr — Q? z
o (4 2_E 2 yam
ds® = (1 5 )dt Adr 2do
_
— sin%0 (r2 +a*+ wazsin@) d¢?
2Mr — Q?

+ 2asin29rTQd¢dt, (35)

where

Y = 12 + a*cos?6, A=r>=2Mr+a*+ Q>

and, M, Q, and a are the mass, charge and angular
momentum per unit mass of the black hole, respectively.
Its gauge field is

A dxt = % (dt — asin®0dg). (36)

A. KN-Jacobi-Randers metric

Substituting the KN metric (35) and the gauge field (36)
into Egs. (8) and (10)—(12), the KN-Jacobi metric for a
charged particle in Randers form can be written as

F(x,dx) = do = \/a;;dx'dx’ + pdx',

Bidxt = B,dg. (37)

—y-2
a; = V7,
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where V=2, y;;, B, are given by

- (E _ CI_Q")Z —m2 A—a?sin’0
4 2= = A—a?sin?0 = ’ (38)
D 20
pydxid =< dr* + 36 + sin [( 24 2y
2(2Mr — Q%)?sin’0
_ 2A : 29 a ( d 2
@A T T i) } a
(39)
asin’0 3 5
Po = Siasmg—ay 997 HEM - A
+ a?(EZ — qQr) + a*qQrsin®d]. (40)

The Finsler condition (13) becomes

2[qu + E(Q? — 2Mr))?sin’0
[(qOr — EX)? — m*Z(A — a’sin’6)]A

B> = <1.

B. KN-Jacobi metric in Zermelo form

From Randers data (;;, #;) given by Egs. (37)-(40), one
can write the KN-Jacobi metric in the Zermelo data form
via transformation (19)—(21) as follows:

hijdxidxj =(1- ‘ﬂ|2)(v_2}’ijdxidxj —ﬁéd¢2),
i a __a[qu+E(Q2—2Mr)}£ (41)
oxt (1= [g*)V2AL  0¢°

Let g=m =0 and E =1, the optical Zermelo metric
reduces to

.. H(r.0)(dr
hijdx dxf :T <T+d€2+T
iia(ZMr—Qz)g
oxt H(r,0) 0¢’

i

where

H(r,0) = (a* + r*)* — a®Asin®6.
For the Kerr black hole, O = 0 and the optical Zermelo
metric becomes

. H(r,0) (dr H(r,0)sin’0
dxtdy = 2 TN )R T g2
h;;dx'dx A (AK + do- + 5 d¢
.0 2aMr 0
Wi—= -, 43
ox' H(r,0)d¢ (43)

where Ag = r? —2Mr + a’.
Eq. (97) of Ref. [65].

This equation agrees with

C. (n+1)-dimensional stationary spacetime
picture of the KN-Jacobi geometry

Substituting Randers data (a;;, f5;) in Eqgs. (37)-(40) into
Eqgs. (26) and (27), the new Randers data (a; j,ﬁi) can be
obtained. Then one can use the three-dimensional Randers
data (q; ,,ﬂ) to write the (3 + 1)-dimensional stationary
spacetime form of Jacobi metric based on Eq. (28), i.e.,

482 = V2[(di - dx')? — aydeid)).  (44)

Since the purpose of this paper is to calculate the second-
order deflection angle, one can expanded the components
of metric (44) as power series of 1/r. For simplicity,
this article only considers motion in the equatorial plane
(6 = %), and then the result of the components of this metric
reads

1 2M+2qQ\/1 — v 4M*(1 - %)
9 = PRI mrot 200
4Mqu( - %) 2
B mrv® + rrvt
0% (4 =507 +v* [M]?
+ 2200 + O 3 (45)
_ 2M  AM? Q2 + a?
Grr = — 1+r+ +0O ’ (46
M)
_ 2Ma aqQV'1—1? M)?
o= e _aaQViov oM )
rv mro r

in which we have used

(49)

with v being the asymptotic velocity of the charged particle.
Here and henceforth, in the higher order corrections we use
[M]" to collectively denote products of {M, Q,a,q,m™'}
with dimension M". For example, [M]* might include terms
proportional to M3, M>?Q,MQ?, ...,aqQ?*/m, ... etc.

