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Coherent or exact equations of motion for a conservative post-Newtonian Lagrangian formalism are the
Euler-Lagrange equations without any terms truncated. They naturally conserve energy and/or angular
momentum. Doubling the phase-space variables of position and momenta in the coherent equations, we
establish extended phase-space symplectic-like integrators with the midpoint permutations. The velocities
should be solved iteratively from the algebraic equations of the momenta defined by the Lagrangian during
the course of numerical integration. It is shown numerically that a fourth-order extended phase-space
symplectic-like method exhibits a good long-term stable error behavior in energy and/or angular
momentum, as a fourth-order implicit symplectic method with a symmetric composition of three
second-order implicit midpoint rules and a fourth-order Gauss-Runge-Kutta implicit symplectic scheme
does. For a given time step and integration time, the former method is superior to the latter integrators in
computational efficiency. The extended phase-space method is used to study the effects of the parameters
and initial conditions on the orbital dynamics of the coherent Euler-Lagrange equations for a post-
Newtonian circular restricted three-body problem. It is also applied to trace the effects of the initial spin
angles, initial separation, and initial orbital eccentricity on the dynamics of the coherent post-Newtonian
Euler-Lagrange equations of spinning compact binaries.
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I. INTRODUCTION

Gravitational waves and black holes are two fundamental
predictions of Einstein’s theory of general relativity. The
predictions were recently confirmed by a series of detec-
tions of gravitational waves, such as GW150914 [1] and
GW190521 [2,3]. Chaos is a possible terrible obstacle to
the method of matched filtering, which requires a gravi-
tational wave signal to be drawn out of the noise into
excellent agreement with a theoretical template of the
gravitational wave [4]. Thus, chaos in systems of spinning
compact binaries has been the focus of several authors
[4–14]. The chaotic behavior in these references was
mainly considered in conservative binary systems.
However, chaos may be irrelevant in dissipative binary
black hole systems due to fast dissipation [15]. In brief, the
general relativistic systems of spinning compact binaries
have rich nonlinear phenomena, and their chaotic behavior
is an interesting topic, irrespective of whether the onset of
chaos affects the detection of gravitational waves emitted
from compact binaries.

Higher-order post-Newtonian (PN) approximations are
well applicable to the description of relativistic two-body
dynamics of binary black hole mergers and to accurate
predictions of the gravitational waveforms from the binary
mergers. There are two different PN approximation meth-
ods. One method is the Arnowitt-Deser-Misner (ADM)-
Hamiltonian formalism of general relativity used for
describing the motion of two compact bodies in the
ADM coordinates [16–18]. The other method is the
equations of motion in harmonic coordinates and their
corresponding Lagrangian formalism [19–23]. The physi-
cal equivalence of the ADM-Hamiltonian formalism and
the harmonic-coordinates Lagrangian formalism at same
PN order was shown by several authors [23–25]. However,
the authors of [26] claimed that the two PN formalisms are
not exactly equivalent in the orbital dynamical behavior. In
general, the higher-order PN terms are truncated when one
of the two formalisms is transformed into the other one
through the Legendre transformation. These truncated
terms are regarded as the difference between the two PN
approximation formalisms [26]. This difference is negli-
gible for a weak gravitational field like the Solar System,
but may exert an important influence on the dynamics of
the two formalisms for a strong gravitational field of*wuxin_1134@sina.com
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compact objects. In some cases, the two formalisms in the
same coordinate system under the same coordinate gauge
have different orbital dynamical features. The authors of
[27,28] showed the integrability and nonchaoticity of the
conservative 2PNADM-Hamiltonian dynamics of compact
binaries with leading order spin-orbit interaction when the
binaries are spinning. However, chaos exists in the PN
Lagrangian systems of compact binaries having two
arbitrary spins with spin-orbit interactions [14]. In addition,
the 1PN Lagrangian and Hamiltonian dynamics for a
circular restricted three-body problem of compact objects
may be different from qualitative and quantitative perspec-
tives [26].
There are two paths for deriving the equations of motion

(i.e., the Euler-Lagrange equations) from a conservative PN
Lagrangian formalism. One path gives the equations of
motion remaining at the same PN order of the Lagrangian
by truncating the higher-order PN terms in the Euler-
Lagrange equations. In fact, the equations of motion are
approximately derived and are called approximate PN
Lagrangian equations of motion. The other path is the
differential equations of positions and generalized
momenta, where velocities are solved from the algebraic
equations of the generalized momenta via an iterative
method. Such equations of motion are coherent (or exact)
PN Lagrangian equations of motion [29,30]. In general, the
approximate Lagrangian equations approximately conserve
the integrals of motion (e.g., energy) in the PN Lagrangian
formalism, but the exact ones always strictly conserve the
integrals of motion from a theoretical point of view.
Dubeibe et al. [31] investigated the conservation of the
Jacobi integral in a PN circular restricted three-body
problem and found that the approximate Euler-Lagrange
equations do not conserve the Jacobi integral for the
distance a of the two primaries and the speed of light c,
satisfying the conditions a ¼ c ¼ 1, but do conserve well
for the case of a ¼ 1 and c ¼ 104. The authors of [29,30]
pointed out that the approximate Lagrangian equations and
the exact ones have no typical differences for a weak field
(such as the Solar System) with a ¼ 1 and c ¼ 104 but do
have typical differences for a strong field with a ¼ c ¼ 1.
They numerically showed that the exact Euler-Lagrange
equations always conserve well the Jacobi integral regard-
less of the choice of a and c. The Hamiltonian formalism
can also strictly conserve the integrals of motion from the
theory. Dubeibe et al. [31] numerically confirmed that the
conservation of the Jacobi integral in the Hamiltonian is
independent of the choice of a and c. In a word, the
approximate Euler-Lagrange equations, exact Euler-
Lagrange equations, and Hamiltonian equations at the
same PN orders have explicit differences for a strong field,
whereas they have negligible differences for a weak field
[26,29,30,32]. The approximate Euler-Lagrange equations
for a given PN Lagrangian formalism of compact objects
are a set of wrong equations of motion and poorly conserve

the constants of motion. Instead, the exact Euler-Lagrange
equations should be used.
When the binaries are without spin, the conservative

Lagrangian formalism with the exact Euler-Lagrange
equations and the conservative Hamiltonian formalism
up to any PN order have four integrals of motion, including
the total energy and the total angular momenta. Hence, all
orbits in the two formalisms are integrable and regular. The
presence of chaos in [4,5,7–14,26] arises due to the spins of
the binary destroying the integrability of PN systems of
compact binaries. The canonical, conjugate spin variables
of Wu and Xie [33] play an important role in determining
the integrability or nonintegrability of Hamiltonian systems
of spinning compact binaries. Several examples for apply-
ing the canonical, conjugate spin variables to determine the
integrability or nonintegrability are given here. When only
one of the binary objects spins, any conservative PN
Hamiltonian with eight dimensions is always integrable
and nonchaotic, regardless of PN orders and spin effects
due to the total energy and the total angular momenta as
four constants of motion. A conservative PN Lagrangian
approach of compact binaries with one body spinning can
be formally equivalent to an integrable PN Hamiltonian;
therefore, it is not chaotic. As an important result of [32], no
chaos occurs in any conservative PN Lagrangian and
Hamiltonian approaches when only one body of compa-
rable mass binaries spins. This result is powerful in that it
clarifies the doubt on the presence or absence of chaos in
conservative PN Lagrangian and Hamiltonian approaches
of compact binaries with one body spinning in [14,27,28].
In addition, conservative PN Hamiltonian systems of
compact binaries having two arbitrary spins with spin-
orbit interactions were given parametric solutions in
[27,28]. The parametric solutions show that the systems
are integrable. In fact, the canonical, conjugate spin
variables of [33] can explain well this integrability because
the systems hold five integrals of motion consisting of the
total energy, the total angular momenta, and the magnitude
of the Newtonian-like angular momenta in the ten-
dimensional phase space. The PN Lagrangian systems of
compact binaries having two arbitrary spins with spin-orbit
interactions lead to the 3PN spin-spin couplings in the
equivalent Hamiltonian formalisms (note, the PN order of
the Hamiltonians is unlike that of the Lagrangians).
The spin-spin couplings do not conserve the magnitude
of the Newtonian-like angular momenta; therefore, the
Hamiltonian formalisms (i.e., Lagrangian systems with the
exact Euler-Lagrange equations) are nonintegrable and
probably chaotic [26]. That is to say, the canonical,
conjugate spin variables of [33] also explain why the
spin-orbit interactions can produce chaos in the
Lagrangians but cannot in the Hamiltonians.
Usually, a long enough time integration is necessary to

detect the chaotical behavior. Such a numerical integration
scheme should have high precision, good stability, and
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small expense of computational time. Low order geometric
integrators [34] can provide reliable results and take less
computational cost in the case of long-term integration, and
therefore, they are naturally chosen. When dealing with
Hamiltonian systems, the most appropriate geometric inte-
grators are symplectic schemes, which preserve the sym-
plectic nature of Hamiltonian dynamics and have no secular
drift in energy errors. Due to inseparable variables, com-
pletely implicit symplectic methods, such as the implicit
midpoint method [35] and the Gauss-Legendre Runge-Kutta
implicit symplectic methods [36] or Gauss-Runge-Kutta
(GRK) implicit symplectic methods [34,37–39], are mainly
used in relativistic spacetimes or PN systems. There are also
explicit and implicit combined symplectic methods [40–43].
More recently, explicit symplectic integrators were success-
fully designed for the dynamics of charged particles
around the Schwarzschild, Reissner-Nordström, Reissner-
Nordström-(anti–)de Sitter, and Kerr black holes, and these
black holes were surrounded with external magnetic fields
[44–47]. However, these explicit symplectic integrators are
applied with difficulty to the PN systems of spinning
compact binaries. A notable point is that the computational
cost is generally less for explicit symplectic integrators than
for implicit ones. When the phase space of an inseparable
Hamiltonian system is extended, standard explicit symplec-
tic leapfrog splitting methods are still available [48].
However, the extended phase-space leapfrogs are not sym-
plectic due to phase space mixing and projection. In spite of
this, the extended phase space leapfrogs have symmetries
and then showgood long-term stability and error behavior. In
this sense, the algorithms are called symplectic-like schemes.
Optimal choices of mixing maps were considered in
Refs. [49,50]. The extended phase space symplectic-like
schemes with optimal mixing maps were applied to PN
systems of spinning compact binaries and other inseparable
Hamiltonian problems [51–54].
The main aim of the present paper is to discuss a possible

application of extended phase space symplectic-like inte-
grators to the coherent PN Euler-Lagrange equations
[29,30]. For this purpose, we construct symplectic-like
integrators for the exact PN Euler-Lagrange equations in an
extended phase space of a PN Lagrangian formalism in
Sec. II. Then, one of the extended phase space symplectic-
like integrators is applied to the exact PN Euler-Lagrange
equations of a PN circular restricted three-body problem
[55], and the dynamics of the problem is explored in
Sec. III. It is further applied to the exact PN Euler-Lagrange
equations of spinning compact binaries [56], and the
dynamics of spinning compact binaries is investigated in
Sec. IV. Finally, the main results are concluded in Sec. V.

II. EXTENDED PHASE-SPACE SYMPLECTIC-
LIKE INTEGRATORS

Coherent Euler-Lagrange equations of motion for a PN
Lagrangian system are introduced. Then, symplectic-like

integrators in extended phase space of the coherent equa-
tions are constructed.

A. Coherent PN Euler-Lagrange equations

Suppose Lðr; vÞ is a Lagrangian formulation of PN order
j, where r and v denote position and velocity vectors,
respectively. Based on this Lagrangian, a generalized
momentum vector is defined as

p ¼ ∂L
∂v ¼ Pðr; vÞ: ð1Þ

It is easy to exactly express p in terms of r and v. Inversely,
it may not be easy to write an exact expression of v in terms
of r and p. In classical mechanics, in general, v can be
described exactly. However, the exact description of v often
becomes difficult in general relativity or relativistic PN
approximations because p is a nonlinear function of v in
most cases. There are two paths for the description of v.
Path 1 is based on the PN approximations and obtains

v ¼ Vðr;pÞ þO
�
1

c2

�
jþ1

; ð2Þ

where c is the speed of light. Path 2 is iteratively solving a
modified version of the algebraic equation (1),

v ¼ Qðr; v;pÞ: ð3Þ

Here, the Newton or Seidel iteration method is adopted.
The PN Lagrangian corresponds to the energy,

Eðr; vÞ ¼ v · p − Lðr; vÞ: ð4Þ

If the velocity from the PN approximation in Eq. (2) is
substituted into Eq. (4), then there is a Hamiltonian of PN
order j,

Hðr;pÞ ¼ v · p − Lðr; vÞ: ð5Þ

Equation (5) is a standard Hamiltonian, which is a function
of the coordinates and momenta. The Hamiltonians men-
tioned in the Introduction are also similar to such a standard
Hamiltonian. Because the PN terms higher than the jth
order are truncated in Eq. (2), H is not exactly but is
approximately equal to E,

Hðr;pÞ ¼ Eðr; vÞ þO
�
1

c2

�
jþ1

: ð6Þ

When the velocity obtained from an iterative solution of
Eq. (3) is substituted into Eq. (4), there is still a jth order
PN Hamiltonian,

Hðr; v;pÞ ¼ v · p − Lðr; vÞ; ð7Þ
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where v is an implicit function of r and p. Equation (7) is a
formal Hamiltonian, which is a function of the coordinates,
momenta, and velocities. Note that Eqs. (4), (5), and (7) are
the Legendre transformation.
Clearly, the difference between Eqs. (5) and (7) is that v

is expressed in terms of p in Eq. (5), but it is not in Eq. (7).
In fact, Eq. (7) is equivalent to Eq. (4) in the expressional
form. Thus, H, H, and E satisfy the relations,

H ¼ E ¼ H þO
�
1

c2

�
jþ1

: ð8Þ

That is, H ¼ E ≈H.
The canonical equations for the HamiltonianH in Eq. (5)

are written as follows:

_r ¼ ∂H
∂p ð9Þ

_p ¼ −
∂H
∂r : ð10Þ

They exactly conserve the Hamiltonian H rather than the
energy E or the Hamiltonian H. The Hamiltonian H
corresponds to the canonical equations,

_r ¼ ∂H
∂p ¼ v ð11Þ

_p ¼ −
∂H
∂r ¼ Pðr; vÞ: ð12Þ

Equation (12) is the Euler-Lagrange equation.
Equations (3), (11), and (12) were called the coherent or
exact PN Lagrangian (or Euler-Lagrange) equations of
motion in [29,30]. Naturally, the coherent equations have
the consistency of an energy E or Hamiltonian H. If p in
Eq. (1) is substituted into Eq. (12), the acceleration to the
order j reads

_v ¼ aðr; vÞ þ Pðr; vÞ þO
�
1

c2

�
jþ1

; ð13Þ

where the accelerationaðr; vÞ is due to the contribution of the
derivative of momenta with respect to time, dp=dt, and
remains at the order j. None of the variablesH,H, andE can
be conserved exactly byEq. (13)withEq. (11). In fact, noone
knows what energy is conserved exactly by Eqs. (11) and
(13). Equations (11) and (13) are called the approximate
Euler-Lagrange equations, although the angular momentum
can not be maintained by the approximate equations.
The above demonstrations clearly show that the three

sets of motion equations, Eqs. (9) and (10), Eqs. (3), (11),
and (12), and Eqs. (11) and (13), have some differences,
although they are accurate to the PN order j. They also
exhibit slight differences in the conservation of the integrals

of motion. In particular, the coherent Eqs. (3), (11), and
(12) and the approximate Eqs. (11) and (13) are different in
computations. v is constant, and r and p are integration
variables during a step integration of the coherent equa-
tions. Once the solutions of r and p are obtained after this
step, v is given by solving the iterative equation (3).
However, v with r is directly integrated in the approximate
equations.