IV. DEFLECTION ANGLE OF CHARGED
PARTICLE BY A KERR-NEWMAN BLACK HOLE

In this section we will calculate the second-order
deflection angle of charged particle moving in the equa-
torial plane of KN spacetime, using the Randers data and
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the (n + 1)-dimensional stationary spacetime picture pre-
sented in the previous two sections. For the KN-Jacobi-
Randers geometry, we will use two methods utilizing the
Gauss-Bonnet theorem. The first one is Werner’'s ORMM
and the other one is the GJMM. Using the (n+ 1)-
dimensional stationary spacetime picture, we can calculate
the deflection angle by null geodesics.

Because particle orbits are required regardless of the
method, we will first consider the geodesic method which
solves the deflection angle iteratively. It should be noted
that applying the Gauss-Bonnet theorem to calculate the
second-order deflection angle requires only first order orbit
information.

A. Geodesic method using iteration

The spiritual essence of this subsection is to correspond
the nongeodesic motion of charged particles in KN space-
time with gauge filed or the geodesic motion of particle in
three-dimensional Randers space to the geodesic motion
of light in (3 + 1)-dimensional stationary spacetime. We
can use the geodesic equation of photons to calculate the
deflection angle. Considering the equatorial plane 6 = 7 /2,
the Lagrangian of a photon in (3 4 1)-dimensional sta-
tionary spacetime described by metric (44) is

2L = G, 35 = Gui® + 20t b+ G + Gpgd”. (50)

Then one can obtain its conserved energy E and conserved
angular momentum J,

(gtti + gtqﬁq'ﬁ) =E, (51)
— (Gigl + Gpp) = J. (52)

Combining Egs. (50)—(52) and considering the null con-
dition L = 0, one obtains the following orbit equation

<£) 2 . (bzvzgtt +2bvgy + g(/’)(/’))(gttgq’)(/) - gtz(/))
d¢ (bvgtt + gtqﬁ)zgrr .

Note that we have use bv = J/E, with b being the impact
parameter. Using the metric component of the three-
spacetime given by Egs. (45)—(48), this orbit equation
can be solved using the iteration method, as show in
Appendix A. In this case, the calculation of the deflection
angle is very straightforward and intuitive. The result of the
deflection angle is [see Eq. (A7)]

(53)

1 §gOVI—v*\M
5:2(1+_2_‘]Q72”)_
v v b
1 1 1 1\~ 4a
3rl-+— | —xn|- R
+{ ﬂ<4+112) 7[<4+202)Q v
3 N 24 4
220V -2+ 250V 1 -2
v v
T, M? [M]?
+2_1)2 2Q2(1—1}2)}?+O<7 5 (54)

where the charge-to-mass ratio § =g/m, Q = Q/M,
and a = a/M.

B. ORMM using Randers data

With Randers data (a;;, f;), this and the next subsections
will use the Gauss-Bonnet theorem to study the deflection
of a charged particle. We consider Werner’s ORMM first.

The Hessian of a Finsler metric F(x,y) with a smooth
manifold M reads [77]

1 0*F?(x,

9ij(x,y) = E# (55)
where (x,y) € Ty, with T, being the tangent bundle of M.
In Ref. [35] Werner applied Nazim’s method to construct an
osculating Riemannian manifold (M, g) of the Finsler
manifold (M, F). Following [35], one can choose a smooth
nonzero vector field Y tangent to the geodesic 7, i.e.,
Y(nr) =y, and thus the osculating Riemannian metric can
be obtained from the Hessian and the geodesic

ij(x) = g;;(x, Y(x)). (56)

In this construction, the geodesic 7y of (M, F) is also a
geodesic 17; of (M, ). On the equatorial plane (6 = 7/2),
the Finsler metric of Randers type given by Eqgs. (37)—(40)
leads to

F(}", ¢’ Y, Y(/)) = \/ aij(r’ ¢)YZY] +ﬁ(/)(r7 ¢)Y{/)7 (57)

where

. r? rrA
R s

vop]. e

al[2= (Q? —2Mr) + qQr]