B. Construction of symplectic-like integrators in
extended phase space

Extending the phase space of a Hamiltonian, Pihajoki
[48] proposed explicit symplectic-like integrators for an
extended phase-space Hamiltonian. Following this idea, we
consider an extension to the phase space of coherent PN
Lagrangian equations, i.e., the Hamiltonian in Eq. (7). This
extension is implemented by a new Hamiltonian,

Γðr; r�; v; v�;p;p�Þ
¼ HAðr; v�;p�Þ þHBðr�; v;pÞ; ð14Þ

where HA and HB are two sub-Hamiltonians,

HA ¼ p� · v� − LAðr; v�Þ; ð15Þ

HB ¼ p · v − LBðr�; vÞ: ð16Þ

Here, v� is a function of r and p�, and v is a function of r�
and p. They are still solved by the iterative equations,

p� ¼ ∂LAðr; v�Þ
∂v� → v� ¼ QAðr; v�;p�Þ ð17Þ

p ¼ ∂LBðr�; vÞ
∂v → v ¼ QBðr�; v;pÞ: ð18Þ

FA is an operator for iteratively solving Eq. (17), and FB is
another operator for iteratively solving Eq. (18). In fact, the
two independent sub-Hamiltonians are the same as the
original HamiltonianH in the expressional forms. The two
sub-Hamiltonians always satisfy the relation HA ¼ HB for
any time if their initial conditions are the same.
HA and HB are independently solvable. ehHA

is an
operator for solving HA, and ehHB

is another operator for
solving HB, where h represents a step size. The solutions
from the (n − 1)th step to nth step are written as

ehHA
∶
�
r�

p

�
n

¼
�
r� þ h · v�

pþ h · ∂LA∂r

�
n−1

; ð19Þ

ehHB
∶
�
r

p�

�
n

¼
�
rþ h · v

p� þ h · ∂LB∂r�

�
n−1

: ð20Þ

These operators symmetrically compose a second-order
integration algorithm,
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A2ðhÞ ¼ ðFA∘eh=2HB
Þ∘ðFB∘ehHA

Þ∘ðFA∘eh=2HB
Þ: ð21Þ

This construction is an explicit second-order symplectic
leapfrog integrator if FA and FB are absent. The second-
order scheme can be used to yield a fourth-order method of
Yoshida [57],

A4ðhÞ ¼ A2ða1hÞ∘A2ða2hÞ∘A2ða1hÞ; ð22Þ

where a1 ¼ 1=ð2 − 21=3Þ and a2 ¼ 1–2a1. Algorithms A2

and A4 are symplectic for the extended phase-space
Hamiltonian Γ. In these constructions, r�, p, r, and p�
have explicit solutions, whereas v and v� must be solved
iteratively.
A notable problem is that HA and HB have same

solutions for same initial conditions when they are inde-
pendently solved, but have different solutions in these
algorithmic constructions because their solutions are
coupled. To avoid this problem as much as possible,
Pihajoki [48] introduced mixing maps (e.g., permutations
of coordinates and/or momenta) as a feedback between the
two solutions. A projection map on the projection of a
vector in extended phase space back to the original phase
space is also necessary. Liu et al. [52] showed that sequent
permutations of coordinates and momenta are a good
choice of the mixing maps. Luo et al. [53] found that
midpoint permutations between coordinates and those
between momenta are the best choice of the mixing maps.
The midpoint permutation map is described by

M ¼

0
BBBBB@

1
2
; 1

2
; 0; 0

1
2
; 1

2
; 0; 0

0; 0; 1
2
; 1

2

0; 0; 1
2
; 1

2

1
CCCCCA
: ð23Þ

When this map is included after the algorithms A2 and A4,
we have new constructions. For example, A4 becomes

EM4ðhÞ ¼ M∘A4ðhÞ: ð24Þ

The new method EM4 is still accurate to the order of h4.
The permutation map M is not symplectic, and then

the EM4 is no longer symplectic. Even if M is symplectic,
EM4 is not for any choice of projection maps. However,
EM4 is time symmetric, and therefore, it may preserve the
original Hamiltonian without any secular growth in the
error, as a symplectic scheme can. We check the numerical
performance of EM4 using two PN problems.

III. PN CIRCULAR RESTRICTED THREE-BODY
PROBLEM

A PN Lagrangian formulation of the circular restricted
three-body problem is introduced in Sec. III A The phase-

space structures of orbits in the approximate Euler-
Lagrange equations and in the coherent ones are described
in Sec. III Then, energy errors for four algorithms acting on
the exact Euler-Lagrange equations are compared.
Section III C relates the dependence of chaos on the initial
value x and the parameters in the coherent Euler-Lagrange
equations by the use of the technique of fast Lyapunov
indicators (FLIs).

A. Dynamical models

Let us consider a PN planar circular restricted three-body
problem. Two primary bodies have a separation a and
massesM1 andM2. Their total mass isM ¼ M1 þM2. The
ratios of the two bodies’ masses to the total mass are μi ¼
Mi=M (i ¼ 1, 2). The two primary bodies have circular
motions. The angular speeds of the circular motions with
respect to the barycenter of the two bodies are ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a3

p
(G being the gravitational constant) in the

Newton gravity and ω in the relativistic gravity. The third
body has a negligible mass m. Its position and velocity
ðx; y; vx; vyÞ in a rotating frame evolve with time according
to the dimensionless PN Lagrangian [55–58],

L ¼ L0 þ L1=c2 þ L2=c2; ð25Þ

where the Newtonian Lagrangian system L0, and two PN
Lagrangian system L1 and L2 are

L0 ¼
μ1
d1

þ μ2
d2

þ 1

2
ðU2 þ 2Aω0 þ R2ω2

0Þ; ð26Þ

L1 ¼ ω0ω1ðAþ R2ω0Þ; ð27Þ

aL2 ¼
1

8
ðU2þ 2AωþR2ω2Þ2−μ1μ2

�
1

d1
þ 1

d2

�

−
1

2

�
μ1
d1

þ μ2
d2

�
2

þ 3

2

�
μ1
d1

þ μ2
d2

�
· ðU2þ 2AωþR2ω2Þ

þ 3

2
ω2

�
μ1x21
d1

þμ2x22
d2

�
−
7

2
ωð_yþωxÞ

�
μ1x1
d1

þ μ2x2
d2

�

−
1

2
ωyð_x−ωyÞ ·

�
μ1x1ðx− x1Þ

d31
þμ2x2ðx− x2Þ

d32

�

−
1

2
ωy2ð_yþωxÞ

�
μ1x1
d31

þμ2x2
d32

�
: ð28Þ

Here, ω1 ¼ ðμ1μ2 − 3Þ=ð2aÞ, ω ¼ ω0ð1þ ω1=c2Þ, d1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−x1Þ2þy2

p
;d2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−x2Þ2þy2

p
, R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

U2 ¼ _x2 þ _y2; A ¼ _yx − _xy, x1 ¼ −μ2, and x2 ¼ μ1. At
the 1PN order, the square of angular frequency is
ω2 ¼ ω2

0ð1þ 2ω1=c2Þ. The geometric unit G ¼ 1 is
adopted. The above dimensionless operations are imple-
mented via a series of scale transformations [49]: L →
mL=a, t → tM=ω0, a → Ma, x → Max, x1 → Max1,
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x2 → Max2, and y → May. In this sense, _x → aω0 _x
and _y → aω0 _y.
The coherent equations (3), (11), and (12) for L in

Eq. (25) can be easily written in detail. The iteration
equation (3) in the present problem is written as

vx ¼ ðpx − f1ðx; y; vx; vyÞÞ
.�

1þ U2

2ac2
þ 3

ac2

�
μ1
d1

þ μ2
d2

��
;

ð29Þ

vy ¼ ðpy − f2ðx; y; vx; vyÞÞ
.�

1þ U2

2ac2
þ 3

ac2

�
μ1
d1

þ μ2
d2

��
;

ð30Þ

where f1 and f2 are two known functions. The coherent
equations conserve the Jacobi constant,

Cj ¼ −2E; ð31Þ

where E is given by Eq. (4). On the other hand, the
approximate PN Lagrangian equations of motion were
given in [48–51] by

_x ¼ vx;

_y ¼ vy;

_vx ¼
�
2 _vy þ x −

μ1ðx − x1Þ
d31

−
μ2ðx − x2Þ

d32

�

þ 2ω1ðvy þ xÞ=c2 þ Pðx; y; vx; vyÞ=ðac2Þ;

_vy ¼
�
y − 2vx − y

�
μ1
d31

þ μ2
d32

��

þ 2ω1ðy − vxÞ=c2 þQðx; y; vx; vyÞ=ðac2Þ; ð32Þ

where Pðx; y; vx; vyÞ and Qðx; y; vx; vyÞ are obtained from
L2. Note that 1=ðc2aÞ is the 1PN effect. Here, the speed of
light c is not necessarily set to the geometric unit 1,
although G is Dubeibe et al. [31] found that the case of
a ¼ 1 and c ¼ 104 corresponds to the main relativistic
effects with an order of 10−8 in the Solar System. If
a ¼ c ¼ 1, the main relativistic effects ∼1 are relatively
poor PN approximations. In this case, the approximate
Euler-Lagrange equations fail to conserve the Jacobi
integral, as was reported by Dubeibe et al. Of course, c ¼
1 is often used in strong gravitational fields of compact
objects. To make the PN approximations valid, one should
give c a larger value for a ¼ 1 or a a larger value for c ¼ 1
[59,60]. In fact, c has different values in different unit
systems [61]. Thus, we take c as a free parameter in the
following numerical simulations in Secs. III B and III C so
that the PN approximations 1=ðc2aÞ remain valid.

B. Numerical evaluations

An eighth- and ninth-order Runge-Kutta-Fehlberg inte-
grator [RKF89] with adaptive step sizes is used to provide
high-precision reference solutions for evaluating the
numerical performance of low order methods, such as
EM4. With the aid of this integrator, the solutions of the
exact Euler-Lagrange equations (11), (12), (29), and (30)
and the approximate Euler-Lagrange equations (32) can be
obtained. In this way, the phase-space structures of four
orbits in the two sets of equations are described on the
Poincaré section y ¼ 0 with vy > 0 in Fig. 1. Here, the
initial conditions are y ¼ vx ¼ 0, and the parameters are
μ2 ¼ 0.001, μ1 ¼ 1 − μ2, and Cj ¼ 3.07. As is above-
mentioned, c is used as a free parameter. When the
parameters a and c and the starting value of x are
considered, the initial value of vy > 0 is solved
from Eq. (31).
The two sets of equations have almost the same

Kolmogorov-Arnold-Moser (KAM) torus for the starting
value x ¼ 0.35 with the parameters c ¼ 100 and a ¼ 1 in
Fig. 1(a). This KAM torus indicates the regularity of the
integrated orbit. Although the two sets of equations yield
regular KAM tori for the starting value x ¼ 0.28 with
parameters a ¼ 10 and c ¼ 100 in Fig. 1(b), the two tori
are typically different. For the initial value x ¼ 0.4895with
parameters c ¼ 100 and a ¼ 1 in Fig. 1(c), the exact
equations and the approximate ones produce approximately
same chaotic solutions with many points filled with areas.
For the initial value x ¼ 0.687 with c ¼ 100 and a ¼ 2 in
Fig. 1(d), chaos occurs in the approximate equations,
whereas it does not in the exact equations. Figures 1(b)
and 1(d) show that the approximate equations and the exact
ones have distinct phase-space structures, i.e., distinct
solutions. This supports the results of [29,30] again.
Which of the approximate Euler-Lagrange equations and
the exact ones can give correct solutions to the Lagrangian
(25)? The exact Euler-Lagrange equations can, without
question. Thus, they are used as a test model in the
following numerical simulations.
RKF89 can significantly improve the accuracy, as can be

verified by a comparison with lower-order integrators like
EM4. However, the improved accuracy requires that
RKF89 be more computationally demanding than these
lower-order integrators for long-term integrations. If the
lower-order integrators can provide reliable results, they
should be employed to study the trajectories and to detect
the chaotical behavior. In view of this point, three fourth-
order integrators are compared with EM4. They are an
implicit symplectic method (IM4) consisting of three
second-order implicit midpoint rules [35], a Runge-Kutta
integrator (RK4), and a Gauss-Runge-Kutta (GRK) implicit
symplectic method [34,37–39]. The four methods EM4,
IM4, GRK, and RK4 can yield the same phase-space
structures to the four orbits as shown in Fig. 1 for short
integration times. When the integrations are long enough,
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the three methods EM4, IM4, and GRK still have the same
phase-space structures as those of Fig. 1, but RK4 does not.
When the step size is chosen as h ¼ 0.01, Figs. 2(a)

and 2(b) plot relative energy errors of the regular orbit in
Fig. 1(a) and the chaotic orbit in Fig. 1(c). The relative energy
errors are calculated by ΔE ¼ jðEt − E0Þ=E0j, where E0 is
the energy in Eq. (4) at time 0, and Et stands for the energy
calculated at integration time t. The errors remain bounded
for the three geometric integrators EM4, IM4, and GRK,
whereas grow with time for RK4. They are about an order of
10−12 to 10−6 for EM4, IM4, andGRK, and 10−12 to 10−5 for
RK4. The methods with the errors from small to large are
GRK, EM4, IM4, and RK4. The calculations in the chaotic
case [Fig. 2(b)] appear to bemore accurate than in the regular
ones [Fig. 2(a)]. An explanation to this result is given here.
Based on the theory of numerical calculations, the truncation
error in energy is approximately estimated by ðh=TÞk for a
kth-order symplectic method, and in solutions, it is estimated
by ðh=TÞkþ1, where T is an orbital period. The period for the
ordered orbit in Fig. 2(a) is T ≈ 5.11. Although the orbit is
chaotic in Fig. 2(b), it has an approximate average period
T ≈ 7.91. For a given time step, the energy accuracies get
higher with an increase of the orbital periods. Thus, it is
reasonable that the energy accuracies for the regular case in
Fig. 2(a) are poorer than those for the chaotic case in Fig. 2(b).