ﬂ(ﬁ — 1—v - a2 , (59)
(90 — +)?
v = e, (60)

Considering the zeroth-order particle ray r = b/ sin ¢ [see
Eq. (A2)] one can choose the following vector fields (see
Werner [35] for a detailed discussion)

Yf:ﬁz_i”]_”zcos‘l” (61)
do muv
V1= 2 cin2
y¢:@:ﬂ‘ (62)
do bvm

Now substituting Egs. (57)-(60) into Eq. (55), the Hessian
can be obtained in terms of Y and Y?. Substituting this
together with Egs. (61) and (62) into Eq. (56), the metric of
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the osculating Riemannian metric can be found. Because of
its excessive length, we only list its components in
Appendix B.

Since the particle ray is a geodesic in (M, g;;) and
D, C (M,g,;), the deflection angle can be calculated by
Eq. (34), written in more detail as

5__// ['(ds——/”/m K \/detgdrdp, (63)
Dy, 0 Jr(g)

where K is the Gaussian curvature of the osculating
Riemannian metric and can be computed by substituting
Egs. (B1)=(B3) into Eq. (31). To order O(1/r*) the
Gaussian curvature is found to be

+ (1 —% 1 GoV1=v?
2\ s 3\ 0% (1 -

(1430 2( ‘F) 7 Lw

—l—O([]:I—S]), (64)
where [35]

sin®¢ [ . (Sr ) >
p) = |2 ing -2

f(r.¢) (cosd +;—22sin4¢)7 cos®¢p 5 sin ¢

3
+ cos4qbsin2¢< -2+ 9—s1n¢> 105 s sin ¢>

+4 % cos’gsin’ < + 2 —sing — — s1n2¢>

5 (~Lsintg + 2 Dsinl g+ sin'(29)

— | ——sin — sin sin .

p*\ b b’

Using this and the first-order particle orbit in Eq. (A2), the
deflection angle can be obtained by Eq. (63) and the result
reads

1 gOvVI—v*\M
s—of14 L 4QVi-vAM
v? v? b
11 1 1\,., 4a
3a(-+— ) -7+ |0 ——
+{ ﬂ<4+112) 7[<4+202 0 v
37, » 20 4
2290V -2+ 250V 1 -2
v v
T . M? N
_1_2_1]2 2Q2(1—y2)}?+(’)<—3 , (65)

One can find that Eq. (65) is in perfect agreement with
Eq. (54). Setting ¢ = 0, the result reduces to the deflection
angle for neutral particles in KN spacetime [81]. Setting
a = 0 leads to the deflection angle of charged particles in
Reissner-Nordstrom spacetime [60,82].

C. GJMM using Randers data
In this subsection we still use Randers data (a;;,p;).
However, the particle now is supposed moving in
Riemannian space described by a;;

dI* = a;;dx'dx’. (66)

In the spirit of GJIMM, the motion of the particles no
longer follows the geodesic. Using (M, a;;) D D, as the

lensing geometry, the deflection angle can be calculated by
Eq. (33). That is

5:/LmKdS+/SRK(n)dl

——[/r(:)K\/Mdrdf/wfx( )—¢d¢

= 5gau + 59607 (67)

where in the last step we have split ¢ into the Gaussian
curvature part &y, (the first term) and the geodesic
curvature part y,, (the second term).

The Gaussian curvature of «;; can be obtained by
substituting Eqs. (37)—(39) into Eq. (31) and reducing it
in the equatorial plane (0 = z/2). The result is

o )
(D30

+2<1-%) 212@2(1}12_1}2)] Afzﬁo([rﬂs]), (68)

Substituting this and the first order particle ray in Eq. (A2)
into Eq. (67), the Gaussian curvature part reads

3 A A M2
G0V -0+ 5207 (1 - v2>}—2
v 20 b
M3
+o(5h). (69)
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On the other hand, the geodesic curvature of particle ray
can be calculated by the following equation [42]

ﬂqﬁ.r

(deta)a® (70)

k(n) =—

O=n/2

Using the three-space metric a;; and one-form f; in
Egs. (37)-(40) in this, one obtains (1) to the order
O([M]/r?) as

Kn) = (2430 V1= VM o<[M4]2>.