However, the solutions’ accuracies should be better for the
former case than those for the latter case, because the solutions
in the chaotic case exhibit exponentially a more sensitive
dependence on the initial conditions.When a smaller step size
h ¼ 0.001 is used in Figs. 2(c) and 2(d), the energies have
higher accuracies and are accurate to orders of 10−15–10−11
for the three geometric integrators. To ensure such higher
enough accuracies, we adopt the smaller step size h ¼ 0.001
in the PN circular restricted three-body problem.
It is worth noticing the differences in computations

among the three geometric methods EM4, IM4, and
GRK. The position r and velocity v must be solved in
terms of the iteration method in IM4 and GRK, but only the
solutions of v need iterations in EM4. This seems to show
that the computational cost for EM4 is less than for IM4 or
GRK. To check the result, we plot the computational
efficiencies in Fig. 3. The test orbit is that of Fig. 1(a).
A series of step sizes h ¼ 10−3, 10−3 × 1.2, 10−3 × 1.22,
10−3 × 1.23, � � � are considered. When one of the time steps
is given, the maximum relative energy errors for the three
schemes during the integration time t ¼ 105 are drawn in
Fig. 3(a). GRK exhibits the best accuracy. EM4 and IM4
are almost the same in the accuracies. Each of the
maximum errors corresponding to CPU time is shown in
Fig. 3(b). When the three methods use different time steps

FIG. 1. Phase-space structures on the Poincaré section y ¼ 0 with vy > 0, which are described by RKF89 solving the PN circular
restricted three-body problem. ap represents the approximate Euler-Lagrange equations, and ex stands for the exact Euler-Lagrange
equations. The parameters are μ2 ¼ 0.001, μ1 ¼ 1 − μ2, Cj ¼ 3.07, and c ¼ 100, and the initial conditions are y ¼ vx ¼ 0. The other
initial conditions and parameters are (a) a ¼ 1 and x ¼ 0.35, (b) a ¼ 10 and x ¼ 0.28, (c) a ¼ 1 and x ¼ 0.4895, (d) a ¼ 2 and
x ¼ 0.687. The approximate equations and the exact ones yield the same regular torus in panel (a) and the same chaotic solutions in
panel (c). They have different regular tori in panel (b). In panel (d), the approximate equations correspond to chaos, whereas the exact
equations exhibit the regularity.
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and provide the same accuracy, EM4 or GRK takes less
CPU time than IM4. EM4 and GRK take almost the same
CPU times. Given CPU time, the accuracy of EM4 is 2 or 3
orders of magnitude better than that of IM4 and is
approximately the same as that of GRK. Obviously, the
efficiency of EM4 is superior to that of IM4. In other words,
EM4 needs less computational cost than IM4 and GRK
when the time step and integration time are fixed.

C. Dependence of chaos on the initial conditions and
parameters

Considering the reliable computational accuracy and
high efficiency for given time step and integration time,
we use EM4 to study the orbital dynamical behavior of
orbits in the exact equations. Apart from the technique of
Poincaré sections, Lyapunov exponents [62] and fast
Lyapunov indicators (FLIs) [63–65] are often used to

FIG. 2. Relative energy errors for four algorithms solving the exact Euler-Lagrange equations. (a) The orbit is the regular orbit of
Fig. 1(a). (b) The orbit is the chaotic orbit of Fig. 1(c). The step size is h ¼ 0.01 in panels (a) and (b). Panels (c) and (d) that adopt a
smaller step size h ¼ 0.001 correspond to panels (a) and (b), respectively.

FIG. 3. Efficiency plots for the three methods EM4, GRK, and IM4. The initial condition and parameters are c ¼ 100, a ¼ 1, and
x ¼ 0.28. The maximum relative energy error for each time step and algorithm is obtained after the integration time t ¼ 105. The
dependence of the relative energy error on the step size in (a) shows that EM4 and IM4 have almost the same accuracies for a given step
size. The dependence of the relative energy error on CPU time (unit: second) in (b) indicates that EM4 takes less computational cost than
IM4 and is almost the same computational cost as GRK for a given accuracy.
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distinguish between the regularity and chaoticity of
bounded orbits. The FLI is defined as

FLI ¼ log10
dðtÞ
dð0Þ ; ð33Þ

where dðtÞ and dð0Þ are the distances between two nearby
trajectories at times t and 0, respectively. The initial
separation dð0Þ ¼ 10−9 is a sufficient choice. The FLI
with two nearby trajectories proposed in Ref. [63] originated
from a modified version of the FLI with two tangent vectors
given in Refs. [64,65] and is also from a modified version of
the Lyapunov exponents with two nearby trajectories [62].
For the convenience of an analytical discussion, the original
FLI [denoted by δ ¼ lnðdðtÞ=dð0ÞÞ] is adopted. If δ ¼ eln t,
then dðtÞ ¼ dð0Þet. This indicates that the distance dðtÞ
grows exponentiallywith time t. This characteristic is just the
description of the largest Lyapunov exponent, which shows
the chaoticity of a bounded orbit. If δ ¼ k ln t, then
dðtÞ ¼ dð0Þtk. This indicates that the distance dðtÞ grows
in a power law of time t. It is the characteristic of a regular

bounded orbit. For δ ¼ k ln t, two particular cases are worth
noting. Case 1: when k ¼ 1, δ ¼ ln t naturally corresponds
to regular orbits. Case 2: δ behaves like δ ¼ k ln t for weak
chaotic orbits for a transient time before the exponential
growth takes over, as was shown by Lukes-Gerakopoulos
et al. [66]. An exponential increase of the distance is much
larger than a polynomial increase of the distance. Such
typically different ratios of growth of FLIswith time are used
to detect chaos from order.
The FLIs of two orbits with initial values x ¼ 0.4 and

x ¼ 0.28 are shown in Fig. 4. The parameters and other
initial conditions (except the initial value vy) are those of
Fig. 1(a). The initial value x ¼ 0.4 corresponds to the
regularity, and the initial value x ¼ 0.28 indicates the
chaoticity. It is found that 7.5 is a threshold value of
FLIs between the regular and chaotic cases when the
integration time reaches t ¼ 104. The FLIs larger than
7.5 indicate the presence of chaos, whereas the FLIs are no
more than the threshold mean of the presence of order. The
technique of FLIs is convenient to trace a transition from
order to chaos with a parameter or an initial condition
varying. Figure 5 draws the dependence of FLIs on the
initial values x. The initial values x corresponding to order
and chaos are shown clearly. Two larger regular intervals
for the onset of order are 0.346 ≤ x ≤ 0.485 and 0.667 ≤
x ≤ 0.805. There are four larger chaotic intervals:
0.254 ≤ x ≤ 0.295, 0.3125 ≤ x ≤ 0.3455, 0.463 ≤ x ≤
0.56185, and 0.5545 ≤ x ≤ 0.6335. A number of smaller
regular or chaotic intervals are also present. Taking the FLIs
neighboring x ¼ 0.666 as examples, we focus on the
transition between order and chaos. FLI ¼ 5.3 for x ¼
0.665 and FLI ¼ 5.2 for x ¼ 0.667 correspond to the
regular case, but FLI ¼ 21.1 for x ¼ 0.666 corresponds
to the chaotic case. The regularity and chaoticity for the
three initial values of x are shown through the Poincaré
sections in Fig. 5(b).
Figure 6(a) describes the dependence of FLIs on the

parameter a and the initial value x. Given c ¼ 104, a runs
from 1 to 10 with an interval of 0.1, and x ranges from 0.1
to 0.9 with an interval of 0.01. The other parameters and

FIG. 4. Fast Lyapunov indicators (FLIs) of two orbits. The
parameters are c ¼ 100, a ¼ 1, and cj ¼ 3.07.

FIG. 5. (a) Dependence of FLIs on the initial values x. (b) Poincaré sections for ordered orbits with x ¼ 0.665 corresponding to
FLI ¼ 5.3 and x ¼ 0.667 (FLI ¼ 5.2), and a chaotic orbit with x ¼ 0.666 (FLI ¼ 21.1).
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initial conditions (except the initial value vy) are still those
of Fig. 1(a). A great two-dimensional space of a and x
corresponds to the regularity of bounded orbits. There are
larger unstable regions colored black. Many smaller areas
for the chaoticity of bounded orbits exist. Chaos mainly
occurs in the neighborhood of x ¼ 0.1 or a ¼ 1. Of course,
chaos also easily appears in the boundary regions between
the ordered and unstable regions. For example, the orbit is
ordered for a ¼ 1 and x ¼ 0.815 with FLI ¼ 5.59, while

chaotic for a ¼ 1.1 and x ¼ 0.815with FLI ¼ 46.88, as can
be seen from the Poincaré sections in Fig. 6(b). In Fig. 6(c)
with a ¼ 1, c ranges from 100 to 10000, and x runs from 0.1
to 0.9. There are many larger two-dimensional spaces of c
and x for the onset of order and chaos. Thinnermore unstable
regions can be met in the neighborhood of x ¼ 0.1 or
x ¼ 0.9. Figure 6(d) shows that the regularity exists for x ¼
0.632 and c ¼ 190.5 with FLI ¼ 5.91, while the chaoticity
occurs for x ¼ 0.632 and c ¼ 208.9 with FLI ¼ 12.48.

(a)

(c)

(b)

(d)

FIG. 6. (a) Dependence of FLIs on the parameter a and initial value x. c ¼ 104 is fixed. Red: chaos, Black: unstable, other: order.
(b) Poincaré sections for the regular case of x ¼ 0.815 and a ¼ 1 with FLI ¼ 5.59 and the chaotic case of x ¼ 0.815 and a ¼ 1.1 with
FLI ¼ 46.88 in panel (a). (c) Dependence of FLIs on the parameter c and initial value x. a ¼ 1 is fixed. (d) Poincaré sections for the
regular case of x ¼ 0.632 and c ¼ 190.5 with FLI ¼ 5.91 and the chaotic case of x ¼ 0.632 and c ¼ 208.9 with FLI ¼ 12.48 in
panel (c).

(a)

(b)

FIG. 7. (a) Dependence of FLIs on the parameter Cj and initial value x. (b) Poincaré sections for two orbits with different Jacobi
constants Cj.
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When a ¼ 1 and c ¼ 104 are given in Fig. 7(a), the Jacobi
constantCj runs from 2 to 8 with an interval of 0.06, and the
initial position x is also considered from 0.1 to 0.9. The other
parameters and initial positions are those of Fig. 1(a). The
values of Cj and x are more for the regular case than for
the chaotic case, whereas less than for the unstable case.
Figure 7(b) displays that the orbit is ordered for Cj ¼ 3.125
and x ¼ 0.52875 with FLI ¼ 4.89, while chaotic for Cj ¼
3.0875 and x ¼ 0.52875 with FLI ¼ 111.06.
Two points are illustrated here. The dynamical results

obtained from EM4 in Figs. 4–7 are consistent with those
given by RKF89. In addition, the technique of FLIs can
sensitively distinguish between the regular and chaotic two
cases. It is effective to trace the transition from order to
chaos with a variation of one or two initial conditions and
parameters in Figs. 5–7.

IV. SPINNING COMPACT BINARIES

A PN Lagrangian system of two spinning black holes is
introduced simply in Sec. IVA 4. When the spins are
expressed in a set of canonical coordinates, the symplectic-
like integrator EM4 is applied to the exact Euler-Lagrange
equations, and its performance is evaluated in Sec. IV B.
The orbital dynamics of order and chaos in the exact Euler-
Lagrange equations are investigated in Sec. IV C.

A. Dynamical equations

Let us consider two black holes with massesM1 andM2.
They have the total massM ¼ M1 þM2, the reduced mass
μ ¼ M1M2=M, and ν ¼ μ=M. Body 2 relative to body 1
has a position r and velocity v. We take r ¼ jrj, n ¼ r=r,
and _r ¼ n · v. The two bodies evolve according to the PN
Lagrangian in the ADM coordinates [56,67],

Lðr; v;S1;S2Þ ¼ LO þ LS: ð34Þ

LO is an orbital part with the following expression:

LO ¼ LN þ 1

c2
L1PN þ 1

c4
L2PN; ð35Þ

where the Newtonian term LN and the 1PN and 2PN
contributions L1PN and L2PN are

LN ¼ 1

r
þ v2

2
; ð36Þ

L1PN ¼ v4

8
−
3νv4

8
−

1

2r2

þ 1

r

�
ν_r2

2
þ 3v2

2
þ νv2

2

�
; ð37Þ

L2PN ¼ v6

16
−
7νv6

16
þ 13ν2v6

16

þ 1

r

�
3ν2 _r4

8
þ ν_r2v2

2
−
5ν2 _r2v2

4

þ 7v4

8
−
3νv4

2
−
9ν2v4

8

�

þ 1

r2

�
3ν_r2

2
þ 3ν2 _r2

2
þ 2v2 − νv2 þ ν2v2

2

�

þ 1

r3

�
1

4
þ 3ν

4

�
: ð38Þ

The two bodies spin according to the spin effects,

LS ¼
1

c3
L1.5SO þ 1

c4
L2SS; ð39Þ

where the 1.5PN spin-orbit coupling L1.5SO and the 2PN
spin-spin effect L2SS [26] are

L1.5SO ¼ ν

r3
v · ½r × ðγ1S1 þ γ2S2Þ�; ð40Þ

L2SS ¼ −
ν

2r3

�
3

r3
ðS0 · rÞ2 − S0

2

�
: ð41Þ

Note that γ1 ¼ 2þ 3=ð2βÞ, γ2 ¼ 2þ 3β=2, and S0 ¼
ð1þ 1=βÞS1 þ ð1þ βÞS2, where the mass ratio is
β ¼ M2=M1. Equations (34)–(41) are dimensionless
through a series of scale transformations: r → GMr,
t → GMt, Si → GμMSi (i ¼ 1, 2), and L → μL. G uses
a geometric unit G ¼ 1.
The Hamiltonian (7) for the PN Lagrangian (34) reads

Hðr; v;S1;S2Þ ¼ v · p − Lðr; v;S1;S2Þ; ð42Þ

where the momentum p is still defined in Eq. (1) by

p ¼ ∂
∂vLðr; v;S1;S2Þ: ð43Þ

As is aforementioned, v in Eq. (43) can be expressed as a
function of r, p, S1, and S2. In general, the higher-order
terms are truncated if v is expressed in terms of p. However,
v in Eq. (42) has no such operation and still remains. This
shows that Eq. (42) is only a formal Hamiltonian but is not
a standard Hamiltonian. That is to say, the formal
Hamiltonian, as a function of r, v, p, S1, and S2, comes
directly from the Legendre transformation of the
Lagrangian and has no terms truncated. Thus, it is exactly
equivalent to this Lagrangian. The PN Lagrangian (34) has
four integrals of motion, which involve the energy integral,