Using this, together with the line element Eq. (66), the first-
order particle ray in Eq. (A2), the geodesic curvature part of
the geodesic angle can also be computed using Eq. (67).
The result is found to be

~ g2 3
Sgeo =2[-2+40V1 - 02]%%“9(%). (72)

Finally, combining Egs. (69) and (72), one can verify that
the total deflection angle 6 = 6., + J,, 1s consistent with
the result in Eq. (54) obtained by calculation of null
geodesic in (3 + 1)-dimensional stationary spacetime,
and the result (65) obtained by Werner’'s ORMM in
three-dimensional Randers space. It is also interesting to
note that the deflection caused by the spin of the spacetime
is only present in the geodesic curvature part §,,, and J,,
only contains terms involving the spacetime spin.

D. Discussion of results

The second-order deflection angle of a charged particle
in the equatorial plane of KN spacetime obtained by the
three methods is the same,

37, 24,
-0V P+ g0V
T M?
+2v2 2Q2(1—U2)}bz
M3
co(t1), -

This paper assumes that b > 0 if the trajectory initially
rotates counter-clockwise around the center but the space-
time spin a can be both positive or negative.

The result (73) is the deflection angle measured by
receiver at spacial infinity for rays from the source (also at
infinity). Recently, the finite distance effects on deflection
angle has attracted the interest of some authors [31,32,
57-60]. In this paper, we mainly focus on the concepts and
methodology; the computationally more complicated finite
distance deflection is put in Appendix C for reference.
When the distance between the source and the receiver
from the KN lens tends to infinity, the finite distance
deflection angle (C5) can lead to the asymptotic deflection
angle (73).

In Ref. [64], Jusufi used the Gauss-Bonnet theorem and a
Riemannian optical metric to obtain the following result
(see Eq. (32) of Ref. [64])

1 g0V1i—-v\M
5:2(L+2_4Q2v>
v v b

oo 2J5 el oo

Comparing Eq. (73) with (74), one finds that the following
new terms appear in our deflection angle

11\ M
5M2 = 371'(1-#;) ?, (75)
3250V1 — P M
Omgo = — 2 2’ (76)
~2 M2 2
ng*Q*(1—07) 1
5q2Q2 = 2/[]2 ﬁ, (77)

2aG0V1 -1  a2qQ 1
— s = . (78)
v b v E b

Saq0 =
Among these terms, 6.2, dy40, and 6,22 are respectively
the second-order contributions from the gravitational inter-
action, gravitational-electrical coupling, and pure electric
interaction. (They also appear in Reissner-Nordstrom
lensing of charged signals [60,82]).

Here we point out that the importance of our result lies in
the 6,40 term. It is known that the KN spacetime possesses
a magnetic field asymptotically resembling the magnetic
field caused by a dipole of moment J = aQ. On the
equatorial plane it is given asymptotically by [83]

(Br,Bg,B(/,) - <0,cj’—3Q,0> (79)

One can indeed show [84] that like 6,0, the deflection
caused by this magnetic dipole to a relativistic charged
particle in the equatorial plane in a flat spacetime is also

proportional to agQv'1 — v?/v. Therefore, we can identify
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0440 as the deflection caused by the magnetic dipole of the
KN black hole.

The most interesting consequence of §,,, becomes
apparent when we compare the effect of a on neutral
and charged particles. For a neutral massive particle
(g = 0), from the term

daM
Sy = ——— 80
aM v b2 ( )

of Eq. (73) it is seen that the spacetime spin a would
increase the deflection angle of retrograde particle ray, and
decrease the deflection angle of prograde ray, as was known
previously [76]. However, the effect of @ when Q # 0 on
the deflection of charged particles is different from that on
neutral particles, due to the existence of the 6., term.
Clearly, comparing 8,y With 6,40, if gQ/E < 2M, then the
deflection angle of the charged signal is qualitatively still
affected in the same way as neutral particles. However, if
qQ/E > 2M, the deflection angle would be increased for
prograde particle rays, and decreased for retrograde particle
rays. In particular, if gQ/E = 2M, the terms 8,2 and J,,¢
cancel; thus a does not contribute to the deflection angle at
this order. Indeed, at this value of ¢Q, since sign(¢Q) = 1,
the force between the lens and the signal is repulsive.
Moreover, the value of ¢gQ is so large that when letting
qQ/E — 2M in Eq. (73), one gets

122508
(el o) w

which is first order and therefore the entire o, obviously, is
negative. This fact shows that the particle is divergently
deflected by a KN black hole with parameters gQ/E > 2M.