E ¼ Hðr; v;S1;S2Þ; ð44Þ
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and the total angular momenta,

J ¼ r × pþ S1 þ S2: ð45Þ

Because no terms are truncated when the formal
Hamiltonian is obtained from the Lagrangian, the energy
is an exact integral in the Lagrangian.
Apart from the four integrals, the two spin lengths Si ¼

χiM2
i =ðμMÞð0 ≤ χi ≤ 1Þ also remain constant. Using the

constant spin lengths, Wu and Xie [33] introduced the
canonical spin coordinates ðθi; ξiÞ as follows:

Si ¼

0
B@

ρi cos θi
ρi sin θi
ξi

1
CA; ð46Þ

where ρi are expressed as

ρi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2i − ξ2i

q
: ð47Þ

Now, the Hamiltonian can be expressed in terms of ten
independent phase space variables, consisting of 5 degrees
of freedom (i.e., generalized coordinates) ðr; θ1; θ2Þ and
five conjugate momenta ðp; ξ1; ξ2Þ. These independent
variables evolve by satisfying the Hamiltonian canonical
equations of motion,

_ri ¼
∂H
∂p ¼ v; ð48Þ

_θi ¼
∂H
∂ξi ¼ −

∂L
∂Si

·
∂Si

∂ξi ; ð49Þ

_p ¼ −
∂H
∂r ¼ ∂L

∂r ; ð50Þ

_ξi ¼ −
∂H
∂θi ¼

∂L
∂Si

·
∂Si

∂θi : ð51Þ

r and p are a pair of canonical variables. So are θi and ξi.
After the solutions ðr; θ1; θ2;p; ξ1; ξ2Þ are solved from
Eqs. (48)–(51), v is calculated iteratively in terms of
Eq. (43). Equations (48)–(51) with Eq. (43) are strictly
derived from the Lagrangian (34) and exactly conserve the
energy (44). In this case, the four algorithms EM4, IM4,
GRK, and RK4 are available for the exact Euler-Lagrange
equations (48)–(51). The solutions are not given analyti-
cally because the existence of the four integrals, including
the total energy and the total momenta in the ten-dimen-
sional phase space, determines the nonintegrability of the
formal PN Hamiltonian (or Lagrangian) formulation.
Another consideration is that the total accelerations to

the 2PN order can be derived from the Euler-Lagrange
equations of the Lagrangian (34) and are written as

dv
dt

¼ ∂L
∂r þ ã1PN

c2
þ ã1.5SO

c3
þ ã2PN

c4
þ � � � ð52Þ

The PN accelerations, such as ã1PN in the right-hand side of
Eq. (52), originated from the derivative of momenta (43)
with respect to time (i.e., dp=dt) in the Euler-Lagrange
equations. Because the PN terms higher than the 2PN terms
are dropped in the total accelerations, Eq. (52) with
Eqs. (48), (49), and (51) is the approximate equations of
the Lagrangian (34). Of course, such approximate equa-
tions do not exactly conserve the energy (44).
It is worth pointing out that the differences in the PN

contributions (including the spin effects) between the two
sets of equations are apparent. To show the differences, we
rewrite Eqs. (43) and (5) of the exact equations as

_v ¼ ∂L
∂r þ f1PNðr; v; _vÞ þ f2PNðr; v; _vÞ
þ fSOðr; v;S1;S2; _S1; _S2Þ; ð53Þ

where f1PN , f2PN , and fSO are functions associated to the
PN accelerations. This equation is an implicit equation with
respect to the acceleration _v. When _v ¼ −r=r3 (i.e., the
Newtonian acceleration) and _S1 ¼ _S2 ¼ 0 in the right-hand
side of Eq. (53), the approximate equations (52) are
obtained. However, these approximations are not given
to the exact equations. If _v takes the 1PN orbital contri-
bution, 1.5PN spin-orbit term, 2PN orbital term, and 2PN
spin-spin coupling in the function f1PN , then f1PN includes
the 2PN orbital contribution, 2.5PN spin-orbit term, 3PN
orbital term, and 3.5PN spin-orbit coupling. In this case,
f2PN contains the 3PN orbital contribution, 3PN spin-spin
effect, 4PN orbital term, and 4PN spin-spin coupling. If _S1

and _S2 in the function fSO are Eqs. (49) and (51), then fSO
has 3PN spin-spin coupling and 3.5PN spin-orbit inter-
action. Thus, besides the terms in the approximate equa-
tions (52), many other terms such as the 2.5PN spin-orbit
coupling and the 3PN spin-spin contribution are included in
the exact equations (53). The 2.5PN spin-orbit and 3PN
spin-spin contributions are implicitly hidden in the exact
equations but are absent in the approximate equations.

B. Numerical tests

Same as G, the speed of light c also takes the geometric
unit c ¼ 1. The parameters are given by χ1 ¼ χ2 ¼ 1 and
β ¼ 4. The initial conditions are chosen as x ¼ 70, y ¼ 0,
z ¼ 0, px ¼ pz ¼ 0, and py ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − eÞ=xp
with an initial

eccentricity e ¼ 0.16. The initial canonical spin variables
are given by θ1 ¼ θ2 ¼ π=2, ξ1 ¼ 0.1, and ξ2 ¼ 0.95.
When RKF89 is used, the approximate Euler-Lagrange
equations and the exact ones have different three-dimen-
sional orbits after an integration time in Fig. 8. As is
mentioned above, the exact Euler-Lagrange equations
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should be chosen as the equations of motion for the
Lagrangian (34).
Now, RKF89 is replaced with one of the four algorithms

EM4, IM4, GRK, and RK4. The step size h ¼ 1 is fixed.
Figure 9 plots the relative energy errors ΔE, relative total
angular momentum errors ΔJ, and relative position errors
ΔR for the four integrators. Here, ΔE ¼ jðEt − E0Þ=E0j
and ΔJ ¼ jJt − J0j=jJ0j, where J0 is the total angular
momenta (45) at time 0, and Jt denotes the total angular
momenta calculated at integration time t. The positions
calculated by these methods at time t are rE for EM4, rI for
IM4, rG for GRK, and rR for RK4. The higher-precision
method RKF89 is used to provide reference solutions, such
as the position rF. In this way, the relative position errors
between RKF89 and EM4 can be computed by ΔR ¼
jrF − rEj=jrFj. The position errors between RKF89 and

one of IM4, GRK, and RK4 are also calculated in this
similar way. The three geometric methods EM4, IM4, and
GRK give no secular growth to the errors in the total energy
and the total angularmomenta. In otherwords, they conserve
the total energy and the total angular momenta. They have no
dramatic differences but only minor one in the accuracies,
and their accuracies are almost approximate to the machine’s
precision. In the energy accuracies, GRK is slightly better
thanEM4or IM4;EM4and IM4 are approximately the same.
In the angular momentum accuracies, EM4 and GRK are
basically the same and are slightly superior to IM4.However,
RK4 does not conserve the total energy and the total angular
momenta and exhibits the poorest accuracies. The three
methods EM4, IM4, and GRK are almost the same in the
relative position errors as the integration lasts. The position
errors for EM4, IM4, and GRK are several orders of
magnitude smaller than those for RK4.
The numerical tests show that the three geometric

integrators exhibit good long-term performance in the
conservation of energy and angular momentum, but RK4
exhibits poor long-term performance. For given time step
and integration time, EM4 is superior to IM4 and GRK in
computational efficiency.