Furthermore, one can consider a rotating black hole with
an electric charge Q and a magnetic charge P, the so-called
dyonic KN black hole, which has the same metric as the
KN black hole with Q? replaced by Q2 + P? [85]

2Mr - (Q* + P? z
ds2:<1— : (2Q+ ))dtz—Adrz—Zdez

2Mr — (Q? + P?
U= (@) oy

— sin?0d¢? {rz +a®+

-(@*+P)

2M
+ 2asin?0 2" s

dd.
where
Y =1’ +a’cos’ 6, A=r*=2Mr+a*+ Q>+ P2.

The gauge field is given by

A dxt = % (dt — asin0de)

+ gcos 0 ladt — (r* + a*)dg). (82)

In the equatorial plane (6 = x/2), one finds that the part
containing the magnetic charge P vanishes in A,.
Therefore, the influence of the magnetic charge P on
Jacobi geometry depends on the spacetime metric g,
but does not depend on the gauge field A, [see Egs. (11)
and (12)]. As a result, the deflection angle of a charged
particle by a dyonic KN black hole lens is

1 §g0V1I-v»*\M
=2\t 5
v v b

1.1 Lo T\ a2
+{3ﬂ.’<4+02> <4+2 >(Q —I—P)
%—3—”61Q 1—v2i7an\/1—v2

R M? M]3
LR @W+OC;) (83)

There is no coupling between the magnetic charge and the
charge of the particle. One can conclude that although the
magnetic charge has an effect on the deflection angle, this
effect makes no difference between neutral particles and
charged particles. It should be noted that the situation is
different if one consider the deflection beyond the equa-
torial plane.

V. CONCLUSION

In this paper, we have explored the deflection angle of a
charged particle by a KN black hole lens in the weak-field
limit. The full second-order deflection angle of charged
particle in KN spacetime is obtained in Eq. (73); to our
knowledge for the first time. It is revealed that to the leading
order the spacetime spin a manifests, i.e., the O([M]*/b?)
order a affects the deflection angle of charged particles both
gravitationally through the J,,, term and magnetically
through the 6,,0 term. The effect of a on the deflection
of charged particles is qualitatively different from that of
neutral particles when ¢Q/E > 2M; the deflection angle
would be increased (or decreased) by a for prograde (or
retrograde) motion of the charged signal. If ¢Q/E = 2M
parameter a does not contribute to the deflection angle at
order O([M]?/b?) and the entire deflection is actually
divergent due to the electric repulsion between the lens
and the signal. The dyonic KN black hole as a lens was also
considered. The result shows that, on the equatorial plane,
the magnetic charge P has the same effect on the deflection
of charged particles as on neutral particles.

To obtain the deflection angle we used the Jacobi
geometry for a charged massive particle in a stationary
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spacetime. The Jacobi geometry is defined by a Randers-
Finsler metric, which has two other equivalent descriptions,
i.e., Zermelo data and one dimension higher stationary
spacetime data. Because of the electromagnetic field, the
motion of a charged particle no longer follows a geodesic in
the background spacetime. However, the trajectory of
charged particle corresponds to geodesic in Randers space.
Based on Randers data (a;;,/5;) and the Gauss-Bonnet
theorem, we used ORMM and the GJMM to obtain the
deflection angle. It should be noted that in the latter
method, the background space is defined by generalized
Jacobi metric a;;, so the motion of the particles is non-
geodesic. In addition, we calculated the deflection angle of
null geodesics in (n + 1)-dimensional stationary spacetime
using the iteration method, based on the fact that the
geodesic in the n-dimensional Randers space can be
regarded as the null geodesic in a (n + 1)-dimensional
stationary spacetime [65]. In general, the two methods of
using the Gauss-Bonnet theorem link the geometric proper-
ties of a three-space with the gravitational lensing, while the
third method considers the null geodesic in (3 + 1)-space-
time. The results obtained by the three methods were shown
to agree exactly. There is also a fourth method, which uses
the Hamilton-Jacobi equation to calculate the deflection
angle in the background spacetime (see for example [64]).
In addition, the deflection of particles in the nonequatorial
plane is particularly worth studying. We will address this
problem in a future project.
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APPENDIX A: THE MOTION OF CHARGED
PARTICLES IN KERR-NEWMAN SPACETIME

This appendix uses the perturbation method to solve
[from Eq. (53)] the orbits of charged particles moving in the
equatorial plane of KN spacetime. Equivalently, it can also
be said to solve the orbits of photons in Jacobi three-
spacetime. For details of the method, readers can refer to
Ref. [86]. First, one can assume that in the large b limit, the
orbit takes a series form of b,

r(¢) = ri(#)b +ro(p) +roa()b7" -

where r;(¢)(i = 1,0, —1) are the coefficient functions of ¢
to be determined. Then, substituting this equation and the
metric of the stationary spacetime (45)—(48) into Eq. (53),
carrying out the expansion in b again, and throwing away
items of order two and higher in 1/b, one can obtain an
ordinary differential equation for each r;(¢) (i = 1, 0, —1).
The integral constants can be determined by taking the
2 i.e., %|4-z = 0. Finally, the
trajectory of the particle up to the second order in 1/b can
be obtained with the coefficients

(A1)

minimum value of r at ¢ =

1 2 V1 = 12csc?
r=——, ro= <c 2+ csc ¢>M+”72CSC¢[]Q,
sin ¢ v
2 csc? 1 —v2esc?p[6 + (2 + 8v?) cos(2¢) — 3v*(m — 2¢p) sin(2¢)] . 1 — v?csc?p .
2 25C8 O+ (480 o)~ 30 20 (200 3 VT=TsCt

[—4 4+ 160 + 2v*cos? ¢ + 30% (4 + v?) (7 — 2¢) cot(¢)

—8(1 + v?)%cot?¢] CSC¢M2

8uv*
N [4 + 20%cos?p + (2 + v?)(x — 2¢) cot ¢ csc ¢

0+

(1 =23 (2(1 = v?) — v* (7 — 2¢p) cot ¢ + 4 cot>¢h) (:SCQSEIZQ2

8?2

4%
(A2)

According to this perturbation solution, we can also use radial coordinates to represent angular coordinates. Supposing the

following formula

¢ (r), if || <3
= A3
U VAN =
and assuming that ¢*(r) takes the following quasiseries form of b
oM A2 2
5= dot b d 3Ly g M L 80 My S T ()

we can substitute this equation into Eq. (A1) and solve iteratively ¢, to ¢p¢. The results are
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B /b D = 21+ 0?) orV1=1? B 2r
¢y = arcsin| — |, ¢ = Yy TR by = \/;_—_55 2’ b3 = 2y
VIZA[ 2 6b1> b _rVi=2?
Py = — 7 5 375 —3v*( 7 —2arcsin| — ,
20 (r? = b2)3% /2 p2 r r’ = b
3RS 3b b’ 4+ vz) (7 — 2arcsm( )
e = — 472 - mvg + 2(,,2 _ b2)3/2 4 ’
’ b /},2_1)2+ b +(2+1) )(z — 2 arcsin(2))
[T Y oy 807 |
B(1-v?)  b(1-1?) (1-0*)(x—2arcsin(?)) b’
s =55 —mam g - 2 ’ o = ' (A3)
2(r* = b*) 20 22 — 22 4v 2PV = b
Finally, the deflection angle can be computed by taking the following limit
0= _2¢*(r)|r—>oo’ (A6)
whose result is
1 g0VI-1\M 11 Lo 1\ _4a
o=2(14+—=5- — 3nl-4+— ) —=n|-+— -—
<+y2 72 p et ) T a
31, 2, . - M MJ’
—U—”E]Q\/l—vz—l—?ac}Q 1—u2+§a2Q2(1— )}?Jro([ }> (A7)

Here § = g/m, O = Q/M, and & = a/M.