C. Orbital dynamics

EM4 combined with the technique of FLIs is employed
to explore the orbital dynamical behavior. The initial
conditions are the same as those in Fig. 9, except for the
initial eccentricity e ¼ 0.66 and the initial spin angles θ1 and
θ2. The initial spin angles θ1 ¼ 5.4349 and θ2 ¼ 2.042 with
FLI ¼ 2.56 yield a regular solution in Fig. 10. However, the
initial spin angles θ1 ¼ 4.7123 and θ2 ¼ 2.4504with FLI ¼
10.48 exhibit a chaotic solution. The FLIs larger than 7.5
indicate the chaoticity, whereas the FLIs no more than 7.5
indicate the regularity when the integration time reaches
t ¼ 105. The performance of this integrator in the conserva-
tion of energy and angular momenta is independent of the
regularity or chaoticity of orbits.
Using the FLIs, we can classify the two-dimensional

space of the initial spin angles according to the different

FIG. 8. Three-dimensional orbits, described by RKF89 solving
the approximate Euler-Lagrange equations and the exact ones of
spinning compact binaries.

(a) (b) (c)

FIG. 9. Relative errors in the energy (a), angular momentum (b), and position (c) for the four algorithms acting on the coherent PN
Euler-Lagrange equations. The initial conditions are x ¼ 70, py ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − eÞ=xp
with e ¼ 0.16, θ1 ¼ θ2 ¼ π=2, ξ1 ¼ 0.1, and

ξ2 ¼ 0.95. The parameters are β ¼ 4 and χ1 ¼ χ2 ¼ 1.
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orbital dynamical features in Fig. 11(a). Our method is
described here. The initial conditions and parameters are
the same as those in Fig. 10. The initial spin angles θ1 and
θ2 range from 0 to 2π with an interval of 0.01 × π. The FLI
for each pair of θ1 and θ2 is obtained after the integration
time t ¼ 105. Based on the FLIs, the initial spin angles θ1
and θ2 can be divided into three regions: the regular region
of bounded orbits, the chaotic region of bounded orbits, and
an unstable region. A number of initial spin angles
correspond to the regularity, and many initial spin angles
colored red indicate the presence of chaos. There are a lot of
initial spin angles colored black leading to the instability.
No rule on the transition from order to chaos can be given
as the initial spin angles are varied. Figure 11(b) relates to
the dependence of FLIs on the initial eccentricities e and
initial separations x with a mass ratio β ¼ 3. The other

initial conditions and parameters are the same as those of
Fig. 9. There are two main regions. The largest region
colored blue corresponds to order. The larger region
colored black shows that none of the orbits are stable
below the horizon line x ¼ 21.8. Only a small number of
values of x and e on the boundary between order and
instability indicate the onset of chaos. For instance, the
orbit with e ¼ 0.75 and x ¼ 65 having FLI ¼ 12.3 is
chaotic. The result concluded in Fig. 11(b) is that the
orbits become unstable as the initial eccentricities increase
or the initial separations decrease, whereas they become
stable and regular as the initial separations increase.
Some explanations to the above results are given here.

The exact Euler-Lagrange equations are conservative,
integrable, and nonchaotic when the two bodies do not
spin. However, when the two bodies are spinning, the spin
contributions lead to the nonintegrability and probable
chaoticity of the exact equations. The spin effects play
an important role in the onset of chaos. As is claimed
above, the 1.5PN spin-orbit and 2PN spin-spin contribu-
tions are explicitly included in the exact equations, and the
2.5PN spin-orbit and 3PN spin-spin contributions are
implicitly hidden. The 2.5PN spin-orbit and 3PN spin-spin
contributions hidden in the exact equations would easily
induce the instability or chaoticity of the solutions for the
exact equations. Larger initial eccentricities and smaller
initial separations x cause an increase of the spin effects,
and therefore, chaos or instability is easily induced.

V. CONCLUSION

A PN Lagrangian formalism can be exactly equivalent to
the same order PN formal Hamiltonian (7), which is a
function of the positions, momenta, and velocities. Because
the velocities as implicit functions of the positions and
momenta are solved iteratively from the algebraic equations
of the momenta defined by the Lagrangian, such a formal
Hamiltonian is still a function of the positions and

FIG. 10. FLIs of two orbits in the exact equations. The initial
conditions are the same as those in Fig. 9, but the initial
eccentricity e ¼ 0.66 and initial spin angles θ1 and θ2 are
different. For the initial spin angles θ1 ¼ 5.4349 and θ2 ¼
2.042 with FLI ¼ 2.56, the dynamics is regular. However, the
dynamics is chaotic for the initial spin angles θ1 ¼ 4.7123 and
θ2 ¼ 2.4504 with FLI ¼ 10.48.

(a) (b)

FIG. 11. (a) Dynamical structures by using the FLIs to scan the initial spin angles θ1 and θ2. (b) To scan the initial eccentricities e and
initial separations x. Red: chaos, Black: unstable, Blue: order.
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momenta. The Lagrangian formalism is not exactly equiv-
alent to the same order PN standard Hamiltonian (5), which
is a function of the position and momenta. The canonical
equations for the formal PN Hamiltonian (7) must strictly
conserve the Hamiltonian quantity, i.e., energy. They are
the coherent or exact PN Euler-Lagrange equations of
motion.
Doubling the phase-space variables, including the posi-

tions and momenta in the formal Hamiltonian, we introduce
a new Hamiltonian in extended phase space. This new
Hamiltonian consists of two parts: one of which is equal to
the original formal Hamiltonian, depending on the original
positions and the new momenta with the new velocities,
and another of which is equal to the original Hamiltonian,
depending on the original momenta and the new positions
with the original velocities. The solutions of the
Hamiltonian’s canonical equations for the two parts of
the new Hamiltonian are used to design the standard
second-order symplectic leapfrog methods and the
fourth-order symplectic schemes. When these algorithms
are combined with the midpoint permutations, the extended
phase-space symplectic-like integrators become easily
available for the coherent PN Euler-Lagrange equations.
In the course of numerical integrations, the old and new
velocities must be solved iteratively.
Numerical tests show that a fourth-order extended phase-

space symplectic-like method exhibits a good long-term
stabilizing error behavior in energy and/or angular momen-
tum, just as a fourth-order implicit symplectic method and a
Gauss-Runge-Kutta scheme. The former method takes less
computational cost than the latter integrators for a given

time step and integration time. This good numerical
performance of the extended phase-space method is inde-
pendent of the regularity or chaoticity of orbits. Because of
such a good performance, the extended phase-space sym-
plectic-like method with the technique of FLIs is applicable
to studying the effects of the parameters and initial
conditions on the orbital dynamics of the coherent
Euler-Lagrange equations for a post-Newtonian circular
restricted three-body problem. The parameters and initial
conditions corresponding to order, chaos, and instability are
found. They are also applied to trace the effects of the initial
spin angles, initial separations, and initial orbital eccen-
tricities on the dynamics of the coherent post-Newtonian
Euler-Lagrange equations of spinning compact binaries. As
a result, the initial spin angles, initial separations, and initial
orbital eccentricities for the presence of order, chaos, and
instability are obtained. Larger initial eccentricities and
smaller initial separations easily induce the occurrence of
chaos or instability.
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[64] C. Froeschlé, E. Lega, and R. Gonczi, Celest. Mech. Dyn.

Astron. 67, 41 (1997).
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