APPENDIX B: COMPONENTS OF OSCULATING RIEMANNIAN METRIC

In this appendix the components of the osculating Riemannian metric will be given. Making use of (55), the Hessian of
the Randers metric (57)—(60) can be obtained. Having found the Hessian, one can calculate the osculating Riemannian
metric by substituting Eqs. (61) and (62) into Eq. (56). The result, to the leading order(s), is found to be

__q¢’0° 2mgQ(4M +r1) amrv(2mM — qQV1 = v*)sin’¢
G =" W gy (1 — v?2)(b2cos?p + risin*p):

2 2 ,2Y\,2 21 2_2M 1 2_4M22 2 MS
_m[(a vt + 0*( +rz;()1_vz)r( + v?) ( +v)]+o([[r]3>, (B1)
__ ab’mw(2mM - gOV'1 - 1*)cos’p <[M]2>
I = J¢r = r(1 = v?)(b2cos e + risine): +O GRUA (B2)
- 5o 2mqQ(QM +r)  m*(AM? — Q% +2Mr + (a® + r*)v?)
LA AN 02
amrv(2mM qOV'1 — v?)sin?¢(3b>cos’¢ + 2r’sin*¢) N (’)<[M]5). (B3)
(1 — v2)(b2cosp + rsintep): []

Here in the higher-order corrections we use [r]" to denote a combined order n of r and b.

APPENDIX C: THE FINITE DISTANCE DEFLECTION ANGLE
OF CHARGED PARTICLES IN KERR-NEWMAN SPACETIME

In this appendix we shall use the GIMM to compute the finite distance gravitational deflection angle of a charged particle
by KN black hole. In this case, the distance rg from the particle source to the lens and the distance r from the receiver to the
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lens are both finite. The angular coordinates of the source and receiver denoted as ¢p5 and ¢ respectively, satisty the relation
¢r > n/2 > ¢g. By Eq. (A3), we have

s = ¢*(rs), pr =1 —P*(rg). (C1)

Replacing D, with a two-space $I3° constructed for the finite distance source/receiver (see Refs. [42,57] for details) in
Eq. (67), the deflection angle can still be calculated by this formula,

0= 5gau + 5_(]6‘()’ (CZ)

with only a modification of the integral limits of the following integration

r ©
By = — / / KdS = — / / K\ /deta;drdg, (C3)
Oy s Jr(¢)

o = | xla)dl = / " xlo) G (c4)

Comparing this with the calculation of the asymptotic deflection angle given by Eqs. (67)—(72), the integral limits here are
more general. However, the Gaussian curvature K and geodesic curvature k() are still given by Eq. (68) and Eq. (71),
respectively and the integration can still be carried out. Finally, the total finite distance deflection angle is found to be

5—5, 2 592

90 M* Q0 gMQ Q% | agQ ([MP) (C5)

b +53 b2 -0—54b2+55 B2 + 8 b2 + 67 b2 —|—58 B2 —l—(’) b3

b2 b?
1—-— 1-—1,
V1= 2 b? b?
52:— B 1——2 1——2 .
v rr rg
1+ 4) ( arcsin b) arcs'n<b> + b + b )
— |z - inl— | — in{ —
v IR rs Vry—=b>  \Jr:—b?
12) v
4 2 P /1- /1 ”s
s . (b 1 b2 1 b? 1+ 1
= —| & —arcsin| — —arcsm - — - |{-+=—],
4 d R ry ) \4 207
V1 =2 1 1
05 = — 5 3| & — arcsin — arcsin + 2b 5 s+ —= 5
v k=0 \Jri—b
( b b | b? (2
r%\/r%—bz ri/r3 —b2 ra | \w?

b

where
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o (o e —m<b> i)

2D
S5
58:‘%@‘%#1‘7@)'

In the above, 8, to s are yielded by §,,, and 5; and Jg are the results of 5,,,. One can simply verify that taking the limits
rg — oo and rg — oo, Eq. (C5) reduces to the infinite distance deflection angle Eq. (73).
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